JP2009115319A - Damping coefficient switching type hydraulic damper - Google Patents

Damping coefficient switching type hydraulic damper Download PDF

Info

Publication number
JP2009115319A
JP2009115319A JP2008325430A JP2008325430A JP2009115319A JP 2009115319 A JP2009115319 A JP 2009115319A JP 2008325430 A JP2008325430 A JP 2008325430A JP 2008325430 A JP2008325430 A JP 2008325430A JP 2009115319 A JP2009115319 A JP 2009115319A
Authority
JP
Japan
Prior art keywords
valve
pressure
hydraulic
pilot
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008325430A
Other languages
Japanese (ja)
Other versions
JP4923035B2 (en
Inventor
Haruhiko Kurino
治彦 栗野
Yoshinori Matsunaga
義憲 松永
Atsushi Tagami
淳 田上
Shunichi Yamada
俊一 山田
Naoki Ichikawa
直樹 市川
Yuji Kotake
祐治 小竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Senqcia Corp
Toyooki Kogyo Co Ltd
Original Assignee
Kajima Corp
Toyooki Kogyo Co Ltd
Hitachi Metals Techno Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Toyooki Kogyo Co Ltd, Hitachi Metals Techno Ltd filed Critical Kajima Corp
Priority to JP2008325430A priority Critical patent/JP4923035B2/en
Publication of JP2009115319A publication Critical patent/JP2009115319A/en
Application granted granted Critical
Publication of JP4923035B2 publication Critical patent/JP4923035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a further compact and inexpensive hydraulic circuit, causing no operational anxiety on the risk side, capable of exhibiting superior and stable performance, and capable of exhibiting effectiveness even from a microvibration level, in a damping coefficient switching type hydraulic damper capable of always reliably exhibiting energy absorbing capacity exceeding an ordinary hydraulic damper, while automatically switching a damping coefficient without requiring external energy supply at all. <P>SOLUTION: The damping coefficient switching type hydraulic damper uses pressure stored in a buffer 21 for driving force of an opening-closing valve 6. The buffer 21 and a low pressure accumulator 7 are connected by a flow passage having a switching valve 42. The switching valve 42 is automatically switched by differential pressure between right-left hydraulic chambers, and opens in a neutral position when the differential pressure between the right-left hydraulic chambers becomes zero, and reliably prevents a malfunction on the dangerous side where the opening-closing valve 6 continuously maintains an open state when pressure remains in the buffer 21 by completely releasing hydraulic pressure in the buffer 21. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地震や風等の振動外力による建物の揺れを低減するための制震用の油圧ダンパに関するものである。   The present invention relates to a hydraulic damper for vibration control for reducing the shaking of a building due to an external vibration force such as an earthquake or wind.

この種の制震用油圧ダンパには、例えば、特許文献1あるいは特願2003−303317のように、シリンダ内で往復動するピストンの両側に設けられた油圧室を連結する流路に設置した開閉弁が油圧室の圧力変化に応じて開閉して減衰係数を切り替える、減衰係数切替型油圧ダンパがある。この油圧ダンパでは、開閉弁のパイロット操作部にバッファーを接続し、バッファーに蓄積した圧力を開閉弁の駆動力として利用することで、圧力センサや電気制御回路を用いることなく、良好なエネルギ吸収能力を得ることを可能としている。
特開2003−56633号公報
In this type of damping hydraulic damper, for example, as disclosed in Patent Document 1 or Japanese Patent Application No. 2003-303317, an open / close installed in a flow path connecting hydraulic chambers provided on both sides of a piston that reciprocates in a cylinder. There is a damping coefficient switching type hydraulic damper in which a valve opens and closes according to a pressure change in a hydraulic chamber and switches a damping coefficient. In this hydraulic damper, a buffer is connected to the pilot operating part of the on-off valve, and the pressure accumulated in the buffer is used as the driving force of the on-off valve, so that it has good energy absorption capability without using a pressure sensor or an electric control circuit It is possible to get.
JP 2003-56633 A

前述の特許文献1あるいは特願2003−303317に記載されている油圧回路の場合、次のような解決すべき課題がある。   In the case of the hydraulic circuit described in Patent Document 1 or Japanese Patent Application No. 2003-303317 described above, there are the following problems to be solved.

(1)開閉弁としてポペット弁が用いられているが、ポペット弁にはクラック荷重(回
路圧力が増加していくとき弁が開き始める圧力)が必ず存在するため、それ以下の小さい荷重領域では、パイロット操作部のパイロットピストンは動作しても、肝心の開閉弁が開かないため、風荷重などの微小振動レベルでの制御性能が劣化するといった問題がある。
(1) Although a poppet valve is used as an on-off valve, the poppet valve always has a crack load (the pressure at which the valve starts to open when the circuit pressure increases). Even if the pilot piston of the pilot operating section operates, the essential on-off valve does not open, and there is a problem that the control performance at a minute vibration level such as wind load is deteriorated.

(2)また、バッファーに蓄積された油圧をパイロットピストンの駆動力に用いている
ため、バッファーに圧力が残ると、開閉弁が開状態を維持してしまうといった危険側の誤動作の恐れがある。
(2) Also, since the hydraulic pressure accumulated in the buffer is used as the driving force for the pilot piston, there is a risk of a malfunction on the dangerous side, such as when the pressure remains in the buffer, the open / close valve remains open.

(3)一方、油圧回路の構成に着目すると、前述の文献等に示されている油圧回路では
、単一の開閉弁およびパイロット操作部でピストン両方向の移動に対して制御を行おうとすると、4つのチェック弁による整流が必要となる。こうしたチェック弁による整流を避けようとすると、今度は左右それぞれに対して独立した油圧回路が必要となり、いずれも部品点数が多くなり、サイズやコストの面での制約が生じる。
(3) On the other hand, paying attention to the configuration of the hydraulic circuit, in the hydraulic circuit shown in the above-mentioned literature, etc., if it is attempted to control the movement in both directions of the piston with a single on-off valve and pilot operation unit, 4 Rectification with two check valves is required. In order to avoid such rectification by the check valve, an independent hydraulic circuit is required for each of the left and right sides, both of which increase the number of parts, resulting in restrictions on size and cost.

本発明は、このような課題を解決すべくなされたもので、その目的は、外部からのエネルギ供給を一切必要とせずに減衰係数を自動的に切り替えることができ、通常の油圧ダンパを上回るエネルギ吸収能力を常に確実に発揮することができる減衰係数切替型の油圧ダンパにおいて、危険側の動作不安のない、優れて安定した性能を発揮することができ、また微小な振動レベルからも効果を発揮することができ、さらにコンパクトで低コストの油圧回路を得ることができる減衰係数切替型油圧ダンパを提供することにある。 The present invention has been made to solve such a problem, and an object of the present invention is to automatically switch the damping coefficient without requiring any external energy supply, and to exceed the energy of a normal hydraulic damper. In the damping coefficient switching type hydraulic damper that can always exhibit its absorption capacity, it can demonstrate excellent and stable performance without fear of operation on the dangerous side, and it is also effective from minute vibration level Another object of the present invention is to provide a damping coefficient switching type hydraulic damper capable of obtaining a compact and low-cost hydraulic circuit.

本発明は、請求項1に記載の誤動作解消機能を有する減衰係数切替型油圧ダンパであるが、次の微小用開閉機能と組み合わせることができる。この微小用開閉機能を有する減衰係数切替型油圧ダンパは、シリンダ内で往復動するピストンの両側の油圧室を連結する流路に開閉弁を備え、この開閉弁を開閉させることにより減衰係数を切り替えるようにした油圧ダンパであって、片側の油圧室の圧力が上昇中は、開閉弁が閉状態を維持すると共に、バッファーに圧力を蓄圧し、当該油圧室の圧力が低下し始めると、開閉弁をパイロット制御するためのパイロット操作部のパイロットピストンがバッファー内に蓄圧された圧力により駆動されることで開閉弁が開き、その後左右の油圧室の圧力差が解消されると、再び開閉弁が閉じるように動作する油圧ダンパにおいて、開閉弁が動作しないクラック圧より小荷重時には、パイロットピストンのみの開口面積のみで減衰係数の制御が可能となるように、開閉弁のクラック圧より低圧では開き、クラック圧より高圧では閉じる流路が、油圧回路上、開閉弁と並列に設置されていることを特徴とする減衰係数切替型油圧ダンパである。 The present invention is the damping coefficient switching type hydraulic damper having the malfunction elimination function described in claim 1, but can be combined with the following micro opening / closing function. This damping coefficient switching type hydraulic damper having a micro opening / closing function includes an opening / closing valve in a flow path connecting hydraulic chambers on both sides of a piston reciprocating in a cylinder, and the damping coefficient is switched by opening / closing the opening / closing valve. When the pressure in the hydraulic chamber on one side is rising, the on-off valve maintains a closed state, accumulates pressure in the buffer, and the pressure in the hydraulic chamber starts to decrease. When the pilot piston of the pilot operating part for pilot control is driven by the pressure accumulated in the buffer, the on-off valve opens, and then the on-off valve closes again when the pressure difference between the left and right hydraulic chambers is eliminated In a hydraulic damper that operates like this, when the load is smaller than the crack pressure at which the on-off valve does not operate, the damping coefficient can be controlled only by the opening area of the pilot piston alone As described above, the damping coefficient switching type hydraulic damper is characterized in that a flow path that opens at a pressure lower than the crack pressure of the on-off valve and closes at a pressure higher than the crack pressure is installed on the hydraulic circuit in parallel with the on-off valve. .

この微小用開閉機能は、例えば、図1に示すように、シリンダ内で往復動するピストン3の両側に設けられた油圧室4を連結する流路5に設置した開閉弁6が油圧室4の圧力変化に応じて開閉して減衰係数を切り替える、減衰係数切替型油圧ダンパに適用される。この油圧ダンパでは、開閉弁6のパイロット操作部20にバッファー21を接続し、外力によりピストン3が移動すると、油圧室4内の作動油をバッファー21内に導入して蓄圧し、開閉弁6はパイロット操作部20で閉状態が維持されることにより、減衰係数が最大値Cmax となる。振幅最大点でピストン3の移動方向が変わると、バッファー21内に蓄圧された圧力によりパイロット操作部20を駆動することにより開閉弁6が一旦開き、荷重が除荷され、減衰係数が最小値Cmin となる。ピストン3がさらに中立位置へ向かって移動すると、パイロット操作部20により開閉弁6が再び閉じて減衰係数が最大値Cmax に戻る。反対側でも上記と同様に動作し、以上の動作が繰り返されることにより、地震等のエネルギが良好に吸収される。 For example, as shown in FIG. 1, the opening / closing valve 6 provided in the flow path 5 that connects the hydraulic chambers 4 provided on both sides of the piston 3 that reciprocates in the cylinder is used for the micro open / close function . The present invention is applied to a damping coefficient switching type hydraulic damper that opens and closes according to a pressure change and switches a damping coefficient. In this hydraulic damper, when the buffer 21 is connected to the pilot operating portion 20 of the on-off valve 6 and the piston 3 moves by an external force, the hydraulic oil in the hydraulic chamber 4 is introduced into the buffer 21 to accumulate pressure, and the on-off valve 6 By maintaining the closed state in the pilot operating unit 20, the attenuation coefficient becomes the maximum value Cmax. When the moving direction of the piston 3 is changed at the maximum amplitude point, the pilot operating unit 20 is driven by the pressure accumulated in the buffer 21, whereby the on-off valve 6 is temporarily opened, the load is unloaded, and the damping coefficient is the minimum value Cmin. It becomes. When the piston 3 further moves toward the neutral position, the on-off valve 6 is closed again by the pilot operating unit 20 and the damping coefficient returns to the maximum value Cmax. The other side operates in the same manner as described above, and the above operations are repeated, so that energy such as earthquakes is absorbed well.

このような油圧ダンパにおいて、開閉弁(ポペット弁)にはクラック荷重が必ず存在するため、それより小さな荷重領域では、パイロット操作部が動作しても肝心の開閉弁が開かないため、風荷重などの微小振動レベルでの制御性能が劣化する。これに対して、微小用開閉機能は、開閉弁が動作しないクラック圧より低圧の荷重領域を制御できるように、パイロット操作部のパイロットピストンのみの開口面積のみで制御できるようにしたものである。そのため、開閉弁のクラック圧より低圧では開き、クラック圧より高圧では閉まる油圧回路を設けている。具体的には、例えば図1に示すように、プレストレスを導入した圧縮バネにより、油圧室4の圧力がクラック圧相当までは開き、クラック圧より高圧では閉じるピストン33aを有する微小用開閉弁33を設け、その流路を開閉弁6と並列に設置し、クラック圧より低圧では作動油が流路32を通過するようにする。これにより、開閉弁6が動作しないクラック圧より低圧の荷重領域でも、流路32により油を流すことができ、風振動などの微小振動レベルでも、地震等の大きな外力の場合と同様に、減衰係数の自動切替えによる良好な制震を行うことができる。 In such hydraulic dampers, there is always a crack load on the open / close valve (poppet valve), and in the smaller load range, the essential open / close valve does not open even if the pilot operation unit operates, so wind load, etc. The control performance at the minute vibration level of the is deteriorated. On the other hand, the micro opening / closing function can be controlled only by the opening area of only the pilot piston of the pilot operating section so that the load region lower than the crack pressure at which the opening / closing valve does not operate can be controlled. Therefore, a hydraulic circuit is provided that opens at a pressure lower than the crack pressure of the on-off valve and closes at a pressure higher than the crack pressure. Specifically, as shown in FIG. 1, for example, as shown in FIG. 1, a micro open-close valve 33 having a piston 33 a that opens until the pressure in the hydraulic chamber 4 reaches the crack pressure and closes when the pressure is higher than the crack pressure. The flow path is installed in parallel with the on-off valve 6 so that the hydraulic oil passes through the flow path 32 at a pressure lower than the crack pressure. As a result, even in a load region lower than the crack pressure at which the on-off valve 6 does not operate, oil can flow through the flow path 32, and even at a minute vibration level such as wind vibration, attenuation is the same as in the case of a large external force such as an earthquake. Good seismic control by automatic switching of coefficients.

なお、この微小用開閉機能の基本的な油圧回路は、図1の左右独立型の油圧回路に限らず、図2に示す4つのチェック弁を用いた単一の開閉弁とその制御用油圧回路による整流型油圧回路等にも用いることができる。 Note that the basic hydraulic circuit of this micro open / close function is not limited to the left and right independent hydraulic circuit of FIG. 1, but a single open / close valve using the four check valves shown in FIG. 2 and its control hydraulic circuit. It can also be used for a rectifying hydraulic circuit or the like.

本発明の請求項1に係る発明は、シリンダ内で往復動するピストンの両側の油圧室を連結する流路に開閉弁を備え、この開閉弁を開閉させることにより減衰係数を切り替えるようにした油圧ダンパであって、片側の油圧室の圧力が上昇中は、開閉弁が閉状態を維持すると共に、バッファーに圧力を蓄圧し、当該油圧室の圧力が低下し始めると、開閉弁をパイロット制御するためのパイロット操作部のパイロットピストンがバッファー内に蓄圧された圧力により駆動されることで開閉弁が開き、その後左右の油圧室の圧力差が解消されると、再び開閉弁が閉じるように動作する油圧ダンパにおいて、ピストン両側の油圧の大小関係が反転する際に、一旦、バッファーと低圧のアキュムレータが連結されることにより、バッファーに蓄積された圧力が解消されるような機能を実現する弁が組み込まれていることを特徴とする減衰係数切替型油圧ダンパである。 According to a first aspect of the present invention, an on-off valve is provided in a flow path connecting hydraulic chambers on both sides of a piston that reciprocates in a cylinder, and the damping coefficient is switched by opening and closing the on-off valve. When the pressure in the hydraulic chamber on one side is rising, the open / close valve is kept closed and the pressure is accumulated in the buffer. When the pressure in the hydraulic chamber starts to drop, the open / close valve is pilot controlled. When the pilot piston of the pilot operating part is driven by the pressure accumulated in the buffer, the on-off valve opens, and then when the pressure difference between the left and right hydraulic chambers is eliminated, the on-off valve is closed again In the hydraulic damper, when the magnitude relationship between the hydraulic pressures on both sides of the piston is reversed, the pressure accumulated in the buffer is temporarily established by connecting the buffer and the low-pressure accumulator. There is a damping coefficient switching-type hydraulic damper, characterized in that the valve to achieve the functionality as resolved is incorporated.

前述したバッファー方式の減衰係数切替型油圧ダンパにおいては、バッファーに蓄積された油圧をパイロットピストンの駆動力に用いているため、バッファーに圧力が残ると、開閉弁が開状態を維持してしまうという危険側の誤動作の恐れがある。これに対して、請求項1に係る発明は、ピストン両側の圧力が反転して駆動される途中で一度バッファー圧と低圧のアキュムレータを連結し、これによりダンパ発生荷重が0(シリンダ内の左右の油圧室の差圧が0)になった時、一旦バッファーに蓄積された圧力が完全に解消されることにより、バッファー内に圧力が残って開閉弁が開状態を維持し続けてしまうことを回避するものである。具体的には、例えば図2に示すように、バッファー21と低圧のアキュムレータ7とを切替弁42を有する流路で連結する。この切替弁42は、左右の油圧室の差圧で自動的に切り替わり、左右の油圧室の差圧が0になると、中立位置で開き、バッファー21内の油圧が完全に抜ける。これにより、バッファー21内に圧力が残って開閉弁6が開状態を維持し続けてしまうという危険側の誤動作が確実に防止される。 In the above-described buffer type damping coefficient switching type hydraulic damper, since the hydraulic pressure accumulated in the buffer is used for the driving force of the pilot piston, the opening / closing valve is maintained open when pressure remains in the buffer. There is a risk of malfunction on the dangerous side. On the other hand, the invention according to claim 1 connects the buffer pressure and the low pressure accumulator once in the middle of driving while the pressures on both sides of the piston are reversed. When the differential pressure in the hydraulic chamber becomes 0), the pressure once accumulated in the buffer is completely eliminated, so that the pressure remains in the buffer and the open / close valve is kept open. To do. Specifically, for example, as shown in FIG. 2, the buffer 21 and the low-pressure accumulator 7 are connected by a flow path having a switching valve 42. The switching valve 42 is automatically switched by the differential pressure between the left and right hydraulic chambers. When the differential pressure between the left and right hydraulic chambers becomes zero, the switching valve 42 opens at the neutral position, and the hydraulic pressure in the buffer 21 is completely released. As a result, it is possible to reliably prevent a malfunction on the dangerous side that pressure remains in the buffer 21 and the on-off valve 6 continues to be kept open.

なお、この請求項1に係る発明の基本的な油圧回路は、図2の4つのチェック弁を用いた単一の開閉弁とその制御用油圧回路による整流型油圧回路に限らず、図1に示す左右独立型の油圧回路等にも用いることができる。また、請求項2に記載したように、微小用開閉機能と、請求項1に係る発明の誤動作解消機能を組み合わせることもできる(図4参照)。 Incidentally, the basic hydraulic circuit of the invention according to claim 1 is not limited to the rectifier hydraulic circuit with a single on-off valve and its control hydraulic circuit using four check valves in FIG. 2, FIG. 1 It can also be used for the left and right independent hydraulic circuit shown. In addition , as described in claim 2, the micro opening / closing function and the malfunction elimination function of the invention according to claim 1 can be combined (see FIG. 4).

また、本発明においては、次の単一の開閉弁とパイロット操作部による油圧回路と組み合わせることができる。この減衰係数切替型油圧ダンパは、シリンダ内で往復動するピストンの両側の油圧室を連結する流路に開閉弁を備え、この開閉弁を開閉させることにより減衰係数を切り替えるようにした油圧ダンパであって、片側の油圧室の圧力が上昇中は、開閉弁が閉状態を維持すると共に、バッファーに圧力を蓄圧し、当該油圧室の圧力が低下し始めると、開閉弁をパイロット制御するためのパイロット操作部のパイロットピストンがバッファー内に蓄圧された圧力により駆動されることで開閉弁が開き、その後左右の油圧室の圧力差が解消されると、再び開閉弁が閉じるように動作する油圧ダンパにおいて、パイロット操作部および開閉弁の背圧室へ高圧側のシリンダ圧力を導入し、かつ、パイロット操作部における開閉弁の背圧を排出するポートを低圧側のシリンダ圧力と連結するような切替弁を用いることにより、チェック弁による整流を行うことなく、単一の開閉弁およびパイロット操作部で、ピストン両方向に対して上記開閉動作を可能としたことを特徴とする減衰係数切替型油圧ダンパである。 Moreover, in this invention, it can combine with the following single on-off valve and the hydraulic circuit by a pilot operation part. This damping coefficient switching type hydraulic damper is a hydraulic damper in which an opening / closing valve is provided in a flow path connecting hydraulic chambers on both sides of a piston reciprocating in a cylinder, and the damping coefficient is switched by opening / closing the opening / closing valve. When the pressure in the hydraulic chamber on one side is increasing, the on-off valve is kept closed and the pressure is accumulated in the buffer. When the pressure in the hydraulic chamber starts to decrease, the on-off valve is pilot-controlled. A hydraulic damper that opens and closes when the pilot piston of the pilot operating unit is driven by the pressure accumulated in the buffer, and then the pressure difference between the left and right hydraulic chambers is eliminated. A port for introducing high-pressure side cylinder pressure into the pilot operating section and the back pressure chamber of the on-off valve and discharging the back pressure of the on-off valve in the pilot operating section. By using a switching valve that is connected to the cylinder pressure on the compression side, the above opening / closing operation can be performed in both directions of the piston with a single opening / closing valve and pilot operation unit without rectification by the check valve. This is a characteristic damping coefficient switching type hydraulic damper.

前述したバッファー方式の減衰係数切替型油圧ダンパの油圧回路では、単一の開閉弁およびパイロット操作部でピストン両方向の移動に対して制御を行おうとすると、4つのチェック弁による整流が必要となり(図2参照)、またこのようなチェック弁による整流を避けようとすると、今度は左右それぞれに対して独立した油圧回路が必要となり(図1参照)、何れも部品点数が多くなり、サイズやコストの面で制約が生じる。これに対して、単一の開閉弁とパイロット操作部による油圧回路は、4つのチェック弁による整流を行うことなく、単一の開閉弁およびパイロット操作部により、ピストンの左右両方向に対する開閉動作を可能としたものである。具体的には、例えば図3に示すように、単一の開閉弁6が設けられた油圧ダンパの油圧回路に、左右の油圧室4の圧力が高い方をパイロット操作のためのバッファー21及び開閉弁6の背圧室へ連結し、かつ、パイロット操作部20における開閉弁6の背圧を排出するポートを圧力の低い方の油圧室4に連結することができる方向切替弁50を設ける。また、開閉弁6は正逆両方向の油の流れを背圧によりパイロット操作可能なように面積比(形状)を設定しておく。この方向切替弁50は、左右の油圧室の差圧により自動的に切り替わり、圧力の高い方の油圧室の油圧でパイロット操作部20が動作する。これにより、4つのチェック弁による整流を行うことなく、単一の開閉弁およびパイロット操作部によりピストンの左右両方向に対する開閉動作が可能となる。 In the hydraulic circuit of the buffer type damping coefficient switching type hydraulic damper described above, rectification by four check valves is required when control is performed for movement in both directions of the piston with a single on-off valve and pilot operation section (see FIG. 2) In addition, if it is attempted to avoid such rectification by the check valve, separate hydraulic circuits are required for each of the left and right sides (see FIG. 1), both of which increase the number of parts and reduce the size and cost. There are restrictions on the surface. On the other hand, the hydraulic circuit with a single on-off valve and pilot operation unit can open and close the piston in both the left and right directions with a single on-off valve and pilot operation unit without rectifying with four check valves. It is what. Specifically, for example, as shown in FIG. 3, a hydraulic circuit of a hydraulic damper provided with a single on-off valve 6 has a higher pressure in the left and right hydraulic chambers 4 with a buffer 21 for pilot operation and an open / close state. A direction switching valve 50 is provided which is connected to the back pressure chamber of the valve 6 and can connect a port for discharging the back pressure of the on-off valve 6 in the pilot operation unit 20 to the lower pressure hydraulic chamber 4. Further, the area ratio (shape) of the on-off valve 6 is set so that the oil flow in both forward and reverse directions can be pilot-operated by back pressure. The direction switching valve 50 is automatically switched by the differential pressure between the left and right hydraulic chambers, and the pilot operating unit 20 is operated by the hydraulic pressure of the higher hydraulic chamber. Thereby, the opening / closing operation | movement with respect to the left-right both directions of a piston is attained by a single on-off valve and pilot operation part, without performing rectification | straightening by four check valves.

なお、請求項3に記載したように、この単一の開閉弁とパイロット操作部による油圧回路と、微小用開閉機能と請求項1に係る発明の誤動作解消機能の両方またはいずれか一方を組み合わせることもできる(図4参照)。 In addition, as described in claim 3, the hydraulic circuit including the single on-off valve and the pilot operation unit, the micro opening / closing function, and / or the malfunction elimination function of the invention according to claim 1 are combined. (See FIG. 4).

また、微小用開閉弁に関しては、微小用開閉弁の動作を開閉弁の動作と連動させることも可能である。具体的には、例えば図5に示すように、開閉弁6のピストン6aと微小用開閉弁60のスプール60aとを連結する。開閉弁6のクラック圧より低圧ではスプール60aの通過流量を利用し、クラック圧より高圧で開閉弁6が動作するとスプール60aが閉じるように、自動的に動作する。   In addition, regarding the micro open / close valve, the operation of the micro open / close valve can be interlocked with the operation of the open / close valve. Specifically, for example, as shown in FIG. 5, the piston 6 a of the on-off valve 6 and the spool 60 a of the micro on-off valve 60 are connected. When the opening / closing valve 6 operates at a pressure lower than the crack pressure of the on-off valve 6, the passage flow rate of the spool 60 a is used, and when the on-off valve 6 operates at a pressure higher than the crack pressure, the spool 60 a automatically operates.

さらに、微小用開閉弁に関しては、微小用開閉弁と開閉弁を一体化することも可能である。具体的には、例えば図6に示すように、開閉弁6のピストン6aに微小用開閉弁70のスプール70aを組み込む。動作は連動型と同様である。   Further, with respect to the micro open / close valve, the micro open / close valve and the open / close valve can be integrated. Specifically, for example, as shown in FIG. 6, the spool 70 a of the micro open / close valve 70 is incorporated in the piston 6 a of the open / close valve 6. The operation is the same as that of the interlocking type.

また、請求項1に係る発明の誤動作解消機能単一の開閉弁の開閉動作機能を一つの切替弁で実現することも可能である。具体的には、例えば図6に示すように、方向切替弁50の機能と図2の切替弁42の機能を兼ね備えた切替弁80を設置する。切替弁80のスプール80aの両サイドには開閉弁6の開閉動作の部分を設け、中央の中立位置には、誤動作解消回路の流路41を開閉する部分を設ける。左右の油圧室4の高い方の圧力によりスプール80aが移動し、スプール80aの両サイドの部分がそれぞれ流路位置に位置する。左右の油圧室4の圧力差が0になれば、スプール80aが中立位置に移動する。 Further, the malfunction elimination function and the opening / closing operation function of a single opening / closing valve according to the first aspect of the invention can be realized by a single switching valve. Specifically, for example, as shown in FIG. 6, a switching valve 80 having both the function of the direction switching valve 50 and the function of the switching valve 42 in FIG. 2 is installed. On both sides of the spool 80a of the switching valve 80, a portion for opening / closing the opening / closing valve 6 is provided, and a portion for opening / closing the flow path 41 of the malfunction elimination circuit is provided at the neutral position in the center. The spool 80a is moved by the higher pressure in the left and right hydraulic chambers 4, and both side portions of the spool 80a are positioned at the flow path positions. When the pressure difference between the left and right hydraulic chambers 4 becomes zero, the spool 80a moves to the neutral position.

本発明は、以上のような構成からなるので、次のような効果が得られる。   Since the present invention is configured as described above, the following effects can be obtained.

(1)バッファーに蓄積した圧力を開閉弁の駆動力に利用することで、外部のエネルギ供給を一切必要とせずに減衰係数を自動的に切り替えることができ、センサ、コントローラ、電磁弁等、無停電電源装置と特別の電源配線等を用いることなく、通常の油圧ダンパを上回るエネルギ吸収能力を常に確実に発揮することができる減衰係数切替型油圧ダンパにおいて、ピストン両側の圧力が反転して駆動される途中で一度バッファー圧と低圧のアキュムレータを連結し、ダンパ発生荷重が0(シリンダ内の左右の油圧室の差圧が0)になった時、一旦バッファーに蓄積された圧力が完全に解消されるように構成することにより、バッファー内に圧力が残って開閉弁が開状態を維持し続けてしまうことが回避され、危険側の誤動作が確実に防止される。 (1) By using the pressure accumulated in the buffer for the driving force of the on-off valve, the attenuation coefficient can be automatically switched without requiring any external energy supply. Sensors, controllers, solenoid valves, etc. In a damping coefficient switching type hydraulic damper that can always reliably exhibit energy absorption capacity exceeding that of a normal hydraulic damper without using a power failure power supply and special power supply wiring, the pressure on both sides of the piston is reversed and driven. When the buffer pressure and the low pressure accumulator are connected once during the operation, and the damper load becomes 0 (the differential pressure between the left and right hydraulic chambers in the cylinder is 0), the pressure once accumulated in the buffer is completely eliminated. By configuring so, it is avoided that pressure remains in the buffer and the on-off valve continues to be kept open, and malfunction on the dangerous side is reliably prevented. The

(2)バッファー方式の減衰係数切替型油圧ダンパにおいて、開閉弁のクラック圧より低圧では開き、クラック圧より高圧では閉まる微小用開閉弁を設け、その流路を開閉弁と並列に設置し、クラック圧より低圧では微小用開閉弁の流路に作動油を通過させることにより、開閉弁が動作しないクラック圧より低圧の荷重領域でも、開閉弁のパイロット操作部の開口面積を利用して減衰係数を切替えることができ、風振動などの微小振動レベルでも、地震等の大きな外力の場合と同様に、減衰係数の自動切替えによる良好な制震を行うことができる。 (2) In the buffer type damping coefficient switching type hydraulic damper, a micro on-off valve that opens at a pressure lower than the crack pressure of the on-off valve and closes at a pressure higher than the crack pressure is provided, and its flow path is installed in parallel with the on-off valve. By passing hydraulic oil through the flow path of the micro on-off valve at a pressure lower than the pressure, the damping coefficient can be set using the opening area of the pilot operating part of the on-off valve even in a load region lower than the crack pressure at which the on-off valve does not operate. As in the case of a large external force such as an earthquake, good vibration control by automatic switching of the damping coefficient can be performed even at a minute vibration level such as wind vibration.

(3)バッファー方式の減衰係数切替型油圧ダンパにおいて、左右の油圧室の圧力が高
い方をパイロット操作部および開閉弁の背圧室へ連結し、かつ、パイロット操作部における開閉弁の背圧を排出するポートを圧力の低い方の油圧室に連結することができる方向切替弁を設けるとともに、正逆両方向の油の流れを背圧によりパイロット操作可能な開閉弁を用いることにより、4つのチェック弁による整流を行うことなく、単一の開閉弁およびパイロット操作部によりピストンの左右両方向に対する開閉動作が可能となり、コンパクトで低コストな油圧回路を有する減衰係数切替型油圧ダンパが得られる。
(3) In the buffer-type damping coefficient switching type hydraulic damper, connect the higher pressure in the left and right hydraulic chambers to the pilot operating section and the back pressure chamber of the on / off valve, and reduce the back pressure of the on / off valve in the pilot operating section. Four check valves are provided by providing a direction switching valve that can connect the discharge port to the lower pressure hydraulic chamber and using an on-off valve that can pilot the oil flow in both forward and reverse directions by back pressure. Therefore, the piston can be opened and closed in both the left and right directions with a single on-off valve and pilot operating portion, and a damping coefficient switching type hydraulic damper having a compact and low-cost hydraulic circuit can be obtained.

以下、本発明を図示する実施の形態に基づいて説明する。この実施形態は、開閉弁に、大流量の作動油の通過を高速で、かつ、遮断を瞬時に行えるポペット弁(流量調整弁)を用いた例である。図1〜図6に本発明の第1〜第6実施形態を示す。なお、図1〜図6において、油圧ダンパのメインの油圧回路は実線で示し、開閉弁の制御用の油圧回路は点線で示している。   Hereinafter, the present invention will be described based on the illustrated embodiment. This embodiment is an example in which a poppet valve (flow rate adjusting valve) capable of instantaneously shutting off a large flow rate of hydraulic oil at high speed is used as an on-off valve. 1 to 6 show first to sixth embodiments of the present invention. 1 to 6, the main hydraulic circuit of the hydraulic damper is indicated by a solid line, and the hydraulic circuit for controlling the on-off valve is indicated by a dotted line.

(1) 第1実施形態
この第1実施形態は、風振動などの微小振動レベルにも対応できるようにしたものである。先ず基本的な油圧回路の構成は以下の通りである。図1に示すように、油圧ダンパ1は、従来と同様、シリンダ2と、両ロッド型のピストン3と、ピストン3の両側の油圧室4と、両油圧室をつなぐ流路5に設けられた2つの開閉弁6などから構成されている。この油圧回路には、作動油の圧縮や温度変化による容積変化等を補うためのアキュムレータ7が設けられており、並列のチェック弁8と絞り9を有する流路10を介して左右両側の油圧室4へそれぞれ作動油を供給できるようにされている。流路5には、一方の高圧側の油圧室4からの作動油が開閉弁6を通って他方の低圧側の油圧室4に流入できるように2つのチェック弁11が組み込まれている。また、流路5には、油圧室4内の過大な圧力を逃す両方向のリリーフ弁12も組み込まれている。
(1) First Embodiment This first embodiment is adapted to cope with a minute vibration level such as wind vibration. First, the basic configuration of the hydraulic circuit is as follows. As shown in FIG. 1, the hydraulic damper 1 is provided in a cylinder 2, a double rod type piston 3, hydraulic chambers 4 on both sides of the piston 3, and a flow path 5 that connects both hydraulic chambers, as in the prior art. It consists of two on-off valves 6 and the like. This hydraulic circuit is provided with an accumulator 7 for compensating for a change in volume due to the compression of hydraulic oil or a change in temperature, etc., and hydraulic chambers on the left and right sides via a flow path 10 having a parallel check valve 8 and a throttle 9. The hydraulic oil can be supplied to 4 respectively. In the flow path 5, two check valves 11 are incorporated so that hydraulic oil from one high pressure side hydraulic chamber 4 can flow into the other low pressure side hydraulic chamber 4 through the on-off valve 6. The flow path 5 also incorporates a bi-directional relief valve 12 for releasing excessive pressure in the hydraulic chamber 4.

開閉弁6とその制御用油圧回路は、左右にそれぞれ独立して配置され、それぞれ左右両側の油圧室4の流路5に接続されている。ピストン3が移動した高圧側の開閉弁6とその制御用油圧回路が動作する。開閉弁6の油圧回路には、開閉弁6の開閉制御を行うパイロット操作部としてのパイロット操作弁20と、パイロット操作弁20のパイロットピストン20aを蓄圧された圧力で駆動するバッファー21が設けられている。   The on-off valve 6 and its control hydraulic circuit are independently arranged on the left and right sides, and are connected to the flow paths 5 of the hydraulic chambers 4 on the left and right sides, respectively. The on-off valve 6 on the high pressure side to which the piston 3 has moved and its control hydraulic circuit operate. The hydraulic circuit of the on-off valve 6 is provided with a pilot operation valve 20 as a pilot operation unit that performs opening / closing control of the on-off valve 6 and a buffer 21 that drives the pilot piston 20a of the pilot operation valve 20 with accumulated pressure. Yes.

開閉弁6は、そのポペット弁6aの背面とパイロット操作弁20の一つの入口ポートとが、可変絞り22を有する操作用の流路23で接続され、またポペット弁6aの前面と背面とが、絞りを有するバイパス流路24で連通する構造で、ポペット弁6a背部にポペット弁6aを閉方向に押圧してクラック圧を設定するバネ6bを設けている。高圧側の油圧室4内の作動油がポペット弁6aの前面と背面に供給されるが、パイロット操作弁20が閉じている状態では、ポペット弁6aの前面の圧力とポペット弁6aの背圧は等しくなるが、ポペット弁背圧側の投影面積の方が大きく、かつバネ6bで押圧されるため、開閉弁6が閉じる。パイロット操作弁20が開くと、作動油がバイパス流路24、操作用の流路23を通って低圧側の油圧室4へ排出されるため、開閉弁6がバネ6bの押圧力に抗して開く。   The on-off valve 6 has a back surface of the poppet valve 6a and one inlet port of the pilot operation valve 20 connected by an operation flow path 23 having a variable throttle 22, and a front surface and a back surface of the poppet valve 6a. A spring 6b that sets the crack pressure by pressing the poppet valve 6a in the closing direction is provided on the back of the poppet valve 6a. The hydraulic oil in the hydraulic chamber 4 on the high pressure side is supplied to the front and back surfaces of the poppet valve 6a. When the pilot operation valve 20 is closed, the pressure on the front surface of the poppet valve 6a and the back pressure on the poppet valve 6a are Although equal, the projected area on the back pressure side of the poppet valve is larger and is pressed by the spring 6b, so the on-off valve 6 is closed. When the pilot operation valve 20 is opened, the hydraulic oil is discharged to the low pressure side hydraulic chamber 4 through the bypass flow path 24 and the operation flow path 23, so that the on-off valve 6 resists the pressing force of the spring 6b. open.

バッファー21には、高圧側の油圧室4内の作動油がチェック弁25、絞り26を介して流入し、蓄圧される。バッファー21に蓄圧された圧力は、流路27によりパイロットビストン20aの前面に作用する。また、反対側のパイロットピストン20aの背面は、流路28により流路5に接続され、背圧が作用するようにされている。従って、この背圧よりもパイロットピストン20aの前面の圧力が高ければ、パイロット操作弁20が開く。また、このパイロット操作弁20の2つの入口ポートには、前述の操作用の流路23、バッファー21からの流路29が接続されている。また、このバッファー21の油圧回路には、過大な圧力を逃すリリーフ弁30が設けられている。   The hydraulic oil in the hydraulic chamber 4 on the high pressure side flows into the buffer 21 through the check valve 25 and the throttle 26 and is accumulated. The pressure accumulated in the buffer 21 acts on the front surface of the pilot piston 20a through the flow path 27. Further, the back surface of the pilot piston 20a on the opposite side is connected to the flow path 5 by the flow path 28 so that back pressure acts. Therefore, if the pressure on the front surface of the pilot piston 20a is higher than the back pressure, the pilot operation valve 20 opens. Further, the above-described operation flow path 23 and the flow path 29 from the buffer 21 are connected to the two inlet ports of the pilot operation valve 20. The hydraulic circuit of the buffer 21 is provided with a relief valve 30 that releases excessive pressure.

以上のような構成において、ピストン3が図示の中立位置ではパイロット操作弁20は後述するように閉じており、地震等によりピストン3が図面上左側に移動すると、左側の油圧室4の圧力が上昇し、パイロット操作弁20は閉じているため開閉弁6はその背圧およびバネ6bの押圧力により閉状態を維持し、バッファー21には圧力が蓄圧される。開閉弁6が閉じていることで、左側の油圧室4内の作動油は閉じ込められるため、減衰係数が最大値Cmaxとなる。   In the above configuration, when the piston 3 is in the illustrated neutral position, the pilot operation valve 20 is closed as will be described later, and when the piston 3 moves to the left side in the drawing due to an earthquake or the like, the pressure in the left hydraulic chamber 4 increases. Since the pilot operation valve 20 is closed, the on-off valve 6 is kept closed by the back pressure and the pressing force of the spring 6 b, and pressure is accumulated in the buffer 21. Since the on-off valve 6 is closed, the hydraulic oil in the left hydraulic chamber 4 is confined, so that the damping coefficient becomes the maximum value Cmax.

左側の振幅最大点でピストン3の移動方向が変わり、図面上右側に移動を開始すると、左側の油圧室4の圧力が下がり始め、パイロットピストン20aの背圧も低下するため、バッファー21に蓄圧された圧力によりパイロットピストン20aが駆動され、パイロット操作弁20が開状態となり、作動油が前述のように排出されることで開閉弁6が開く。開閉弁6が開くことで、左側の油圧室4の作動油が開閉弁6を通って右側の油圧室4へ流入するため、一旦荷重が除荷され、減衰係数が最小値Cminとなる。   When the movement direction of the piston 3 changes at the maximum amplitude point on the left side and starts to move to the right side in the drawing, the pressure in the left hydraulic chamber 4 begins to decrease and the back pressure of the pilot piston 20a also decreases. The pilot piston 20a is driven by the increased pressure, the pilot operation valve 20 is opened, and the hydraulic oil is discharged as described above, whereby the on-off valve 6 is opened. When the on-off valve 6 is opened, the hydraulic oil in the left hydraulic chamber 4 flows into the right hydraulic chamber 4 through the on-off valve 6, so that the load is once removed and the damping coefficient becomes the minimum value Cmin.

ピストン3がさらに右側に移動すると、開閉弁6が閉じる。即ち、パイロット操作弁20が開状態となることにより、バッファー21内の作動油が流路29を通って左側の油圧室4内に排出され、左右両側の油圧室4の圧力差が無くなると、パイロット操作弁20は再び閉じ、これにより開閉弁6も閉じる。   When the piston 3 moves further to the right, the on-off valve 6 is closed. That is, when the pilot operation valve 20 is opened, the hydraulic oil in the buffer 21 is discharged into the left hydraulic chamber 4 through the flow path 29, and the pressure difference between the left and right hydraulic chambers 4 disappears. The pilot operation valve 20 is closed again, and thus the on-off valve 6 is also closed.

ピストン3がさらに右側に移動すると、右側の開閉弁6とその制御用油圧回路が上記と同様に動作する。この右側部分でも、当初はパイロット操作弁20と開閉弁6は閉じており、危険側の誤動作は防止されている。   When the piston 3 moves further to the right, the right on-off valve 6 and its control hydraulic circuit operate in the same manner as described above. Even in the right side portion, the pilot operation valve 20 and the on-off valve 6 are initially closed, and a malfunction on the dangerous side is prevented.

以上のような動作をシリンダ2の両側で繰り返すことにより、通常の減衰係数一定の油圧ダンパに比べてエネルギ吸収能力が大幅に向上する。また、地震等の振動外力によるピストン3の移動だけで、減衰係数を自動的に切り替えることができる。   By repeating the above operation on both sides of the cylinder 2, the energy absorption capacity is greatly improved as compared with a hydraulic damper having a constant damping coefficient. In addition, the damping coefficient can be automatically switched only by moving the piston 3 due to an external vibration force such as an earthquake.

以上のような構成の油圧ダンパにおいて、開閉弁6にはクラック荷重が必ず存在するため、このクラック荷重より小さな荷重領域ではパイロット操作弁20のパイロットピストン20aは動作しても、肝心の開閉弁6が開かないため、風振動などの微小振動レベルでの制御性能が劣化する。そこで、開閉弁6が動作しないクラック圧より低圧の領域をパイロット操作弁20で制御できるように、開閉弁6のクラック圧より低圧で開き、クラック圧より高圧では閉まる微小用開閉回路31を設ける。開閉弁6をパイロット操作する目的で開閉弁6と並列に設置される流路24のオリフィス(絞り)では十分な開口面積が確保できないため、特別な微小用開閉回路31を開閉弁6と並列に設置する。   In the hydraulic damper having the above-described configuration, a crack load is always present in the on-off valve 6. Therefore, even if the pilot piston 20a of the pilot operation valve 20 operates in a load region smaller than the crack load, the essential on-off valve 6 Since it does not open, the control performance at a minute vibration level such as wind vibration deteriorates. Therefore, a micro opening / closing circuit 31 that opens at a pressure lower than the crack pressure of the on-off valve 6 and closes at a pressure higher than the crack pressure is provided so that a region lower than the crack pressure at which the on-off valve 6 does not operate can be controlled by the pilot operation valve 20. Since a sufficient opening area cannot be secured by the orifice (throttle) of the flow path 24 installed in parallel with the on-off valve 6 for the purpose of pilot-operating the on-off valve 6, a special micro on-off circuit 31 is provided in parallel with the on-off valve 6. Install.

具体的には、油圧室4からの作動油を操作用の流路23の可変絞り22とパイロット操作弁20との間に供給可能な流路32を設け、この流路32に微小用開閉機構としての開閉弁33を設ける。この微小用開閉弁33のピストン33aの背面にはプレストレス(圧縮力)を導入したバネを設け、前面には流路34により油圧室4の圧力を導入し、バネの押圧力を適宜設定することにより、クラック圧相当まではバネで開状態が維持され、クラック圧より高圧では閉じるようにされている。   Specifically, a flow path 32 capable of supplying hydraulic oil from the hydraulic chamber 4 between the variable throttle 22 of the operation flow path 23 and the pilot operation valve 20 is provided, and a micro opening / closing mechanism is provided in the flow path 32. An on-off valve 33 is provided. A spring to which prestress (compression force) is introduced is provided on the back surface of the piston 33a of the micro open / close valve 33, and the pressure of the hydraulic chamber 4 is introduced to the front surface by the flow path 34 so that the pressing force of the spring is appropriately set. Accordingly, the open state is maintained by the spring until the crack pressure is equivalent, and the spring is closed at a pressure higher than the crack pressure.

開閉弁6が動作しないクラック圧より低圧の荷重領域では、以下のように動作する。即ち、風振動等の微小荷重によりピストン3が左側に移動すると、前述の地震等の大荷重の場合と同様に、パイロット操作弁20は閉じているため、開閉弁6も閉じている。ピストン3が右側に移動すると、前述の地震等の大荷重の場合と同様に、パイロット操作弁20が開くが、微小用開閉弁33が開いているため、流路32を通って作動油が排出される。これにより、風振動などの微小振動レベルでも、地震等の大きな外力の場合と同様に、減衰係数の自動切替えによる良好な制震を行うことができる。   In a load region lower than the crack pressure at which the on-off valve 6 does not operate, the operation is as follows. That is, when the piston 3 moves to the left side due to a minute load such as wind vibration, the pilot operation valve 20 is closed as in the case of a large load such as an earthquake described above, so that the on-off valve 6 is also closed. When the piston 3 moves to the right side, the pilot operation valve 20 is opened as in the case of a large load such as the earthquake described above, but the hydraulic oil is discharged through the flow path 32 because the micro open / close valve 33 is open. Is done. As a result, even at a minute vibration level such as wind vibration, it is possible to perform good vibration control by automatic switching of the damping coefficient as in the case of a large external force such as an earthquake.

開閉弁6が動作するクラック圧より高圧では、微小用開閉弁33が閉じるため、微小用開閉回路31は動作せず、通常どおりパイロット操作弁20で開閉弁6が開閉制御される。   At a pressure higher than the crack pressure at which the on / off valve 6 operates, the micro on / off valve 33 is closed, so the micro on / off circuit 31 does not operate, and the on / off valve 6 is controlled to open / close by the pilot operation valve 20 as usual.

なお、この第1実施形態は、左右それぞれに独立した開閉弁・制御用油圧回路を配置した左右独立型油圧回路に適用した場合であるが、4つのチェック弁を用いた単一の開閉弁とその油圧回路による整流型油圧回路(後述の図2参照)にも適用できる。   The first embodiment is applied to a left and right independent hydraulic circuit in which left and right independent on-off valves and control hydraulic circuits are arranged, but a single on-off valve using four check valves and The present invention can also be applied to a rectifying hydraulic circuit (see FIG. 2 described later) using the hydraulic circuit.

(2) 第2実施形態
この第2実施形態は、バッファー内の圧力を0とし、開閉弁が開状態を維持してしまうといった危険側の誤動作を解消できるようにしたものである。図2に示すように、油圧ダンパ1の油圧回路は4つの整流用チェック弁13を用いた整流型油圧回路であり、開閉弁6とその制御用の油圧回路は一組だけ設ければよい。その他の点は第1実施形態とほぼ同様であり、同一符号を付して説明を省略する。なお、この実施形態では、パイロット操作弁20とバッファー21の油圧回路と流路5との接続に、両方向の入力を選択して出力できるシャトル弁14を用いている。
(2) Second Embodiment In the second embodiment, the pressure in the buffer is set to 0, and the malfunction on the dangerous side, such as the open / close valve is kept open, can be eliminated. As shown in FIG. 2, the hydraulic circuit of the hydraulic damper 1 is a rectifying hydraulic circuit using four rectifying check valves 13, and only one set of the on-off valve 6 and its control hydraulic circuit need be provided. The other points are almost the same as those of the first embodiment, and the same reference numerals are given and the description thereof is omitted. In this embodiment, the shuttle valve 14 that can select and output inputs in both directions is used for connection between the pilot operation valve 20, the hydraulic circuit of the buffer 21, and the flow path 5.

このような油圧回路において、バッファー21と低圧のアキュムレータ7との間に誤動作解消回路40を設ける。具体的には、バッファー21とアキュムレータ7とを流路41で接続し、この流路41にこの流路を開閉する切替弁42を設ける。この切替弁42のピストン42aの両端面には、それぞれ流路43を介して左右の油圧室4の油圧が作用し、油圧ダンパの動作により自動的に切り替わるようにされている。   In such a hydraulic circuit, a malfunction elimination circuit 40 is provided between the buffer 21 and the low-pressure accumulator 7. Specifically, the buffer 21 and the accumulator 7 are connected by a flow path 41, and a switching valve 42 that opens and closes the flow path is provided in the flow path 41. The hydraulic pressure of the left and right hydraulic chambers 4 is applied to both end faces of the piston 42a of the switching valve 42 through the flow path 43, and is automatically switched by the operation of the hydraulic damper.

以上のような構成において、基本的な動作は第1実施形態と同様であり、ピストン3が図面上左側に移動すると、左側の油圧室4の圧力が上昇し、パイロット操作弁20は閉じているため開閉弁6はその背圧により閉状態を維持し、バッファー21には圧力が蓄圧される。左側の振幅最大点でピストン3の移動方向が変わり、図面上右側に移動を開始すると、左側の油圧室4の圧力が下がり始め、パイロットピストン20aの背圧も低下するため、バッファー21に蓄圧された圧力によりパイロットピストン20aが駆動され、パイロット操作弁20が開状態となり、作動油が前述のように排出されることで開閉弁6が開く。左側の油圧室4の圧油が開閉弁6を通って右側の油圧室4へ流入する。   In the configuration as described above, the basic operation is the same as in the first embodiment. When the piston 3 moves to the left side in the drawing, the pressure in the left hydraulic chamber 4 rises and the pilot operation valve 20 is closed. Therefore, the on-off valve 6 is kept closed by the back pressure, and pressure is accumulated in the buffer 21. When the movement direction of the piston 3 changes at the maximum amplitude point on the left side and starts to move to the right side in the drawing, the pressure in the left hydraulic chamber 4 begins to decrease and the back pressure of the pilot piston 20a also decreases. The pilot piston 20a is driven by the increased pressure, the pilot operation valve 20 is opened, and the hydraulic oil is discharged as described above, whereby the on-off valve 6 is opened. The pressure oil in the left hydraulic chamber 4 flows into the right hydraulic chamber 4 through the on-off valve 6.

この工程において、左側の油圧室4の圧力が右側の油圧室4の圧力よりも高いうちは、切替弁42は図示のように閉じており、ピストン3の両側の油圧室4の圧力が反転する途中で、左右の油圧室4の差圧が0になると(ダンパ発生荷重が0になった時)、切替弁42が中立位置の開状態となり、バッファー21内に残った作動油が低圧のアキュムレータ7に流出し、バッファー21に蓄積された圧力が完全に解消される。これにより、バッファー21内に圧力が残って開閉弁6が開状態を維持し続けてしまうことが回避され、危険側の誤動作が確実に防止される。ピストン3がさらに右側に移動し、右側の油圧室4の圧力が高まれば、切換弁42が閉じ、次の右側における開閉弁6とその制御用油圧回路が支障なく動作する。   In this step, while the pressure in the left hydraulic chamber 4 is higher than the pressure in the right hydraulic chamber 4, the switching valve 42 is closed as shown in the figure, and the pressures in the hydraulic chambers 4 on both sides of the piston 3 are reversed. On the way, when the differential pressure between the left and right hydraulic chambers 4 becomes zero (when the damper generated load becomes zero), the switching valve 42 is opened in the neutral position, and the hydraulic oil remaining in the buffer 21 is a low-pressure accumulator. 7 and the pressure accumulated in the buffer 21 is completely eliminated. As a result, it is avoided that pressure remains in the buffer 21 and the on-off valve 6 continues to maintain the open state, and erroneous operation on the dangerous side is reliably prevented. When the piston 3 moves further to the right and the pressure in the right hydraulic chamber 4 increases, the switching valve 42 closes, and the next right-side on-off valve 6 and its control hydraulic circuit operate without trouble.

なお、この第2実施形態は、4つのチェック弁を用いた整流型油圧回路に適用した場合であるが、左右それぞれに独立した開閉弁・制御用油圧回路を配置した左右独立型油圧回路(図1参照)にも適用できる。   The second embodiment is applied to a rectifying hydraulic circuit using four check valves. However, the left and right independent hydraulic circuits (in FIG. 1).

(3) 第3実施形態
この第3実施形態は、4つのチェック弁による整流を行うことなく、単一の開閉弁およびパイロット操作部でピストン両方向に対する開閉動作を可能としたものである。図3に示すように、開閉弁6とその制御用油圧回路を一組だけ設け、図2の4つのチェック弁等の代わりに方向切替弁50を用いる。油圧ダンパの油圧回路に一つ設置されている開閉弁6は正逆両方向の油の流れを背圧でパイロット操作できるように面積比(形状)が設定されているため、ピストン3の両方向の移動に対して開閉弁6は2方向の流れに対して開閉を行うことができる。
(3) Third Embodiment This third embodiment enables opening and closing operations in both directions of the piston with a single on-off valve and pilot operation section without performing rectification by four check valves. As shown in FIG. 3, only one set of the on-off valve 6 and its control hydraulic circuit is provided, and a direction switching valve 50 is used instead of the four check valves shown in FIG. One on-off valve 6 installed in the hydraulic circuit of the hydraulic damper has an area ratio (shape) set so that the oil flow in both forward and reverse directions can be pilot-operated with back pressure, so the piston 3 moves in both directions. On the other hand, the on-off valve 6 can open and close the flow in two directions.

この方向切替弁50は、左右の油圧室4のうちの圧力の高い方をパイロット操作弁20の背圧室に導入でき、開閉弁6の操作用の流路23の作動油をパイロット操作弁20を介して圧力の低い方の油圧室4へ排出できるように、設置されている。また、方向切替弁50のピストン50aの両端面には、それぞれ流路51を介して左右の油圧室4の作動油が作用し、油圧ダンパの動作により自動的に切り替わるようにされている。   The direction switching valve 50 can introduce the higher pressure of the left and right hydraulic chambers 4 into the back pressure chamber of the pilot operation valve 20, and can supply the hydraulic oil in the flow path 23 for operating the on-off valve 6 to the pilot operation valve 20. It is installed so that it can be discharged to the hydraulic chamber 4 with the lower pressure through the. Further, the hydraulic oil in the left and right hydraulic chambers 4 acts on both end faces of the piston 50a of the direction switching valve 50 through the flow passages 51, respectively, and is automatically switched by the operation of the hydraulic damper.

以上のような構成において、基本的な動作は第1実施形態・第2実施形態と同様であり、ピストン3が図面上左側に移動すると、左側の油圧室4の圧力が上昇し、パイロット操作弁20は閉じているため開閉弁6はその背圧により閉状態を維持し、バッファー21には圧力が蓄圧される。左側の振幅最大点でピストン3の移動方向が変わり、図面上右側に移動を開始すると、左側の油圧室4の圧力が下がり始め、パイロットピストン20aの背圧も低下するため、バッファー21に蓄圧された圧力によりパイロットピストン20aが駆動され、パイロット操作弁20が開状態となり、作動油が前述のように排出されることで開閉弁6が開く。左側の油圧室4の圧油が開閉弁6を通って右側の油圧室4へ流入する。   In the above configuration, the basic operation is the same as in the first and second embodiments. When the piston 3 moves to the left in the drawing, the pressure in the left hydraulic chamber 4 rises, and the pilot operation valve Since the valve 20 is closed, the on-off valve 6 is kept closed by the back pressure, and pressure is accumulated in the buffer 21. When the movement direction of the piston 3 changes at the maximum amplitude point on the left side and starts to move to the right side in the drawing, the pressure in the left hydraulic chamber 4 begins to decrease and the back pressure of the pilot piston 20a also decreases. The pilot piston 20a is driven by the increased pressure, the pilot operation valve 20 is opened, and the hydraulic oil is discharged as described above, whereby the on-off valve 6 is opened. The pressure oil in the left hydraulic chamber 4 flows into the right hydraulic chamber 4 through the on-off valve 6.

この工程において、左側の油圧室4の圧力が右側の油圧室4の圧力よりも高いうちは、方向切替弁50は図示のように切り替わっており、左側の油圧室4により開閉弁6とその制御用油圧回路が動作する。ピストン3がさらに右側に移動し、右側の油圧室4の圧力が高まれば、方向切換弁50が切り替わり、右側の油圧室4により開閉弁6とその制御用油圧回路が動作する。   In this step, while the pressure in the left hydraulic chamber 4 is higher than the pressure in the right hydraulic chamber 4, the direction switching valve 50 is switched as shown in the figure, and the left hydraulic chamber 4 controls the on-off valve 6 and its control. The hydraulic circuit is activated. When the piston 3 moves further to the right and the pressure in the right hydraulic chamber 4 increases, the direction switching valve 50 is switched, and the on-off valve 6 and its control hydraulic circuit are operated by the right hydraulic chamber 4.

(4) 第4実施形態
この第4実施形態は、第1実施形態の微小用開閉機能と第2実施形態の誤動作解消機能を第3実施形態の単一型の油圧回路に適用したものである。図4に示すように、微小用開閉弁33、切替弁42、方向切替弁50が設けられている。動作は、それぞれの実施形態の動作を組み合わせたものであり、説明は省略する。
(4) Fourth Embodiment In the fourth embodiment, the micro opening / closing function of the first embodiment and the malfunction elimination function of the second embodiment are applied to the single hydraulic circuit of the third embodiment. . As shown in FIG. 4, a micro open / close valve 33, a switching valve 42, and a direction switching valve 50 are provided. The operation is a combination of the operations of the respective embodiments, and a description thereof will be omitted.

(5) 第5実施形態
この第5実施形態は、微小用開閉機能を開閉弁連動型としたものである。即ち、図1の第1実施形態では、微小用開閉機能を開閉弁6とは独立したピストン33aで実現したが、図5に示すように、開閉弁6の動作と連動する微小用開閉弁60で実現している。この微小用開閉弁60のスプール60aは開閉弁6のポペット弁6aに連結ロッド61を介して固定し、操作用の流路23と流路28とを連結する流路62を開閉できるようにされている。
(5) Fifth Embodiment In the fifth embodiment, the minute opening / closing function is an on-off valve interlocking type. That is, in the first embodiment of FIG. 1, the minute opening / closing function is realized by the piston 33 a independent of the opening / closing valve 6, but as shown in FIG. 5, the minute opening / closing valve 60 interlocked with the operation of the opening / closing valve 6. Is realized. The spool 60a of the micro open / close valve 60 is fixed to the poppet valve 6a of the open / close valve 6 via a connecting rod 61 so that the flow path 62 connecting the operation flow path 23 and the flow path 28 can be opened and closed. ing.

油圧回路は図4の油圧回路と同じであり、基本的な動作は第1実施形態等と同様である。微小用開閉機能の動作については、第1実施形態と同様であるが、連動型であるため次のように動作する。即ち、開閉弁6が動作しないクラック圧より低圧の荷重領域では、開閉弁6は閉じているため微小用開閉弁60は開いており、パイロット操作弁20が開くと、流路62・流路23を通って作動油が排出される。クラック圧より高圧で開閉弁6が動作し、開閉弁6が開くと、微小用開閉弁60は自動的に閉じる。   The hydraulic circuit is the same as the hydraulic circuit in FIG. 4, and the basic operation is the same as in the first embodiment. The operation of the micro opening / closing function is the same as that of the first embodiment, but operates as follows because of the interlocking type. That is, in the load region lower than the crack pressure at which the on-off valve 6 does not operate, the on-off valve 6 is closed and the micro on-off valve 60 is open, and when the pilot operation valve 20 is opened, the flow path 62 and the flow path 23 are opened. Hydraulic fluid is discharged through. When the on-off valve 6 operates at a pressure higher than the crack pressure and the on-off valve 6 is opened, the micro on-off valve 60 is automatically closed.

(6) 第6実施形態
この第6実施形態は、微小用開閉機能を開閉弁一体型としたものである。さらに、第3実施形態の方向切替弁の機能と第2実施形態の切替弁の機能を一つの切替弁で実現したものである。
(6) Sixth Embodiment In the sixth embodiment, the minute opening / closing function is integrated with an opening / closing valve. Furthermore, the function of the direction switching valve of the third embodiment and the function of the switching valve of the second embodiment are realized by one switching valve.

図6に示すように、微小用開閉機能は開閉弁6のポペット弁6aに微小用開閉弁70のスプール70aを組み込むことにより、開閉弁6と微小用開閉弁70を兼ねる開閉弁一体
型としている。微小用開閉弁70は、第5実施形態と同様に、操作用の流路23と流路28とを連結する、絞り付きの流路71を開閉できるようにされている。動作は、第5実施形態と同じであり、説明を省略する。
As shown in FIG. 6, the opening / closing function for the minute is formed by integrating the spool 70 a of the opening / closing valve 70 for the opening / closing valve 6 into the poppet valve 6 a of the opening / closing valve 6. . As in the fifth embodiment, the micro open / close valve 70 is configured to open and close a throttled channel 71 that connects the channel 23 and the channel 28 for operation. The operation is the same as in the fifth embodiment, and a description thereof will be omitted.

また、図3の方向切替弁50の位置に、この方向切替弁50の機能と図2の切替弁42の機能を兼ね備えた切替弁80を設置する。具体的には、この切替弁80のスプール80aの両サイドに、方向切替弁50の機能、即ち左右の油圧室4のうちの圧力の高い方をパイロット操作弁20の背圧室に導入し、開閉弁6の操作用の流路23の油圧をパイロット操作弁20を介して圧力の低い方の油圧室4へ排出する部分を設ける。スプール80aの中央の中立位置には、切替弁42の機能、即ち誤動作解消回路40のバッファー21と低圧のアキュムレータ7と接続する流路41を開閉する部分を設ける。   Further, a switching valve 80 having both the function of the direction switching valve 50 and the function of the switching valve 42 in FIG. 2 is installed at the position of the direction switching valve 50 in FIG. Specifically, on both sides of the spool 80a of the switching valve 80, the function of the direction switching valve 50, that is, the higher one of the left and right hydraulic chambers 4 is introduced into the back pressure chamber of the pilot operation valve 20, A portion for discharging the hydraulic pressure of the flow path 23 for operating the on-off valve 6 to the lower hydraulic chamber 4 through the pilot operating valve 20 is provided. At the neutral position in the center of the spool 80a, a function of the switching valve 42, that is, a portion for opening and closing the flow path 41 connected to the buffer 21 of the malfunction elimination circuit 40 and the low-pressure accumulator 7 is provided.

動作は、方向切替弁50と切替弁42を組み合わせた動作であり、左右の油圧室4の高い方の圧力により方向切替弁80のスプール80aが移動し、スプール80aの両サイドの部分がそれぞれ流路位置に位置する。左右の油圧室4の圧力差が0になれば、スプール80aが中立位置に移動する。   The operation is an operation in which the direction switching valve 50 and the switching valve 42 are combined. The spool 80a of the direction switching valve 80 is moved by the higher pressure in the left and right hydraulic chambers 4, and both sides of the spool 80a flow. Located in the road position. When the pressure difference between the left and right hydraulic chambers 4 becomes zero, the spool 80a moves to the neutral position.

本発明の減衰係数切替型油圧ダンパの風振動などの微小振動レベルにも対応できるようにした第1実施形態の油圧回路図である。1 is a hydraulic circuit diagram of a first embodiment that can cope with a minute vibration level such as wind vibration of a damping coefficient switching type hydraulic damper according to the present invention; FIG. 本発明の減衰係数切替型油圧ダンパの危険側の誤動作を解消できるようにした第2実施形態の油圧回路図である。FIG. 5 is a hydraulic circuit diagram of a second embodiment that can eliminate a malfunction on the dangerous side of the damping coefficient switching type hydraulic damper of the present invention. 本発明の減衰係数切替型油圧ダンパの単一の開閉弁と制御用油圧回路で開閉動作をできるようにした第3実施形態の油圧回路図である。FIG. 9 is a hydraulic circuit diagram of a third embodiment in which a single on-off valve and a control hydraulic circuit of the damping coefficient switching type hydraulic damper of the present invention can be opened and closed. 本発明の減衰係数切替型油圧ダンパの第1実施形態と第2実施形態の機能を第3実施形態の回路に付与した第4実施形態の油圧回路図である。FIG. 6 is a hydraulic circuit diagram of a fourth embodiment in which the functions of the first embodiment and the second embodiment of the damping coefficient switching type hydraulic damper of the present invention are added to the circuit of the third embodiment. 本発明の減衰係数切替型油圧ダンパの微小用開閉弁を開閉弁の動作と連動させるようにした第5実施形態の油圧回路図である。FIG. 10 is a hydraulic circuit diagram of a fifth embodiment in which a minute opening / closing valve of a damping coefficient switching type hydraulic damper according to the present invention is interlocked with the operation of an opening / closing valve. 本発明の減衰係数切替型油圧ダンパの微小用開閉弁を開閉弁に一体化し、さらに単一型油圧回路の方向切替弁の機能と誤動作防止の切替弁の機能を一つの切替弁で実現する第6実施形態の油圧回路図である。The minute on / off valve of the damping coefficient switching type hydraulic damper of the present invention is integrated with the on / off valve, and the function of the direction switching valve of the single type hydraulic circuit and the function of the switching valve for preventing malfunction is realized by one switching valve. It is a hydraulic circuit figure of 6 embodiment.

符号の説明Explanation of symbols

1……油圧シリンダ
2……シリンダ
3……ピストン
4……油圧室
5……流路
6……開閉弁
7……アキュムレータ
8……チェック弁
9……絞り
10…流路
11…チェック弁
12…リリーフ弁
13…整流用チェック弁
14…シャトル弁
20…パイロット操作弁
20a…パイロットピストン
21…バッファー
22…可変絞り
23…操作用の流路
24…バイパス流路
25…チェック弁
26…絞り
27…流路
28…流路
29…流路
30…リリーフ弁
31…微小用開閉回路
32…流路
33…微小用開閉弁
33a…ピストン
40…誤動作解消回路
41…流路
42…切替弁
42a…ピストン
43…流路
50…方向切替弁
50a…ピストン
51…流路
60…微小用開閉弁(連動型)
60a…スプール
61…連結ロッド
62…流路
70…微小用開閉弁(一体型)
70a…スプール
71…流路
80…切替弁
80a…スプール
DESCRIPTION OF SYMBOLS 1 ... Hydraulic cylinder 2 ... Cylinder 3 ... Piston 4 ... Hydraulic chamber 5 ... Flow path 6 ... On-off valve 7 ... Accumulator 8 ... Check valve 9 ... Restriction 10 ... Flow path 11 ... Check valve 12 ... Relief valve 13 ... Rectification check valve 14 ... Shuttle valve 20 ... Pilot operation valve 20a ... Pilot piston 21 ... Buffer 22 ... Variable throttle 23 ... Operation channel 24 ... Bypass channel 25 ... Check valve 26 ... Throttle 27 ... Flow path 28 ... Flow path 29 ... Flow path 30 ... Relief valve 31 ... Micro open / close circuit 32 ... Flow path 33 ... Micro open / close valve 33a ... Piston 40 ... Malfunction elimination circuit 41 ... Flow path 42 ... Switching valve 42a ... Piston 43 ... Flow path 50 ... Direction switching valve 50a ... Piston 51 ... Flow path 60 ... Micro open / close valve (interlocking type)
60a ... Spool 61 ... Connecting rod 62 ... Flow path 70 ... Open / close valve for micro (integral type)
70a ... Spool 71 ... Flow path 80 ... Switching valve 80a ... Spool

Claims (3)

シリンダ内で往復動するピストンの両側の油圧室を連結する流路に開閉弁を備え、この開閉弁を開閉させることにより減衰係数を切り替えるようにした油圧ダンパであって、
片側の油圧室の圧力が上昇中は、開閉弁が閉状態を維持すると共に、バッファーに圧力を蓄圧し、当該油圧室の圧力が低下し始めると、開閉弁をパイロット制御するためのパイロット操作部のパイロットピストンがバッファー内に蓄圧された圧力により駆動されることで開閉弁が開き、その後左右の油圧室の圧力差が解消されると、再び開閉弁が閉じるように動作する油圧ダンパにおいて、
ピストン両側の油圧の大小関係が反転する際に、一旦、バッファーと低圧のアキュムレータが連結されることにより、バッファーに蓄積された圧力が解消されるような機能を実現する弁が組み込まれていることを特徴とする減衰係数切替型油圧ダンパ。
A hydraulic damper provided with an open / close valve in a flow path connecting hydraulic chambers on both sides of a piston reciprocating in a cylinder, and switching a damping coefficient by opening and closing the open / close valve,
While the pressure in the hydraulic chamber on one side is rising, the on-off valve maintains a closed state, accumulates pressure in the buffer, and when the pressure in the hydraulic chamber starts to decrease, a pilot operation unit for pilot-controlling the on-off valve In the hydraulic damper that opens and closes the opening and closing valve by driving the pilot piston of the pressure in the buffer, and then closes the opening and closing valve again when the pressure difference between the left and right hydraulic chambers is resolved,
When the relationship between the hydraulic pressures on both sides of the piston reverses, a valve that incorporates a function that eliminates the pressure accumulated in the buffer by connecting the buffer and the low-pressure accumulator once. A damping coefficient switching type hydraulic damper.
請求項1に記載の油圧ダンパにおいて、開閉弁が動作しないクラック圧より小荷重時には、パイロットピストンのみの開口面積のみで減衰係数の制御が可能となるように、開閉弁のクラック圧より低圧では開き、クラック圧より高圧では閉じる流路が、油圧回路上、開閉弁と並列に設置されていることを特徴とする減衰係数切替型油圧ダンパ。 2. The hydraulic damper according to claim 1, wherein when the load is smaller than the crack pressure at which the on-off valve does not operate , the damper is opened at a pressure lower than the crack pressure of the on-off valve so that the damping coefficient can be controlled only by the opening area of the pilot piston alone. A damping coefficient switching type hydraulic damper characterized in that a flow path that closes at a pressure higher than the crack pressure is provided in parallel with the on-off valve on the hydraulic circuit. 請求項1または2のいずれか一つに記載の油圧ダンパにおいて、パイロット操作部および開閉弁の背圧室へ高圧側のシリンダ圧力を導入し、かつ、パイロット操作部における開閉弁の背圧を排出するポートを低圧側のシリンダ圧力と連結するような切替弁を設けるとともに、正逆両方向の油の流れを背圧によりパイロット操作可能な開閉弁を用いることにより、チェック弁による整流を行うことなく、単一の開閉弁およびパイロット操作部で、ピストン両方向に対して上記開閉動作を可能としたことを特徴とする減衰係数切替型油圧ダンパ。 3. The hydraulic damper according to claim 1, wherein the cylinder pressure on the high pressure side is introduced into the pilot operation unit and the back pressure chamber of the on / off valve, and the back pressure of the on / off valve in the pilot operation unit is discharged. By using a switching valve that can connect the port to be connected to the cylinder pressure on the low pressure side and using an on-off valve that can pilot the oil flow in both forward and reverse directions with back pressure, without rectifying by the check valve, A damping coefficient switching type hydraulic damper characterized in that the opening / closing operation can be performed in both directions of the piston with a single opening / closing valve and a pilot operating portion.
JP2008325430A 2008-12-22 2008-12-22 Damping coefficient switching type hydraulic damper Active JP4923035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008325430A JP4923035B2 (en) 2008-12-22 2008-12-22 Damping coefficient switching type hydraulic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325430A JP4923035B2 (en) 2008-12-22 2008-12-22 Damping coefficient switching type hydraulic damper

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004341699A Division JP4358091B2 (en) 2004-11-26 2004-11-26 Damping coefficient switching type hydraulic damper

Publications (2)

Publication Number Publication Date
JP2009115319A true JP2009115319A (en) 2009-05-28
JP4923035B2 JP4923035B2 (en) 2012-04-25

Family

ID=40782654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325430A Active JP4923035B2 (en) 2008-12-22 2008-12-22 Damping coefficient switching type hydraulic damper

Country Status (1)

Country Link
JP (1) JP4923035B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017111157B3 (en) 2017-05-22 2018-06-21 Kendrion (Villingen) Gmbh Adjustable vibration damper
DE102019105707B3 (en) 2019-01-09 2020-06-04 Kendrion (Villingen) Gmbh Pressure control valve and device with such a pressure control valve for controlling or regulating a pressure of a pressure fluid in a pilot pressure chamber
WO2020178151A1 (en) 2019-03-06 2020-09-10 Kendrion (Villingen) Gmbh Pressure control valve and device comprising such a pressure control valve, for open-loop or closed-loop control of the pressure of a compressed fluid in a pilot pressure chamber
WO2020182358A1 (en) 2019-03-14 2020-09-17 Kendrion (Villingen) Gmbh Pressure control valve and device comprising such a pressure control valve, for open-loop or closed-loop control of the pressure of a pressurized fluid in a pilot pressure chamber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186602A (en) * 1989-03-03 1991-08-14 Kajima Corp Cylinder lock device
JPH10299815A (en) * 1997-04-30 1998-11-13 Mazda Motor Corp Vehicular height adjusting device for vehicle
JPH11223043A (en) * 1998-02-04 1999-08-17 Kayaba Ind Co Ltd Vibration control device
JP2003056633A (en) * 2001-08-10 2003-02-26 Kajima Corp Damping coefficient switching type hydraulic damper
JP2004125083A (en) * 2002-10-03 2004-04-22 Kajima Corp Hydraulic damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186602A (en) * 1989-03-03 1991-08-14 Kajima Corp Cylinder lock device
JPH10299815A (en) * 1997-04-30 1998-11-13 Mazda Motor Corp Vehicular height adjusting device for vehicle
JPH11223043A (en) * 1998-02-04 1999-08-17 Kayaba Ind Co Ltd Vibration control device
JP2003056633A (en) * 2001-08-10 2003-02-26 Kajima Corp Damping coefficient switching type hydraulic damper
JP2004125083A (en) * 2002-10-03 2004-04-22 Kajima Corp Hydraulic damper

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017111157B3 (en) 2017-05-22 2018-06-21 Kendrion (Villingen) Gmbh Adjustable vibration damper
WO2018215176A1 (en) 2017-05-22 2018-11-29 Kendrion (Villingen) Gmbh Controllable shock absorber
US11285775B2 (en) 2017-05-22 2022-03-29 Kendrion (Villingen) Gmbh Controllable vibration damper
DE102019105707B3 (en) 2019-01-09 2020-06-04 Kendrion (Villingen) Gmbh Pressure control valve and device with such a pressure control valve for controlling or regulating a pressure of a pressure fluid in a pilot pressure chamber
WO2020144254A1 (en) 2019-01-09 2020-07-16 Kendrion (Villingen) Gmbh Pressure control valve and device comprising such a pressure control valve, for controlling or regulating the pressure of a compressed fluid in a pilot pressure chamber
WO2020178151A1 (en) 2019-03-06 2020-09-10 Kendrion (Villingen) Gmbh Pressure control valve and device comprising such a pressure control valve, for open-loop or closed-loop control of the pressure of a compressed fluid in a pilot pressure chamber
DE102019105708B4 (en) 2019-03-06 2022-05-05 Kendrion (Villingen) Gmbh Pressure control valve and device with such a pressure control valve for controlling or regulating a pressure of a pressure fluid in a pilot pressure chamber
WO2020182358A1 (en) 2019-03-14 2020-09-17 Kendrion (Villingen) Gmbh Pressure control valve and device comprising such a pressure control valve, for open-loop or closed-loop control of the pressure of a pressurized fluid in a pilot pressure chamber
DE102019106494B4 (en) 2019-03-14 2022-05-05 Kendrion (Villingen) Gmbh Pressure control valve and device with such a pressure control valve for controlling or regulating a pressure of a pressure fluid in a pilot pressure chamber

Also Published As

Publication number Publication date
JP4923035B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
KR101319641B1 (en) Cylinder device
JP5517368B2 (en) Actuator
WO2004070230A1 (en) Attenuation coefficient switching type hydraulic damper
KR101718640B1 (en) Actuator unit
JP4923035B2 (en) Damping coefficient switching type hydraulic damper
KR20130103304A (en) Double check valve for construction equipment
JP4753991B2 (en) Damping coefficient switching type hydraulic damper
JP5572236B1 (en) Actuator
JP4358091B2 (en) Damping coefficient switching type hydraulic damper
KR20020030747A (en) Hydraulic drive device of working machine
JP4442770B2 (en) Oil damper for seismic isolation device
US11105346B2 (en) Hydraulic pressure amplifier arrangement
JP2006010015A (en) Fluid pressure circuit
JP2002114144A (en) Damper for vibration suppression
JP2017506598A (en) Damping device and vehicle brake device capable of slip control
JP4426956B2 (en) Shock absorber
JP4042366B2 (en) Damping coefficient switching type hydraulic damper
JP2018071769A (en) Valve block
JP2565816Y2 (en) Control valve
JP6738528B2 (en) Vibration reduction device
JP2011106606A (en) Hydraulic motor driving device
JP4491292B2 (en) Vibration control device
JP2005155718A (en) Hydraulic damper for damping
JP2001271805A (en) Pilot operation circuit for directional control valve of construction machine
JP3639029B2 (en) Hydraulic circuit equipment for construction machinery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Ref document number: 4923035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350