JP2009117686A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2009117686A
JP2009117686A JP2007290409A JP2007290409A JP2009117686A JP 2009117686 A JP2009117686 A JP 2009117686A JP 2007290409 A JP2007290409 A JP 2007290409A JP 2007290409 A JP2007290409 A JP 2007290409A JP 2009117686 A JP2009117686 A JP 2009117686A
Authority
JP
Japan
Prior art keywords
electrode
electrostatic chuck
internal electrode
slit
slit group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007290409A
Other languages
Japanese (ja)
Other versions
JP5227568B2 (en
Inventor
Tetsuo Kitabayashi
徹夫 北林
Toshiya Umeki
俊哉 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2007290409A priority Critical patent/JP5227568B2/en
Publication of JP2009117686A publication Critical patent/JP2009117686A/en
Application granted granted Critical
Publication of JP5227568B2 publication Critical patent/JP5227568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck which can provide a uniform film thickness to an insulating layer with an improved attracting force. <P>SOLUTION: An internal electrode 2 is provided therein with a plurality of slits 21a, 21b, etc., extended in the form of a comb in concentric directions of the internal electrode and with slits 23a, 23b, etc. extended linearly in its radius directions, and the slits 21a, 21b, etc., extended in the concentric directions are continuous at their one ends to the slits 23a, 23b, etc., extended in its radius directions. With such an electrode structure, upon sintering, both of expansion of the electrode in its circumferential direction and expansion thereof in the radius direction can be absorbed or reduced and thus an insulating layer can have a uniform film thickness. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は静電チャックに関し、例えば半導体製造装置においてウエハを吸着・保持するために使用する静電チャックに関する。   The present invention relates to an electrostatic chuck, for example, an electrostatic chuck used for attracting and holding a wafer in a semiconductor manufacturing apparatus.

シリコンウエハ等の半導体基板や他の各種基板等の製造、検査工程において、各種の処理、測定、搬送時にその基板を保持する必要が生じる。例えば、半導体製造工程において半導体ウエハへ微細加工を施すエッチング工程、薄膜を形成する成膜工程、フォトレジスト膜を用いた露光処理工程等は、真空下で処理が行われるため、ウエハを保持するために静電チャックを使用している。静電チャックは、例えば、低熱膨張セラミックからなる誘電体層の上面をウエハの吸着面とし、誘電体層に埋設した静電吸着用電極(内部電極)とウエハとの間に電圧を印加して得られる静電吸着力によりウエハを吸着面に保持していた。(例えば、特許文献1等を参照)。
特開2006−40993号公報
In manufacturing and inspection processes of semiconductor substrates such as silicon wafers and other various substrates, it is necessary to hold the substrates during various processes, measurements, and conveyances. For example, an etching process for performing microfabrication on a semiconductor wafer in a semiconductor manufacturing process, a film forming process for forming a thin film, an exposure processing process using a photoresist film, etc. are performed under vacuum, so that the wafer is held. An electrostatic chuck is used. For example, an electrostatic chuck uses a top surface of a dielectric layer made of a low thermal expansion ceramic as an adsorption surface of a wafer, and a voltage is applied between the electrostatic adsorption electrode (internal electrode) embedded in the dielectric layer and the wafer. The wafer was held on the suction surface by the obtained electrostatic suction force. (See, for example, Patent Document 1).
JP 2006-40993 A

上述した従来の静電チャックでは、基材と内部電極の密着性を向上させるため、例えば金網が重なり合ってできた開口部を備えるメッシュ電極や、板状の電極材料をくり貫いて形成した開口部を備えるパンチングメタル電極を内部電極として使用している。このような電極を埋設したセラミック等の基材を焼結させると、メッシュ電極の場合、その伸縮性のため電極そのものの変形は発生しづらいが、金網同士の接触不良による局所発熱が発生して製品温度が上がり、体積抵抗率が低下する。その結果、リーク電流が増加してウエハ上に形成されるデバイスを破壊する危険性があった。   In the conventional electrostatic chuck described above, in order to improve the adhesion between the base material and the internal electrode, for example, a mesh electrode provided with an opening formed by overlapping metal meshes, or an opening formed by punching a plate-shaped electrode material A punching metal electrode provided with is used as an internal electrode. When a substrate such as a ceramic with such electrodes embedded is sintered, in the case of a mesh electrode, deformation of the electrode itself is difficult to occur due to its elasticity, but local heat generation due to poor contact between the metal meshes occurs. Product temperature rises and volume resistivity decreases. As a result, there is a risk that the leakage current increases and the device formed on the wafer is destroyed.

そこで、局所発熱を改善するためにパンチングメタル電極を使用して基材の焼結を行う方法もあるが、パンチングメタル電極は平板形状であるため伸縮性に乏しく、反り等の電極の変形が発生しやすいという問題があった。このような電極の変形が生じる結果、剥離の発生や絶縁層の膜厚にムラができてしまい、吸着力等の特性にバラツキが発生する。そのため、このような静電チャックを半導体の製造工程で使用した場合、エッチングレートや成膜レートにもバラツキが生じるという問題があった。   Therefore, there is a method to sinter the base material using a punching metal electrode in order to improve local heat generation. However, the punching metal electrode has a flat plate shape, so it has poor stretchability, and deformation of the electrode such as warpage occurs. There was a problem that it was easy to do. As a result of such deformation of the electrode, peeling occurs and the film thickness of the insulating layer becomes uneven, resulting in variations in characteristics such as adsorption force. Therefore, when such an electrostatic chuck is used in a semiconductor manufacturing process, there is a problem in that the etching rate and the film formation rate also vary.

本発明は、かかる事情に鑑みてなされたものであり、焼結時における電極の変形等による剥離の防止や絶縁層の膜厚のバラツキをなくし、平坦な吸着面を有する静電チャックを提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an electrostatic chuck having a flat attracting surface by preventing peeling due to electrode deformation during sintering and eliminating variations in the thickness of the insulating layer. For the purpose.

上記目的を達成するため、本発明に係る静電チャックは、絶縁基材内に所定形状の内部電極を配設してなる静電チャックであって、上記内部電極は同心形状で所定間隔離間して配された第1のスリット群と、中心部から外縁部に向けて延びる第2のスリット群とを有し、上記第1のスリット群の一端が上記第2のスリット群に連結していることを特徴とする。
例えば、上記第1のスリット群および第2のスリット群のスリット幅は20μm乃至1000μmであり、上記内部電極の電極幅は1mm乃至5mmであることを特徴とする。また、例えば、上記第1のスリット群および第2のスリット群は、上記内部電極の中心領域を除く所定の外周領域に配されていることを特徴とする。
さらには、例えば、上記内部電極は平面形状がほぼ円形であり、上記第1のスリット群は互いに逆向きにくし状に入り込みながら同心円状に配されていることを特徴とする。また、例えば、上記内部電極は平面形状が多角形であり、上記第1のスリット群は互いに逆向きにくし状に入り込みながら上記多角形の辺とほぼ平行に同軸状に配されていることを特徴とする。
In order to achieve the above object, an electrostatic chuck according to the present invention is an electrostatic chuck in which an internal electrode having a predetermined shape is disposed in an insulating substrate, and the internal electrode is concentric and spaced apart by a predetermined interval. And a second slit group extending from the center toward the outer edge, and one end of the first slit group is connected to the second slit group. It is characterized by that.
For example, the slit width of the first slit group and the second slit group is 20 μm to 1000 μm, and the electrode width of the internal electrode is 1 mm to 5 mm. Further, for example, the first slit group and the second slit group are arranged in a predetermined outer peripheral region excluding the central region of the internal electrode.
Further, for example, the internal electrode has a substantially circular planar shape, and the first slit group is arranged concentrically while entering a comb shape in opposite directions. Also, for example, the internal electrode has a polygonal planar shape, and the first slit group is arranged coaxially in parallel with the sides of the polygon while entering the comb shape in opposite directions. Features.

本発明によれば、内部電極の変形を抑え、剥離の防止や被吸着物に対する吸着力を向上させた静電チャックを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the electrostatic chuck which suppressed the deformation | transformation of an internal electrode, prevented peeling and improved the attraction | suction force with respect to a to-be-adsorbed object can be provided.

以下、図面を参照して本発明を実施するための最良の形態例を詳細に説明する。図1は、本発明の実施の形態例に係る静電チャック(基板保持具)の構成を模式的に示す断面図である。図1に示すように、本発明の実施の形態例に係る静電チャック10は、後述する誘電体により構成される板状体(セラミックス焼結体)1と、その板状体1に埋設され、所定距離離間して配された2つの電極2a,2bからなる双極式の内部電極2と、板状体1の上面において、これらの電極2a,2bを覆うように形成された誘電体層(絶縁層)4とを備え、誘電体層4の表面は、被吸着物を吸着し保持するための吸着面5となっている。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing the configuration of an electrostatic chuck (substrate holder) according to an embodiment of the present invention. As shown in FIG. 1, an electrostatic chuck 10 according to an embodiment of the present invention is embedded in a plate-like body (ceramic sintered body) 1 composed of a dielectric material to be described later and the plate-like body 1. A bipolar internal electrode 2 composed of two electrodes 2a and 2b spaced apart by a predetermined distance, and a dielectric layer formed on the upper surface of the plate-like body 1 so as to cover these electrodes 2a and 2b ( The surface of the dielectric layer 4 is an adsorption surface 5 for adsorbing and holding an object to be adsorbed.

なお、図1に示す静電チャック10において、不図示の電源により電極2a,2bに対して直流電圧が印加されており、それにより発生した静電気力によって吸着面5の上に被吸着物としてのウエハWが吸着される。また、便宜上、内部電極2から吸着面5までの間を誘電体層4と呼ぶ。ここでは、静電チャック10からウエハWを脱着するためのリフトピンや、そのリフトピンを上下方向に移動可能な貫通孔等の図示は省略する。   In the electrostatic chuck 10 shown in FIG. 1, a DC voltage is applied to the electrodes 2a and 2b by a power source (not shown), and an electrostatic force generated thereby causes Wafer W is adsorbed. For convenience, the portion from the internal electrode 2 to the adsorption surface 5 is referred to as a dielectric layer 4. Here, illustration of a lift pin for detaching the wafer W from the electrostatic chuck 10 and a through-hole capable of moving the lift pin in the vertical direction is omitted.

本発明の実施の形態例に係る静電チャック10の板状体1および誘電体層4は、例えば、アルミナ、窒化アルミニウム、マグネシアスピネル等からなるセラミックス焼結体である。本発明の実施の形態例では、上記の材料を所定形状の型に入れて成形し、緻密化させるため、例えばホットプレス焼成等によって板状体を作製する。また、内部電極2は、例えば、モリブデンやタングステン等の金属材料からなる電極であって、上述したように板状体1の内部に埋設された状態で形成されている。内部電極2と板状体1は同時に焼成され、得られた焼結体の上下の面を研削加工して板状体1と誘電体層4とが所定の厚さとなるようにすることで、静電チャック10を作製する。   The plate-like body 1 and the dielectric layer 4 of the electrostatic chuck 10 according to the embodiment of the present invention are ceramic sintered bodies made of alumina, aluminum nitride, magnesia spinel, or the like, for example. In the embodiment of the present invention, a plate-like body is produced by hot press firing or the like, for example, in order to form the above-mentioned material in a mold having a predetermined shape and to make it dense. The internal electrode 2 is an electrode made of a metal material such as molybdenum or tungsten, for example, and is formed in a state of being embedded in the plate-like body 1 as described above. The internal electrode 2 and the plate-like body 1 are fired simultaneously, and the upper and lower surfaces of the obtained sintered body are ground so that the plate-like body 1 and the dielectric layer 4 have a predetermined thickness. The electrostatic chuck 10 is produced.

次に、本発明の実施の形態例に係る静電チャックに特徴的な内部電極について詳細に説明する。図2は、本発明の実施の形態例に係る静電チャックの電極パターンの一例を示す平面図である。図2に示す内部電極2は、双極式の静電チャックにおける丸型形状の電極の一例であり、内部電極2を半円状に二分する電極2a,2bからなっている。個々の電極2a,2bには、同心円方向に所定間隔を保ちながら、互いにくし型状(くし歯状)となって入り込んだ複数のスリット21a,21b等が配設され、それらの一端部が、半径方向に直線状に延びるスリット23a,23b等と繋がる構造を有する。その結果、電極2a,2bの個々の電極部25a,25b等も、これらのスリット21a,21b等が介在することで、くし型状に入り込んだ構造になっている。   Next, the internal electrodes characteristic of the electrostatic chuck according to the embodiment of the present invention will be described in detail. FIG. 2 is a plan view showing an example of an electrode pattern of the electrostatic chuck according to the embodiment of the present invention. The internal electrode 2 shown in FIG. 2 is an example of a round electrode in a bipolar electrostatic chuck, and includes electrodes 2a and 2b that bisect the internal electrode 2 in a semicircular shape. Each of the electrodes 2a and 2b is provided with a plurality of slits 21a and 21b and the like which are inserted in a comb shape (comb shape) while maintaining a predetermined interval in the concentric direction, and one end portion thereof is It has a structure connected to slits 23a, 23b and the like extending linearly in the radial direction. As a result, the individual electrode portions 25a, 25b, etc. of the electrodes 2a, 2b also have a structure that enters the comb shape by the interposition of these slits 21a, 21b.

双極式の内部電極2を構成する電極2a,2bは、図2に示すように互いに所定間隔sだけ離して配設されている。このような配置構造とすることで、電極2a,2b間において所定の電気的な絶縁耐力を得ている。また、図2に示す例において、電極部25a,25b等およびスリット21a,21b等は、半径方向へ延びる複数のスリット23a,23b等によって囲まれているため、便宜上、電極2a,2b各々が4つのブロックに区分けされていると見ることができる。そこで、図示はしないが、内部電極2への給電端子を、電極2a,2b単位に設けてもよいし、あるいは、これらのブロックごとに配設してもよい。なお、ブロックの数は、4つに限定されない。   The electrodes 2a and 2b constituting the bipolar internal electrode 2 are arranged apart from each other by a predetermined interval s as shown in FIG. By adopting such an arrangement structure, a predetermined electrical dielectric strength is obtained between the electrodes 2a and 2b. In the example shown in FIG. 2, the electrode portions 25a, 25b, etc. and the slits 21a, 21b, etc. are surrounded by a plurality of slits 23a, 23b, etc. extending in the radial direction. It can be seen that it is divided into two blocks. Therefore, although not shown, a power supply terminal to the internal electrode 2 may be provided in units of the electrodes 2a and 2b, or may be provided for each of these blocks. Note that the number of blocks is not limited to four.

内部電極2のスリット21a,21b等の幅は、例えば20μm〜1000μmであり、電極部25a,25b等の幅は、例えば1mm〜5mmで、その厚さは、例えば50μm〜100μmに構成されている。これらのスリット21a,21b等は、例えば放電加工、レーザ加工等を使用して形成する。ここで、スリットの幅を、例えば20μm未満にすると、電極の加工上の問題が生じ、スリットとならない部分が発生する可能性がある。また、スリット幅が1000μmを超えると、電極の総面積が減る分、吸着力が低下する問題も生じる。   The width of the slits 21a, 21b, etc. of the internal electrode 2 is, for example, 20 μm to 1000 μm, the width of the electrode portions 25a, 25b, etc. is, for example, 1 mm to 5 mm, and the thickness is, for example, 50 μm to 100 μm. . These slits 21a, 21b and the like are formed using, for example, electric discharge machining, laser machining, or the like. Here, if the width of the slit is, for example, less than 20 μm, a problem in processing the electrode may occur, and a portion that does not become a slit may occur. Further, when the slit width exceeds 1000 μm, there arises a problem that the adsorptive power is reduced as much as the total area of the electrode is reduced.

なお、本発明の実施の形態例に係る静電チャックは、製造工程において、スリット部分に母材原料が充填されることで、焼結後において母材と電極との密着が図られる。そのため、スリット幅が20μm未満では、その密着度が低下する可能性がある。   In the electrostatic chuck according to the embodiment of the present invention, the base material and the electrode are in close contact after sintering by filling the slit material with the base material in the manufacturing process. Therefore, if the slit width is less than 20 μm, the degree of adhesion may be reduced.

一方、電極については、その幅が例えば5mmを越えると、焼成工程における熱膨張時に板状体の母材との剥離が生じやすくなり、また、電極幅が1mm未満では、電極単体の取り扱い時に電極が変形する可能性が生じる。なお、内部電極2の径は、それが例えば100mm未満の場合、絶縁層の膜厚の均一化の効果が見込めないという問題が生じる。   On the other hand, if the width of the electrode exceeds 5 mm, for example, peeling from the base material of the plate-like body is likely to occur during thermal expansion in the firing step, and if the electrode width is less than 1 mm, the electrode is handled when handling the electrode alone. May be deformed. In addition, when the diameter of the internal electrode 2 is less than 100 mm, for example, there is a problem that the effect of uniforming the thickness of the insulating layer cannot be expected.

本発明の実施の形態例に係る静電チャックでは、スリット21a,21b等を、図2に示すように電極2の外周部の例えば、半径方向におけるd=50mm以上の領域にのみ配設し、電極2の中心部には設けない構造としている。これは、後述するように絶縁層の中心部領域では、焼結時における電極の変形の影響がほとんどなく、中心部にもスリットを形成する効果が確認できないからである。また、このようにスリットを電極2の外周部の所定領域(半径方向50mm以上)に配設した場合、電極へ給電を行うための給電端子の取出しが容易になるという利点がある。他方、電極外周の例えば半径方向50mm以下の領域にのみスリット21a,21b等を配した場合には、焼結時における電極の膨張を吸収し切れず、スリットの効果が見込めないことが判明した。   In the electrostatic chuck according to the embodiment of the present invention, the slits 21a, 21b and the like are disposed only in the outer peripheral portion of the electrode 2 as shown in FIG. The structure is not provided at the center of the electrode 2. This is because, as will be described later, in the central region of the insulating layer, there is almost no influence of electrode deformation during sintering, and the effect of forming a slit in the central portion cannot be confirmed. Further, when the slits are arranged in a predetermined region (radial direction of 50 mm or more) on the outer peripheral portion of the electrode 2 in this way, there is an advantage that it is easy to take out a power supply terminal for supplying power to the electrode. On the other hand, when the slits 21a, 21b, etc. are disposed only in the region of the electrode outer periphery, for example, in the radial direction of 50 mm or less, it has been found that the expansion of the electrode during the sintering cannot be absorbed and the effect of the slit cannot be expected.

上述したように、本実施の形態例に係る静電チャックでは、同心円方向に、くし型状に入り込んだ複数のスリットと、半径方向に直線状に延びるスリットとを配し、これら同心円方向のスリットの一端が半径方向のスリットに繋がる電極構造とすることで、電極全体として伸縮性に富む構造が実現でき、焼結時において、図2で矢印Aにて示す円周方向の膨張と、矢印Bで示す半径方向の膨張の双方を吸収し緩和できる。その結果、焼結時において内部電極2の変形が少なくなり、基材からの電極の剥離を防止できるとともに、電極上部の絶縁層のバラツキをなくして膜厚の均一化ができるため静電チャックの吸着面が平坦になり、静電吸着力が向上するという優れた効果がある。   As described above, in the electrostatic chuck according to the present embodiment, a plurality of slits entering the comb shape and the slits extending linearly in the radial direction are arranged in the concentric direction, and these concentric direction slits are arranged. By forming an electrode structure in which one end of the electrode is connected to a slit in the radial direction, a structure having excellent stretchability can be realized as the whole electrode. During sintering, expansion in the circumferential direction indicated by arrow A in FIG. It can absorb and relieve both the radial expansion indicated by. As a result, the deformation of the internal electrode 2 is reduced during sintering, and the peeling of the electrode from the base material can be prevented, and the thickness of the insulating layer on the electrode can be made uniform and the film thickness can be made uniform. There is an excellent effect that the attracting surface becomes flat and the electrostatic attracting force is improved.

さらには、図2に例示したように、双極式の各々の電極2a,2bが一枚電極であり、スリットを挟んで向かい合う電極は同電位であるため、スリットの幅が狭くても、従来のメッシュ電極で問題となっていた内部放電(電極同士の放電)が起こることもない。   Further, as illustrated in FIG. 2, each of the bipolar electrodes 2a and 2b is a single electrode, and the electrodes facing each other across the slit have the same potential. Therefore, even if the width of the slit is narrow, The internal discharge (discharge between the electrodes) that has been a problem with the mesh electrode does not occur.

また、静電チャックにおける吸着力が電極の面積に比例することから、電極に幅の細いスリットをくし型状に配設することで、電極の面積を広く取ることができ、これにより静電チャックの吸着力をパンチングメタル電極やメッシュ電極に比べ向上できる。なお、静電チャックの吸着力として、クーロン力、あるいはジョンセン・ラーベック力を利用したものがあるが、本実施の形態例に係る静電チャックは、いずれにも適用できる。クーロン力で吸着する静電チャックは、一般的に誘電体層が高抵抗であり、必要な吸着力を得るには、ジョンセン・ラーベック力を利用した静電チャックに比べて高い電圧を印加する必要がある。   In addition, since the attractive force in the electrostatic chuck is proportional to the area of the electrode, the electrode area can be increased by arranging a narrow slit in the electrode in a comb shape. Can be improved compared to punching metal electrodes and mesh electrodes. In addition, as an attraction force of the electrostatic chuck, there is one using a Coulomb force or a Johnsen-Rahbek force, but the electrostatic chuck according to this embodiment can be applied to any of them. Electrostatic chucks that are attracted by Coulomb force generally have a high dielectric resistance, and it is necessary to apply a higher voltage than electrostatic chucks that use the Johnsen-Rahbek force to obtain the required attracting force. There is.

次に実施例と比較例を挙げて、本発明に係る静電チャックをさらに詳細に説明する。ここでは、以下の製法で静電チャックを製造した。すなわち、所定の型に原料(窒化アルミニウム)を充填した後、100kg/cm2で一軸加圧を実施し、得られた成形品の所定箇所に、あらかじめ作製(予備成形)しておいたスリット型の電極を設置した。ここでは、電極材料としてモリブデンを採用した。 Next, the electrostatic chuck according to the present invention will be described in more detail with reference to examples and comparative examples. Here, an electrostatic chuck was manufactured by the following manufacturing method. That is, after a raw material (aluminum nitride) is filled in a predetermined mold, uniaxial pressing is performed at 100 kg / cm 2 , and a slit mold that has been prepared (preliminarily molded) in advance at a predetermined position of the obtained molded product The electrode was installed. Here, molybdenum was employed as the electrode material.

その後、設置した電極を覆うように再度、原料を充填して電極を埋設させ、100kg/cm2で一軸加圧を行いながら、1900℃で2時間、ホットプレス焼成を実施した。そして、得られた焼結体が所定の厚さとなるまで上下の面を研削加工し、試験用の静電チャックを形成した。この実施例では、得られた焼結体の絶縁層(誘電層)の厚さが約1mmとなるまで研削した。 Then, the raw material was filled again so as to cover the installed electrode, the electrode was embedded, and hot press firing was performed at 1900 ° C. for 2 hours while performing uniaxial pressing at 100 kg / cm 2 . Then, the upper and lower surfaces were ground until the obtained sintered body had a predetermined thickness, and a test electrostatic chuck was formed. In this example, grinding was performed until the thickness of the insulating layer (dielectric layer) of the obtained sintered body was about 1 mm.

以下の表1〜表3は、従来品と本発明の実施品における絶縁層の膜厚比較結果を示している。具体的には、本発明に係る静電チャックのスリット型電極の電極幅を変えた実施品No.1〜No.6の6点と、パンチングメタル電極を使用した従来品とにおいて、絶縁層の外周、中間、および内周それぞれについて6箇所の絶縁層膜厚を渦電流式膜厚計で測定した。表1は外周膜厚の、表2は中間膜厚の、そして、表3は内周膜厚の測定結果である。なお、各実施品で使用した電極のスリット幅は、1mmである。   Tables 1 to 3 below show the results of comparing the film thickness of the insulating layer between the conventional product and the product of the present invention. Specifically, the product No. 1 in which the electrode width of the slit-type electrode of the electrostatic chuck according to the present invention was changed. 1-No. 6 and the conventional product using a punching metal electrode, the thickness of the insulating layer at six locations was measured with an eddy current film thickness meter for each of the outer circumference, middle and inner circumference of the insulating layer. Table 1 shows the measurement results of the outer peripheral film thickness, Table 2 shows the measurement of the intermediate film thickness, and Table 3 shows the measurement results of the inner peripheral film thickness. In addition, the slit width of the electrode used in each implementation product is 1 mm.

Figure 2009117686
Figure 2009117686

Figure 2009117686
Figure 2009117686

Figure 2009117686
Figure 2009117686

上記の表1および表2に示す実施品のうち、*印を付した、電極幅が10mm,8mmのもの(No.1とNo.2)は、外周と中間の測定箇所において膜厚の最大値と最小値の差が200μmを越えるため、好適な例ではないとして本発明の対象外とした。また、表3に示す、測定箇所が内周の膜厚において、電極幅が10mm,8mmのもの(*印を付したNo.1とNo.2)は、最大値と最小値の差が他よりも大きいとして、本発明の対象外とした。なお、表3に示すように、電極幅が10mm,8mmの実施品においても、内周の膜厚の最大値と最小値の差が他の実施品に比べて顕著な差がないことから、本発明の実施品において、絶縁層の内周では、いずれの電極幅の場合でも歪みが小さいことが分かる。このことから、本発明の実施の形態例に係る静電チャックでは、上述したように電極の外周部の所定領域にのみスリットを配し、歪みの小さい電極の中心部にはスリットを設けない構造とした。   Among the products shown in Table 1 and Table 2 above, those marked with * and having electrode widths of 10 mm and 8 mm (No. 1 and No. 2) have the maximum film thickness at the outer and intermediate measurement points. Since the difference between the value and the minimum value exceeds 200 μm, it was excluded from the scope of the present invention as not being a preferable example. In Table 3, when the measurement location is the inner peripheral film thickness and the electrode width is 10 mm and 8 mm (No. 1 and No. 2 marked with *), the difference between the maximum value and the minimum value is other. It was excluded from the scope of the present invention. As shown in Table 3, even in the products with electrode widths of 10 mm and 8 mm, the difference between the maximum value and the minimum value of the inner peripheral film thickness is not significantly different from other products. In the product of the present invention, it can be seen that the distortion is small in the inner circumference of the insulating layer at any electrode width. For this reason, in the electrostatic chuck according to the embodiment of the present invention, as described above, a slit is provided only in a predetermined region of the outer peripheral portion of the electrode, and a slit is not provided in the central portion of the electrode with small distortion. It was.

表4は、従来品と実施品の特性(温度分布と吸着力)の比較結果を示している。ここでは、温度分布について、真空中で静電チャックを400℃まで昇温し、定常状態となったところで、所定の電極端子間に1000Vの電圧を印加してウエハを吸着させ、ウエハ面内の温度分布を赤外線カメラ(サーモグラフ)によって測定した。同様に吸着力についても、真空中で静電チャックを400℃まで昇温し、定常状態となったところで、所定の電極端子間に1000Vの電圧を印加してウエハを吸着させ、ウエハの裏面からヘリウム(He)ガスを加圧し、ウエハが外れたときの圧力を測定した。   Table 4 shows a comparison result of characteristics (temperature distribution and adsorption force) between the conventional product and the practical product. Here, regarding the temperature distribution, the electrostatic chuck is heated to 400 ° C. in a vacuum, and when it reaches a steady state, a voltage of 1000 V is applied between predetermined electrode terminals to adsorb the wafer, The temperature distribution was measured with an infrared camera (thermograph). Similarly, with respect to the suction force, when the electrostatic chuck is heated to 400 ° C. in a vacuum and becomes a steady state, a voltage of 1000 V is applied between predetermined electrode terminals to suck the wafer, and from the back surface of the wafer. Helium (He) gas was pressurized and the pressure when the wafer was removed was measured.

Figure 2009117686
Figure 2009117686

表4に示すように、従来品(パンチングメタル電極の静電チャック)と実施品(スリット型電極の静電チャック)の吸着力を比較すると、従来品を凌ぐ吸着力を発揮した静電チャックは、電極幅が1mm〜5mmのものであり、電極幅が8mm,10mmのもの(*印を付したもの)には絶縁層と電極の間に剥離が一部見られ、吸着力は従来品と同等あるいはそれ以下であった。   As shown in Table 4, when comparing the attractive force of the conventional product (electrostatic chuck with punching metal electrode) and the actual product (electrostatic chuck with slit-type electrode), In the case where the electrode width is 1 mm to 5 mm, and the electrode width is 8 mm or 10 mm (marked with an asterisk), some peeling is observed between the insulating layer and the electrode. It was equivalent or less.

なお、本発明は上記の実施の形態例に限定されることなく、種々変形が可能である。スリット型電極の平面形状は上述した円形に限定されず、例えば、図3に示すように双極の電極3a,3bからなる四角形の内部電極3であっても、あるいは、図示はしないが、その他の多角形であってもよい。電極の平面形状を四角形、あるいは多角形とした場合、スリットそのものの形状も、四角形、あるいは多角形の辺とほぼ平行に同軸状に配された角状(直線状)とする。また、図3に示す例においても、電極形状が円形の場合と同様、スリットを電極3の外周部の例えばd=50mm以上の領域にのみ配設し、電極3の中心部には設けない構造とする。   The present invention is not limited to the above-described embodiment, and various modifications can be made. The planar shape of the slit-type electrode is not limited to the circular shape described above. For example, as shown in FIG. 3, a rectangular internal electrode 3 composed of bipolar electrodes 3 a and 3 b may be used. It may be a polygon. When the planar shape of the electrode is a quadrangle or polygon, the shape of the slit itself is also a square (straight) arranged coaxially in parallel with the sides of the square or polygon. Also in the example shown in FIG. 3, as in the case where the electrode shape is circular, the slit is provided only in the outer peripheral portion of the electrode 3, for example, in a region of d = 50 mm or more, and is not provided in the central portion of the electrode 3. And

上述した例では、電極構成として内部電極を半円状に二分する双極電極を例に挙げたが、電極の分割数はこれに限定されない。さらには、電極構成は双極電極に限られず、本実施の形態例に係る静電チャックは単極にも適用できる。   In the above-described example, the bipolar electrode that bisects the internal electrode in a semicircular shape is taken as an example of the electrode configuration, but the number of divided electrodes is not limited to this. Furthermore, the electrode configuration is not limited to the bipolar electrode, and the electrostatic chuck according to the present embodiment can be applied to a single electrode.

本発明の実施の形態例に係る静電チャックの概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of the electrostatic chuck which concerns on the example of embodiment of this invention. 本発明の実施の形態例に係る静電チャックの電極パターンの一例を示す平面図である。It is a top view which shows an example of the electrode pattern of the electrostatic chuck which concerns on the embodiment of this invention. 本発明の実施の形態例に係る静電チャックの電極パターンの他の例を示す平面図である。It is a top view which shows the other example of the electrode pattern of the electrostatic chuck which concerns on the embodiment of this invention.

符号の説明Explanation of symbols

1 板状体
2,3 内部電極
2a,2b,3a,3b 電極
4 誘電体層(絶縁層)
5 吸着面
10 静電チャック
21a,21b,23a,23b,… スリット
25a,25b,… 電極部
DESCRIPTION OF SYMBOLS 1 Plate-like body 2,3 Internal electrode 2a, 2b, 3a, 3b Electrode 4 Dielectric layer (insulating layer)
5 Suction surface 10 Electrostatic chuck 21 a, 21 b, 23 a, 23 b,... Slit 25 a, 25 b,.

Claims (5)

絶縁基材内に所定形状の内部電極を配設してなる静電チャックであって、前記内部電極は同心形状で所定間隔離間して配された第1のスリット群と、中心部から外縁部に向けて延びる第2のスリット群とを有し、前記第1のスリット群の一端が前記第2のスリット群に連結していることを特徴とする静電チャック。   An electrostatic chuck in which an internal electrode having a predetermined shape is disposed in an insulating base material, wherein the internal electrode is concentric and arranged at a predetermined interval, and an outer edge portion from a center portion And an end of the first slit group connected to the second slit group. 2. An electrostatic chuck, comprising: a second slit group extending toward the first slit group; 前記第1のスリット群および第2のスリット群のスリット幅は20μm乃至1000μmであり、前記内部電極の電極幅は1mm乃至5mmであることを特徴とする請求項1に記載の静電チャック。   2. The electrostatic chuck according to claim 1, wherein a slit width of each of the first slit group and the second slit group is 20 μm to 1000 μm, and an electrode width of the internal electrode is 1 mm to 5 mm. 前記第1のスリット群および第2のスリット群は、前記内部電極の中心領域を除く所定の外周領域に配されていることを特徴とする請求項1または2に記載の静電チャック。   The electrostatic chuck according to claim 1, wherein the first slit group and the second slit group are arranged in a predetermined outer peripheral area excluding a central area of the internal electrode. 前記内部電極は平面形状がほぼ円形であり、前記第1のスリット群は互いに逆向きにくし状に入り込みながら同心円状に配されていることを特徴とする請求項3に記載の静電チャック。   4. The electrostatic chuck according to claim 3, wherein the internal electrode has a substantially circular planar shape, and the first slit group is arranged concentrically while entering a comb shape in opposite directions. 5. 前記内部電極は平面形状が多角形であり、前記第1のスリット群は互いに逆向きにくし状に入り込みながら前記多角形の辺とほぼ平行に同軸状に配されていることを特徴とする請求項3に記載の静電チャック。   The planar shape of the internal electrode is polygonal, and the first slit group is arranged coaxially in parallel with the sides of the polygon while entering a comb shape in opposite directions. Item 4. The electrostatic chuck according to Item 3.
JP2007290409A 2007-11-08 2007-11-08 Electrostatic chuck Active JP5227568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007290409A JP5227568B2 (en) 2007-11-08 2007-11-08 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290409A JP5227568B2 (en) 2007-11-08 2007-11-08 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2009117686A true JP2009117686A (en) 2009-05-28
JP5227568B2 JP5227568B2 (en) 2013-07-03

Family

ID=40784458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290409A Active JP5227568B2 (en) 2007-11-08 2007-11-08 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP5227568B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788670A (en) * 2018-03-07 2020-10-16 应用材料公司 Bipolar electrostatic chuck having electrodes on portions thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291562A (en) * 1992-04-09 1993-11-05 Toshiba Corp Electrostatic chuck device
JPH11163109A (en) * 1997-12-01 1999-06-18 Kyocera Corp Wafer holding device
JP2000012665A (en) * 1998-06-22 2000-01-14 Shin Etsu Chem Co Ltd Ceramics component
JP2002064133A (en) * 2000-03-30 2002-02-28 Ibiden Co Ltd Support container and semiconductor manufacturing- inspection device
JP2002134600A (en) * 2000-10-25 2002-05-10 Ibiden Co Ltd Electrostatic chuck
JP2002170868A (en) * 2000-11-30 2002-06-14 Kyocera Corp Electrostatic chuck
JP2003115442A (en) * 2001-10-04 2003-04-18 Nikon Corp Electrostatic chucking method of reticle or wafer in charged particle beam aligner
JP2003338536A (en) * 2002-05-20 2003-11-28 Kyocera Corp Electrostatic chuck
JP2006040993A (en) * 2004-07-23 2006-02-09 Nikon Corp Electrostatic chuck
JP2006179895A (en) * 2005-12-07 2006-07-06 Ulvac Japan Ltd Suction method
JP2007214339A (en) * 2006-02-09 2007-08-23 Taiheiyo Cement Corp Bipolar electrostatic chuck

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291562A (en) * 1992-04-09 1993-11-05 Toshiba Corp Electrostatic chuck device
JPH11163109A (en) * 1997-12-01 1999-06-18 Kyocera Corp Wafer holding device
JP2000012665A (en) * 1998-06-22 2000-01-14 Shin Etsu Chem Co Ltd Ceramics component
JP2002064133A (en) * 2000-03-30 2002-02-28 Ibiden Co Ltd Support container and semiconductor manufacturing- inspection device
JP2002134600A (en) * 2000-10-25 2002-05-10 Ibiden Co Ltd Electrostatic chuck
JP2002170868A (en) * 2000-11-30 2002-06-14 Kyocera Corp Electrostatic chuck
JP2003115442A (en) * 2001-10-04 2003-04-18 Nikon Corp Electrostatic chucking method of reticle or wafer in charged particle beam aligner
JP2003338536A (en) * 2002-05-20 2003-11-28 Kyocera Corp Electrostatic chuck
JP2006040993A (en) * 2004-07-23 2006-02-09 Nikon Corp Electrostatic chuck
JP2006179895A (en) * 2005-12-07 2006-07-06 Ulvac Japan Ltd Suction method
JP2007214339A (en) * 2006-02-09 2007-08-23 Taiheiyo Cement Corp Bipolar electrostatic chuck

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788670A (en) * 2018-03-07 2020-10-16 应用材料公司 Bipolar electrostatic chuck having electrodes on portions thereof

Also Published As

Publication number Publication date
JP5227568B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
US9984912B2 (en) Locally heated multi-zone substrate support
JP6001402B2 (en) Electrostatic chuck
KR101757378B1 (en) Wafer carrier for smaller wafers and wafer pieces
US11732359B2 (en) Wafer holder
JPWO2019188681A1 (en) Electrostatic chuck heater
EP2430654A2 (en) Electrostatic chuck with polymer protrusions
JP4564927B2 (en) Bipolar electrostatic chuck
TW201923952A (en) Wafer mounting platform and method for manufacturing same
US20170084477A1 (en) Substrate support unit and substrate treatment apparatus comprising the same
JP5227568B2 (en) Electrostatic chuck
KR102257529B1 (en) Electrostatic chuck and apparatus including the same
TW201727384A (en) Substrate holding device, substrate holding member, and substrate holding method
JP2017212332A (en) Electrode built-in mounting table structure
JP6017895B2 (en) Alumina sintered body manufacturing method, vacuum chuck manufacturing method, and electrostatic chuck manufacturing method
JP2003077995A (en) Electrostatic chuck
JP2018006269A (en) Ceramic heater
JP6849508B2 (en) Manufacturing method of holding device
JP2010177698A (en) Method for manufacturing electrostatic chuck
KR20110064665A (en) Dipole type electrostatic chuck by using electric field gradient
JP2005116686A (en) Bipolar electrostatic chuck
JP2006210696A (en) Ceramic electrostatic chuck
JP2006237023A (en) Electrostatic chuck
KR101542150B1 (en) Method of manufacturing cap type electrostatic chuck
JP2000277593A (en) Electrostatic chuck
JP2020013983A (en) High temperature electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120816

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5227568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250