JP2009115069A - Electric propulsion system by electromagnetic field - Google Patents

Electric propulsion system by electromagnetic field Download PDF

Info

Publication number
JP2009115069A
JP2009115069A JP2007312843A JP2007312843A JP2009115069A JP 2009115069 A JP2009115069 A JP 2009115069A JP 2007312843 A JP2007312843 A JP 2007312843A JP 2007312843 A JP2007312843 A JP 2007312843A JP 2009115069 A JP2009115069 A JP 2009115069A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
electric
electric propulsion
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007312843A
Other languages
Japanese (ja)
Inventor
Yoshinori Shoji
義則 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007312843A priority Critical patent/JP2009115069A/en
Publication of JP2009115069A publication Critical patent/JP2009115069A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems wherein since in many cases, a conventional electric propulsion system used in the aerospace is an ion jet type most of which have a structure for ionizing and injecting a propellant, the electric propulsion system has small thrust force and increased weight due to the propellant and interstellar matter is too thin to obtain thrust force if used. <P>SOLUTION: Magnetic poles and electrodes are installed in a body so that the electromagnetic field in which the magnetic poles and electrodes are approximately orthogonal to each other has an annular shape. In this annular electromagnetic field, supply and discharge of electric charges or bias of electric charges by an electric field is generated. Thus, ring current is generated in the annular electromagnetic field to generate a magnetic field. Due to the action of the magnetic field generated by the body and the magnetic field generated by the ring current, propulsive force is generated by the magnetic force. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は磁界と電界により電気の力で推進するための推進装置に関する。  The present invention relates to a propulsion device for propulsion by an electric force using a magnetic field and an electric field.

従来の宇宙空間で用いられる電気推進装置は、イオンジェット方式が多かったが、そのほとんどが推進剤をイオン化させて噴射させる構造で、推力が小さく推進剤による重量増も問題であった。また星間物質を利用しようにも、あまりにも希薄で推力はほとんど得られなかった。  Conventional electric propulsion devices used in outer space have many ion jet systems, but most of them have a structure in which a propellant is ionized and ejected, and the thrust is small and the increase in weight due to the propellant has also been a problem. Also, to use interstellar matter, it was too thin and almost no thrust was obtained.

図1に本推進装置の原理を説明するため、簡略化した機体の外観の正面図と側面図を示す。機体は円柱形をしており絶縁体でできている。機体9の胴体を一周する形に磁極1と磁極2がある。同様に胴体を一周する形に電極3と電極4がある。5はカソード、6はアノードである。電極3,4は外部に対して絶縁されている。  In order to explain the principle of this propulsion device, FIG. The airframe has a cylindrical shape and is made of an insulator. There are a magnetic pole 1 and a magnetic pole 2 in a form that goes around the body of the body 9. Similarly, there are an electrode 3 and an electrode 4 that go around the body. 5 is a cathode and 6 is an anode. The electrodes 3 and 4 are insulated from the outside.

図2は図1の断面図に、本発明の原理の理解に重要な要素を書き込んでいる。図が見にくくなるため機体9断面のハッチングはしていない。宇宙空間は気体が電離してプラズマ状態であり、そのような空間に本推進装置は存在している。  FIG. 2 shows in the cross-sectional view of FIG. 1 elements that are important for understanding the principles of the present invention. Since the figure is difficult to see, the cross section of the body 9 is not hatched. In space, gas is ionized and is in a plasma state, and this propulsion device exists in such a space.

コイル7に電流を流し、ダンベルのような形をした磁性体8を磁化させ、磁極1がN、磁極2がSの磁界Bを発生させる。この磁界Bの内側の電極3にマイナスの電圧を印可し、対する磁極側の電極4に+の電圧を印可し電界Aを発生させる。  An electric current is passed through the coil 7 to magnetize the magnetic body 8 shaped like a dumbbell, and a magnetic field B of which the magnetic pole 1 is N and the magnetic pole 2 is S is generated. A negative voltage is applied to the electrode 3 inside the magnetic field B, and a positive voltage is applied to the electrode 4 on the magnetic pole side to generate an electric field A.

磁極も電極も胴体を一周しており、磁界Bと電界Aがほぼ直交している電磁場が環状にできる。その結果、機体9の周辺に存在する荷電粒子は、磁界Bと電界Aの直交方向、つまり機体を一周するような方向Cにドリフト運動を始める。  Both the magnetic poles and the electrodes make a round around the body, and an electromagnetic field in which the magnetic field B and the electric field A are almost orthogonal can be formed in an annular shape. As a result, the charged particles existing around the body 9 begin to drift in the direction perpendicular to the magnetic field B and the electric field A, that is, the direction C that makes a round of the body.

この状態では、電子と+イオンがほぼ同じ量存在するが、カソード5から磁界内に積極的に電子を供給し、アノードは電子を吸収する。電荷の動きは磁界により制限を受けるので、磁界Bの電極3に近い側には電子が多く存在し、電極4に近い側は+イオンが多く存在するようになり、電荷の偏りが発生する。  In this state, there are approximately the same amount of electrons and + ions, but electrons are positively supplied from the cathode 5 into the magnetic field, and the anode absorbs the electrons. Since the movement of the charge is limited by the magnetic field, there are many electrons on the side close to the electrode 3 of the magnetic field B, and there are many + ions on the side close to the electrode 4, resulting in a charge bias.

電荷の偏りが発生した状態で電極3に近い磁界内部の電子は、機体の胴体部分を一周するように運動する。よってこの電子の運動は機体を一周する環電流となり、コイルのように作用し磁界Dを発生させる。  Electrons inside the magnetic field close to the electrode 3 in a state where the charge is biased move around the fuselage of the fuselage. Therefore, the movement of this electron becomes a ring current that goes around the airframe and acts like a coil to generate a magnetic field D.

電子の発生させた磁界Dは、元々機体が発生させていた磁界Bと作用し、この効果により本推進装置は方向Fに推進力が発生する。  The magnetic field D generated by the electrons acts on the magnetic field B originally generated by the airframe, and this propulsion device generates a propulsive force in the direction F due to this effect.

この際に電子にも反作用として推進力と逆方向の力が加わるが、電子は磁力線に添ってある程度自由に動け、電子の受けた運動エネルギーは他の粒子と衝突し失われ、逆方向の力として機体に作用しない。また+イオンも環電流になり磁界を発生させるが、イオンなので磁力の発生も少なく、発生する場所も機体の外側であり推進力への影響は電子より少ない。  At this time, propulsive force and reverse force are also applied to the electron as a reaction, but the electron moves to some extent along the magnetic field lines, and the kinetic energy received by the electron collides with other particles and is lost. Does not act on the aircraft. + Ions also generate a magnetic field due to a ring current. However, since they are ions, there is little generation of magnetic force, and the place where they are generated is outside the fuselage and has less influence on propulsion than electrons.

本発明は最終的には磁力により推進力を得ており、動作中はプラズマが機体の周囲を回り続け、推進剤を必要としないで宇宙でも安定した推進力を発生出来る。  The present invention finally obtains a propulsive force by a magnetic force, and during operation, the plasma continues to travel around the airframe, and a stable propulsive force can be generated even in space without the need for a propellant.

推進力を上げれば上げるほど機体周囲に存在するプラズマ運動は激しくなり、機体に近づいた宇宙のゴミを分解し無害化する作用がある。  The higher the propulsive force, the more intense the plasma motion that exists around the aircraft, which has the effect of decomposing and detoxifying space debris approaching the aircraft.

本発明は機体全体が推進装置になっており構造が極めて単純である。そのため気密性に優れ堅牢な機体の製造が容易で、宇宙機の性能と安全性を飛躍的に向上させることが出来る。  In the present invention, the entire airframe is a propulsion device, and the structure is extremely simple. Therefore, it is easy to manufacture a solid airframe with excellent airtightness, and the performance and safety of the spacecraft can be dramatically improved.

本発明を実施した推進機は形状の自由度が高く、基本的な形が回転形であればほとんど実施可能で、図1の円柱型の他に円盤型や球形型も可能である。  The propulsion device embodying the present invention has a high degree of freedom in shape, and can be implemented almost as long as the basic shape is a rotary type. In addition to the columnar type of FIG. 1, a disc type or a spherical type is also possible.

また図2で原理を詳しく説明した、磁界の向きと電極とカソードの極性も、図2の組み合わせだけでなく、他の組み合わせも可能である。磁界の向き変える事で進行方向を変えたり、電極の極性を変える事で推進力を変化させたりと、変化させる事で推進力をコントロールする事が出来る。  Further, the direction of the magnetic field and the polarity of the electrode and the cathode, whose principle is explained in detail in FIG. 2, are not limited to the combinations in FIG. 2, but other combinations are possible. The propulsive force can be controlled by changing the direction of travel by changing the direction of the magnetic field, or by changing the propulsive force by changing the polarity of the electrodes.

実施例として色々な機体を示し、その構成と用途を説明する。特に説明がなければ、機体は絶縁物質で構成されており、電極は外部に対して絶縁されていると理解して欲しい。
断面図は全て回転形の中心軸で縦に切っている。
Various aircrafts are shown as examples, and their configurations and applications will be described. Unless otherwise specified, it should be understood that the fuselage is made of an insulating material and the electrodes are insulated from the outside.
All cross-sectional views are cut longitudinally along the central axis of the rotation type.

図3は小型の円盤型で、横から見た断面図を示している。円柱形の磁性体8aは、上の磁極2aがSで、下の磁極1aがNの磁界Bを発生している。電極3aには+の電圧を印可し、球形の電極4aにはマイナスの電圧を印可し電界Aを発生させる。その結果、本推進装置の中心付近で、磁界Bと電界Aがほぼ直交している環状電磁場が、上下に2つ発生する。9aは機体外壁で13aは内部の空間である。磁性体8aは永久磁石でもよい。  FIG. 3 is a small disk shape and shows a cross-sectional view seen from the side. The cylindrical magnetic body 8a generates a magnetic field B in which the upper magnetic pole 2a is S and the lower magnetic pole 1a is N. A positive voltage is applied to the electrode 3a, and a negative voltage is applied to the spherical electrode 4a to generate an electric field A. As a result, two annular electromagnetic fields in which the magnetic field B and the electric field A are approximately orthogonal to each other are generated near the center of the propulsion device. Reference numeral 9a denotes an outer wall of the machine body, and 13a denotes an internal space. The magnetic body 8a may be a permanent magnet.

この実施例ではカソードからの電子の供給はしないが、電界の作用で自然と電極3a付近にはマイナスの電荷が集まり、4a付近には+イオンが集まり、電荷の片寄りが発生する。電子のドリフト運動は方向Cになり磁界Dを発生する。その結果図3の推進装置は、図の上方向に推進力が発生する。  In this embodiment, electrons are not supplied from the cathode, but negative charges are naturally collected in the vicinity of the electrode 3a due to the action of the electric field, and + ions are collected in the vicinity of 4a, and the charge is deviated. The electron drift motion is in the direction C and generates a magnetic field D. As a result, the propulsion device in FIG. 3 generates a propulsive force in the upward direction in the figure.

図3の実施例は、荷電粒子が電極に引き寄せられるので、電極が電荷を集める機能を持っており、より安定した動作が期待出来る。図2はパワー重視、図3は安定性重視の構成だと言える。もちろんカソードで電子を供給することも可能である。  In the embodiment of FIG. 3, since charged particles are attracted to the electrode, the electrode has a function of collecting charges, and a more stable operation can be expected. It can be said that FIG. 2 is a configuration emphasizing power and FIG. 3 is a configuration emphasizing stability. Of course, it is also possible to supply electrons at the cathode.

図4は円盤型で、横から見た断面図を示している。磁性体8bを径が大きいリング状に設置し磁界を発生させる。機体9bの上面が磁極1b、下面が磁極2bになる。その磁極の内側に電極4b、磁極の外側に電極3bを設置し電界を発生させる。カソード、磁界、電界、原理の記載は省略する。  FIG. 4 is a disk shape and shows a cross-sectional view seen from the side. The magnetic body 8b is installed in a ring shape with a large diameter to generate a magnetic field. The upper surface of the body 9b is a magnetic pole 1b, and the lower surface is a magnetic pole 2b. An electrode 4b is installed inside the magnetic pole and an electrode 3b is installed outside the magnetic pole to generate an electric field. Description of the cathode, magnetic field, electric field, and principle is omitted.

この構造により磁性体の面積が広がり、小型で薄型ながら推進力の向上が期待出来る。また機体の中央部分に積載に利用可能な広めの空間13bが生まれる。磁性体8bは磁石を使用してもよい。  With this structure, the area of the magnetic material is expanded, and an improvement in propulsive force can be expected while being small and thin. In addition, a wide space 13b that can be used for loading is created in the center of the aircraft. The magnetic body 8b may use a magnet.

図5も円盤型であり、横から見た断面図を示している。図4との違いは下を向いたコの字型の磁性体8cをリング状に設置し、磁極1cと2cが同じ面、つまりN極とS極が同じ面にある事に特徴が有る。その周囲に磁極3c.4c1.4c2を設置している。  FIG. 5 is also a disk type, and shows a cross-sectional view seen from the side. The difference from FIG. 4 is that a U-shaped magnetic body 8c facing downward is installed in a ring shape, and the magnetic poles 1c and 2c are on the same plane, that is, the N pole and the S pole are on the same plane. Around the magnetic pole 3c. 4c1.4c2 is installed.

こうすることで磁界が下の面に限定されて発生し、上部への本推進装置の影響が少なくなる効果が有る。小型機や昇降機などに応用可能である。  By doing so, the magnetic field is generated limited to the lower surface, and the effect of the propulsion device on the upper portion is reduced. It can be applied to small machines and elevators.

図6は円柱型で大型の機体の外観図を示している。円柱型の機体に本発明を複数設置した例である。  FIG. 6 shows an external view of a cylindrical and large body. This is an example in which a plurality of the present inventions are installed on a cylindrical airframe.

図4、図5で説明した構造の本発明は、機体外壁の平面や曲面に設置する事が可能である。11dの様に機体の要所に複数取り付ければ、これらを切り替えて作動させる事で複雑な姿勢制御が可能になる。また軸方向にも、図2の構造を持つ本発明の推進装置12dを複数設置する事で推進力の向上が期待出来る。よって円柱型は大型の機体に向いている。  The present invention having the structure described with reference to FIGS. 4 and 5 can be installed on the plane or curved surface of the outer wall of the airframe. If a plurality of attachments are attached to the main parts of the airframe as in 11d, complicated attitude control can be performed by switching and operating them. Also in the axial direction, improvement of propulsive force can be expected by installing a plurality of propulsion devices 12d of the present invention having the structure of FIG. Therefore, the cylindrical type is suitable for large aircraft.

図7は、図6の様な円柱型の機体の内部構造を簡略化した断面図で示す。機体9dの外壁部分に磁性体8dを重点的に設置する。その結果内部に磁気空洞が生まれる。この空間13d1を居住空間や機器を収める空間にできる。13d2は部屋全体を回転させる事で遠心力を作り出して、地上のように生活できる部屋である。  FIG. 7 shows a simplified cross-sectional view of the internal structure of a cylindrical airframe as shown in FIG. The magnetic body 8d is intensively installed on the outer wall portion of the body 9d. As a result, a magnetic cavity is created inside. This space 13d1 can be made into a living space or a space for storing equipment. 13d2 is a room where the entire room can be rotated to create a centrifugal force to live like the ground.

磁性体8dはリング状や軸方向や放射状に要所に配置され、コイル7dも同じくリング状や直線状に配置されている。これらのコイルや磁性体の電気回路や磁気回路を制御する事で、機体周囲の磁界と電界の形と強さをコントロールする。この電磁場の変化に合わせ、機体の要所に多数配置されたカソード5dも極性と電圧を制御する。  The magnetic body 8d is arranged at key points in a ring shape, an axial direction or a radial shape, and the coil 7d is also arranged in a ring shape or a straight line shape. By controlling the electrical and magnetic circuits of these coils and magnetic materials, the shape and strength of the magnetic field and electric field around the aircraft are controlled. In accordance with the change in the electromagnetic field, a large number of cathodes 5d arranged at important points of the airframe also control the polarity and voltage.

図7の様な構造の機体には明確な本発明の設置場所は無く、電気回路や磁気回路を制御する事で、機体の任意の部分に本推進装置を発生させられるようになっている。それにより推進力による応力を、機体に均等に分散させる事が可能になっている。また磁性体の磁芯が外壁を被い梁の様に存在しているため、堅牢で大型の機体の製造が可能になっている。  The airframe having the structure as shown in FIG. 7 does not have a clear installation place of the present invention, and the propulsion device can be generated in any part of the airframe by controlling the electric circuit and the magnetic circuit. As a result, the stress caused by the propulsive force can be evenly distributed in the aircraft. In addition, since the magnetic core is covered with an outer wall like a beam, it is possible to manufacture a robust and large body.

地球低空の大気中では、空気に絶縁性があるため本推進装置は動作しない。しかし機体周囲に高周波電磁場発生装置やレーザー照射装置を設置し、空気のプラズマ化や電離を効果的に行う事が出来れば、本発明は荷電粒子を放出するのでは無く、荷電粒子を機体周囲にまとわり付かせて動作する事に特徴が有り、運動する荷電粒子は大気の電離や励起を起す。そのためいったん動作状態になれば、空気の電離が継続的に行われ大気中でも安定動作させる事は可能である。  This propulsion device does not work in the atmosphere of the earth's low sky because the air is insulative. However, if a high-frequency electromagnetic field generator or a laser irradiation device is installed around the aircraft and the air can be converted into plasma or ionized effectively, the present invention will not release charged particles, but charged particles around the aircraft. It is characterized by operating in a cohesive manner, and moving charged particles cause ionization and excitation of the atmosphere. For this reason, once it is in an operating state, the ionization of air is continuously performed and stable operation is possible even in the atmosphere.

本発明は重力を上回る推進力を発揮出来れば、ゆっくりと上昇でき、打ち上げによる加速Gを受ける事なく宇宙に行けるようになるだろう。つまり本推進装置を複数持つ大型の機体は、海上や海中においては、機体の表面に設置した磁極や電極やカソードを利用しフレミングの法則によるMHD推進で移動可能であり、海上からは機体上部の大気をプラズマ化して身に纏い浮き上がり、大気中を航空機として飛行可能であり、そのまま宇宙空間に出て、月や他の惑星まで移動出来る可能性を持つ。  If the present invention can exert a propulsive force exceeding gravity, it will be able to ascend slowly and go to space without receiving acceleration G due to launch. In other words, a large aircraft with multiple propulsion devices can be moved by MHD propulsion according to Fleming's law using magnetic poles, electrodes and cathodes installed on the surface of the aircraft at sea and in the sea. It is possible to fly into the atmosphere by turning the atmosphere into a plasma, fly as an aircraft in the atmosphere, and move as it is to the moon and move to the moon and other planets.

しかも地球以外の星に到着後は、そのまま大気中を飛行し着陸したり、海に着水したり潜水したりする事も可能かもしれない。そしてそのまま地球に戻る事も可能である。この様な宇宙旅行が、訓練を受けていない科学者や一般の人にも可能になるだろう。このように本実施例は万能宇宙機として用途は無限に広がる。  Moreover, after arriving at a star other than the Earth, it may be possible to fly in the atmosphere and land, land on the sea, or dive. And it is possible to return to the earth as it is. Such a space trip will be possible even for untrained scientists and the general public. In this way, the application of this embodiment is unlimited as a universal spacecraft.

むろん海中においても海水をプラズマ化して本装置は動作可能と思われるが、環境への負荷を考えてMHD推進を使う場合も有る。  Of course, this device can be operated by converting seawater into plasma even in the sea, but MHD propulsion may be used in consideration of the burden on the environment.

図8は中型のスカート付き球形型で、横から見た断面図を示している。磁性体8e1は機体の中央を縦に貫く円柱状で、さらに機体の外壁部分に磁性体8e2をリング状に設置している。  FIG. 8 shows a spherical shape with a medium skirt and a cross-sectional view seen from the side. The magnetic body 8e1 has a cylindrical shape penetrating vertically through the center of the airframe, and a magnetic body 8e2 is installed in a ring shape on the outer wall portion of the airframe.

13eは内部の居住空間である。15eは高周波電磁場源やレーザーなどの大気をプラズマ化させる装置でる。図8は大気中で人を乗せる事を目的として構成される中型の機体である。  Reference numeral 13e denotes an internal living space. Reference numeral 15e denotes a device for converting the atmosphere into a plasma such as a high-frequency electromagnetic field source or a laser. FIG. 8 shows a medium-sized aircraft configured for the purpose of carrying people in the atmosphere.

コイル7e1に電流を流し磁性体8e1を磁化し、磁極1e1をN極とする磁界を発生させる。コイル7e2には逆向きの電流を流し、磁性体8e2からは磁極2e2をS極とする磁界が発生する。磁界は1e1から出て2e2に入り、1e2から出て2e1に入る形になる。つまり磁界がスカート10eを挟んで上下に別れており、横から見ると四葉のクローバーの様な形になる。  A current is passed through the coil 7e1 to magnetize the magnetic body 8e1, and a magnetic field having the magnetic pole 1e1 as the N pole is generated. A reverse current flows through the coil 7e2, and a magnetic field having the magnetic pole 2e2 as the S pole is generated from the magnetic body 8e2. The magnetic field exits 1e1 and enters 2e2, and then exits 1e2 and enters 2e1. That is, the magnetic field is divided up and down across the skirt 10e, and looks like a four-leaf clover when viewed from the side.

コイル7e3〜7c6は補助的なコイルで、電界の強度と分布を調整することを主な目的としている。また磁性体8e1は、コイルが巻き付いた電磁石であってもよい。  The coils 7e3 to 7c6 are auxiliary coils and are mainly intended to adjust the strength and distribution of the electric field. The magnetic body 8e1 may be an electromagnet around which a coil is wound.

この磁界構造でカソード5e、アノード6eで電荷の偏りを減らし、電極3e1、4e1への電圧印可を止めれば、上部のプラズマ状の環電流を無くする事が出来る。  If the bias of electric charges is reduced at the cathode 5e and the anode 6e with this magnetic field structure and the voltage application to the electrodes 3e1 and 4e1 is stopped, the upper plasma-like ring current can be eliminated.

何故このような事をするかというと、本発明を設置した機体の周囲は、電荷が激しい運動をしているため、人が近づく事は極めて危険である。しかし大気中などでは完全に推進装置を止めてしまうと、再起動が困難になる場合が考えられる。よって乗り降りする時に上部だけを止めて、乗降口21eからの乗り降りを安全にし、さらにスカートを設置して動作中の下部を遮断し、安全性を高めることを目的としている。むろん飛行中は乗降口は密閉されている。  The reason why such a thing is done is that it is extremely dangerous for people to approach because the surroundings of the aircraft where the present invention is installed are moving with a strong charge. However, if the propulsion unit is completely stopped in the atmosphere, it may be difficult to restart. Therefore, the purpose is to stop only the upper part when getting on and off, to make it safe to get on and off from the entrance 21e, and to install a skirt to block the lower part during operation, thereby improving safety. Of course, the entrance is sealed during the flight.

いったん動作してしまえば、集まった電荷は大気の電離を誘起するので安定動作状態になる。またコイル7e1、7e2に流れる電流の向きを変えることで磁界の向きを逆にしたり、上下を一体化した磁界で動作させるなど、動作状態を変える事が出来る。  Once operating, the collected charge induces atmospheric ionization, resulting in a stable operating state. In addition, by changing the direction of the current flowing through the coils 7e1 and 7e2, the operating state can be changed, for example, by reversing the direction of the magnetic field or by operating the magnetic field with the upper and lower parts integrated.

16eはウィムズハースト型静電発電機のような、2枚の円板が反対に回転する静電発電機で、機体の中心を軸に回転している。これは電極に高電圧を供給する目的と、ジャイロ効果で機体を安定させる効果を持っている。また2枚の円板の回転数を差動させることで、機体のヨー軸制御の機能を持たせる事も可能である。  Reference numeral 16e denotes an electrostatic generator in which two discs rotate in the opposite direction, such as a Wimshurst type electrostatic generator, which rotates around the center of the airframe. This has the purpose of supplying a high voltage to the electrodes and the effect of stabilizing the aircraft by the gyro effect. It is also possible to provide a function of controlling the yaw axis of the airframe by making the rotational speed of the two discs differential.

17eは球形でスカート内に等間隔に3個設置して有り、内部にバッテリーが入っている。これに飛行に必要な電気を貯めておく。また着陸時には支柱18eを伸ばし足として使用する。さらに飛行時には支柱18eが動き、バランスを取って機体の傾きをコントロールする。重量物でやっかい物であるバッテリーを機外に出し有効利用している。  17e has a spherical shape, and three are installed at equal intervals in the skirt, and a battery is contained inside. This stores the electricity needed for flight. At the time of landing, the strut 18e is extended and used as a leg. Further, the prop 18e moves during flight, and balance is controlled to control the tilt of the aircraft. A heavy and troublesome battery is taken out of the machine for effective use.

19eは、ノズルやベルトや刷毛でできたイオンを吸収する装置で、吸収したイオンは磁極から排出する。これは磁界内の電荷の偏りを強め、効率を上げる事を目的としている。  19e is a device that absorbs ions made of nozzles, belts and brushes, and the absorbed ions are discharged from the magnetic poles. This is intended to increase the bias of charge in the magnetic field and increase efficiency.

20eにはアンテナやカメラを設置している。本推進装置は動作中は機体の周囲をプラズマが覆い、外部の確認や通信が困難になる。機体の中心軸に有る磁極部分はプラズマが弱いため、この部分に設置している。  An antenna and a camera are installed at 20e. During operation of the propulsion device, the surroundings of the aircraft are covered with plasma, making external confirmation and communication difficult. The magnetic pole part on the central axis of the fuselage is installed in this part because the plasma is weak.

小型機や中型機の姿勢制御は、大型機のように本推進装置を複数設置し制御させる事が出来ないため、磁性体や重量物を移動させたり、姿勢制御用のコイルや磁性体を設置し制御したり、本推進装置自体を傾けたりする事で行う必要が有る。  The attitude control of small and medium-sized machines cannot be controlled by installing multiple propulsion units like a large machine, so magnetic bodies and heavy objects can be moved, and attitude control coils and magnetic bodies are installed. It is necessary to do this by tilting and controlling the propulsion device itself.

本発明の外観を示した正面図と平面図である。  It is the front view and top view which showed the external appearance of this invention. 本発明の原理を説明した断面図。  Sectional drawing explaining the principle of this invention. 円盤型の推進装置を説明した断面図。  Sectional drawing explaining the disk type propulsion apparatus. 円盤型の推進装置を説明した断面図。  Sectional drawing explaining the disk type propulsion apparatus. 円板型の片面に設置した推進装置を説明した断面図。  Sectional drawing explaining the propulsion apparatus installed in the single side | surface of a disk type | mold. 円柱型で大型の機体を説明した外観図。  An external view illustrating a cylindrical and large body. 円柱型で大型の機体を内部構造を説明した断面図。  A cross-sectional view illustrating the internal structure of a cylindrical and large airframe. スカート付き球形型で中型の機体を説明した断面図。  Sectional drawing explaining the medium type body with the spherical type with a skirt.

符号の説明Explanation of symbols

1 磁極N(S)
2 磁極S(N)
3 電極−(+)
4 電極+(−)
5 カソード(アノード)
6 アノード(カソード)
7 コイル
8 磁性体
A 電界
B 磁界
C ドリフト方向
D 電子が発生させた磁界
1 Magnetic pole N (S)
2 Magnetic pole S (N)
3 Electrode-(+)
4 electrode + (-)
5 Cathode (Anode)
6 Anode (cathode)
7 Coil 8 Magnetic body A Electric field B Magnetic field C Drift direction D Magnetic field generated by electrons

Claims (8)

磁界と電界がほぼ直交している電磁場が環状になるように、磁極と電極を機体に設置する。この環状電磁場に、電荷の供給や排出、または電界により電荷の偏りを発生させる。これにより環状電磁場に環電流が発生し磁界が発生する。機体が発生した磁界と環電流が発生した磁界が作用し、磁力により推進力を発生させる電気推進装置。  Magnetic poles and electrodes are installed on the fuselage so that the electromagnetic field, in which the magnetic field and the electric field are almost orthogonal, is annular. In this annular electromagnetic field, charge is biased by supply or discharge of electric charge or electric field. As a result, a ring current is generated in the annular electromagnetic field, and a magnetic field is generated. An electric propulsion device that generates a propulsive force by a magnetic force when a magnetic field generated by a fuselage and a magnetic field generated by a ring current act. 磁界の向きと電極の極性を自由に変えられる機能を持つ請求項1記載の電気推進装置。  The electric propulsion device according to claim 1, having a function of freely changing the direction of the magnetic field and the polarity of the electrode. 一つ機体に請求項2記載の推進装置を複数有し、そのためのコイルと磁性体を機体の外壁部分に配置して内部に空間をつくった電気推進機。  An electric propulsion unit having a plurality of propulsion devices according to claim 2 in one body, and arranging a coil and a magnetic body therefor on an outer wall portion of the body to create a space therein. 機体に設置された磁極や電極を、海上や海中におけるMHD推進に使う請求項3記載の電気推進機。  The electric propulsion unit according to claim 3, wherein the magnetic poles and electrodes installed on the fuselage are used for MHD propulsion at sea and in the sea. 機体に設置した磁性体で磁界を途中で絞り、N極側とS極側を分離し、N極側とS極側を独立して動作させられるようにした請求項2記載の電気推進装置。  3. The electric propulsion apparatus according to claim 2, wherein the magnetic body is arranged in the airframe to narrow the magnetic field in the middle, the N pole side and the S pole side are separated, and the N pole side and the S pole side can be operated independently. 回転する円板を静電発電用とジャイロに使い、回転数を操作することでヨー軸制御を行う請求項1〜5記載の電気推進装置。  6. The electric propulsion apparatus according to claim 1, wherein the rotating disk is used for electrostatic power generation and a gyro, and the yaw axis is controlled by manipulating the rotational speed. 機体にカソードやアノードを有し、荷電粒子の供給や排出により電荷の偏りを発生させる請求項1〜6記載の電気推進装置。  The electric propulsion apparatus according to claim 1, wherein the airframe has a cathode and an anode, and generates a bias of charge by supplying and discharging charged particles. 高周波電磁場発生装置やレーザー照射装置のようなプラズマ発生源を有する請求項1〜7記載の電気推進装置。  The electric propulsion device according to any one of claims 1 to 7, further comprising a plasma generation source such as a high-frequency electromagnetic field generation device or a laser irradiation device.
JP2007312843A 2007-11-05 2007-11-05 Electric propulsion system by electromagnetic field Pending JP2009115069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312843A JP2009115069A (en) 2007-11-05 2007-11-05 Electric propulsion system by electromagnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312843A JP2009115069A (en) 2007-11-05 2007-11-05 Electric propulsion system by electromagnetic field

Publications (1)

Publication Number Publication Date
JP2009115069A true JP2009115069A (en) 2009-05-28

Family

ID=40782458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312843A Pending JP2009115069A (en) 2007-11-05 2007-11-05 Electric propulsion system by electromagnetic field

Country Status (1)

Country Link
JP (1) JP2009115069A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787994A (en) * 2012-08-25 2012-11-21 冯益安 Jet reducing power machine of jet automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787994A (en) * 2012-08-25 2012-11-21 冯益安 Jet reducing power machine of jet automobile

Similar Documents

Publication Publication Date Title
JP6940072B2 (en) Charge separation mechanism
RU2620880C2 (en) Engine on the hall effect
ES2745473T3 (en) Plasma throttle with modulated thrust and space vehicle with it
US20080061191A1 (en) Multi-functional high energy plasma aircraft and nuclear fusion system to produce energy from a controlled nuclear fusion reaction
US10480493B2 (en) Hall effect thruster electrical configuration
KR20150089898A (en) Amphibious flying car
US20120085869A1 (en) Apparatus, method and system for removing orbital debris
US10662930B2 (en) Hall-effect thruster usable at high altitude
JP6360903B2 (en) Ground system and method for testing reactive thrusters
Tikhonov et al. On dependence of equilibrium characteristics of the space tethered system on environmental parameters
JP5119514B2 (en) Ion injection device, propulsion device, and artificial satellite
JP2009507170A (en) System, apparatus and method for generating directional force by introducing a controlled plasma environment to an asymmetric capacitor
JP2009115069A (en) Electric propulsion system by electromagnetic field
US10131453B2 (en) Hall effect thruster and a space vehicle including such a thruster
JP2018503774A5 (en)
RU2166667C1 (en) Method and device for generating thrust
Guyot et al. Electrostatic propulsion for satellites application to the Robusta-3 nanosatellite
EP4048890A1 (en) An apparatus for generating a force
RU2097275C1 (en) Electrically driven craft
JP2021126908A (en) Space debris removal apparatus
HAMMOND et al. Jovian electrodynamic tether experiment
Fuhrhop et al. Electron emission for electrodynamic tether systems in space
JPH11168892A (en) Manufacture of stone stage in the aska era
Harper Electric Spacecraft Propulsion Systems
JP2000120527A (en) Propulsion method in space of spacecraft