JP2009114050A - チタン酸アルカリの中空体粉末及びその製造方法、並びにこれを含む摩擦材 - Google Patents

チタン酸アルカリの中空体粉末及びその製造方法、並びにこれを含む摩擦材 Download PDF

Info

Publication number
JP2009114050A
JP2009114050A JP2008248078A JP2008248078A JP2009114050A JP 2009114050 A JP2009114050 A JP 2009114050A JP 2008248078 A JP2008248078 A JP 2008248078A JP 2008248078 A JP2008248078 A JP 2008248078A JP 2009114050 A JP2009114050 A JP 2009114050A
Authority
JP
Japan
Prior art keywords
titanate
hollow body
potassium
body powder
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008248078A
Other languages
English (en)
Inventor
Naomichi Hori
直通 堀
Nobuo Uejima
伸夫 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2008248078A priority Critical patent/JP2009114050A/ja
Publication of JP2009114050A publication Critical patent/JP2009114050A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】摩擦材として適したチタン酸カリウムの中空体粉末及びその製造方法並びにこれを含有する摩擦材を提供すること。
【解決手段】チタン化合物及びアルカリ金属化合物を混合し焼成させ、得られたチタン酸アルカリを溶媒に分散させスラリーを形成し、噴霧乾燥させた後熱処理する。これにより棒状、柱状、円柱状等の形状を有するチタン酸アルカリ粒子が結合した中空体粉末を製造できる。この中空体粉末は摩擦材として用いると耐摩耗性を向上できる。
【選択図】図6

Description

本発明はチタン酸アルカリの中空体粉末に関し、特に、棒状、柱状、円柱状、短冊状、粒状及び/又は板状の形状を有するチタン酸アルカリ粒子が結合してなるチタン酸アルカリの中空体粉末およびその製造方法、並びにこれを含む摩擦材に関する。
チタン酸アルカリは、自動車、鉄道車両、航空機及び産業機械類等における制動装置を構成するブレーキライニング、ディスクパッド、クラッチフェージング等の摩擦摺動部材用の摩擦材として有用な材料として知られている。従来、このよう摩擦材としては、アスベスト(石綿)を有機系または無機系の結合剤に分散させ結着成形させた摩擦材が使用されていた。しかしながら、アスベスト(石綿)は、耐熱性等の摩擦摩耗特性が不十分であるとともに、発癌性等の環境衛生上の問題を有することから、ここ数年、代替品の開発が強く要望されており、これが緊急の課題となっている。
このような要望に対し、繊維状のチタン酸カリウムなどのチタン酸アルカリを基材繊維又は摩擦調整剤として用いた摩擦材が提案されている。特にチタン酸カリウム繊維はアスベスト(石綿)のような発癌性を持たず、耐熱性に優れ、フェード現象の防止や摩擦特性の熱安定性向上に有効であるという優れた特性を有している。特に、一般式KO・nTiO(nは1〜12の整数)で示されるチタン酸カリウムの中で、nが6又は8の6チタン酸カリウム繊維又は8チタン酸カリウム繊維は、トンネル構造の結晶構造を有し、これを含有する摩擦材は特に耐熱性等に優れた特性を有している。
しかしながら、従来のチタン酸カリウム繊維は平均繊維径が0.1〜0.5μm、平均繊維長が10〜20μmのものが多く、世界保健機構(WHO)で推奨されている範囲(吸入性繊維とするWHOファイバー:平均短径が3μm以下、平均繊維長が5μm以上及びアスペクト比が3以上の繊維状化合物以外)には含まれていない。
また、従来のチタン酸アルカリ繊維あるいはチタン酸アルカリウィスカーの製造方法は複雑であるといった問題もある。例えばチタン酸カリウムの場合では、酸化チタンなどのチタン化合物と炭酸カリウムなどのカリウム化合物を配合し焼成反応させ、その後水中に浸漬させ解繊し、さらに酸により中和しカリウム成分を調整し、乾燥させて製造される。特に、耐熱性に優れる6チタン酸カリウム及び8チタン酸カリウムは、トンネル構造を有するためウィスカー状又は繊維状に結晶を成長させることが難しく、先ず層状結晶構造を有する2チタン酸カリウム又は4チタン酸カリウム繊維を合成し、その後pH調整した後、再度焼成してトンネル構造の結晶に変換し、さらに得られた繊維状物を解繊分級などの特別な工程を経る必要がある。このため、この従来の方法による製造ではコストが高くなり、製造されるチタン酸カリウムは高価な材料になってしまう。さらに工業化されているチタン酸カリウム繊維は嵩比重が小さく、流動性に劣り、製造工程において供給不足を生じたり、供給路の壁などに付着して閉塞させたり等の問題点を有している。また摩擦材の製造時には原材料との均一混合が困難であり、均質な摩擦材を得ることが難しく、品質管理の点でも問題が残されている。
これらの問題を解消するため、繊維状ではなく、層状・板状の形状を有し、長径10〜500μm、短径(厚み)50〜1000nmのチタン酸カリウムが開示されている(例えば特許文献1参照)。このチタン酸カリウムは繊維形状を有していない。しかし、かかるチタン酸カリウムでは、これを摩擦調整剤として摩擦材に含有させる場合、取扱性や流動性が十分で有るとは言えない。またこれらチタン酸カリウムの製造方法は依然複雑であり、製造コストが高く経済的なメリットを享受することができていないのが現状である。
特開2000−265157号公報
本発明の目的は、上述のような問題点に鑑み、熱安定性が高い上、摩擦材用の基材繊維及び/又は摩擦調整材として優れた主に棒状、柱状、円柱状、短冊状、粒状及び/又は板状の形状を有するチタン酸アルカリからなる中空体粉末及びその製造方法、並びにこれを含有する摩擦材を提供することにある。
かかる実情において、本発明者らは鋭意検討を行った結果、従来のチタン酸アルカリとは異なる形状を有した、主に棒状、柱状、円柱状、短冊状、粒状及び/又は板状の形状を有したチタン酸アルカリ化合物粒子が結合したチタン酸アルカリの殻からなるチタン酸アルカリの中空体粉末が取扱性、流動性に優れ、これを摩擦調整材として用いた際に優れた耐熱性を示すこと、及び結晶性、純度が高い所望の組成からなるこのチタン酸アルカリの中空体粉末を簡単かつ安価に製造できることを見出し本発明を完成するに至った。
即ち、本発明のチタン酸アルカリの中空体粉末は、棒状、柱状、円柱状、短冊状、粒状及び/又は板状の形状を有するチタン酸アルカリ粒子が結合した中空体の殻からなる。このチタン酸アルカリ粒子の形状は、平均短径3μm以上10μm以下、平均アスペクト比1.5以上10以下、またはチタン酸アルカリの平均短径が1μm以上3μm以下、平均長径が3μm以上5μm以下とすることが好ましい。また、かかる中空体粉末の平均粒子径(外径)は20乃至200μmとすると良い。このような形状とすることで取扱性や摩擦材として調整する際の流動性に優れた材料となる。また本発明の中空体粉末はチタン酸アルカリからなり、また特にチタン酸カリウムの場合には、摩擦材として有用な6チタン酸カリウムの単相、又は4チタン酸カリウムと6チタン酸カリウムの混相からなる中空体粉末であることを特徴とする。このような中空体粉末は、摩擦材として他の成分と混合する際、中空体粉末を構成するチタン酸アルカリ粒子を分散(分離)することなく、流動性良く混合することができる。この結果、このような中空体粉末を摩擦材として含有してなる摩擦材はその気孔率を上げることができ、耐フェード性、耐鳴き性等に優れた摩擦性能を実現することができる。
また、このような本発明のチタン酸アルカリの中空体粉末は、平均粒径が0.1mm以上10mm以下の凝集体又は造粒体のチタン化合物及びアルカリ金属化合物を混合する工程と、この混合により得られた混合物を800℃以上1300℃以下で焼成させてチタン酸アルカリを製造する工程(第1の工程)と、このようにして得られたチタン酸アルカリを溶媒に分散させスラリーを形成する工程と、このチタン酸アルカリのスラリーを噴霧乾燥させる工程と、この噴霧乾燥させたチタン酸アルカリを熱処理する工程(第2の工程)とを少なくとも含む方法により製造することができる。なお、上記アルカリ金属化合物がリチウム化合物の場合には、上記焼成時の焼成温度を800℃以上1450℃以下で行うと良く、上記アルカリ金属化合物がナトリウム化合物の場合には400℃以上900℃以下で行うと良い。
そして、本発明ではチタン化合物とアルカリ金属化合物を混合する工程を振動ロッドミルにより行うことを特徴とする。振動ロッドミルにより混合することでチタン化合物とアルカリ金属化合物が他の方法により混合する場合に比べ均一に混合することができる。この結果、第1の工程により未反応のチタン化合物を含まない所望組成のチタン酸アルカリを製造することができる。特に摩擦材として好ましい6チタン酸カリウムの単相や4チタン酸カリウムと6チタン酸カリウム混相のチタン酸カリウムを製造することができる。
この第1の工程における混合物の焼成温度は、上記の通り、アルカリ金属化合物がカリウム化合物の場合、800℃以上1300℃以下で行うと良い。一般にこの焼成温度を高くすることで平均短径及び平均長さ(平均長径)の長い(大きい)チタン酸カリウムを製造することができる。また、この焼成温度とともに、焼成処理の際の昇温速度を調整することで、得られるチタン酸カリウム粒子の形状(短径及び長径)を調整することもできる。即ち、昇温速度を0.5℃〜2℃/分とし、焼成温度を1000〜1300℃とすると、平均短径3μm以上10μm以下、平均アスペクト比(長径/短径)が1.5から10のチタン酸カリウムを得ることができる。また、昇温速度を2℃〜5℃/分とし、焼成温度を1000〜1300℃とすると、平均短径が1μm以上3μm以下、平均長径が3μm以上5μm以下のチタン酸カリウムを得ることもできる。
さらに、第2の工程における噴霧乾燥後の熱処理工程は750℃以上1300℃以下で行うと良い。かかる温度の熱処理を行うことで、第1の工程により得られたチタン酸カリウム粒子同士が結合した中空体構造の殻からなるチタン酸カリウムの中空体粉末を製造することができる。この中空体粉末は、750℃以上1300℃以下の熱処理によりチタン酸カリウム粒子同士が焼結及び/または融着により結合しているため、これを摩擦材として他の成分と混合する際、中空体粉末を構成するチタン酸カリウム粒子を分離することなく混合することができる。この結果、成型体の気孔率を上げることができ、耐フェード性、耐鳴き性等に優れた摩擦性能を実現することができる。なお、上記アルカリ金属化合物がリチウム化合物の場合には、上記熱処理工程は800℃以上1200℃以下で行うと良い。また、上記アルカリ金属化合物がナトリウム化合物の場合には、上記熱処理工程は400℃以上900℃以下で行うと良い。
以下、本発明にかかるチタン酸アルカリの中空体粉末の製造方法について詳細に説明する。本発明のチタン酸アルカリの中空体粉末の製造方法は、凝集体又は造粒体のチタン化合物とアルカリ金属化合物を混合し、得られた混合物を焼成させてチタン酸アルカリ粒子を製造する第1の工程と、このチタン酸アルカリ粒子を溶媒に分散させスラリーを形成し、これを噴霧乾燥させた後、熱処理する第2の工程とを少なくとも含む。
そこで、まず以下に本発明の第1の工程におけるチタン酸アルカリの製造方法について説明する。本発明の第1の工程で用いるチタン化合物は、例えば、二酸化チタン、亜酸化チタン、オルトチタン酸又はその塩、メタチタン酸又はその塩、水酸化チタン、ペルオクソチタン酸又はその塩などを、単独あるいはこれらを2種以上組合せて用いることができる。これらの中でも好ましくは二酸化チタンである。これはアルカリ金属化合物との混合性及び反応性に優れ、また安価な為である。その結晶形としてはルチル型あるいはアナターゼ型が好ましい。特に、ルチル型二酸化チタンを用いた場合、得られるチタン酸アルカリの結晶が大きくなり好ましい。
本発明では、これらチタン化合物の凝集体又は造粒体を原料として用いる。その中でも、特に二酸化チタンの凝集体(顆粒を含む)又は造粒体が好ましく、その平均粒径は好ましくは0.1mm以上、より好ましくは0.5〜10mm、さらに好ましくは0.5〜1mmである。これは平均粒径が小さすぎるとアルカリ金属化合物との混合の際、均一に混合できず、またより均一に混合するため振動ミルなどの粉砕エネルギーの大きいミルで混合した場合、固着して混合が困難になる為である。また大きすぎると均一混合が困難となり、効率が悪くなる為である。ただし、10mmを超える大きな凝集体、造粒体であっても、解砕、粉砕により10mm以下とすることで、本発明のチタン化合物の凝集体又は造粒体として用いることができる。
ここで、本発明における凝集体とは、一次粒子が凝集した二次粒子、二次粒子が凝集した三次粒子、又は/及びそれ以上のn次粒子が凝集したn+1次粒子(nは3以上の整数)などの粗大粒子(顆粒を含む)を形成したものを言い、平均粒径が0.1mm以上10mm以下の比較的大きなものを言う。一方、平均粒径が数μm程度(大きくても20μm程度)の二酸化チタン粉末や二酸化チタン粉末の凝集体など、通常1次粒子が単分散することが困難な為に二次粒子を形成しているようなものは含まない。但し、本発明の凝集体は、かかる二酸化チタン粉末を微量含んでいるもの(均一混合に支障を生じない程度の微量含んでいるもの)であっても良い。本発明において好ましく用いられる酸化チタン凝集体のSEM写真を図1に、また従来の市販の酸化チタン粉末(顔料用)のSEM写真を図2に示す。
なお、本発明におけるチタン化合物の凝集体又は造粒体の平均粒径とはJISK0069の化学製品のふるい分け試験方法に従って測定した値をいう。また、本明細書中において、凝集体又は造粒体の平均粒径と言った場合、特にことわりが無い限り本方法により測定したものである。
この二酸化チタンの凝集体には、硫酸チタンや硫酸チタニルから製造されるもの(硫酸法酸化チタン)、四塩化チタンを気相で酸化あるいは加水分解して製造されるもの(気相法酸化チタン)、あるいは四塩化チタン水溶液あるいはアルコキシチタンを中和または加水分解して製造されるものなどが使用できる。特に、通常、これらは顔料用酸化チタンなどの最終製品とする前の製造工程において、凝集粒子の粉砕、解砕あるいは分級等して粒度調整を行い、粗大粒子を除去するが、本発明では、この処理前の中間製品、所謂クリンカーを原料とすることが好ましい。即ち、これらクリンカーは本発明の好ましいチタン化合物の凝集体であり、この凝集体を原料とすることで、アルカリ金属化合物との粉砕混合の際に混合物の固着を抑制して均一混合することが可能となる。その結果、本発明では原料の成分調整等の処理を経ずに所望のチタン酸アルカリを製造することが可能となる。
また、チタン化合物の凝集体の替わりに、チタン化合物の造粒体を用いても良い。かかる造粒体は、市販の微粒酸化チタンをスプレードライにより造粒したり、バインダーを添加して混練し造粒したりすること等により製造できる。このようなチタン化合物の造粒体を原料として用いることで、振動ミルなどの粉砕エネルギーの大きい機械的な混合手段を採用しても、振動ミルの内壁への付着や固着などが抑制できる。この結果、上述の凝集体のチタン化合物と同様、チタン化合物とアルカリ金属化合物を均一に混合することができる。
本発明において、チタン酸アルカリを製造する際の原料の混合比率は、アルカリ金属化合物が焼成反応後生成するチタン酸アルカリ(MO・nTiO:Mはアルカリ金属)を1モルとしたとき、凝集体又は造粒体のチタン化合物はチタン原子として0.5〜10モル、好ましくは1〜8モルであり、アルカリ金属化合物はアルカリ金属原子として1〜3モル、好ましくは1.5〜2.5モルである。特に、4チタン酸カリウムを製造する場合には、焼成反応した後生成する4チタン酸カリウム(KO・4TiO)を1モルとしたとき、二酸化チタン凝集体又は造粒体はチタン原子として3.5〜4.5モル、好ましくは3.8〜4.2モル、特に好ましくは4.0モルであり、カリウム化合物はカリウム原子として1.8〜2.2モル、好ましくは1.9〜2.1モル、特に好ましくは2モルである。6チタン酸カリウムを製造する場合には、焼成反応した後生成する6チタン酸カリウム(KO・6TiO)を1モルとしたとき、二酸化チタン凝集体又は造粒体はチタン原子として5.5〜6.6モル、好ましくは5.8〜6.2モル、特に好ましくは6.0モルであり、カリウム化合物はカリウム原子として1.8〜2.2モル、好ましくは1.9〜2.1モル、特に好ましくは2モルである。この際、後述するように凝集体又は造粒体のチタン化合物とアルカリ金属化合物の混合物に、金属チタン粉あるいは水素化チタン粉を添加する場合、金属チタン粉あるいは水素化チタン粉は酸化され二酸化チタンとなるため、金属チタン粉あるいは水素化チタン粉は上記凝集体又は造粒体のチタン化合物のチタン源として含め、混合比率を調整する必要がある。
本発明では、このように原料比を調整するだけで、チタン酸アルカリの組成を制御することができる。従来の方法では、チタン化合物とアルカリ金属化合物を反応する際、反応性が低くアルカリ金属化合物がロスするため、アルカリ金属化合物を理論量よりも過剰に使用していた。しかしながら本発明の方法では、目的とするチタン酸アルカリとほぼ同じ理論量のチタン化合物とアルカリ金属化合物を混合した混合物を原料とし、これを焼成反応することによって目的とする組成のチタン酸アルカリを得ることができる。
本発明における混合方法としては、乾式混合法又は湿式混合法のいずれも採用することができるが、工程簡略化の観点から乾式混合法が好ましい。但し、混合の際に用いられる混合手段としては、従来のV型ブレンダー、ボールミル等の手段では凝集体又は造粒体のチタン化合物とアルカリ金属化合物を十分均一に混合できない。このため、振動ミル、振動ロッドミル、振動ボールミル、ビーズミル、ターボミル、遊星ボールミルなどの機械的粉砕手段を採用することが望ましい。特に好ましくは、粉砕メディアとして棒状のロッドを充填した振動ロッドミルが好ましい。振動ロッドミルでは、凝集体又は造粒体のチタン化合物とアルカリ金属化合物を粉砕しながら混合することで、ロッド間のある程度粒径の大きい粉末を粉砕する一方、ボールミルのようにより細かい粉末を過粉砕することが少ない。特に酸化チタンは、元来、表面に存在する水酸基のため付着性が強く、また粒径が小さくなるほど比表面積も大きくなる。このため、過粉砕されると振動ミル内部に粉砕物が固着され易くなるが、本発明ではこのような粉砕物の固着が抑制され、他の混合方法に比べ均一な粉砕混合が可能となる。特に、上述したようなチタン化合物の凝集体等として二酸化チタンの凝集体又は造粒体を原料として用い、これを振動ロッドミルによって粉砕混合した場合、二酸化チタンの粗大粒子を粉砕して解砕し、ある程度微細な1次粒子などの過粉砕が抑制される。この結果、二酸化チタンのミル内部における固着が抑制され、均一混合することができる。一方、二酸化チタン顔料等の粉末を原料とすると微細な一次粒子までが過粉砕され易く、固着し易くなり均一混合が困難である。また、イルメナイト等のチタン鉱石を原料とする場合にはチタン酸アルカリの組成制御が困難となるため、純粋な二酸化チタンを用いるのが好ましい。
なお、本発明において、「均一」との表記は、本発明における凝集体又は造粒体のチタン化合物を原料としない場合、例えば二酸化チタン粉末等の顔料を原料とし、これをアルカリ金属化合物と混合した場合と比べ均等に原料が分散していることを表す。もしくは、本発明における振動ミル、特に振動ロッドミルにより混合した場合、従来のV型ブレンダーやボールミル等により混合した場合と比べて均等に原料が分散していることを表す。
また、振動ミル、特に振動ロットミルにてチタン化合物とアルカリ金属化合物を粉砕・混合する場合、アルコール類を適量添加することが望ましい。アルコールの添加量としては、チタン化合物とアルカリ金属化合物、また後述する凝集防止剤などの添加剤を含め、全ての粉砕物の重量に対し対して0.1〜3.0重量%、さらには0.3〜1.0重量%とすることが好ましい。また、粉砕・混合の際、ミル内部の温度を添加するアルコール類の沸点以上で行い、アルコールを気化させながら粉砕混合することが好ましい。これによりミル内部におけるチタン化合物の付着や固着を抑制でき、チタン化合物の凝集体とアルカリ金属化合物がより均一に分散した混合物を得ることができる。なお、アルコール類としてはメタノール、エタノール、アミルアルコール、アリルアルコール、プロパギルアルコール、エチレングリコール、プロピレングリコール、エリトロール、2−プテン−1,4−ジオール、グリセリン、ペンタエリトリット、アラビット、ソルビット、ペプチット、ポリエチレングリコール、ポリプロピレングリコール、ポリグリセリンなどが挙げられる。これらのなかでも沸点の比較的低いメタノールおよびエタノールが好ましい。
さらに、振動ミルなどの混合容器内でのチタン化合物の凝集や固着を抑制するため、凝集防止剤や潤滑剤などの添加剤を添加しても良い。添加剤としては、チタン化合物とアルカリ金属化合物混合物を焼成する際に、分解、燃焼あるいは気化し、生成したチタン酸アルカリ中に残存しないものが好ましい。このような添加剤としては、セルロース類、脂肪酸類、糖類、穀物物、尿素類、ポリマーなどが挙げられる。具体的には、メチルセルロース、リグニン、木粉、パルプ粉、天然繊維粉、ステアリン酸、ステアリン酸アンモニウム、ソルビタンジステアレート、キシロース、ブドウ糖、ガラクトース、ショ糖、澱粉、デキストリンなどの糖類、小麦粉、大豆粉、米粉、糖、尿素、ビウレア、セミカルバジッド、炭酸グアニジン、アミノグアニジン、アゾジカルボンアミド、アクリル樹脂粉、ポリプロピレン粉末、ポリエチレン粉末、ポリスチレン粉末などが挙げられるが、とりわけ固体状でかつ粉末状である木粉、パルプ粉、天然繊維粉が好ましい。
また、本発明における混合方法として、湿式混合法を用いる場合、溶媒としては純水、アルコールやアセトン、MEK、THF等の通常の有機溶媒等が用いられるが、混合粉末の分散性を向上させて均一に混合させるために、界面活性剤や分散剤を併用することが好ましい。
また、凝集体又は造粒体のチタン化合物とアルカリ金属化合物の混合物に、必要により、さらに金属チタン粉あるいは水素化チタン粉を含ませてもよい。この場合、チタン化合物中のチタン原子1モルに対して0.01〜0.2モル、さらには0.03〜0.1モルとすることが好ましい。このように金属チタン粉あるいは水素化チタン粉を配合すると、反応容器内での焼成時に同時に燃焼して反応容器内部の温度分布の発生を抑制し、反応をより均一に行うことができ、結果として目的とする組成のチタン酸アルカリを得ることができる。
なお、本発明のアルカリ金属化合物としては、カリウム、ナトリウム及びリチウム化合物から選択される1種又は2種以上の金属であることが好ましい。特に、摩擦調整剤として有用なチタン酸カリウムの原料であるカリウム化合物が好ましい。また、リチウムイオン二次電池の電極材料として有用なチタン酸リチウムの原料であるリチウム化合物も好ましく用いられる。またアルカリ金属化合物としては、これらの炭酸塩、水酸化物、シュウ酸塩などであり、焼成反応において溶融するものが好ましく、特に炭酸塩または水酸化物が好ましい。これらは、チタン化合物との焼成反応において、溶融あるいは分解し、反応が起き易く、また分解した後も炭酸ガスや水などが生成するのみで製品中に不純物が残存せず好ましい。チタン酸カリウムを製造する場合、カリウム化合物としては、酸化カリウム、炭酸カリウム、水酸化カリウム、シュウ酸カリウムなどが用いられ、好ましくは炭酸カリウムが用いられる。これらのカリウム化合物は単独もしくは2種以上組合せて用いることができる。チタン酸ナトリウムを製造する場合、ナトリウム化合物として、炭酸ナトリウム、水酸化ナトリウム、シュウ酸ナトリウムなどが用いられ、好ましくは炭酸ナトリウムである。チタン酸リチウムを製造する場合、炭酸リチウム、水酸化リチウムであり、炭酸リチウムが好ましい。また、本発明においては、チタン酸カリウムを製造する場合、酸化チタンなどのチタン化合物と炭酸カリウムなどのカリウム化合物を混合して焼成反応を行う。この場合、炭酸リチウムなどのリチウム化合物をカリウム化合物に混合することによって、得られるチタン酸カリウムの形状が制御され好ましい。また、マグネシウム化合物やバリウム化合物などのアルカリ土類金属化合物を添加することによっても繊維状の結晶の生成を抑制でき好ましい。
上記のようにして得られた凝集体又は造粒体のチタン化合物とアルカリ金属化合物の均一混合物を、焼成してチタン化合物とアルカリ金属化合物を反応させる。これにより棒状、柱状、円柱状、短冊状、粒状及び/又は板状のチタン酸アルカリが得られる。焼成は反応容器内で行うか、あるいはこの混合物にバインダーなどを添加して成型体を形成してこれを直接焼成する。反応性や得られるチタン酸アルカリの形状を考慮すると、反応容器に混合物全体を充填して焼成することが好ましい。
焼成のための反応容器としてはセラミックス製が好ましく、アルミナ等の通常のセラミックス材料からなるものであって、上記混合物を載置又は装入したときに混合物との間になるべく空気が侵入し難い形状のものが用いられる。具体的には、円筒状物、凹部を有する円柱状物、凹部を有する方形状物、皿状物等が挙げられる。このうち、円柱状物又は方形状物であってこれらの一部に形成された凹部がある程度の深さを有するものは、焼成において空気中の酸素の侵入を防止するため好ましい。
また、上記セラミックス製反応容器に上記混合物を充填するに当たり、セラミックス製反応容器と混合物との間の少なくともセラミックス製反応容器の底部に、炭化する材質からなるシート材を介在させることが好ましい。このように、シート材を介在させることにより、焼成時に混合物中のアルカリ金属化合物が溶融して、アルカリ金属化合物がロスしたり、セラミックス製反応容器に溶融したアルカリ金属化合物が浸透したりすることを回避できる。また、これらのシート材は、少なくともセラミックス製反応容器の凹部が形成する内壁部における前記混合物との接触部に介在させると、カリウム化合物のロスや、セラミックス製反応容器への浸透をより確実に回避できるためより好ましい。さらに、これらのシート材は、セラミックス製反応容器の凹部が形成する内壁部全体に介在させると、アルカリ金属化合物のロスや、セラミックス製反応容器への浸透を略完全に回避できるため特に好ましい。
炭化する材質からなるシート材は、焼成したときに炭化し、且つ、最終的に焼失すると共に、焼成時に軟化物又は流動物を生成しない材質のものが用いられ、具体的には、紙、天然繊維、樹皮又は熱硬化性樹脂が用いられる。例えば、紙の場合には、炭化し難く軟化する塩化ビニール等のようなものが張り合わされていない通常の紙が用いられ、いわゆる未晒クラフト紙、両更晒クラフト紙、片艶晒などの包装用紙、段ボール原紙、新聞用紙、上質紙、中質紙、再生紙、書籍用紙、キャストコート紙、アート紙、PPC用紙などの情報用紙等が用いられる。また、天然繊維としては、例えば綿、麻、絹等が用いられる。また、熱硬化性樹脂としては、例えばフェノール樹脂、エポキシ樹脂、メラミン樹脂等が用いられる。シート材の形状は、シート、織布、不織布又は袋とする。
焼成温度はチタン酸アルカリの種類また結晶形により異なるが、チタン酸カリウムの場合、通常800〜1300℃、好ましくは1000〜1300℃で行う。得られるチタン酸カリウムの形状は、この焼成温度を調整することで制御でき、焼成温度をより高温で行うことでより大きなチタン酸カリウムを得ることができる。但し、800℃より低いと十分に反応が進まない。また、1300℃を超えるような高温で焼成するにはそれに耐え得る炉が必要であり高コストとなる上、チタン酸カリウムの融点と近くなり、溶融し形状も制御が困難となるため1300℃以下での焼成が好ましい。また、チタン酸リチウムにおいてスピネル型の結晶構造を有するLiTi12の場合、通常800〜1000℃、好ましくは850〜950℃である。またLiTiOの場合には、通常950〜1450℃、好ましくは950〜1200℃である。6チタン酸ナトリウムの場合、通常400〜900℃、好ましくは500〜800℃である。また焼成時間は、前記温度範囲で1〜10時間、好ましくは2〜5時間である。焼成反応後、常温まで冷却するが、昇温速度は、室温から前記焼成温度まで0.5〜20℃/分、好ましくは1〜10℃/分の速度で行う。冷却速度は前記焼成温度から300℃まで0.5〜10℃/分、好ましくは1〜5℃/分の比較的遅い冷却速度で行う。このように焼成温度、昇温速度及び冷却速度を調整することにより、本発明のチタン酸アルカリを得ることができる。特に、本発明のチタン酸カリウムの製造法では、このような焼成温度、比較的低速の昇温速度及び比較的低速の冷却速度にすることにより、チタン酸カリウムの粒子成長が促進され、より短径の大きい棒状、柱状または板状の結晶を得ることができる。中でも、焼成温度及び昇温速度を調整することにより、平均短径の長さを制御することができる。例えば、焼成温度を1000℃〜1300℃、昇温速度を0.5〜2℃/分とすると、平均短径3μm以上10μm以下のチタン酸カリウムを得ることができる。ここで、焼成温度については温度が高いほど、昇温速度については速度が遅いほど、得られるチタン酸カリウムの平均短径は大きくなる。なお、昇温速度を2℃/分より速くすると、特に、昇温速度を2℃から5℃/分とすると、平均短径が1μm以上3μm以下のチタン酸カリウムを得ることもできる。
以上のようにして得られたチタン酸アルカリは、必要に応じて機械的に解砕または粉砕する。特に長径が5μm以上の繊維状のチタン酸カリウムが含まれている場合については、長径が5μm以上のものを解砕し、5μm未満とすることが好ましい。ここで、機械的に解砕または粉砕する手段は公知の手段を採用することができ、振動ミル、振動ボールミル、ビーズミル、ターボミル、遊星ボールミルなどが用いられる。
また必要に応じて解砕または粉砕後のチタン酸アルカリを分級または篩別しても良い。特に繊維状のチタン酸カリウムを含む場合には短径が3μm未満(または、場合により1μm未満)のもの、あるいは粉末状のものを除去するため、分級または篩別することが好ましい。
以上、本発明の第1の工程におけるチタン酸アルカリの製造工程では、凝集体又は造粒体のチタン化合物とアルカリ金属化合物を粉砕して均一混合した後、焼成反応を行うので、結晶性、純度が高い所望の組成のチタン酸アルカリ化合物が得られる。特にチタン酸カリウムの製造において従来焼成反応後に行っていた、pH調整や酸洗浄などによる成分調整を行わずとも、目的とする4チタン酸カリウム、6チタン酸カリウム、又はこれらの混合物を直接焼成反応によって製造することができる。このような本発明の方法で得られたチタン酸カリウムは、平均短径(又は平均厚み)が3.0〜10μmで、平均アスペクト比(長径/短径)が1.5〜10である棒状、柱状、円柱状、短冊状、粒状及び/又は板状の形状を有する粒子とすることができる。ここで、平均短径は、走査型電子顕微鏡写真の画像解析によって測定したものであり200個程度についてその粒子径を測定し、それを平均した値をいう(以下記載の実施例における平均短径、平均長さ(平均長径)も同様にして測定したものである)。平均アスペクト比は、同様に走査型電子顕微鏡で平均短径と平均長さ(平均長径)を測定し、その比率を算出することによって求めたものである。なお、上記のチタン酸カリウムを、機械的に解砕または粉砕し、アスペクト比が3未満、好ましくは2.5未満に調整することも好ましい態様である。
上記チタン酸カリウムの形状については、焼成温度の他、昇温速度を調整することによって、平均短径1〜3μmのものを得ることも可能である。この場合には、平均短径が3μm以下と短いが、必要により解砕または粉砕等することで、平均長径を3μm〜5μmとすることができ、WHO推奨の範囲内にあるチタン酸カリウムを得ることができる。
次に、この第1の工程により得られたチタン酸アルカリ粉末を用いて中空体粉末を製造する第2の工程を以下に説明する。
まず、上記の通り第1の工程により得られたチタン酸アルカリ、即ち、主に棒状、柱状、円柱状、短冊状、粒状及び/又は板状のチタン酸カリウムなどのチタン酸アルカリ粒子を、バインダーなどと共に溶媒中に分散させ、攪拌することで、チタン酸アルカリ粒子のスラリーを作製する。
ここでバインダーとしては有機高分子、例えば、ゼラチン、デキストリン、澱粉、アラビアゴム、セルロース系高分子、ポリビニルアルコール、ポリビニールアルコール(PVA)、カルボキシメチルセルロース(CMC)、ポリビニールピロリ丼(PVP)、ヘキサプロピルセルロース(HPC)、フェノール樹脂、エポキシ樹脂などを用いることができる。また、溶媒としては有機溶剤、水を用いることができるが、取扱が容易である水が好ましい。さらに、必要に応じて、その他の界面活性剤などの添加材を加えても良い。なお、スラリーのチタン酸アルカリとバインダーの合計濃度は10から75重量%程度が好ましい。この合計濃度が10重量%未満の場合、チタン酸アルカリの中空体粉末の生産効率が低下するため好ましくない。また、この合計濃度が75重量%を超えるとスラリーの粘度が高くなり、200μm以下のチタン酸アルカリの中空体粉末を得にくくなり、また、その粒径分布も広くなり過ぎて好ましくない。
その後、この作製したチタン酸アルカリのスラリーを噴霧乾燥機により噴霧乾燥する。例えば、ディスク回転式の噴霧乾燥機を使用して噴霧乾燥する場合、高速回転するディスク上にチタン酸アルカリ粒子のスラリーを供給すると、遠心力によりこのスラリーが噴霧されて液滴となるため、この液滴を200℃から800℃の温度で乾燥する。この際、液滴内部において水分の気化が生じる。そのとき、液滴内部の粒子は、水分の気化とともに液滴の外側に押しやられ、内部に空洞を有するチタン酸アルカリ粒子の殻からなる球状中空体のチタン酸アルカリ粉末が得られる。特に、乾燥温度を上記の範囲とすることで、この中空体形状のチタン酸アルカリ粉末が得られる。なお、噴霧乾燥機としてはディスク回転式の他、圧力ノズル式、二流体ノズル式、超音波ノズル式等種々の形態のものを使用することができる。このうち、圧力ノズル式は、スラリーに高圧をかけてノズルから噴霧する方法である。また、二流体ノズル式は、スラリーを圧縮空気やスチームと一緒に噴霧する方法である。
なお、噴霧乾燥して得られるチタン酸アルカリの中空体粉末の径(外径)は、ディスクの回転数やノズルの口径により調整することができる。通常、ディスクの回転数が大きいほど、また、ノズルの口径が小さいほど得られる粒子の径は小さくなる。このため、得られるチタン酸アルカリの中空体粉末の平均径(外径)を20から200μm、好ましくは50から150μmに調整すると良い。粒径(外径)をこの範囲とすることでその取扱性が向上する。また特に、この範囲のチタン酸カリウムの中空体粉末は摩擦調整剤として好適である。
次に、噴霧乾燥して得られた中空体のチタン酸アルカリ粉末を熱処理する。この際、チタン酸アルカリが、チタン酸カリウム粉末の場合には熱処理温度を750℃以上1300℃以下で行うのが好ましい。チタン酸ナトリウムの場合には400℃以上900℃以下で行うのが好ましい。また、チタン酸リチウムの場合には800℃以上1200℃以下で行うのが好ましい。かかる温度で熱処理することで、互いに隣接したチタン酸アルカリ粒子間同士が接触部で焼結または融着により結合する。図4はこのようにして作製したチタン酸カリウムの中空体粉末の走査型電子顕微鏡写真である。この図から解るように、棒状、柱状、円柱状、短冊状、粒状又は/及び板状の形状を有するチタン酸カリウム粒子が互いに焼結または融着により結合して内部に空洞を有する球形状のチタン酸カリウム粒子の中空体粉末が得られる。
本発明のチタン酸カリウムの中空体粉末の破壊強度は、チタン酸アルカリ粒子の焼結または融着により向上し、2.0kg/cm以上であることが好ましい。このような破壊強度を有するチタン酸アルカリの中空体粉末は、他の材料と混合する際、この中空体粉末を構成するチタン酸アルカリ粒子の各々を分離(分散)することなく混合することができ、また、流動性良く混合することもできる。このため、後述するように、このチタン酸アルカリの中空体粉末を摩擦材として他の成分と配合する際、例えばブレーキパッド等に成型する際の混合工程において、中空体粉末を構成するチタン酸アルカリ粒子を分離(分散)することなく、かつ比較的均一に分散(混合)できる。この結果、成型体の気孔率を上げることができ、耐フェード性、耐鳴き性等に優れた摩擦性能を実現することができる。
なお、本発明におけるチタン酸アルカリの中空体粉末とは、チタン酸アルカリ粒子が内部空間を覆った中空体形状の殻構造を言う。例えば、風船状、ピンポン玉状などが挙げられる。このチタン酸アルカリの中空体粉末は、チタン酸アルカリ粒子によって完全に覆われた殻構造を有する必要はなく、部分的に裂け目、隙間、空隙及び/又は欠落を有する中空体粉末も含む。その平均径(外径)は20μmから200μmとするのが好ましい。かかる粒径とすることで取扱が容易となり、かつ、摩擦調整材として使用するに適したものとなる。ここでの平均径とは、走査型電子顕微鏡写真の画像解析によって200個程度についてその径を測定し、それを平均した値を言う。
以上、本発明の第2の工程における中空体粉末の製造方法では、上記第1の工程により得られたチタン酸アルカリ粒子を溶媒中に分散させスラリーを形成し、これを噴霧乾燥し、さらに熱処理することで、棒状、柱状、円柱状、短冊状、粒状及び/又は板状の形状を有するチタン酸アルカリ粒子から構成された内部に空洞を有するチタン酸アルカリの中空体粉末を容易に製造することができる。このチタン酸アルカリの中空体粉末は他の成分と配合して成型体を形成する際、その形状のため流動性が良く比較的均一に分散できる。特に、チタン酸カリウムの中空体粉末の場合には、これを摩擦材として他の材料と配合すると、比較的均一に分散できる上、その成形体の気孔率も向上させることができる。この結果、摩擦材の耐熱性や耐フェード性などを向上させることができる。
なお、このチタン酸カリウムの摩擦材中の配合量は、3.0以上50重量%以下とすることが好ましい。3.0重量%未満であると、摩擦摩耗特性の改善効果を発現させることができない場合があり、50重量%を超えると、摩擦摩耗特性の効果改善はそれ以上期待できないため経済的に不利となるためである。
本発明の摩擦材の具体例としては、例えば基材繊維、摩擦調整剤及び結合剤からなる摩擦材を例示することができる。該摩擦材中の各成分の配合割合としては、基材繊維1〜60重量部、摩擦調整剤(チタン酸カリウムなどのチタン酸アルカリを含め)20〜80重量部、結合剤10〜40重量部、その他の成分0〜60重量部を例示できる。
基材繊維としては、例えばアラミド繊維等の樹脂系繊維、スチール繊維、黄銅繊維等の金属繊維、炭素繊維、ガラス繊維、セラミック繊維、ロックウール、木質パルプ及びチタン酸カリウム繊維等を挙げられる。これらの基材繊維は、分散性及び結合剤との密着性向上のために、シランカップリング剤、チタネート系カップリング剤あるいはリン酸エステル等の表面処理剤を施して用いてもよい。
本発明の摩擦材における摩擦調整剤としては、本発明のチタン酸カリウムに加えて、本発明の効果を損なわない範囲で、他の摩擦調整剤を併用してもよい。例えば、加硫または未加硫の天然、合成ゴム粉末、カシュー樹脂粉末、レジンダスト、ゴムダスト等の有機物粉末、カーボンブラック、黒鉛粉末、二硫化モリブデン、硫酸バリウム、炭酸カルシウム、クレー、マイカ、タルク、ケイソウ土、アンチゴライト、セピオライト、モンモリロナイト、ゼオライト、あるいは銅、アルミニウム、亜鉛、鉄等の金属粉末、アルミナ、シリカ、酸化クロム、酸化チタン、酸化鉄等の酸化物粉末等が挙げられる。
結合剤としては、フェノール樹脂、メラニン樹脂、エポキシ樹脂、アクリル樹脂、DAP(ジアリルフタレート)樹脂、ユリア樹脂等の熱硬化性樹脂、天然ゴム、二トリルゴム、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、ポリイソプレンゴム、高分子エラストマー等のゴム又はエラストマー、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリイミド樹脂及び熱可塑性液晶性樹脂等の熱可塑性樹脂等の有機質結合剤及びアルミナゾル、シリカゾル等の無機質結合剤を例示できる。
本発明の摩擦材には、前記各成分に加えて、必要に応じて防錆剤、潤滑剤、研削剤等の成分を配合することができる。本発明の摩擦材の製造に際しては、特に制限はなく、従来公知の摩擦材の製造方法に準じて適宜製造することができる。
本発明にかかる摩擦材の製造方法の一例として、基材繊維を結合剤中に分散させ、摩擦調整剤及び必要に応じて配合されるその他の成分を組み合わせて配合することで摩擦材組成物を調整し、次いで金型中に該組成物を投入し加圧加熱して結着成形する方法が例示できる。
また、別の一例として、結合剤を二軸押出機にて溶解混練し、サイドポッパーから基材繊維、摩擦調整剤及び必要に応じて配合されるその他の成分を組み合わせて配合し、押出成形後、所望の形状に機繊加工する方法が例示できる。
また、さらに別の一例として、摩擦材組成物を水等に分散させ抄き網上に抄き上げ、脱水してショート状に抄造した後、プレス機にて加熱加圧し結着成形し、得られた摩擦材を適宜切削・研磨加工して所望の形状とする方法を例示できる。
本発明に係るチタン酸アルカリの製造方法はその製造工程を簡略化でき、コスト的に有利である。また、本発明に係るチタン酸アルカリの中空体粉末の製造方法は容易に球形状のチタン酸アルカリの中空体粉末を製造することができる。そして、これら製法により得られるチタン酸カリウムは繊維形状のものが少なく、主に、棒状、柱状、円柱状、短冊状、粒状あるいは板状等の特定形状を有する。また、得られる中空体粉末は内部が空洞の殻構造の略球状形状を有しており、流動性等の点で優れている。従って、本発明のチタン酸カリウムの中空体粉末は、これを摩擦材として用いた場合、低温から高温域までの広い温度範囲にわたって安定し優れた摩擦係数と耐摩耗性を有し、自動車,鉄道車両,航空機,各種産業用機器類等に用いられる制動部材用材料、例えば、クラッチフェージング用材料及びブレーキライニングやディスクパッド等のブレーキ用材料として好適である。また、本発明のチタン酸リチウムの中空体粉末は、リチウムイオン二次電池の電極材料として有望な材料である。
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって本発明はこれに制限されるものではない。
(実施例1)
平均粒径0.8mmの凝集体の酸化チタン(図1)8.7kgと粉末状炭酸カリウム2.7kg、チタン粉末447gおよび木屑897gを、内容積250リットル、直径19mm、長さ1430mm、3200g/ロッド、SS製の円柱状ロッドメディア3010kgを充填した振動ミル(中央化工機社製、商品名FV250)に充填し、さらにメタノール65g添加して、振幅8mm、振動数1000回/分、内温80℃で15分粉砕処理し、混合物を得た。得られた混合物500gを上部が開放されたセラミックス製反応容器内に充填し、これを電気炉に入れ、12時間かけて室温から1050℃に昇温し、その後1000〜1100℃の範囲で5.5時間焼成した。その後、13時間かけて室温まで冷却し、常温まで冷却した後該焼成物を取り出した。この焼成物、即ち凝集状のチタン酸カリウムのSEM写真を図3に示した。かかる焼成物は凝集状であるため、この焼成物を解砕機(ホソカワミクロン社製、タービュライザ TX−8)で解砕し所望形状の焼成物Sを得た(第1の工程)。
このようにして得られた焼成物Sは棒状、柱状及び/又は円柱状であった。また、その平均短径は3.0μm、平均長さ(平均長径)は5.9μm、平均アスペクト比は2.0であった。また、X線回折でこの焼成物を分析したところ6チタン酸カリウムの単相結晶であり、未反応の酸化チタンは含まれていなかった。このように、本発明の製造方法では簡便な方法により所望の組成のチタン酸カリウムを製造でき、かつその形状はWHOで推奨されている範囲(平均短径が3μm以下、平均繊維長が5μm以上及びアスペクト比が3以上の繊維状化合物以外)に含まれるものが多数を占めるものであった。
次に得られたこの焼成物Sを80kg、エチルセルロース系バインダー(商品名:セルナWN405、中京油脂株式会社製)0.8kg、及び添加剤として特殊ポリカルボン酸アンモニウム塩(商品名:KE−511、互応化学工業株式会社製)0.4kgを、水80kgの溶媒中に攪拌して分散させ、焼成物Sのスラリーを作製した。このスラリーをディスクタイプの乾燥機にて噴霧乾燥を行った。その際、噴霧乾燥の条件は、アトマイザーの回転数15000rpm、熱風温度250℃で行った。次に噴霧乾燥して得られた粉末を電気炉に入れ、900℃、2時間で熱処理を行った(第2の工程)。このようにして得られた中空体粉末の走査型電子顕微鏡写真を図4に示す。得られた中空体粉末の大きさ(外径)は50から100μmであった。また、この中空体の破壊強度を硬度計(株式会社藤原製作所 デジタル硬度計KHT−40N型)で測定したところ、3.8kg/cmであった。また、この中空体のSEM観察(図4)より、中空体粉末を構成する隣接するチタン酸カリウム粒子は接触部で完全に結合していた。
得られたチタン酸カリウムの中空体粉末15重量部、アラミド繊維(商品名:「ケブラーパルプ」、長さ3.0mm、東レ・デュポン株式会社製)3重量部、結合剤(フェノール樹脂)10重量部、有機添加剤(カシューダスト)9重量部、黒鉛潤滑剤10重量部、銅粉末8重量部、及び硫酸バリウム30重量部をミキサー(アイリッヒ社製、アイリッヒインテンシブミキサー)で十分に混合して金型に充填し、結着成型(加圧力:300kgf/cm、温度150℃、5分間)を行った。成型後、離型して熱処理(160℃で1時間保持後、210℃で5時間保持)を施した。その後、研磨加工を行い本発明の摩擦材を得た。なお、有機添加剤、潤滑剤、酸化物粉末は、通常摩擦材に添加されるものを使用した。そして得られた摩擦材の気孔率を測定した。また、この摩擦材について、JASO C 406「乗車用ブレーキ装置ダイナモメータ試験法」による摩擦性能試験を行い、(摩擦係数および)摩耗量を測定した。この結果を表1に示す。
(比較例1)
実施例1のチタン酸カリウムの中空体粉末の替わりに、実施例1の第1の工程で得られた凝集状のチタン酸カリウム(図3)(棒状、柱状及び/又は円柱状の焼成物S)を用いた以外は実施例1と同様にして摩擦材を作製し、実施例1と同様にその気孔率等を測定した。この結果を表1に示す。
(比較例2)
噴霧乾燥して得られた粉末を電気炉で熱処理する温度を900℃から700℃へ変更した以外は実施例1と同様にしてチタン酸カリウムの中空体粉末を作製した。得られた中空体粉末の大きさ(外径)は50から100μmであった。この中空体粉末の破壊強度を硬度計(株式会社藤原製作所 デジタル硬度計KHT−40N型)で測定したところ、1.5kg/cmであった。また、SEM観察より、中空体粉末の表面の隣接するチタン酸カリウム粒子の接触部の一部には結合が見られなかった。また、この中空体粉末を用いて実施例1と同様にして摩擦材を作製し、この摩擦材の気孔率及び摩耗量を測定した。この結果を表1に示す。
表1から解るように、本発明のチタン酸カリウムの中空体粉末は、摩擦材として用いた場合、その気孔率を高くすることができる。これは、本発明の中空体粉末を摩擦材として他の材料と混合する際、この中空体粉末の破壊強度が高いためその中空体形状を維持したまま分散混合されるためと考えられる。また、この結果、本発明の中空体粉末を用いた摩擦材は、耐フェード性、耐鳴き性に優れた摩擦性能が得られる。
(実施例2)
噴霧乾燥して得られた粉末を電気炉で熱処理する温度を900℃から1200℃へ変更した以外は実施例1と同様にしてチタン酸カリウムの中空体粉末を作製した。得られた中空体粉末の大きさ(外径)は50から100μmであった。
この中空体の破壊強度を硬度計(株式会社藤原製作所 デジタル硬度計KHT−40N型)で測定したところ、7.8kg/cmであった。また、中空体のSEM観察より、中空体粉末を構成する隣接するチタン酸カリウム粒子は接触部で完全に結合していた。
(実施例3)
噴霧乾燥して得られた粉末を電気炉で熱処理する温度を900℃から800℃へ変更した以外は実施例1と同様にしてチタン酸カリウムの中空体粉末を作製した。得られた中空体粉末の大きさ(外径)は50から100μmであった。
この中空体の破壊強度を硬度計(株式会社藤原製作所 デジタル硬度計KHT−40N型)で測定したところ、3.2kg/cmであった。また、中空体のSEM観察より、中空体粉末を構成する隣接するチタン酸カリウム粒子は接触部で完全に結合していた。
(比較例3)
噴霧乾燥して得られた粉末を電気炉で熱処理する工程を行わなかった点を除いて実施例1と同様にしてチタン酸カリウムの中空体粉末を作製した。得られた中空体粉末の大きさ(外径)は50から100μmであった。
この中空体の破壊強度を硬度計(株式会社藤原製作所 デジタル硬度計KHT−40N型)で測定したところ、0.5kg/cmであった。また、SEM観察より、中空体の表面の隣接するチタン酸カリウム粒子の接触部の一部には、結合が見られなかった。
(実施例4)
実施例1の(第1の工程)の焼成パターンを、「7時間かけて室温から1050℃に昇温し、その後1000〜1100℃の範囲で5.5時間焼成した。その後、8時間かけて室温まで冷却し、常温まで冷却した」と変更した以外は、同様に焼成物を電気炉にて焼成した。かかる焼成物は短径が3μm以下で長径が5μm以上の繊維状のチタン酸カリウムを多く含む凝集体であった。このため、この焼成物を解砕した。図5は、この焼成物であるチタン酸カリウムのSEM写真である。
このようにして得られた焼成物は棒状、柱状又は円柱状であった。また、その平均短径は1.9μm、平均長さ(平均長径)は4.1μm、平均アスペクト比は2.3であった。また、X線回折でこの焼成物を分析したところ6チタン酸カリウムの単相結晶であり、未反応の酸化チタンは含まれていなかった。このように、本発明の製造方法では簡便な方法により所望の組成のチタン酸カリウムを製造できる。また、このチタン酸カリウムの短径は3μm以下の形状ではあるものの、平均長径が5μm以下であり、その形状はWHOで推奨されている範囲(平均短径が3μm以下、平均繊維長が5μm以上及びアスペクト比が3以上の繊維状化合物以外)に含まれるものが多数を占めるものであった。
以上のようにして得られた焼成物を用いて、実施例1と同様にして、中空体粉末を得た。得られた中空体粉末の走査型電子顕微鏡写真を図6に示す。得られた中空体粉末の大きさ(外径)は平均粒径が50μmであった。また、この中空体の破壊強度を硬度計(株式会社藤原製作所 デジタル硬度計KHT−40N型)で測定したところ、2.5kg/cmであった。また、この中空体のSEM観察(図6)より、中空体粉末を構成する隣接するチタン酸カリウム粒子は接触部で完全に結合していた。
(実施例5)
実施例4の噴霧乾燥の条件を、アトマイザーのディスクの回転数10000rpm、熱風温度250℃とした以外は、実施例4と同様にして中空体粉末を作製した。このようにして得られた中空体粉末の走査型電子顕微鏡写真を図7に示す。得られた中空体粉末の大きさ(外径)は平均粒径80μmであった。また、この中空体の破壊強度を硬度計(株式会社藤原製作所 デジタル硬度計KHT−40N型)で測定したところ、3.0kg/cmであった。また、この中空体のSEM観察(図7)より、中空体粉末を構成する隣接するチタン酸カリウム粒子は接触部で完全に結合していた。
本発明にかかる凝集体の酸化チタンの走査型電子顕微鏡写真である。 市販の顔料用酸化チタンの走査型電子顕微鏡写真である。 本発明の第1の工程により得られたチタン酸カリウムの走査型電子顕微鏡写真である。 本発明のチタン酸アルカリの中空体粉末の走査型電子顕微鏡写真である。 本発明の別の製造方法(第1の工程)により得られたチタン酸カリウムの走査型電子顕微鏡写真である。 本発明の別のチタン酸アルカリの中空体粉末の走査型電子顕微鏡写真である。 本発明の更に別のチタン酸アルカリの中空体粉末の走査型電子顕微鏡写真である。

Claims (16)

  1. 棒状、柱状、円柱状、短冊状、粒状及び/又は板状の形状を有するチタン酸アルカリ粒子が結合した中空体の殻からなるチタン酸アルカリの中空体粉末。
  2. 前記棒状、柱状、円柱状、短冊状、粒状及び/又は板状の形状を有するチタン酸アルカリ粒子の形状が、平均短径3μm以上10μm以下、平均アスペクト比が1.5以上10以下である請求項1に記載のチタン酸アルカリの中空体粉末。
  3. 前記棒状、柱状、円柱状、短冊状、粒状及び/又は板状の形状を有するチタン酸アルカリ粒子の平均短径が1μm以上3μm以下、平均長径が3μm以上5μm以下である請求項1に記載のチタン酸アルカリの中空体粉末。
  4. 前記中空体粉末の平均粒子径が20乃至200μmである請求項1乃至3のいずれかに記載の中空体粉末。
  5. 前記中空体粉末が6チタン酸カリウムの単相又は4チタン酸カリウム及び6チタン酸カリウムの混相からなる請求項1乃至4のいずれかに記載の中空体粉末。
  6. 前記中空体粉末の破壊強度が2.0kg/cm以上である請求項1乃至5のいずれかに記載のチタン酸アルカリの中空体粉末。
  7. 請求項1乃至6のいずれかに記載のチタン酸アルカリの中空体粉末を摩擦調整材として含有してなる摩擦材。
  8. 平均粒径が0.1mm以上10mm以下の凝集体又は造粒体のチタン化合物及びカリウム化合物を混合する工程と、該混合により得られた混合物を800℃以上1300℃以下で焼成させてチタン酸カリウムを製造する工程と、得られたチタン酸カリウムを溶媒に分散させスラリーを形成する工程と、該チタン酸カリウムのスラリーを噴霧乾燥させる工程と、該噴霧乾燥させたチタン酸カリウムを熱処理する工程と、を少なくとも含むチタン酸カリウムの中空体粉末の製造方法。
  9. 前記チタン化合物とカリウム化合物を混合する工程を振動ロッドミルにより行う請求項8に記載の中空体粉末の製造方法。
  10. 前記焼成が、昇温速度0.5 ℃から2℃/分、焼成温度1000℃から1300℃でなされることを特徴とする請求の範囲第9項に記載の中空体粉末の製造方法。
  11. 前記焼成が、昇温速度2℃から5℃/分、焼成温度1000℃から1300℃でなされることを特徴とする請求の範囲第9項に記載の中空体粉末の製造方法。
  12. 前記噴霧乾燥させたチタン酸カリウムの熱処理を750℃以上1300℃以下で行う請求項8乃至11のいずれかに記載の中空体粉末の製造方法。
  13. 平均粒径が0.1mm以上10mm以下の凝集体又は造粒体のチタン化合物及びリチウム化合物を混合する工程と、該混合により得られた混合物を800℃以上1450℃以下で焼成させてチタン酸リチウムを製造する工程と、得られたチタン酸リチウムを溶媒に分散させスラリーを形成する工程と、該チタン酸リチウムのスラリーを噴霧乾燥させる工程と、該噴霧乾燥させたチタン酸リチウムを800℃以上1200℃以下で熱処理する工程と、を少なくとも含むチタン酸リチウムの中空体粉末の製造方法。
  14. 平均粒径が0.1mm以上10mm以下の凝集体又は造粒体のチタン化合物及びナトリウム化合物を混合する工程と、該混合により得られた混合物を400℃以上900℃以下で焼成させてチタン酸ナトリウムを製造する工程と、得られたチタン酸リチウムを溶媒に分散させスラリーを形成する工程と、該チタン酸ナトリウムのスラリーを噴霧乾燥させる工程と、該噴霧乾燥させたチタン酸ナトリウムを400℃以上900℃以下で熱処理する工程と、を少なくとも含むチタン酸ナトリウムの中空体粉末の製造方法。
  15. 前記混合する工程を振動ロッドミルにより行う請求項13または14に記載の中空体粉末の製造方法。
  16. 前記中空体粉末が6チタン酸カリウムの単相又は4チタン酸カリウム及び6チタン酸カリウムの混相からなる請求項8乃至12のいずれかに記載の中空体粉末の製造方法。
JP2008248078A 2007-10-15 2008-09-26 チタン酸アルカリの中空体粉末及びその製造方法、並びにこれを含む摩擦材 Pending JP2009114050A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008248078A JP2009114050A (ja) 2007-10-15 2008-09-26 チタン酸アルカリの中空体粉末及びその製造方法、並びにこれを含む摩擦材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007267542 2007-10-15
JP2008248078A JP2009114050A (ja) 2007-10-15 2008-09-26 チタン酸アルカリの中空体粉末及びその製造方法、並びにこれを含む摩擦材

Publications (1)

Publication Number Publication Date
JP2009114050A true JP2009114050A (ja) 2009-05-28

Family

ID=40781616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008248078A Pending JP2009114050A (ja) 2007-10-15 2008-09-26 チタン酸アルカリの中空体粉末及びその製造方法、並びにこれを含む摩擦材

Country Status (1)

Country Link
JP (1) JP2009114050A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068742A (ja) * 2009-09-25 2011-04-07 Akebono Brake Ind Co Ltd 乾式摩擦材
WO2011046122A1 (ja) 2009-10-13 2011-04-21 曙ブレーキ工業株式会社 ビーズ状中空粒子およびその製造方法ならびにこのビーズ状中空粒子を用いた摩擦材
CN103858256A (zh) * 2011-06-22 2014-06-11 科莱恩(加拿大)股份有限公司 改进的碳沉积的碱金属氧阴离子电极材料及其制备方法
JP2015209361A (ja) * 2014-04-28 2015-11-24 東邦チタニウム株式会社 チタン酸カリウムの製造方法
WO2016063688A1 (ja) * 2014-10-24 2016-04-28 大塚化学株式会社 多孔質チタン酸塩化合物粒子及びその製造方法
CN106085356A (zh) * 2015-04-27 2016-11-09 曙制动器工业株式会社 摩擦材料组合物、摩擦材料及其制造方法
JP2017039616A (ja) * 2015-08-18 2017-02-23 曙ブレーキ工業株式会社 中空粒子、該中空粒子の製造方法及び該中空粒子を含む摩擦材
CN108018022A (zh) * 2016-11-01 2018-05-11 曙制动器工业株式会社 摩擦材料
US10479695B2 (en) 2015-09-24 2019-11-19 Otsuka Chemical Co., Ltd. Porous titanate compound particles and method for producing same
WO2020175575A1 (ja) 2019-02-28 2020-09-03 東邦チタニウム株式会社 チタン酸化合物含有粒子、チタン酸化合物含有粒子の製造方法および、摩擦材

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068742A (ja) * 2009-09-25 2011-04-07 Akebono Brake Ind Co Ltd 乾式摩擦材
WO2011046122A1 (ja) 2009-10-13 2011-04-21 曙ブレーキ工業株式会社 ビーズ状中空粒子およびその製造方法ならびにこのビーズ状中空粒子を用いた摩擦材
CN103858256B (zh) * 2011-06-22 2017-04-19 庄信万丰股份有限公司 改进的碳沉积的碱金属氧阴离子电极材料及其制备方法
CN103858256A (zh) * 2011-06-22 2014-06-11 科莱恩(加拿大)股份有限公司 改进的碳沉积的碱金属氧阴离子电极材料及其制备方法
JP2015209361A (ja) * 2014-04-28 2015-11-24 東邦チタニウム株式会社 チタン酸カリウムの製造方法
WO2016063688A1 (ja) * 2014-10-24 2016-04-28 大塚化学株式会社 多孔質チタン酸塩化合物粒子及びその製造方法
JP6030277B2 (ja) * 2014-10-24 2016-11-24 大塚化学株式会社 多孔質チタン酸塩化合物粒子及びその製造方法
US10106464B2 (en) 2014-10-24 2018-10-23 Otsuka Chemical Co., Ltd. Porous titanate compound particles and method for producing same
JPWO2016063688A1 (ja) * 2014-10-24 2017-04-27 大塚化学株式会社 多孔質チタン酸塩化合物粒子及びその製造方法
CN106085356A (zh) * 2015-04-27 2016-11-09 曙制动器工业株式会社 摩擦材料组合物、摩擦材料及其制造方法
EP3130816A1 (en) 2015-04-27 2017-02-15 Akebono Brake Industry Co., Ltd. Friction material composition, friction material and production method thereof
JP2016204575A (ja) * 2015-04-27 2016-12-08 曙ブレーキ工業株式会社 摩擦材組成物および摩擦材とその製造方法
US10323708B2 (en) 2015-04-27 2019-06-18 Akebono Brake Industry Co., Ltd. Friction material composition, friction material and production method thereof
EP3130816B1 (en) 2015-04-27 2019-10-02 Akebono Brake Industry Co., Ltd. Friction material composition, friction material and production method thereof
CN106085356B (zh) * 2015-04-27 2021-06-29 曙制动器工业株式会社 摩擦材料组合物、摩擦材料及其制造方法
EP3130816B2 (en) 2015-04-27 2023-02-15 Akebono Brake Industry Co., Ltd. Friction material composition, friction material and production method thereof
JP2017039616A (ja) * 2015-08-18 2017-02-23 曙ブレーキ工業株式会社 中空粒子、該中空粒子の製造方法及び該中空粒子を含む摩擦材
US10479695B2 (en) 2015-09-24 2019-11-19 Otsuka Chemical Co., Ltd. Porous titanate compound particles and method for producing same
CN108018022A (zh) * 2016-11-01 2018-05-11 曙制动器工业株式会社 摩擦材料
CN108018022B (zh) * 2016-11-01 2020-11-03 曙制动器工业株式会社 摩擦材料
WO2020175575A1 (ja) 2019-02-28 2020-09-03 東邦チタニウム株式会社 チタン酸化合物含有粒子、チタン酸化合物含有粒子の製造方法および、摩擦材

Similar Documents

Publication Publication Date Title
KR101543809B1 (ko) 티탄산 알칼리 및 티탄산 알칼리의 중공체 분말의 제조 방법, 및 이에 의해 수득된 티탄산 알칼리 및 그 중공체 분말, 및 이를 포함하는 마찰재
JP2009114050A (ja) チタン酸アルカリの中空体粉末及びその製造方法、並びにこれを含む摩擦材
JP5205638B2 (ja) チタン酸アルカリの製造方法
EP2130798B1 (en) Potassium titanate, process for production of the same, friction materials, and resin compositions
EP3210941B1 (en) Porous titanate compound particles and method for producing same
JP6329526B2 (ja) チタン酸カリウムの製造方法
MXPA03000411A (es) Titanato potasico magnesico de lepidocrocita, metodo para fabricar el mismo y materiales de friccion.
US8877339B2 (en) Sodium hexatitanate and method for production thereof
JP6706615B2 (ja) チタン酸アルカリおよび摩擦材
JP2009114051A (ja) 中空体粉末及びその製造方法、並びにこれを含む摩擦材
JP2010030813A (ja) チタン酸アルカリ複合粒子及びこれを含む摩擦材
JP2002161265A (ja) ゾノトライト粉末及び摩擦材料組成物
JP2022042350A (ja) ブレーキパッド用複合酸化物粉末、ブレーキパッド用摩擦材組成物、及び、ブレーキパッド用摩擦材