JP2009115735A - Distance-measuring device, distance measurement method, distance measurement program, and recording medium - Google Patents

Distance-measuring device, distance measurement method, distance measurement program, and recording medium Download PDF

Info

Publication number
JP2009115735A
JP2009115735A JP2007291739A JP2007291739A JP2009115735A JP 2009115735 A JP2009115735 A JP 2009115735A JP 2007291739 A JP2007291739 A JP 2007291739A JP 2007291739 A JP2007291739 A JP 2007291739A JP 2009115735 A JP2009115735 A JP 2009115735A
Authority
JP
Japan
Prior art keywords
signal
audible sound
unit
output
microphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007291739A
Other languages
Japanese (ja)
Other versions
JP4960838B2 (en
Inventor
Kazunori Kobayashi
和則 小林
Kenichi Furuya
賢一 古家
Yoichi Haneda
陽一 羽田
Akitoshi Kataoka
章俊 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007291739A priority Critical patent/JP4960838B2/en
Publication of JP2009115735A publication Critical patent/JP2009115735A/en
Application granted granted Critical
Publication of JP4960838B2 publication Critical patent/JP4960838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely estimate a distance when using general speakers and microphones or even in a noisy environment that uses a distance measuring device. <P>SOLUTION: The distance-measuring device includes a signal generation section, a generation signal audible sound eliminating filter, a microphone signal audible sound elimination filter, an impulse response calculation section, and a peak detection section, thus measuring a distance by speakers and microphones. The generation signal audible sound eliminating filter eliminates audible sound components from signals generated from the signal-generating section for outputting. The microphone signal audible sound eliminating filter eliminates audible sound components from microphone signals. An impulse response calculating section obtains an impulse response from the output signal of the generated signal audible sound eliminating filter and that of the microphone signal audible sound eliminating filter. A peak detection section detects a peak from the output of the impulse response calculating section and obtains a times up to a peak after a signal is outputted from the generated signal audible sound eliminating filter for obtaining distance information. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、スピーカとマイクを用いて距離を測定する距離測定装置、距離測定方法、距離測定プログラム、および記録媒体に関する。   The present invention relates to a distance measuring device, a distance measuring method, a distance measuring program, and a recording medium that measure a distance using a speaker and a microphone.

テレビ会議システムなどで、話者の位置を特定し臨場感のある通信を実現するために超音波を用いた距離計測装置が提案されている(非特許文献1)。図1は、従来の距離測定装置の構成例であり、図2は各構成部での信号の様子を示す図である。従来の距離測定装置900は、40kHz発信部910、パルス生成部920、スイッチ部930、整流平滑化部940、閾値比較部950、カウンタ部960から構成される。また、距離測定装置900は、超音波センサ送信機970と超音波センサ受信機980に接続されている。   A distance measuring device using ultrasonic waves has been proposed in order to identify a speaker's position and realize realistic communication in a video conference system or the like (Non-Patent Document 1). FIG. 1 is a configuration example of a conventional distance measuring apparatus, and FIG. 2 is a diagram illustrating a state of a signal in each configuration unit. A conventional distance measuring apparatus 900 includes a 40 kHz transmission unit 910, a pulse generation unit 920, a switch unit 930, a rectification / smoothing unit 940, a threshold comparison unit 950, and a counter unit 960. The distance measuring device 900 is connected to an ultrasonic sensor transmitter 970 and an ultrasonic sensor receiver 980.

距離測定装置900は、超音波センサ送信機970から出力された超音波が、超音波センサ受信機980に到達するまでの時間を計測し、その時間に音速を乗じて距離を求めている。送信する超音波は40kHzなどの単一周波数を極わずかな時間だけパルス状に出力したものである。超音波センサ受信機で受信された信号のレベルが、あらかじめ設定した閾値を越えた場合に、超音波を受信したとして検出する。超音波を送信した時刻から、受信を検出した時刻までの時間が超音波の伝搬時間であり、この時間に音速を乗じれば距離が計算できる。   The distance measuring device 900 measures the time until the ultrasonic wave output from the ultrasonic sensor transmitter 970 reaches the ultrasonic sensor receiver 980, and obtains the distance by multiplying the time by the speed of sound. The ultrasonic wave to be transmitted is obtained by outputting a single frequency such as 40 kHz in a pulse form for a very short time. When the level of the signal received by the ultrasonic sensor receiver exceeds a preset threshold, it is detected that an ultrasonic wave has been received. The time from the time when the ultrasonic wave is transmitted to the time when reception is detected is the propagation time of the ultrasonic wave, and the distance can be calculated by multiplying this time by the speed of sound.

次に、距離測定装置900の具体的な動作について説明する。40kHz発信部910は、図2(A)のように40kHzの正弦波若しくは矩形波を連続的に生成し、出力する。パルス生成部920は、図2(B)のように短時間(数10〜数100ms)の矩形パルスを生成する。スイッチ部930は、パルス生成部920でパルスが生成されている間のみON状態にし、40kHz発信部910の出力を通過させ、超音波センサ送信機970に送る。パルスが生成されていないときはOFF状態であり、40kHz発信部910の出力は通過しない。超音波センサ送信機970は、スイッチ部930を通過した40kHz発信部910の出力(図2(C))を、空間に放出する。   Next, a specific operation of the distance measuring apparatus 900 will be described. The 40 kHz transmission unit 910 continuously generates and outputs a 40 kHz sine wave or rectangular wave as shown in FIG. The pulse generation unit 920 generates a rectangular pulse for a short time (several tens to several hundreds of milliseconds) as shown in FIG. The switch unit 930 is turned on only while the pulse is generated by the pulse generation unit 920, passes the output of the 40 kHz transmission unit 910, and sends it to the ultrasonic sensor transmitter 970. When no pulse is generated, it is in the OFF state, and the output of the 40 kHz transmission unit 910 does not pass through. The ultrasonic sensor transmitter 970 emits the output (FIG. 2C) of the 40 kHz transmission unit 910 that has passed through the switch unit 930 to the space.

超音波センサ受信機980は、超音波信号を受信し、図2(D)に示すような信号を出力する。整流平滑化部940は、超音波センサ受信機980の出力を全波整流し、時間平滑化し、図2(E)のような信号を得る。閾値比較部950は、あらかじめ定められた閾値と整流平滑化部940の出力とを比較し、整流平滑化部940の出力が閾値を超えている場合に、受信信号があることを示す信号(例えば、図2(F)に示す信号)を出力する。カウンタ部960は、パルス生成部920で生成されたパルスの立ち上がりで、カウンタのカウントをスタートし、閾値比較部950が受信信号があることを示す信号を出力したときにカウントをストップする。カウンタの値から求まる時間に音速を乗じることで超音波センサ送信機970と超音波センサ受信機980との距離が求められる。   The ultrasonic sensor receiver 980 receives an ultrasonic signal and outputs a signal as shown in FIG. The rectifying / smoothing unit 940 performs full-wave rectification on the output of the ultrasonic sensor receiver 980 and smoothes the time to obtain a signal as shown in FIG. The threshold comparison unit 950 compares a predetermined threshold with the output of the rectifying / smoothing unit 940, and when the output of the rectifying / smoothing unit 940 exceeds the threshold, a signal indicating that there is a received signal (for example, , The signal shown in FIG. 2 (F). The counter unit 960 starts counting of the counter at the rising edge of the pulse generated by the pulse generation unit 920, and stops counting when the threshold comparison unit 950 outputs a signal indicating that there is a received signal. The distance between the ultrasonic sensor transmitter 970 and the ultrasonic sensor receiver 980 is determined by multiplying the time obtained from the counter value by the speed of sound.

従来の距離測定装置の場合、超音波センサ送信機970または超音波センサ受信機980を話者が利用するマイクの周辺に置き(若しくはマイクに備えさせ)、カメラ近傍に超音波センサ受信機980または超音波センサ送信機970を配置することで、カメラからマイクまでの距離や方向を検出していた。そして、これらの情報を、臨場感を持たせることや、カメラの向きやズーム制御などに利用していた。
小田英了, 小林和則, 穂刈治英, 島田正治, “超音波を用いた位置推定”, 日本工業出版, 計測技術, 1998年12月, pp.50-54.
In the case of a conventional distance measuring device, an ultrasonic sensor transmitter 970 or an ultrasonic sensor receiver 980 is placed around (or provided in) a microphone used by a speaker, and the ultrasonic sensor receiver 980 or By arranging the ultrasonic sensor transmitter 970, the distance and direction from the camera to the microphone are detected. These pieces of information are used for giving a sense of reality, camera orientation, zoom control, and the like.
Hideaki Oda, Kazunori Kobayashi, Haruhide Hokari, Masaharu Shimada, “Position Estimation Using Ultrasound”, Nihon Kogyo Publishing, Measurement Technology, December 1998, pp.50-54.

上述の従来の距離測定装置では、超音波用の送信機と受信機を用いることを前提としていたため、距離測定のためだけの送信機と受信機が必要であった。このように専用の送信機と受信機とを用いた場合、超音波素子の過渡特性や空間を伝搬する時の減衰などによる測定誤差をある程度予測可能であり、測定誤差の削減が可能であった。一方、超音波用の送信機と受信機の代わりに一般的なスピーカとマイクを用いた場合、測定誤差がどの程度生じるかが予測できないため、測定誤差の削減ができず、大きな測定誤差を生じる問題があった。   The above-described conventional distance measuring apparatus is based on the premise that an ultrasonic transmitter and receiver are used, and thus a transmitter and receiver only for distance measurement are necessary. In this way, when a dedicated transmitter and receiver are used, measurement errors due to transient characteristics of ultrasonic elements and attenuation when propagating through space can be predicted to some extent, and measurement errors can be reduced. . On the other hand, when a general speaker and microphone are used instead of the transmitter and receiver for ultrasonic waves, it is impossible to predict how much measurement error will occur, so the measurement error cannot be reduced, resulting in a large measurement error. There was a problem.

また、従来の距離測定装置では、超音波の立ち上がり部分のみを用いているので、雑音がある場合には、その影響によって立ち上がり部分のレベルが変化し、大きな誤差になることもあった。
本発明の距離測定装置の目的は、一般的なスピーカとマイクを用いた場合や雑音環境下でも高精度な距離推定を実現することである。
In addition, since the conventional distance measuring device uses only the rising portion of the ultrasonic wave, if there is noise, the level of the rising portion changes due to the influence of the noise, resulting in a large error.
The object of the distance measuring apparatus of the present invention is to realize highly accurate distance estimation even when a general speaker and microphone are used or in a noisy environment.

本発明の距離測定装置は、信号発生部、生成信号可聴音除去フィルタ部、マイク信号可聴音除去フィルタ部、インパルス応答計算部、ピーク検出部を備え、スピーカとマイクを用いて距離を測定する。信号発生部は、20kHz以上の帯域を含む信号を生成する。生成信号可聴音除去フィルタ部は、信号発生部が生成した信号から可聴音成分を除去し、スピーカに供給する信号を出力する。マイク信号可聴音除去フィルタ部は、マイクからの信号から可聴音成分を除去する。インパルス応答計算部は、生成信号可聴音除去フィルタ部の出力信号とマイク信号可聴音除去フィルタ部の出力信号からインパルス応答を求める。ピーク検出部は、インパルス応答計算部の出力からピークを検出し、生成信号可聴音除去フィルタ部から信号が出力されてからピークまでの時間を求め、距離情報を求める。   The distance measuring apparatus of the present invention includes a signal generation unit, a generated signal audible sound removal filter unit, a microphone signal audible sound removal filter unit, an impulse response calculation unit, and a peak detection unit, and measures a distance using a speaker and a microphone. The signal generation unit generates a signal including a band of 20 kHz or more. The generated signal audible sound removing filter unit removes an audible sound component from the signal generated by the signal generating unit, and outputs a signal to be supplied to the speaker. The microphone signal audible sound removal filter unit removes an audible sound component from the signal from the microphone. The impulse response calculation unit obtains an impulse response from the output signal of the generated signal audible sound removal filter unit and the output signal of the microphone signal audible sound removal filter unit. The peak detection unit detects a peak from the output of the impulse response calculation unit, obtains a time from when the signal is output from the generated signal audible sound removal filter unit to the peak, and obtains distance information.

可聴音混合部を生成信号可聴音除去フィルタ部とスピーカとの間に配置してもよい。可聴音混合部は、生成信号可聴音除去フィルタ部からの出力に、入力された可聴音の信号を付加し、スピーカに供給する信号を出力する。また、マイクからの信号から可聴音成分のみを取り出す可聴音通過フィルタ部も備えてもよい。   The audible sound mixing unit may be disposed between the generated signal audible sound removal filter unit and the speaker. The audible sound mixing unit adds the input audible sound signal to the output from the generated signal audible sound removal filter unit, and outputs a signal to be supplied to the speaker. Further, an audible sound passing filter unit that extracts only an audible sound component from the signal from the microphone may be provided.

本発明の距離測定装置によれば、送信信号と受信信号からインパルス応答を求め、その結果からスピーカとマイクの距離を求めるので、一般的なスピーカとマイクでも高精度に距離を測定できる。また、雑音がある環境でも信号の放出時間を長くすることで高精度に距離を測定できる。   According to the distance measuring apparatus of the present invention, an impulse response is obtained from a transmission signal and a received signal, and the distance between the speaker and the microphone is obtained from the result, so that the distance can be measured with high accuracy even with a general speaker and microphone. Even in an environment with noise, the distance can be measured with high accuracy by increasing the signal emission time.

さらに、人の話す声を可聴音混合部で重畳し、マイクで受信した音から音声を可聴音通過フィルタ部で取り出すこともできるので、スピーカやマイクの周辺に距離測定用の構成部を追加しなくても、スピーカから話者までの距離が把握しやすい。特に、会議中にマイク(話者)が移動したような場合でも距離の変化が分かる。また、従来の距離測定装置では、超音波用の送信機と受信機を用いていたため、送信信号が1種類に限定され、同時に複数の距離を測定することはできなかった。しかし、本発明の距離測定装置では一般的なスピーカとマイクを用いるので、複数のスピーカから相関のない信号を放出すれば、同時に複数の距離を測定できる。複数のスピーカからの距離が分かれば、マイク(話者)の位置も分かる。したがって、会議中にマイク(話者)が移動したような場合でも、追従できる。   In addition, it is possible to superimpose a person's speaking voice in the audible sound mixing unit and extract the sound from the sound received by the microphone with the audible sound passing filter unit, so a configuration unit for distance measurement is added around the speaker and microphone. Even without it, it is easy to grasp the distance from the speaker to the speaker. In particular, even when a microphone (speaker) moves during the conference, the change in distance can be recognized. In addition, since the conventional distance measuring apparatus uses an ultrasonic transmitter and receiver, the transmission signal is limited to one type, and a plurality of distances cannot be measured simultaneously. However, since the distance measuring device of the present invention uses a general speaker and microphone, a plurality of distances can be measured simultaneously by emitting uncorrelated signals from a plurality of speakers. If the distance from a plurality of speakers is known, the position of the microphone (speaker) can also be known. Therefore, even if the microphone (speaker) moves during the conference, it can follow.

以下では、説明の重複を避けるため同じ機能を有する構成部や同じ処理を行う処理ステップには同一の番号を付与し、説明を省略する。
[第1実施形態]
図3に第1実施形態の距離測定装置の機能構成例を、図4にこの距離測定装置の処理フローを示す。図5は距離測定装置100の各構成部での信号の様子を示す図である。距離測定装置100は、信号発生部110、生成信号可聴音除去フィルタ部120、マイク信号可聴音除去フィルタ部130、インパルス応答計算部140、ピーク検出部150を備え、スピーカ10とマイク20を用いて距離を測定する。
Below, in order to avoid duplication of description, the same number is given to the structural part which has the same function, and the process step which performs the same process, and description is abbreviate | omitted.
[First Embodiment]
FIG. 3 shows an example of a functional configuration of the distance measuring apparatus according to the first embodiment, and FIG. 4 shows a processing flow of the distance measuring apparatus. FIG. 5 is a diagram illustrating a state of signals in each component of the distance measuring apparatus 100. The distance measuring apparatus 100 includes a signal generation unit 110, a generated signal audible sound removal filter unit 120, a microphone signal audible sound removal filter unit 130, an impulse response calculation unit 140, and a peak detection unit 150, and the speaker 10 and the microphone 20 are used. Measure distance.

信号発生部110は、M系列信号、TSP信号、白色雑音など20kHz以上の帯域にも成分を持つ信号を生成する(S110)。図5(A)は、信号発生部110からの出力信号のイメージである。所定の時間、一定の信号を発生している。また、発生した信号の周波数成分は可聴域(一般的には20kHz以下)から超音波域(一般的には20kHz以上)の範囲に及んでいる。生成信号可聴音除去フィルタ部120は、信号発生部110が生成した信号から可聴音成分(20kHz以下)を除去し、スピーカ10に供給する信号を出力する(S120)。図5(B)は、生成信号可聴音除去フィルタ部120の出力信号のイメージである。信号発生部110が生成した信号から可聴音成分(20kHz以下)が除去されている。スピーカ10は供給された信号を放出し、マイク20はその音を受信する。図5(C)は、マイク20からの出力信号のイメージである。マイクには人の声なども入力されるので、図5(C)に示したように可聴域の音も含まれており、時間的に強度が変化する。   The signal generator 110 generates a signal having a component in a band of 20 kHz or higher, such as an M-sequence signal, a TSP signal, or white noise (S110). FIG. 5A is an image of an output signal from the signal generation unit 110. A constant signal is generated for a predetermined time. The frequency component of the generated signal ranges from the audible range (generally 20 kHz or less) to the ultrasonic range (generally 20 kHz or more). The generated signal audible sound removal filter unit 120 removes an audible sound component (20 kHz or less) from the signal generated by the signal generation unit 110, and outputs a signal to be supplied to the speaker 10 (S120). FIG. 5B is an image of the output signal of the generated signal audible sound removal filter unit 120. The audible sound component (20 kHz or less) is removed from the signal generated by the signal generator 110. The speaker 10 emits the supplied signal, and the microphone 20 receives the sound. FIG. 5C is an image of an output signal from the microphone 20. Since a human voice or the like is also input to the microphone, sound in the audible range is included as shown in FIG. 5C, and the intensity changes with time.

マイク信号可聴音除去フィルタ部130は、マイク20からの信号から可聴音成分(20kHz以下)を除去する(S130)。図5(D)はマイク信号可聴音除去フィルタ部130からの出力信号のイメージを示している。可聴音成分を除去することで、時間的にほぼ一定な強度の信号となる。インパルス応答計算部140は、生成信号可聴音除去フィルタ部120の出力信号とマイク信号可聴音除去フィルタ部130の出力信号からインパルス応答を求める(S140)。図5(E)はインパルス応答計算部140からの出力のイメージである。なお、インパルス応答の計算方法としては、非特許文献(大賀寿郎、山崎芳男、金田豊、“音響システムとディジタル処理”、電子情報通信学会、1995年、pp.158-160.)に示されているとおり、音源のパワースペクトルと音源・受音点間のクロスパワースペクトルから周波数伝送特性を求めフーリエ逆変換により計算する方法などが知られている。   The microphone signal audible sound removal filter unit 130 removes an audible sound component (20 kHz or less) from the signal from the microphone 20 (S130). FIG. 5D shows an image of an output signal from the microphone signal audible sound removal filter unit 130. By removing the audible sound component, the signal has a substantially constant intensity over time. The impulse response calculation unit 140 obtains an impulse response from the output signal of the generated signal audible sound removal filter unit 120 and the output signal of the microphone signal audible sound removal filter unit 130 (S140). FIG. 5E is an image of the output from the impulse response calculation unit 140. The calculation method of the impulse response is shown in non-patent literature (Toshiro Oga, Yoshio Yamazaki, Yutaka Kaneda, “Acoustic system and digital processing”, IEICE, 1995, pp.158-160.) As shown, a method is known in which frequency transmission characteristics are obtained from a power spectrum of a sound source and a cross power spectrum between the sound source and the sound receiving point, and are calculated by inverse Fourier transform.

例えば、インパルス応答計算部140は、図6のような構成とすればよい。この例では、インパルス応答計算部140は、生成信号周波数領域変換手段141、マイク信号周波数領域変換手段142、共役手段143、乗算手段144、逆周波数領域変換手段145から構成される。生成信号周波数領域変換手段141の出力をA、マイク信号周波数領域変換手段142の出力をB、スピーカ10とマイク20の間のインパルス応答をHとすると、B=HAの関係が成り立つ。このとき、共役手段143の出力はAである(ただし、“”は共役であることを示す。)。したがって、乗算手段144の出力はBAである。つまり、HAAである。逆周波数領域変換手段145は、乗算手段144の出力を時間領域に変換する。乗算手段144の出力のAAの部分は、生成信号可聴音除去フィルタ部120からの出力Aのパワースペクトルなので、時間領域で考えるとHとHAAとは振幅が異なるだけでピークの位置は同じである。本発明ではピークの位置が分かればよいので、AAで除算しなくても、図6の構成で十分である。 For example, the impulse response calculation unit 140 may be configured as shown in FIG. In this example, the impulse response calculation unit 140 includes a generation signal frequency domain conversion unit 141, a microphone signal frequency domain conversion unit 142, a conjugate unit 143, a multiplication unit 144, and an inverse frequency domain conversion unit 145. When the output of the generated signal frequency domain converting means 141 is A, the output of the microphone signal frequency domain converting means 142 is B, and the impulse response between the speaker 10 and the microphone 20 is H, the relationship of B = HA is established. At this time, the output of the conjugating means 143 is A * (where “ * ” indicates conjugation). Therefore, the output of the multiplication means 144 is BA * . That is, HAA * . The inverse frequency domain transform unit 145 transforms the output of the multiplication unit 144 into the time domain. The AA * portion of the output of the multiplication means 144 is the power spectrum of the output A from the generated signal audible sound elimination filter unit 120. Therefore, in the time domain, H and HAA * differ only in amplitude but have the same peak position. It is. In the present invention, since the position of the peak only needs to be known, the configuration of FIG. 6 is sufficient even if it is not divided by AA * .

ピーク検出部150は、インパルス応答計算部140の出力からピークを検出し、生成信号可聴音除去フィルタ部120から信号が出力されてからピークまでの時間を求め、距離情報を求める(S150)。図5(E)の時刻t=0からピークまでの時間がスピーカ10からマイク20までの音の伝搬時間である。音速v(m/s)は、温度(摂氏)T度を用いて、v=331.5+0.61Tとなる。会議室の温度を20度程度と仮定し、音速344(m/s)として伝搬時間に乗算し、距離を求めてもよい。あるいは、スピーカ10とマイク20との間に温度センサを配置し、その温度から音速を求め、伝搬時間に乗算してもよい。   The peak detection unit 150 detects a peak from the output of the impulse response calculation unit 140, obtains a time from when the signal is output from the generated signal audible sound removal filter unit 120 to the peak, and obtains distance information (S150). The time from time t = 0 to the peak in FIG. 5E is the sound propagation time from the speaker 10 to the microphone 20. The speed of sound v (m / s) is v = 331.5 + 0.61T using temperature (Celsius) T degrees. Assuming that the temperature of the conference room is about 20 degrees, the propagation time may be multiplied as the speed of sound 344 (m / s) to obtain the distance. Alternatively, a temperature sensor may be disposed between the speaker 10 and the microphone 20, the sound speed may be obtained from the temperature, and the propagation time may be multiplied.

距離測定装置100によれば、送信信号と受信信号からインパルス応答(若しくはインパルス応答とピークの位置が一致する信号)を求め、その結果からスピーカとマイクの距離を求めるので、一般的なスピーカとマイクでも高精度に距離を測定できる。また、雑音がある環境でも信号の放出時間を長くすることで高精度に距離を測定できる。
さらに、信号発生部110、生成信号可聴音除去フィルタ部120、スピーカ10、インパルス応答計算部140、ピーク検出部150を複数個備え、複数のスピーカから相関のない信号を放出すれば、1つのマイクで同時に複数の距離を測定できる。そして、1つのマイクと複数のスピーカとの距離が分かるので、スピーカの位置が既知の場合(スピーカが固定されている場合など)にはマイクの位置が検出できる。
According to the distance measuring apparatus 100, an impulse response (or a signal whose peak position matches the impulse response) is obtained from the transmission signal and the reception signal, and the distance between the speaker and the microphone is obtained from the result. But distance can be measured with high accuracy. Even in an environment with noise, the distance can be measured with high accuracy by increasing the signal emission time.
Further, a plurality of signal generators 110, a generated signal audible sound removal filter unit 120, a speaker 10, an impulse response calculator 140, and a peak detector 150 are provided, and one microphone can be obtained by emitting uncorrelated signals from a plurality of speakers. Can measure multiple distances simultaneously. Since the distance between one microphone and a plurality of speakers is known, the position of the microphone can be detected when the position of the speaker is known (for example, when the speaker is fixed).

[変形例]
図6の共役手段143は、生成信号周波数領域変換手段141の出力Aの共役を求めたが、共役手段143の代わりに共役手段143’を備えてもよい。この場合はマイク信号周波数領域変換手段142の出力Bの共役を求めることになるため、乗算手段144の出力はBAである。つまり、HAである。この場合も、逆周波数領域変換手段145からの出力信号のピークの位置はインパルス応答のピークの位置と同じである。したがって、第1実施形態と同じ効果が得られる。
[Modification]
The conjugate means 143 in FIG. 6 determines the conjugate of the output A of the generated signal frequency domain transform means 141, but may include a conjugate means 143 ′ instead of the conjugate means 143. In this case, since the conjugate of the output B of the microphone signal frequency domain conversion unit 142 is obtained, the output of the multiplication unit 144 is B * A. That is, H * A * A. Also in this case, the peak position of the output signal from the inverse frequency domain converting means 145 is the same as the peak position of the impulse response. Therefore, the same effect as the first embodiment can be obtained.

[第2実施形態]
図7に第2実施形態の距離測定装置の機能構成例を、図8にこの距離測定装置の処理フローを示す。距離測定装置200は、可聴音混合部160と可聴音通過フィルタ部170も備えられている点が距離測定装置100と異なる。可聴音混合部160は、生成信号可聴音除去フィルタ部120からの出力に、入力された可聴音(人の音声など)の信号を付加し、スピーカ10に供給する信号を出力する(S160)。また、可聴音通過フィルタ部170は、マイクからの信号から可聴音成分(音声信号など)のみを取り出す(S170)。
[Second Embodiment]
FIG. 7 shows an example of a functional configuration of the distance measuring apparatus according to the second embodiment, and FIG. 8 shows a processing flow of the distance measuring apparatus. The distance measuring device 200 is different from the distance measuring device 100 in that an audible sound mixing unit 160 and an audible sound passing filter unit 170 are also provided. The audible sound mixing unit 160 adds a signal of the input audible sound (such as a human voice) to the output from the generated signal audible sound removal filter unit 120, and outputs a signal to be supplied to the speaker 10 (S160). In addition, the audible sound passing filter unit 170 extracts only an audible sound component (such as an audio signal) from the signal from the microphone (S170).

距離測定装置200は、人の話す声を可聴音混合部160で重畳し、マイク20で受信した音から音声を可聴音通過フィルタ部170で取り出すことができるので、スピーカ10やマイク20の周辺に距離測定用の構成部を追加しなくても、スピーカ10からマイク20(話者は、一般的にはマイク20の近傍にいる)までの距離が把握できる。特に、会議中に話者が移動したような場合でも、通常はマイクも一緒に移動するため、マイクの位置を把握することで話者までの距離が分かる。さらに、本発明の場合、第1実施形態の効果として示したように、複数のスピーカから相関のない信号を放出すれば、1つのマイクで同時に複数の距離を測定できるので、マイクの位置(話者の位置)も追従できる。   The distance measuring device 200 can superimpose a person's speaking voice by the audible sound mixing unit 160 and can extract the sound from the sound received by the microphone 20 by the audible sound passing filter unit 170. Even without adding a distance measurement component, the distance from the speaker 10 to the microphone 20 (the speaker is generally near the microphone 20) can be grasped. In particular, even when the speaker moves during the conference, the microphone usually moves together, so the distance to the speaker can be known by grasping the position of the microphone. Furthermore, in the case of the present invention, as shown as the effect of the first embodiment, if a non-correlated signal is emitted from a plurality of speakers, a plurality of distances can be measured simultaneously by a single microphone. The position of the person).

[第3実施形態]
本実施形態では、オーバーサンプリングを行う場合の構成例を示す。オーバーサンプリングを行うためには、距離測定装置100(図3)または距離測定装置200(図7)のインパルス応答計算部140を、図9に示すインパルス応答計算部140’に置き換えればよい。インパルス応答計算部140’は、オーバーサンプリング手段146を乗算手段144と逆周波数領域変換手段145との間に備える点が、インパルス応答計算部140(図6)と異なる。それ以外の構成部は距離測定装置100や距離測定装置200と同じである。オーバーサンプリング手段146は、乗算手段144から出力された信号にオーバーサンプリングしたい周波数分だけ0を追加する。例えば、N倍のオーバーサンプリングを行うのであれば、乗算手段144から出力された信号のサンプリング周波数の半分の周波数をFとすると、Fより大きくNF以下の周波数領域を追加し、その値を全て0にして出力する。逆周波数領域変換手段145がこの信号を時間領域に変換すると、サンプリング周波数が上がったインパルス応答が得られる。このような処理によって距離分解能が高くなり、より高精度な距離測定が可能となる。
[Third Embodiment]
In this embodiment, a configuration example in the case of performing oversampling is shown. In order to perform oversampling, the impulse response calculation unit 140 of the distance measurement device 100 (FIG. 3) or the distance measurement device 200 (FIG. 7) may be replaced with an impulse response calculation unit 140 ′ shown in FIG. The impulse response calculation unit 140 ′ is different from the impulse response calculation unit 140 (FIG. 6) in that an oversampling unit 146 is provided between the multiplication unit 144 and the inverse frequency domain transform unit 145. Other components are the same as those of the distance measuring device 100 and the distance measuring device 200. The oversampling unit 146 adds 0 to the signal output from the multiplication unit 144 for the frequency to be oversampled. For example, when performing N times oversampling, assuming that the frequency half the sampling frequency of the signal output from the multiplier 144 is F, a frequency region greater than F and less than or equal to NF is added, and all of the values are set to 0. And output. When the inverse frequency domain transforming means 145 transforms this signal into the time domain, an impulse response with an increased sampling frequency is obtained. Such processing increases the distance resolution and enables more accurate distance measurement.

[第4実施形態]
本実施形態では、ダウンサンプリングを行う場合の構成例を示す。図10に、本実施形態の距離測定装置の機能構成例を示す。距離測定装置300は、生成信号可聴音除去フィルタ部120とインパルス応答計算部140との間に生成信号ダウンサンプリング部180を備えることと、マイク信号可聴音除去フィルタ部130とインパルス応答計算部140との間にマイク信号ダウンサンプリング部190を備えることが、距離測定装置100(図3)または距離測定装置200(図7)と異なる。生成信号ダウンサンプリング部180は、生成信号可聴音除去フィルタ部120の出力信号からMサンプルおきに1サンプルを抽出して出力する。マイク信号ダウンサンプリング部190は、マイク信号可聴音除去フィルタ部130の出力信号からMサンプルおきに1サンプルを抽出して出力する。周期Mは、全帯域幅と超音波領域の帯域幅の比で求めることができる。例えば、(サンプリング周波数)/(超音波領域の帯域幅×2)で計算できる。このようにダウンサンプリングすることで信号のサンプル数が減るので、インパルス応答計算部の演算量を削減できる。
[Fourth Embodiment]
In this embodiment, a configuration example in the case of performing downsampling is shown. FIG. 10 shows an example of the functional configuration of the distance measuring apparatus according to this embodiment. The distance measuring apparatus 300 includes a generation signal downsampling unit 180 between the generation signal audible sound removal filter unit 120 and the impulse response calculation unit 140, and a microphone signal audible sound removal filter unit 130 and an impulse response calculation unit 140. Is different from the distance measuring device 100 (FIG. 3) or the distance measuring device 200 (FIG. 7). The generation signal downsampling unit 180 extracts one sample from the output signal of the generation signal audible sound removal filter unit 120 every M samples and outputs the sample. The microphone signal downsampling unit 190 extracts and outputs one sample every M samples from the output signal of the microphone signal audible sound removal filter unit 130. The period M can be obtained by the ratio of the total bandwidth and the bandwidth of the ultrasonic region. For example, it can be calculated by (sampling frequency) / (bandwidth of ultrasonic region × 2). By down-sampling in this way, the number of signal samples is reduced, so that the amount of calculation of the impulse response calculation unit can be reduced.

[実験例]
図11と図12は、距離測定装置100(図3)を用いた実験の結果を示している。スピーカには直径約5cm、奥行き(スピーカの外周部と中心部の差)約1cmの一般的なスピーカを使用している。図11(A)は、マイクをスピーカから約20cmの位置に置いたときのインパルス応答計算部140からの出力信号を、横軸を距離に換算して示した図である。図11(B)は、マイクをスピーカから約5mの位置に置いたときのインパルス応答計算部140からの出力信号を、横軸を距離に換算して示した図である。これらの図から、スピーカとマイクとの距離が測定できていることが分かる。
[Experimental example]
11 and 12 show the results of an experiment using the distance measuring device 100 (FIG. 3). As the speaker, a general speaker having a diameter of about 5 cm and a depth (difference between the outer peripheral portion and the central portion of the speaker) of about 1 cm is used. FIG. 11A is a diagram showing an output signal from the impulse response calculation unit 140 when the microphone is placed at a position of about 20 cm from the speaker, with the horizontal axis converted into a distance. FIG. 11B is a diagram showing an output signal from the impulse response calculation unit 140 when the microphone is placed at a position of about 5 m from the speaker, with the horizontal axis converted into a distance. From these figures, it can be seen that the distance between the speaker and the microphone can be measured.

図12は、スピーカとマイクの距離を変更しながら測定点ごとに10回ずつ測定した結果として、測定誤差の平均と分散を示している。横軸が測定点でのスピーカとマイクの距離を示しており、縦軸が誤差を示している。各測定点での点は誤差の平均値、バーは誤差の標準偏差を示している。誤差の平均、誤差の標準偏差ともに5mm程度であり、スピーカの直径(約5cm)と比較して十分に小さいことが分かる。したがって、十分高精度に測定できることが分かる。   FIG. 12 shows the average and variance of measurement errors as a result of 10 measurements at each measurement point while changing the distance between the speaker and the microphone. The horizontal axis indicates the distance between the speaker and the microphone at the measurement point, and the vertical axis indicates the error. The point at each measurement point indicates the average value of the error, and the bar indicates the standard deviation of the error. It can be seen that both the average error and the standard deviation of the error are about 5 mm, which is sufficiently smaller than the diameter of the speaker (about 5 cm). Therefore, it can be seen that the measurement can be performed with sufficiently high accuracy.

図13に、コンピュータの機能構成例を示す。なお、本発明の距離測定装置は、コンピュータ2000の記録部2020に、本発明の各構成部としてコンピュータ2000を動作させるプログラムを読み込ませ、制御部2010、入力部2030、出力部2040などを動作させることで、コンピュータに実行させることができる。また、コンピュータに読み込ませる方法としては、プログラムをコンピュータ読み取り可能な記録媒体に記録しておき、記録媒体からコンピュータに読み込ませる方法、サーバ等に記録されたプログラムを、電気通信回線等を通じてコンピュータに読み込ませる方法などがある。   FIG. 13 shows a functional configuration example of a computer. Note that the distance measuring apparatus of the present invention causes the recording unit 2020 of the computer 2000 to read a program for operating the computer 2000 as each component of the present invention and operate the control unit 2010, the input unit 2030, the output unit 2040, and the like. Therefore, it can be executed by a computer. In addition, as a method of causing the computer to read, the program is recorded on a computer-readable recording medium, and the program recorded on the server or the like is read into the computer through a telecommunication line or the like. There is a method to make it.

従来の距離測定装置の構成例を示す図。The figure which shows the structural example of the conventional distance measuring device. 従来の距離測定装置の各構成部での信号の様子を示す図。The figure which shows the mode of the signal in each structure part of the conventional distance measuring device. 第1実施形態の距離測定装置の機能構成例を示す図。The figure which shows the function structural example of the distance measuring device of 1st Embodiment. 第1実施形態の距離測定装置の処理フローを示す図。The figure which shows the processing flow of the distance measuring device of 1st Embodiment. 第1実施形態の距離測定装置の各構成部での信号の様子を示す図。The figure which shows the mode of the signal in each structure part of the distance measuring device of 1st Embodiment. インパルス応答計算部の機能構成例を示す図。The figure which shows the function structural example of an impulse response calculation part. 第2実施形態の距離測定装置の機能構成例を示す図。The figure which shows the function structural example of the distance measuring device of 2nd Embodiment. 第2実施形態の距離測定装置の処理フローを示す図。The figure which shows the processing flow of the distance measuring device of 2nd Embodiment. 第3実施形態のインパルス応答計算部の機能構成例を示す図。The figure which shows the function structural example of the impulse response calculation part of 3rd Embodiment. 第4実施形態の距離測定装置の機能構成例を示す図。The figure which shows the function structural example of the distance measuring device of 4th Embodiment. マイクをスピーカから所定の位置に置いたときのインパルス応答計算部からの出力信号を、横軸を距離に換算して示した図。The figure which converted the horizontal axis into the distance, and showed the output signal from the impulse response calculation part when a microphone was put in the predetermined position from the speaker. スピーカとマイクの距離を変更しながら測定点ごとに10回ずつ測定した結果として、測定誤差の平均と分散を示す図。The figure which shows the average and dispersion | variation of a measurement error as a result of having measured 10 times for every measurement point, changing the distance of a speaker and a microphone. コンピュータの機能構成例を示す図。The figure which shows the function structural example of a computer.

符号の説明Explanation of symbols

10 スピーカ 20 マイク
100 距離測定装置 110 信号発生部
120 生成信号可聴音除去フィルタ部 130 マイク信号可聴音除去フィルタ部
140 インパルス応答計算部 141 生成信号周波数領域変換手段
142 マイク信号周波数領域変換手段 143 共役手段
144 乗算手段 145 逆周波数領域変換手段
146 オーバーサンプリング手段 150 ピーク検出部
160 可聴音混合部 170 可聴音通過フィルタ部
180 生成信号ダウンサンプリング部 190 マイク信号ダウンサンプリング部
200 距離測定装置 300 距離測定装置
DESCRIPTION OF SYMBOLS 10 Speaker 20 Microphone 100 Distance measuring device 110 Signal generation part 120 Generated signal audible sound removal filter part 130 Microphone signal audible sound removal filter part 140 Impulse response calculation part 141 Generation | occurrence | production signal frequency domain conversion means 142 Microphone signal frequency domain conversion means 143 Conjugation means 144 Multiplying means 145 Inverse frequency domain converting means 146 Oversampling means 150 Peak detecting unit 160 Audible sound mixing unit 170 Audible sound passing filter unit 180 Generated signal downsampling unit 190 Microphone signal downsampling unit 200 Distance measuring device 300 Distance measuring device

Claims (10)

スピーカとマイクを用いて距離を測定する距離測定装置であって、
20kHz以上の帯域を含む信号を生成する信号発生部と、
前記信号発生部が生成した信号から可聴音成分を除去し、前記スピーカに供給する信号を出力する生成信号可聴音除去フィルタ部と、
前記マイクからの信号から可聴音成分を除去するマイク信号可聴音除去フィルタ部と、
前記生成信号可聴音除去フィルタ部の出力信号と前記マイク信号可聴音除去フィルタ部の出力信号からインパルス応答を求めるインパルス応答計算部と、
前記インパルス応答計算部の出力からピークを検出し、前記生成信号可聴音除去フィルタ部から信号が出力されてから前記ピークまでの時間を求め、距離情報を求めるピーク検出部
を備える距離測定装置。
A distance measuring device for measuring a distance using a speaker and a microphone,
A signal generator for generating a signal including a band of 20 kHz or more;
An audible sound component that removes an audible sound component from the signal generated by the signal generation unit and outputs a signal to be supplied to the speaker; and
A microphone signal audible sound removal filter unit that removes an audible sound component from the signal from the microphone;
An impulse response calculation unit for obtaining an impulse response from the output signal of the generated signal audible sound removal filter unit and the output signal of the microphone signal audible sound removal filter unit;
A distance measuring device comprising: a peak detecting unit that detects a peak from the output of the impulse response calculating unit, obtains a time from when the signal is output from the generated signal audible sound removing filter unit to the peak, and obtains distance information.
請求項1記載の距離測定装置であって、
前記生成信号可聴音除去フィルタ部と前記スピーカとの間に配置され、前記生成信号可聴音除去フィルタ部からの出力に、入力された可聴音の信号を付加し、前記スピーカに供給する信号を出力する可聴音混合部も備える
ことを特徴とする距離測定装置。
The distance measuring device according to claim 1,
Arranged between the generated signal audible sound removal filter unit and the speaker, adds an input audible sound signal to the output from the generated signal audible sound removal filter unit, and outputs a signal to be supplied to the speaker A distance measuring device comprising an audible sound mixing unit.
請求項1または2記載の距離測定装置であって、
前記マイクからの信号から可聴音成分のみを取り出す可聴音通過フィルタ部も備える
ことを特徴とする距離測定装置。
The distance measuring device according to claim 1 or 2,
An audible sound passing filter unit that extracts only an audible sound component from a signal from the microphone is also provided.
請求項1〜3のいずれかに記載の距離測定装置であって、
前記インパルス応答計算部は、
前記生成信号可聴音除去フィルタ部の出力信号を周波数領域に変換する生成信号周波数領域変換手段と、
前記マイク信号可聴音除去フィルタ部の出力信号を周波数領域に変換するマイク信号周波数領域変換手段と、
前記生成信号周波数領域変換手段の出力または前記マイク信号周波数領域変換手段の出力のいずれかの共役を求める共役手段と、
前記生成信号周波数領域変換手段の出力と前記マイク信号周波数領域変換手段の出力の共役の積、または前記生成信号周波数領域変換手段の出力の共役と前記マイク信号周波数領域変換手段の出力の積を求める乗算手段と、
前記乗算手段の出力を時間領域に変換する逆周波数領域変換手段と
を有することを特徴とする距離測定装置。
The distance measuring device according to any one of claims 1 to 3,
The impulse response calculator is
Generated signal frequency domain conversion means for converting the output signal of the generated signal audible sound removal filter unit into the frequency domain;
Microphone signal frequency domain conversion means for converting the output signal of the microphone signal audible sound removal filter unit into a frequency domain;
Conjugate means for obtaining a conjugate of either the output of the generated signal frequency domain transforming means or the output of the microphone signal frequency domain transforming means;
Find the product of the conjugate of the output of the generated signal frequency domain transforming means and the output of the microphone signal frequency domain transforming means, or the product of the conjugate of the output of the generated signal frequency domain transforming means and the output of the microphone signal frequency domain transforming means Multiplication means;
A distance measuring apparatus comprising: an inverse frequency domain converting unit that converts an output of the multiplying unit into a time domain.
請求項4記載の距離測定装置であって、
前記インパルス応答計算部は、
前記乗算手段と前記逆周波数領域変換手段との間に配置され、前記乗算手段からの出力に0を付加しオーバーサンプリングするオーバーサンプリング手段も有し、
前記逆周波数領域変換手段は、前記オーバーサンプリング手段の出力を時間領域に変換する
ことを特徴とする距離測定装置。
The distance measuring device according to claim 4,
The impulse response calculator is
An oversampling unit disposed between the multiplying unit and the inverse frequency domain transforming unit and adding 0 to the output from the multiplying unit to oversample;
The inverse frequency domain transforming unit transforms the output of the oversampling unit into a time domain.
請求項1〜4のいずれかに記載の距離測定装置であって、
前記生成信号可聴音除去フィルタ部と前記インパルス応答計算部との間に配置され、前記生成信号可聴音除去フィルタ部の出力信号からMサンプルおきに1サンプルを抽出して出力する生成信号ダウンサンプリング部と、
前記マイク信号可聴音除去フィルタ部と前記インパルス応答計算部との間に配置され、前記マイク信号可聴音除去フィルタ部の出力信号からMサンプルおきに1サンプルを抽出して出力するマイク信号ダウンサンプリング部
も備え、
前記インパルス応答計算部は、前記生成信号ダウンサンプリング部の出力信号とマイク信号ダウンサンプリング部の出力信号からインパルス応答を求める
ことを特徴とする距離測定装置。
The distance measuring device according to any one of claims 1 to 4,
A generated signal downsampling unit that is arranged between the generated signal audible sound removing filter unit and the impulse response calculating unit and extracts and outputs one sample every M samples from the output signal of the generated signal audible sound removing filter unit When,
A microphone signal downsampling unit that is arranged between the microphone signal audible sound removal filter unit and the impulse response calculation unit and extracts and outputs one sample every M samples from the output signal of the microphone signal audible sound removal filter unit With
The impulse response calculation unit obtains an impulse response from the output signal of the generation signal downsampling unit and the output signal of the microphone signal downsampling unit.
スピーカとマイクを用いて距離を測定する距離測定方法であって、
20kHz以上の帯域を含む信号を生成する信号発生ステップと、
前記信号生成ステップで生成した信号から可聴音成分を除去し、前記スピーカに供給する信号を出力する生成信号可聴音除去フィルタステップと、
前記マイクからの信号から可聴音成分を除去するマイク信号可聴音除去フィルタステップと、
前記生成信号可聴音除去フィルタステップの出力信号と前記マイク信号可聴音除去フィルタステップの出力信号からインパルス応答を求めるインパルス応答計算ステップと、
前記インパルス応答計算ステップの出力からピークを検出し、前記生成信号可聴音除去フィルタステップの信号が出力されてから前記ピークまでの時間を求め、距離情報を求めるピーク検出ステップ
を有する距離測定方法。
A distance measuring method for measuring a distance using a speaker and a microphone,
A signal generating step for generating a signal including a band of 20 kHz or more;
An audible sound removal filter step of removing an audible sound component from the signal generated in the signal generating step and outputting a signal to be supplied to the speaker;
A microphone signal audible sound removal filter step for removing an audible sound component from the signal from the microphone;
An impulse response calculation step for obtaining an impulse response from the output signal of the generated signal audible sound removal filter step and the output signal of the microphone signal audible sound removal filter step;
A distance measuring method comprising: a peak detecting step of detecting a peak from an output of the impulse response calculating step, obtaining a time from the output of the signal of the generated signal audible sound removing filter step to the peak, and obtaining distance information.
請求項7記載の距離測定方法であって、
前記生成信号可聴音除去フィルタステップからの出力に、入力された可聴音の信号を付加し、前記スピーカに供給する信号を出力する可聴音混合ステップと、
前記マイクからの信号から可聴音成分のみを取り出す可聴音通過フィルタステップも 有することを特徴とする距離測定方法。
The distance measuring method according to claim 7,
An audible sound mixing step of adding an input audible sound signal to the output from the generated signal audible sound removal filter step and outputting a signal to be supplied to the speaker;
An audible sound passing filter step for extracting only an audible sound component from the signal from the microphone is also provided.
請求項1〜6のいずれかに記載の距離測定装置としてコンピュータを動作させる距離測定プログラム。   A distance measurement program for operating a computer as the distance measurement device according to claim 1. 請求項9記載の距離測定プログラムを記録したコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium on which the distance measurement program according to claim 9 is recorded.
JP2007291739A 2007-11-09 2007-11-09 Distance measuring device, distance measuring method, distance measuring program, and recording medium Expired - Fee Related JP4960838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291739A JP4960838B2 (en) 2007-11-09 2007-11-09 Distance measuring device, distance measuring method, distance measuring program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291739A JP4960838B2 (en) 2007-11-09 2007-11-09 Distance measuring device, distance measuring method, distance measuring program, and recording medium

Publications (2)

Publication Number Publication Date
JP2009115735A true JP2009115735A (en) 2009-05-28
JP4960838B2 JP4960838B2 (en) 2012-06-27

Family

ID=40783015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291739A Expired - Fee Related JP4960838B2 (en) 2007-11-09 2007-11-09 Distance measuring device, distance measuring method, distance measuring program, and recording medium

Country Status (1)

Country Link
JP (1) JP4960838B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098346A1 (en) * 2009-02-25 2010-09-02 日本電気株式会社 Ultrasonic wave propagation time measurement system
JP2011257644A (en) * 2010-06-10 2011-12-22 Casio Comput Co Ltd Projector
EP3594802A1 (en) * 2018-07-09 2020-01-15 Koninklijke Philips N.V. Audio apparatus, audio distribution system and method of operation therefor
WO2022163801A1 (en) * 2021-01-29 2022-08-04 ソニーグループ株式会社 Information processing apparatus, information processing method, and program
CN115061086A (en) * 2022-05-12 2022-09-16 上海事凡物联网科技有限公司 Moving target detection method based on micro-aperture microphone array
RU2816884C2 (en) * 2018-07-09 2024-04-08 Конинклейке Филипс Н.В. Audio device, audio distribution system and method of operation thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271627A (en) * 1995-03-31 1996-10-18 Hitachi Commun Syst Inc Distance measuring device between loudspeaker and microphone
JPH10253745A (en) * 1997-03-07 1998-09-25 Oki Tec:Kk Method for estimating speaker position
JP2002303666A (en) * 2001-04-05 2002-10-18 Nippon Hoso Kyokai <Nhk> Microphone unit and position detection system
JP2005323381A (en) * 2004-05-07 2005-11-17 Fuji Xerox Co Ltd System, method, and program for confirming position of microphone
JP2006258442A (en) * 2005-03-15 2006-09-28 Yamaha Corp Position detection system, speaker system, and user terminal device
WO2006131893A1 (en) * 2005-06-09 2006-12-14 Koninklijke Philips Electronics N.V. Method of and system for determining distances between loudspeakers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271627A (en) * 1995-03-31 1996-10-18 Hitachi Commun Syst Inc Distance measuring device between loudspeaker and microphone
JPH10253745A (en) * 1997-03-07 1998-09-25 Oki Tec:Kk Method for estimating speaker position
JP2002303666A (en) * 2001-04-05 2002-10-18 Nippon Hoso Kyokai <Nhk> Microphone unit and position detection system
JP2005323381A (en) * 2004-05-07 2005-11-17 Fuji Xerox Co Ltd System, method, and program for confirming position of microphone
JP2006258442A (en) * 2005-03-15 2006-09-28 Yamaha Corp Position detection system, speaker system, and user terminal device
WO2006131893A1 (en) * 2005-06-09 2006-12-14 Koninklijke Philips Electronics N.V. Method of and system for determining distances between loudspeakers
JP2008546345A (en) * 2005-06-09 2008-12-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and system for determining the distance between speakers

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098346A1 (en) * 2009-02-25 2010-09-02 日本電気株式会社 Ultrasonic wave propagation time measurement system
US8806947B2 (en) 2009-02-25 2014-08-19 Nec Corporation Ultrasonic wave propagation time measurement system
JP2011257644A (en) * 2010-06-10 2011-12-22 Casio Comput Co Ltd Projector
EP3594802A1 (en) * 2018-07-09 2020-01-15 Koninklijke Philips N.V. Audio apparatus, audio distribution system and method of operation therefor
WO2020011588A1 (en) * 2018-07-09 2020-01-16 Koninklijke Philips N.V. Audio apparatus, audio distribution system and method of operation therefor
US11656839B2 (en) 2018-07-09 2023-05-23 Koninklijke Philips N.V. Audio apparatus, audio distribution system and method of operation therefor
RU2816884C2 (en) * 2018-07-09 2024-04-08 Конинклейке Филипс Н.В. Audio device, audio distribution system and method of operation thereof
WO2022163801A1 (en) * 2021-01-29 2022-08-04 ソニーグループ株式会社 Information processing apparatus, information processing method, and program
CN115061086A (en) * 2022-05-12 2022-09-16 上海事凡物联网科技有限公司 Moving target detection method based on micro-aperture microphone array

Also Published As

Publication number Publication date
JP4960838B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4960838B2 (en) Distance measuring device, distance measuring method, distance measuring program, and recording medium
EP1781069B1 (en) Method for measuring frequency characteristic and rising edge of impulse response, and sound field correcting apparatus
WO2009125843A1 (en) Ultrasonic wave propagation time measurement system
RU2019124534A (en) SOUND RECORDING USING DIRECTIONAL DIAGRAM FORMATION
WO2004054319A1 (en) Method and device for measuring sound wave propagation time between loudspeaker and microphone
JP2008267834A (en) Underwater detection device
US20160219385A1 (en) Sound field measuring device, method and program
JPWO2017061023A1 (en) Audio signal processing method and apparatus
US9117456B2 (en) Noise suppression apparatus, method, and a storage medium storing a noise suppression program
KR101483513B1 (en) Apparatus for sound source localizatioin and method for the same
Müller Measuring transfer-functions and impulse responses
JP2014220741A (en) Communication system, demodulation device, and modulation signal generating device
Padois et al. On the use of geometric and harmonic means with the generalized cross-correlation in the time domain to improve noise source maps
JP6361680B2 (en) Sound field control system, analysis device, acoustic device, control method for sound field control system, control method for analysis device, control method for acoustic device, program, recording medium
US20170223453A1 (en) First recording device, second recording device, recording system, first recording method, second recording method, first computer program product, and second computer program product
JP2007017415A (en) Method of measuring time difference of impulse response
Herrera et al. Ping-pong: Using smartphones to measure distances and relative positions
Izzo et al. Radar micro-Doppler for loudspeaker analysis: An industrial process application
WO2019056760A1 (en) Electronic apparatus and acoustic distance measurement method thereof
JP2017143459A (en) Method and device for measuring propagation delay characteristics
JP5611393B2 (en) Delay time measuring apparatus, delay time measuring method and program
JP2017223596A (en) Azimuth measurement system
JP6011188B2 (en) Echo path delay measuring apparatus, method and program
TW201232476A (en) Detection system and signal processing method thereof
Ballal et al. DOA estimation for a multi-frequency signal using widely-spaced sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees