JP2009108681A - Abnormality diagnostic device for exhaust gas sensor - Google Patents

Abnormality diagnostic device for exhaust gas sensor Download PDF

Info

Publication number
JP2009108681A
JP2009108681A JP2007278585A JP2007278585A JP2009108681A JP 2009108681 A JP2009108681 A JP 2009108681A JP 2007278585 A JP2007278585 A JP 2007278585A JP 2007278585 A JP2007278585 A JP 2007278585A JP 2009108681 A JP2009108681 A JP 2009108681A
Authority
JP
Japan
Prior art keywords
intake air
air amount
abnormality diagnosis
fuel cut
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007278585A
Other languages
Japanese (ja)
Other versions
JP4882958B2 (en
Inventor
Tatsunori Kato
辰則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007278585A priority Critical patent/JP4882958B2/en
Publication of JP2009108681A publication Critical patent/JP2009108681A/en
Application granted granted Critical
Publication of JP4882958B2 publication Critical patent/JP4882958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve abnormality detection accuracy of an exhaust gas sensor (hereinafter referred to as "catalyst downstream side sensor") installed on the downstream side of a catalyst for exhaust gas purification. <P>SOLUTION: Response time TL required for passage of output of the catalyst downstream side sensor through a predetermined section during fuel cut is measured and average suction air quantity GAav for a predetermined period is determined. When the average suction air quantity GAav exceeds predetermined quantity, it is determined that dispersion of the response time TL is small, and presence/absence of an abnormality (responsiveness deterioration) of the catalyst downstream side sensor is determined by comparing the response time TL with an abnormality determination value. When the average suction air quantity GAav is lower than the predetermined quantity, it is determined that dispersion of the response time TL is large, the abnormality diagnosis of the catalyst downstream side sensor is prohibited. Thus, even when the abnormality determination value is set stricter than that in conventional cases, determination failure caused by the dispersion of the response time TL can be prevented, so as to improve the abnormality detection accuracy of the catalyst downstream side sensor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の燃料カット中に排出ガス浄化用の触媒の下流側に設置された排出ガスセンサの出力変化特性に基づいて該排出ガスセンサの異常診断を行う排出ガスセンサの異常診断装置に関する発明である。   The present invention relates to an abnormality diagnosis device for an exhaust gas sensor that performs an abnormality diagnosis of the exhaust gas sensor based on an output change characteristic of the exhaust gas sensor installed on the downstream side of the exhaust gas purification catalyst during a fuel cut of the internal combustion engine. is there.

近年、内燃機関を搭載した車両では、排気管に排出ガス浄化用の触媒を設置すると共に、この触媒の上流側と下流側にそれぞれ排出ガスの空燃比又はリッチ/リーンを検出する排出ガスセンサ(空燃比センサ又は酸素センサ)を設置し、これらの排出ガスセンサの出力に基づいて空燃比をフィードバック制御して触媒の排出ガス浄化効率を高めるようにしたものがある。このような排出ガス浄化システムにおいては、排出ガスセンサが劣化して空燃比制御精度が低下した状態(排出ガス浄化効率が低下した状態)で運転が続けられるのを防ぐために、排出ガスセンサの異常診断を行う必要がある。   In recent years, in vehicles equipped with an internal combustion engine, an exhaust gas purification catalyst is installed in an exhaust pipe, and an exhaust gas sensor (empty air / fuel ratio) for detecting the air-fuel ratio or rich / lean of the exhaust gas on the upstream side and downstream side of the catalyst, respectively. In some cases, an air-fuel ratio sensor or an oxygen sensor) is installed, and the exhaust gas purification efficiency of the catalyst is improved by feedback control of the air-fuel ratio based on the output of these exhaust gas sensors. In such an exhaust gas purification system, an abnormality diagnosis of the exhaust gas sensor is performed in order to prevent the operation from being continued in a state where the exhaust gas sensor is deteriorated and the air-fuel ratio control accuracy is lowered (a state where the exhaust gas purification efficiency is lowered). There is a need to do.

一般に、触媒の下流側に設置した排出ガスセンサ(以下「触媒下流側センサ」という)の出力は、触媒の酸素吸蔵量(リーン成分吸蔵量)の影響を受けるため、触媒上流側の空燃比の変化に対して遅れて変化する。   In general, the output of an exhaust gas sensor (hereinafter referred to as “catalyst downstream sensor”) installed on the downstream side of the catalyst is affected by the oxygen storage amount (lean component storage amount) of the catalyst. It changes late.

このような特性を考慮して、特許文献1(特開2001−215205号公報)に記載されているように、内燃機関の燃料カット中や燃料カット終了後(燃料噴射開始後)に触媒下流側センサの故障判定を行うようにしたものがある。このものは、燃料カットを開始して触媒上流側の空燃比がリーン方向に変化してから所定時間が経過したときに、触媒下流側センサの出力が閾値よりもリーン側になったか否かによって触媒下流側センサが正常か否かを判定する。燃料カット中に故障判定が実行されなかった場合には、その後、燃料カットが終了して触媒上流側の空燃比がリッチ方向に変化してから所定時間が経過するまでの間に、触媒下流側センサの出力が閾値よりもリッチ側になったか否かによって触媒下流側センサが正常か否かを判定する。その際、燃料カット終了から所定時間が経過した時点で触媒下流側センサの出力が閾値よりもリーン側の場合には、燃料カット終了からの排出ガスの積算量が所定値未満であれば、触媒下流側センサの故障判定を保留する。これにより、燃料カット終了後の排出ガスの積算量(リッチ成分の供給量)の不足よって触媒下流側の空燃比のリッチ方向への変化が遅れて触媒下流側センサの出力が閾値よりもリーン側になっている状態を、触媒下流側センサの故障と誤判定することを防止するようにしている。
特開2001−215205号公報
Considering such characteristics, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-215205), the downstream side of the catalyst during the fuel cut of the internal combustion engine or after the fuel cut ends (after the fuel injection starts). There is a sensor that performs sensor failure determination. This depends on whether the output of the downstream sensor of the catalyst has become leaner than the threshold when a predetermined time has elapsed since the air-fuel ratio upstream of the catalyst changed in the lean direction after the fuel cut was started. It is determined whether the catalyst downstream sensor is normal. If the failure determination is not performed during the fuel cut, the downstream side of the catalyst is between the end of the fuel cut and the predetermined time after the air-fuel ratio on the upstream side of the catalyst changes in the rich direction. It is determined whether or not the catalyst downstream sensor is normal depending on whether or not the sensor output is richer than the threshold value. At that time, if the output of the downstream sensor of the catalyst is leaner than the threshold when a predetermined time has elapsed from the end of the fuel cut, if the integrated amount of exhaust gas from the end of the fuel cut is less than the predetermined value, the catalyst Hold down the failure judgment of the downstream sensor. As a result, the change of the air-fuel ratio downstream of the catalyst in the rich direction is delayed due to the shortage of the integrated amount of exhaust gas (rich component supply amount) after the fuel cut ends, and the output of the catalyst downstream sensor is leaner than the threshold value. Is prevented from being erroneously determined to be a failure of the catalyst downstream sensor.
JP 2001-215205 A

ところで、本発明者は、内燃機関の燃料カット中に触媒下流側の空燃比がリーン方向に変化する際の触媒下流側センサの出力変化特性(例えば触媒下流側センサの出力が所定区間を通過するのに要した応答時間)を異常判定値と比較して触媒下流側センサの異常(応答性劣化)の有無を判定するシステムを研究しているが、その研究過程で、次のような新たな課題が判明した。   By the way, the present inventor believes that the output change characteristic of the downstream sensor of the catalyst when the air-fuel ratio on the downstream side of the catalyst changes in the lean direction during the fuel cut of the internal combustion engine (for example, the output of the downstream sensor of the catalyst passes a predetermined section). We are researching a system that determines whether there is an abnormality (responsiveness degradation) in the downstream sensor of the catalyst by comparing the response time required for The problem was revealed.

近年、触媒下流側センサの出力変化特性(例えば応答時間)を判定するための異常判定値を従来よりも厳しくして、触媒下流側センサの異常(応答性劣化)の検出精度を向上させることが要求されるようになってきている。しかし、本発明者の実験結果によると、燃料カット中の吸入空気量(排出空気量)が少ない場合に、触媒下流側センサの出力変化特性(例えば応答時間)のばらつき範囲が大きくなる傾向があることが判明した。このため、異常判定値を厳しくすると、燃料カット中の吸入空気量が少なくて触媒下流側センサの出力変化特性のばらつき範囲が大きい場合に、触媒下流側センサの出力変化特性が正常なばらつき範囲であっても異常判定値を越えて正常な触媒下流側センサを異常有りと誤判定する可能性がある。このため、異常判定値をあまり厳しくすることができず、触媒下流側センサの異常検出精度向上の要求を満たすことができないという問題がある。   In recent years, the abnormality determination value for determining the output change characteristic (for example, response time) of the catalyst downstream sensor can be made stricter than before, and the detection accuracy of the catalyst downstream sensor abnormality (responsiveness degradation) can be improved. It is becoming required. However, according to the experiment result of the present inventor, when the intake air amount (exhaust air amount) during fuel cut is small, the variation range of the output change characteristic (for example, response time) of the downstream sensor of the catalyst tends to increase. It has been found. For this reason, if the abnormality determination value is strict, the output change characteristic of the downstream sensor of the catalyst is within the normal fluctuation range when the amount of intake air during the fuel cut is small and the variation range of the output change characteristic of the catalyst downstream sensor is large. Even if there is, there is a possibility that the abnormality determination value is exceeded and a normal catalyst downstream sensor is erroneously determined to be abnormal. For this reason, there is a problem that the abnormality determination value cannot be made very strict and the requirement for improving the abnormality detection accuracy of the catalyst downstream sensor cannot be satisfied.

従来の技術では、上述した燃料カット中の吸入空気量の影響による触媒下流側センサの出力変化特性のばらつきが考慮されていないため、このような燃料カット中の吸入空気量の影響による触媒下流側センサの出力変化特性のばらつきに起因する問題を解決することができない。   In the conventional technology, the variation in the output change characteristic of the downstream sensor of the catalyst due to the influence of the intake air amount during the fuel cut described above is not taken into consideration. Problems due to variations in sensor output change characteristics cannot be solved.

本発明は、このような事情を考慮してなされたものであり、従って本発明の目的は、触媒下流側センサの出力変化特性を判定するための異常判定値を従来よりも厳しくしても、燃料カット中の吸入空気量の影響による触媒下流側センサの出力変化特性のばらつきに起因する異常診断の誤判定を防止することができて、触媒下流側センサの異常検出精度向上の要求を満たすことができる排出ガスセンサの異常診断装置を提供することにある。   The present invention has been made in consideration of such circumstances, and therefore the object of the present invention is to make the abnormality determination value for determining the output change characteristic of the downstream sensor of the catalyst stricter than before, It is possible to prevent misjudgment of abnormality diagnosis due to variations in the output change characteristics of the downstream sensor of the catalyst due to the influence of the intake air amount during fuel cut, and to meet the demand for improving the abnormality detection accuracy of the downstream sensor of the catalyst An object of the present invention is to provide an abnormality diagnosis device for an exhaust gas sensor.

上記目的を達成するために、請求項1に係る発明は、内燃機関の燃料カット中に排出ガス浄化用の触媒の下流側に設置された排出ガスセンサ(以下「触媒下流側センサ」という)の出力変化特性に基づいて該触媒下流側センサの異常診断を行う異常診断手段を備えた排出ガスセンサの異常診断装置において、燃料カット中の吸入空気量が所定量以上であるか否かを吸入空気量判定手段により判定し、燃料カット中の吸入空気量が所定量以上であると判定されたときに、異常診断許可手段によって触媒下流側センサの異常診断を許可するようにしたものである。   In order to achieve the above object, the invention according to claim 1 is directed to an output of an exhaust gas sensor (hereinafter referred to as “catalyst downstream sensor”) installed downstream of an exhaust gas purifying catalyst during fuel cut of an internal combustion engine. In an abnormality diagnosis device for an exhaust gas sensor having an abnormality diagnosis means for diagnosing an abnormality of the downstream sensor of the catalyst based on a change characteristic, an intake air amount determination is made as to whether or not the intake air amount during fuel cut is a predetermined amount or more. The abnormality diagnosis of the catalyst downstream side sensor is permitted by the abnormality diagnosis permission means when it is determined by the means and it is determined that the intake air amount during the fuel cut is greater than or equal to a predetermined amount.

この構成では、燃料カット中の吸入空気量(排出空気量)が所定量以上であると判定されたときには、触媒下流側センサの出力変化特性のばらつき範囲が小さいと判断して、触媒下流側センサの異常診断を許可することができ、一方、燃料カット中の吸入空気量が所定量よりも少ないと判定されたときには、触媒下流側センサの出力変化特性のばらつき範囲が大きいと判断して、触媒下流側センサの異常診断を禁止することができる。これにより、触媒下流側センサの出力変化特性を判定するための異常判定値を従来よりも厳しくしても、燃料カット中の吸入空気量が少なくて触媒下流側センサの出力変化特性のばらつき範囲が大きい場合に、正常な触媒下流側センサを異常有りと誤判定すること未然に防止できるため、異常判定値を従来よりも厳しくして触媒下流側センサの異常検出精度を向上させることができる。   In this configuration, when it is determined that the intake air amount (exhaust air amount) during the fuel cut is greater than or equal to a predetermined amount, it is determined that the variation range of the output change characteristic of the catalyst downstream sensor is small, and the catalyst downstream sensor On the other hand, when it is determined that the intake air amount during fuel cut is smaller than the predetermined amount, it is determined that the variation range of the output change characteristic of the catalyst downstream sensor is large, and the catalyst Abnormal diagnosis of the downstream sensor can be prohibited. As a result, even if the abnormality determination value for determining the output change characteristic of the catalyst downstream sensor is made stricter than before, the amount of intake air during fuel cut is small and the variation range of the output change characteristic of the catalyst downstream sensor is small. If it is larger, it is possible to prevent the normal catalyst downstream sensor from being erroneously determined to be abnormal, and therefore the abnormality determination value can be made stricter than before, and the abnormality detection accuracy of the catalyst downstream sensor can be improved.

この場合、燃料カット中にエアフローメータ等で吸入空気量を検出して、燃料カット中の吸入空気量が所定量以上であるか否かを判定するようにしても良いが、請求項2のように、燃料カット中の内燃機関のアイドル回転速度制御量に基づいて吸入空気量が所定量以上であるか否かを判定するようにしても良い。燃料カット中のアイドル回転速度制御量(例えばアイドルスピードコントロールバルブの開度やスロットルバルブの開度)に応じて吸入空気量が変化するため、アイドル回転速度制御量を用いれば、吸入空気量が所定量以上であるか否かを判定することができる。   In this case, the intake air amount may be detected by an air flow meter or the like during the fuel cut, and it may be determined whether or not the intake air amount during the fuel cut is a predetermined amount or more. In addition, it may be determined whether or not the intake air amount is greater than or equal to a predetermined amount based on an idle rotation speed control amount of the internal combustion engine during fuel cut. Since the intake air amount changes according to the idle speed control amount during fuel cut (for example, the opening of the idle speed control valve or the opening of the throttle valve), the intake air amount can be reduced by using the idle speed control amount. It can be determined whether or not it is a fixed amount or more.

また、請求項3のように、燃料カット中の内燃機関の回転速度に基づいて吸入空気量が所定量以上であるか否かを判定するようにしても良い。燃料カット中の内燃機関の回転速度に応じて吸入空気量が変化するため、内燃機関の回転速度を用いれば、吸入空気量が所定量以上であるか否かを判定することができる。   Further, as in claim 3, it may be determined whether the intake air amount is a predetermined amount or more based on the rotational speed of the internal combustion engine during fuel cut. Since the intake air amount changes according to the rotational speed of the internal combustion engine during fuel cut, it is possible to determine whether or not the intake air amount is greater than or equal to a predetermined amount by using the rotational speed of the internal combustion engine.

更に、請求項4のように、燃料カット中の内燃機関の負荷に基づいて吸入空気量が所定量以上であるか否かを判定するようにしても良い。燃料カット中の吸入空気量に応じて内燃機関の負荷(例えば吸気圧)が変化するため、内燃機関の負荷を用いれば、吸入空気量が所定量以上であるか否かを判定することができる。   Further, as in claim 4, it may be determined whether the intake air amount is a predetermined amount or more based on the load of the internal combustion engine during fuel cut. Since the load (for example, intake pressure) of the internal combustion engine changes according to the intake air amount during the fuel cut, it can be determined whether the intake air amount is equal to or greater than a predetermined amount by using the load of the internal combustion engine. .

また、請求項5のように、燃料カット中の車速に基づいて吸入空気量が所定量以上であるか否かを判定するようにしても良い。燃料カット中の車速に応じて内燃機関の回転速度が変化して吸入空気量が変化するため、車速を用いれば、吸入空気量が所定量以上であるか否かを判定することができる。尚、車速が同じでも変速機の変速段によって内燃機関の回転速度が変化して吸入空気量が変化するため、車速と変速段とに基づいて吸入空気量が所定量以上であるか否かを判定するようにしても良い。   Further, as in claim 5, it may be determined whether or not the intake air amount is a predetermined amount or more based on the vehicle speed during fuel cut. Since the rotational speed of the internal combustion engine changes in accordance with the vehicle speed during fuel cut and the intake air amount changes, using the vehicle speed makes it possible to determine whether the intake air amount is greater than or equal to a predetermined amount. Even if the vehicle speed is the same, the rotational speed of the internal combustion engine changes due to the shift speed of the transmission and the intake air amount changes. Therefore, whether or not the intake air amount is greater than or equal to a predetermined amount based on the vehicle speed and the shift speed is determined. It may be determined.

本発明は、燃料カット中の全期間(燃料カット開始から燃料カット終了までの期間)又は所定期間(例えば燃料カット開始から触媒下流側センサの出力が所定値に変化するまでの期間)において常に吸入空気量が所定量以上であると判定されたときに触媒下流側センサの異常診断を許可するようにしても良いが、請求項6のように、燃料カット中の全期間における吸入空気量の平均値または積算値が所定量以上であると判定されたときに触媒下流側センサの異常診断を許可するようにしても良い。   The present invention always inhales during the entire period of fuel cut (a period from the start of fuel cut to the end of fuel cut) or a predetermined period (for example, a period from the start of fuel cut until the output of the catalyst downstream sensor changes to a predetermined value). The abnormality diagnosis of the downstream sensor of the catalyst may be permitted when it is determined that the air amount is equal to or greater than the predetermined amount. However, as in claim 6, the average intake air amount over the entire period during fuel cut An abnormality diagnosis of the catalyst downstream sensor may be permitted when it is determined that the value or the integrated value is greater than or equal to a predetermined amount.

燃料カット中の全期間における吸入空気量の平均値または積算値が所定量以上であれば、燃料カット中に触媒下流側センサの出力がリーン方向に変化する際の吸入空気量が所定量以上で、触媒下流側センサの出力がリーン方向に変化する際の出力変化特性のばらつき範囲が小さいと判断できるため、燃料カット中の全期間における吸入空気量の平均値または積算値が所定量以上である判定された場合に、触媒下流側センサの異常診断を許可するようにすれば、触媒下流側センサの出力変化特性のばらつき範囲が小さいときに、触媒下流側センサの異常診断を許可するようにできる。   If the average value or integrated value of the intake air amount over the entire period during the fuel cut is greater than or equal to the predetermined amount, the intake air amount when the output of the catalyst downstream sensor changes in the lean direction during the fuel cut is greater than or equal to the predetermined amount. Since it can be determined that the variation range of the output change characteristic when the output of the downstream sensor of the catalyst changes in the lean direction is small, the average value or integrated value of the intake air amount over the entire period during the fuel cut is greater than or equal to the predetermined amount If it is determined that the abnormality diagnosis of the catalyst downstream sensor is permitted, the abnormality diagnosis of the catalyst downstream sensor can be permitted when the variation range of the output change characteristic of the catalyst downstream sensor is small. .

或は、請求項7のように、燃料カット開始から触媒下流側センサの出力が所定値に変化するまでの期間における吸入空気量の平均値または積算値が所定量以上であると判定されたときに触媒下流側センサの異常診断を許可するようにしても良い。   Alternatively, as in claim 7, when it is determined that the average value or integrated value of the intake air amount during the period from the start of fuel cut until the output of the catalyst downstream sensor changes to a predetermined value is greater than or equal to the predetermined amount. In addition, abnormality diagnosis of the catalyst downstream sensor may be permitted.

燃料カット開始から触媒下流側センサの出力が所定値に変化するまでの期間における吸入空気量の平均値または積算値が所定量以上であれば、燃料カット中に触媒下流側センサの出力がリーン方向に変化する際の吸入空気量が所定量以上で、触媒下流側センサの出力がリーン方向に変化する際の出力変化特性のばらつき範囲が小さいと判断できるため、燃料カット開始から触媒下流側センサの出力が所定値に変化するまでの期間における吸入空気量の平均値または積算値が所定量以上であると判定された場合に、触媒下流側センサの異常診断を許可するようにすれば、触媒下流側センサの出力変化特性のばらつき範囲が小さいときに、触媒下流側センサの異常診断を許可するようにできる。   If the average or integrated value of the intake air amount during the period from the start of fuel cut until the output of the catalyst downstream sensor changes to a predetermined value, the output of the catalyst downstream sensor during the fuel cut is in the lean direction It can be determined that the amount of intake air at the time of changing to a predetermined amount or more and the variation range of the output change characteristic when the output of the catalyst downstream sensor changes in the lean direction is small. If it is determined that the average value or integrated value of the intake air amount during the period until the output changes to the predetermined value is greater than or equal to the predetermined amount, the abnormality diagnosis of the downstream sensor of the catalyst is permitted. When the variation range of the output change characteristic of the side sensor is small, abnormality diagnosis of the downstream sensor of the catalyst can be permitted.

また、請求項8のように、燃料カット開始時の吸入空気量が所定量以上であると判定されたときに触媒下流側センサの異常診断を許可するようにしても良い。或は、請求項9のように、燃料カット中に触媒下流側センサの出力が所定値に変化したときの吸入空気量が所定量以上であると判定されたときに触媒下流側センサの異常診断を許可するようにしても良い。このようにすれば、吸入空気量の平均値又はそれを判定するための情報(アイドル回転速度制御量等の平均値)を算出する処理を省略して制御回路の演算負荷を軽減しながら、燃料カット中の吸入空気量を判定して、触媒下流側センサの出力変化特性のばらつき範囲が小さいときに、触媒下流側センサの異常診断を許可するようにできる。   Further, the abnormality diagnosis of the catalyst downstream side sensor may be permitted when it is determined that the intake air amount at the start of fuel cut is equal to or greater than a predetermined amount. Alternatively, as described in claim 9, when it is determined that the intake air amount when the output of the catalyst downstream sensor changes to a predetermined value during the fuel cut is greater than or equal to the predetermined value, the abnormality diagnosis of the catalyst downstream sensor is performed. May be allowed. In this way, the process of calculating the average value of the intake air amount or the information for determining it (the average value of the idle rotation speed control amount, etc.) is omitted, and the calculation load of the control circuit is reduced, and the fuel is reduced. It is possible to determine the intake air amount during the cut and permit abnormality diagnosis of the downstream sensor of the catalyst when the variation range of the output change characteristic of the downstream sensor of the catalyst is small.

以下、本発明を実施するための最良の形態を具体化した幾つかの実施例を説明する。   Several embodiments embodying the best mode for carrying out the present invention will be described below.

本発明の実施例1を図1乃至図3に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関である例えば直列4気筒のエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14と、吸気温を検出する吸気温センサ42とが設けられている。この吸気温センサ42は、エアフローメータ14と一体化したタイプのものを用いても良いし、エアフローメータ14とは別体で設けたタイプのものを用いても良い。エアフローメータ14の下流側には、モータ等によって開度調節されるスロットルバルブ15と、このスロットルバルブ15の開度(スロットル開度)を検出するスロットル開度センサ16とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of an in-line four-cylinder engine 11 which is an internal combustion engine, for example. An intake air temperature sensor 42 for detection is provided. As the intake air temperature sensor 42, a type integrated with the air flow meter 14 may be used, or a type provided separately from the air flow meter 14 may be used. On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by a motor or the like, and a throttle opening sensor 16 for detecting the opening (throttle opening) of the throttle valve 15 are provided.

更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。エンジン運転中は、燃料タンク21内の燃料が燃料ポンプ22によりデリバリパイプ23に送られ、各気筒の噴射タイミング毎に各気筒の燃料噴射弁20から燃料が噴射される。デリバリパイプ23には、燃料温度(燃温)を検出する燃温センサ24が取り付けられている。   Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. During engine operation, the fuel in the fuel tank 21 is sent to the delivery pipe 23 by the fuel pump 22 and fuel is injected from the fuel injection valve 20 of each cylinder at each injection timing of each cylinder. A fuel temperature sensor 24 for detecting the fuel temperature (fuel temperature) is attached to the delivery pipe 23.

また、エンジン11には、吸気バルブ25と排気バルブ26のバルブタイミング(開閉タイミング)をそれぞれ変化させる可変バルブタイミング機構27,28が設けられている。更に、エンジン11には、吸気カム軸29と排気カム軸30の回転に同期してカム角信号を出力する吸気カム角センサ31と排気カム角センサ32が設けられていると共に、エンジン11のクランク軸の回転に同期して所定クランク角毎(例えば30℃A毎)にクランク角信号のパルスを出力するクランク角センサ33が設けられている。   Further, the engine 11 is provided with variable valve timing mechanisms 27 and 28 for changing the valve timing (opening / closing timing) of the intake valve 25 and the exhaust valve 26, respectively. Further, the engine 11 is provided with an intake cam angle sensor 31 and an exhaust cam angle sensor 32 that output a cam angle signal in synchronization with the rotation of the intake cam shaft 29 and the exhaust cam shaft 30, and the crank of the engine 11. A crank angle sensor 33 that outputs a pulse of a crank angle signal at every predetermined crank angle (for example, every 30 ° C. A) in synchronization with the rotation of the shaft is provided.

一方、エンジン11の各気筒の排気マニホールド35が合流する排気合流部36には、排出ガスの空燃比を検出する空燃比センサ37が設置され、この空燃比センサ37の下流側に、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒38が設けられている。更に、この触媒38の下流側に、触媒38を通過した排出ガスのリッチ/リーンを検出する酸素センサ(以下「触媒下流側センサ」という)41が設置されている。また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ43が取り付けられている。   On the other hand, an air-fuel ratio sensor 37 for detecting the air-fuel ratio of the exhaust gas is installed in the exhaust gas confluence section 36 where the exhaust manifolds 35 of the cylinders of the engine 11 merge. A catalyst 38 such as a three-way catalyst for purifying CO, HC, NOx, etc. is provided. Further, an oxygen sensor (hereinafter referred to as “catalyst downstream sensor”) 41 that detects the rich / lean of the exhaust gas that has passed through the catalyst 38 is installed on the downstream side of the catalyst 38. A cooling water temperature sensor 43 for detecting the cooling water temperature is attached to the cylinder block of the engine 11.

上述した各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)40に入力される。このECU40は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて各気筒の燃料噴射弁20の燃料噴射量や点火時期を制御する。   Outputs of the various sensors described above are input to an engine control circuit (hereinafter referred to as “ECU”) 40. The ECU 40 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel of the fuel injection valve 20 of each cylinder according to the engine operating state. Control injection quantity and ignition timing.

また、ECU40は、後述する図2の触媒下流側センサ異常診断ルーチンを実行することで、次のようにして触媒下流側センサ41の異常診断を実施する。図3のタイムチャートに示すように、エンジン11の燃料カット中に触媒下流側の空燃比がリーン方向に変化して触媒下流側センサ41の出力がリーン方向に変化する際に、触媒下流側センサ41の出力が所定区間(上側閾値から下側閾値までの区間)を通過するのに要した時間を応答時間TL(出力変化特性)として計測する。   Further, the ECU 40 performs an abnormality diagnosis of the catalyst downstream side sensor 41 as follows by executing a catalyst downstream side sensor abnormality diagnosis routine of FIG. 2 described later. As shown in the time chart of FIG. 3, when the air-fuel ratio on the downstream side of the catalyst changes in the lean direction and the output of the catalyst downstream side sensor 41 changes in the lean direction during the fuel cut of the engine 11, the catalyst downstream side sensor The time required for 41 outputs to pass through a predetermined section (section from the upper threshold value to the lower threshold value) is measured as a response time TL (output change characteristic).

また、燃料カット開始から触媒下流側センサ41の出力が所定値(例えば下側閾値)に低下するまでの期間における平均吸入空気量GAav(エアフローメータ14で検出した吸入空気量の平均値)を求める。尚、燃料カット中の全期間(燃料カット開始から燃料カット終了までの期間)における平均吸入空気量GAavを求めるようにしても良い。   Further, an average intake air amount GAav (an average value of the intake air amount detected by the air flow meter 14) in a period from the start of the fuel cut until the output of the catalyst downstream sensor 41 decreases to a predetermined value (for example, a lower threshold value) is obtained. . Note that the average intake air amount GAav in the entire period during the fuel cut (the period from the start of the fuel cut to the end of the fuel cut) may be obtained.

この平均吸入空気量GAavが所定量以上であるか否かを判定し、平均吸入空気量GAavが所定量以上であると判定された場合には、燃料カット中に触媒下流側センサ41の出力がリーン方向に変化する際の吸入空気量(排出空気量)が所定量以上で、触媒下流側センサ41の出力がリーン方向に変化する際の応答時間TLのばらつき範囲が小さいと判断して、触媒下流側センサ41の異常診断を許可する。この機能が特許請求の範囲でいう異常診断許可手段に相当する。   It is determined whether or not the average intake air amount GAav is greater than or equal to a predetermined amount. If it is determined that the average intake air amount GAav is greater than or equal to the predetermined amount, the output of the catalyst downstream side sensor 41 is output during fuel cut. It is determined that the intake air amount (exhaust air amount) when changing in the lean direction is equal to or greater than a predetermined amount, and the variation range of the response time TL when the output of the catalyst downstream sensor 41 changes in the lean direction is small. Abnormal diagnosis of the downstream sensor 41 is permitted. This function corresponds to abnormality diagnosis permission means in the claims.

この場合、触媒下流側センサ41の応答時間TLが異常判定値よりも大きいか否かを判定し、触媒下流側センサ41の応答時間TLが異常判定値よりも大きいと判定された場合には、触媒下流側センサ41の異常(応答性劣化)有りと判定する。これに対して、触媒下流側センサ41の応答時間TLが異常判定値以下であると判定された場合には、触媒下流側センサ41の異常無し(正常)と判定する。   In this case, it is determined whether or not the response time TL of the catalyst downstream side sensor 41 is larger than the abnormality determination value, and when it is determined that the response time TL of the catalyst downstream side sensor 41 is larger than the abnormality determination value, It is determined that there is an abnormality (responsiveness deterioration) in the catalyst downstream side sensor 41. On the other hand, when it is determined that the response time TL of the catalyst downstream sensor 41 is equal to or less than the abnormality determination value, it is determined that the catalyst downstream sensor 41 is not abnormal (normal).

一方、平均吸入空気量GAavが所定量よりも小さいと判定された場合には、触媒下流側センサ41の出力がリーン方向に変化する際の応答時間TLのばらつき範囲が大きいと判断して、触媒下流側センサ41の異常診断を禁止する。これにより、燃料カット中の吸入空気量が少なくて触媒下流側センサ41の応答時間TLのばらつき範囲が大きい場合に、正常な触媒下流側センサ41を異常有りと誤判定すること未然に防止する。   On the other hand, if it is determined that the average intake air amount GAav is smaller than the predetermined amount, it is determined that the variation range of the response time TL when the output of the catalyst downstream sensor 41 changes in the lean direction is large, and the catalyst Abnormal diagnosis of the downstream sensor 41 is prohibited. Thus, when the amount of intake air during fuel cut is small and the variation range of the response time TL of the catalyst downstream sensor 41 is large, it is possible to prevent the normal catalyst downstream sensor 41 from being erroneously determined to be abnormal.

以上説明した本実施例1の触媒下流側センサ41の異常診断は、ECU40によって図2の触媒下流側センサ異常診断ルーチンに従って実行される。以下、このルーチンの処理内容を説明する。   The abnormality diagnosis of the catalyst downstream sensor 41 of the first embodiment described above is executed by the ECU 40 according to the catalyst downstream sensor abnormality diagnosis routine of FIG. The processing contents of this routine will be described below.

図2に示す触媒下流側センサ異常診断ルーチンは、ECU40の電源オン中に所定周期で実行され、特許請求の範囲でいう異常診断手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、異常診断実行条件が成立しているか否かを、例えば、次の(1) 〜(3) の条件によって判定する。
(1) 触媒下流側センサ41が活性状態であること
(2) 冷却水温が所定値以上であること
(3) 他の異常が発生していないこと
The catalyst downstream side sensor abnormality diagnosis routine shown in FIG. 2 is executed at a predetermined cycle while the ECU 40 is turned on, and serves as abnormality diagnosis means in the claims. When this routine is started, first, in step 101, it is determined whether or not an abnormality diagnosis execution condition is satisfied based on, for example, the following conditions (1) to (3).
(1) The catalyst downstream sensor 41 is in an active state.
(2) Cooling water temperature is higher than the specified value
(3) No other abnormality has occurred

これら(1) 〜(3) の条件を全て満たせば、異常診断実行条件が成立するが、上記(1) 〜(3) の条件のうちのいずれか1つでも満たさない条件があれば、異常診断実行条件が不成立となる。
このステップ101で、異常診断実行条件が不成立であると判定された場合には、ステップ102以降の処理を行うことなく、本ルーチンを終了する。
If all of these conditions (1) to (3) are satisfied, the abnormality diagnosis execution condition is satisfied, but if any one of the above conditions (1) to (3) is not satisfied, The diagnosis execution condition is not satisfied.
If it is determined in step 101 that the abnormality diagnosis execution condition is not satisfied, this routine is terminated without performing the processing from step 102 onward.

一方、上記ステップ101で、異常診断実行条件が成立していると判定された場合には、ステップ102以降の処理を次のようにして行う。まず、ステップ102で、燃料カットの継続時間が所定時間(例えば5sec)を越えたか否かを判定し、燃料カットの継続時間が所定時間を越えたと判定されたときに、ステップ103に進み、燃料カット開始時の触媒下流側センサ41の出力が所定電圧よりも高いか否かを判定する。この所定電圧は、触媒下流側センサ41の応答時間TLを計測する所定区間の上側閾値(例えば0.55V)よりも高い値に設定されている。   On the other hand, if it is determined in step 101 that the abnormality diagnosis execution condition is satisfied, the processing after step 102 is performed as follows. First, in step 102, it is determined whether or not the fuel cut duration exceeds a predetermined time (for example, 5 seconds). When it is determined that the fuel cut duration exceeds a predetermined time, the flow proceeds to step 103, where It is determined whether the output of the catalyst downstream sensor 41 at the start of cutting is higher than a predetermined voltage. This predetermined voltage is set to a value higher than an upper threshold value (for example, 0.55 V) in a predetermined section in which the response time TL of the catalyst downstream side sensor 41 is measured.

このステップ103で、燃料カット開始時の触媒下流側センサ41の出力が所定電圧以下であると判定された場合には、燃料カット開始時の触媒下流側センサ41の出力が既に触媒下流側センサ41の応答時間TLを計測する所定区間の上側閾値に近いため、触媒38による触媒下流側センサ41の出力変化の遅れが応答時間TLに及ぼす影響が大きいと判断して、ステップ104以降の処理を行うことなく、本ルーチンを終了する。   If it is determined in step 103 that the output of the catalyst downstream sensor 41 at the start of fuel cut is equal to or lower than the predetermined voltage, the output of the catalyst downstream sensor 41 at the start of fuel cut has already been output. Since the response time TL is close to the upper threshold value of the predetermined interval, it is determined that the delay in the output change of the catalyst downstream sensor 41 by the catalyst 38 has a large effect on the response time TL, and the processing from step 104 is performed. This routine is terminated without any processing.

一方、上記ステップ103で、燃料カット開始時の触媒下流側センサ41の出力が所定電圧よりも高いと判定れた場合には、ステップ104に進み、燃料カット中に触媒下流側の空燃比がリーン方向に変化して触媒下流側センサ41の出力がリーン方向に変化する際に、触媒下流側センサ41の出力が所定区間を通過するのに要した時間、具体的には、触媒下流側センサ41の出力が上側閾値(例えば0.55V)から下側閾値(例えば0.3V)まで低下するのに要した時間を応答時間TLとして計測する。   On the other hand, if it is determined in step 103 that the output of the catalyst downstream side sensor 41 at the start of fuel cut is higher than a predetermined voltage, the routine proceeds to step 104 where the air-fuel ratio on the downstream side of the catalyst is lean during the fuel cut. When the output of the catalyst downstream sensor 41 changes in the direction and changes in the lean direction, the time required for the output of the catalyst downstream sensor 41 to pass through the predetermined section, specifically, the catalyst downstream sensor 41 Is measured as the response time TL for the time required for the output to decrease from the upper threshold (for example, 0.55 V) to the lower threshold (for example, 0.3 V).

この後、ステップ105に進み、燃料カット開始から触媒下流側センサ41の出力が所定値(例えば下側閾値)に低下するまでの期間における平均吸入空気量GAav(エアフローメータ14で検出した吸入空気量の平均値)を求める。尚、燃料カット中の全期間(燃料カット開始から燃料カット終了までの期間)における平均吸入空気量GAavを求めるようにしても良い。また、吸入空気量の積算値でもよい。   Thereafter, the process proceeds to step 105, where the average intake air amount GAav (intake air amount detected by the air flow meter 14) from the start of fuel cut until the output of the catalyst downstream sensor 41 decreases to a predetermined value (for example, the lower threshold value). Average value). Note that the average intake air amount GAav in the entire period during the fuel cut (the period from the start of the fuel cut to the end of the fuel cut) may be obtained. Further, the integrated value of the intake air amount may be used.

この後、ステップ106に進み、平均吸入空気量GAavが所定量以上であるか否かを判定する。これらのステップ105、106の処理が特許請求の範囲でいう吸入空気量判定手段としての役割を果たす。   Thereafter, the routine proceeds to step 106, where it is determined whether or not the average intake air amount GAav is equal to or greater than a predetermined amount. The processing of these steps 105 and 106 serves as intake air amount determination means in the claims.

このステップ106で、平均吸入空気量GAavが所定量以上であると判定された場合には、燃料カット中に触媒下流側センサ41の出力がリーン方向に変化する際の吸入空気量(排出空気量)が所定量以上で、触媒下流側センサ41の出力がリーン方向に変化する際の応答時間TLのばらつき範囲が小さいと判断して、触媒下流側センサ41の異常診断を許可する。この機能が特許請求の範囲でいう異常診断許可手段に相当する。   If it is determined in step 106 that the average intake air amount GAav is greater than or equal to a predetermined amount, the intake air amount (exhaust air amount) when the output of the catalyst downstream sensor 41 changes in the lean direction during fuel cut. ) Is equal to or greater than a predetermined amount, and the variation range of the response time TL when the output of the catalyst downstream sensor 41 changes in the lean direction is determined to be small, and abnormality diagnosis of the catalyst downstream sensor 41 is permitted. This function corresponds to abnormality diagnosis permission means in the claims.

この後、ステップ107に進み、触媒下流側センサ41の応答時間TLが異常判定値よりも大きいか否かを判定する。その結果、触媒下流側センサ41の応答時間TLが異常判定値よりも大きいと判定された場合には、ステップ108に進み、触媒下流側センサ41の異常(応答性劣化)有りと判定して異常フラグをONにセットし、運転席のインストルメントパネルに設けられた警告ランプ(図示せず)を点灯したり、或は、運転席のインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード等)をECU40のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリ(ECU40の電源オフ中でも記憶データを保持する書き換え可能なメモリ)に記憶して、本ルーチンを終了する。   Thereafter, the routine proceeds to step 107, where it is determined whether or not the response time TL of the catalyst downstream side sensor 41 is larger than the abnormality determination value. As a result, when it is determined that the response time TL of the catalyst downstream side sensor 41 is larger than the abnormality determination value, the process proceeds to step 108, where it is determined that there is an abnormality (responsiveness deterioration) of the catalyst downstream side sensor 41. Set the flag to ON and turn on the warning lamp (not shown) on the instrument panel of the driver's seat or display the warning on the warning display section (not shown) of the instrument panel of the driver's seat Then, a warning is given to the driver, and the abnormality information (abnormality code or the like) is rewritable nonvolatile memory such as a backup RAM (not shown) of the ECU 40 (a rewritable memory that holds stored data even when the ECU 40 is powered off). ) And finish this routine.

これに対して、上記ステップ107で、触媒下流側センサ41の応答時間TLが異常判定値以下であると判定された場合には、ステップ109に進み、触媒下流側センサ41の異常無し(正常)と判定して異常フラグをOFFに維持して、本ルーチンを終了する。   On the other hand, when it is determined in step 107 that the response time TL of the catalyst downstream sensor 41 is equal to or less than the abnormality determination value, the process proceeds to step 109, and there is no abnormality (normal) in the catalyst downstream sensor 41. Is determined, the abnormality flag is kept OFF, and this routine is terminated.

一方、上記ステップ106で、平均吸入空気量GAavが所定量よりも小さいと判定された場合には、触媒下流側センサ41の出力がリーン方向に変化する際の応答時間TLのばらつき範囲が大きいと判断して、ステップ107以降の処理を行うことなく、本ルーチンを終了することで、触媒下流側センサ41の異常診断を禁止する。   On the other hand, if it is determined in step 106 that the average intake air amount GAav is smaller than the predetermined amount, the variation range of the response time TL when the output of the catalyst downstream sensor 41 changes in the lean direction is large. Determination is made, and the abnormality diagnosis of the catalyst downstream sensor 41 is prohibited by ending this routine without performing the processing from step 107 onward.

以上説明した本実施例1の触媒下流側センサ41の異常診断の実行例を図3のタイムチャートを用いて説明する。エンジン11の燃料カット中に、燃料カットが開始された時点t0 から所定時間が経過した時点t1 で、燃料カット開始時の触媒下流側センサ41の出力が所定電圧よりも高いか否かを判定し、燃料カット開始時の触媒下流側センサ41の出力が所定電圧よりも高い場合には、燃料カット中に触媒下流側センサ41の出力がリーン方向に変化する際に、触媒下流側センサ41の出力が上側閾値を通過した時点t2 から下側閾値を通過した時点t3 までに要した時間を応答時間TLとして計測する。   An execution example of the abnormality diagnosis of the catalyst downstream sensor 41 of the first embodiment described above will be described with reference to the time chart of FIG. During the fuel cut of the engine 11, at a time t1 when a predetermined time has elapsed from the time t0 when the fuel cut is started, it is determined whether or not the output of the catalyst downstream sensor 41 at the start of the fuel cut is higher than a predetermined voltage. When the output of the catalyst downstream sensor 41 at the start of the fuel cut is higher than a predetermined voltage, the output of the catalyst downstream sensor 41 changes when the output of the catalyst downstream sensor 41 changes in the lean direction during the fuel cut. The time required from the time t2 when the current passes the upper threshold to the time t3 when the lower threshold is passed is measured as the response time TL.

更に、燃料カット開始時点t0 から触媒下流側センサ41の出力が下側閾値に低下した時点t3 までの期間における平均吸入空気量GAavを求め、この平均吸入空気量GAavが所定量以上の場合には、触媒下流側センサ41の応答時間TLのばらつき範囲が小さいと判断して、触媒下流側センサ41の異常診断を許可し、触媒下流側センサ41の応答時間TLが異常判定値よりも大きいか否かを判定する。その結果、触媒下流側センサ41の応答時間TLが異常判定値よりも大きいと判定された場合には、触媒下流側センサ41の異常(応答性劣化)有りと判定して異常フラグをONにセットする。これに対して、触媒下流側センサ41の応答時間TLが異常判定値以下であると判定された場合には、触媒下流側センサ41の異常無し(正常)と判定して異常フラグをOFFに維持する。   Further, an average intake air amount GAav in a period from the fuel cut start time t0 to the time t3 when the output of the catalyst downstream sensor 41 decreases to the lower threshold is obtained, and when this average intake air amount GAav is equal to or greater than a predetermined amount. Then, it is determined that the variation range of the response time TL of the catalyst downstream sensor 41 is small, the abnormality diagnosis of the catalyst downstream sensor 41 is permitted, and whether or not the response time TL of the catalyst downstream sensor 41 is larger than the abnormality determination value. Determine whether. As a result, when it is determined that the response time TL of the catalyst downstream sensor 41 is longer than the abnormality determination value, it is determined that the catalyst downstream sensor 41 is abnormal (responsiveness deterioration) and the abnormality flag is set to ON. To do. In contrast, if it is determined that the response time TL of the catalyst downstream sensor 41 is equal to or less than the abnormality determination value, it is determined that the catalyst downstream sensor 41 is not abnormal (normal) and the abnormality flag is kept OFF. To do.

一方、平均吸入空気量GAavが所定量よりも小さいと判定された場合には、触媒下流側センサ41の応答時間TLのばらつき範囲が大きいと判断して、触媒下流側センサ41の異常診断を禁止する。これにより、触媒下流側センサ41の応答時間TLを判定するための異常判定値を従来よりも厳しくしても、燃料カット中の吸入空気量が少なくて触媒下流側センサ41の応答時間TLのばらつき範囲が大きい場合に、正常な触媒下流側センサ41を異常有りと誤判定すること未然に防止できるため、異常判定値を従来よりも厳しくして触媒下流側センサ41の異常検出精度を向上させることができる。   On the other hand, when it is determined that the average intake air amount GAav is smaller than the predetermined amount, it is determined that the variation range of the response time TL of the catalyst downstream sensor 41 is large, and abnormality diagnosis of the catalyst downstream sensor 41 is prohibited. To do. Thereby, even if the abnormality determination value for determining the response time TL of the catalyst downstream sensor 41 is stricter than before, the intake air amount during fuel cut is small and the response time TL of the catalyst downstream sensor 41 varies. When the range is large, it is possible to prevent the normal catalyst downstream sensor 41 from erroneously determining that there is an abnormality. Therefore, the abnormality determination value is made stricter than before and the abnormality detection accuracy of the catalyst downstream sensor 41 is improved. Can do.

尚、上記実施例1では、燃料カット中の所定期間(燃料カット開始から触媒下流側センサ41の出力が所定値に低下するまでの期間)又は全期間(燃料カット開始から燃料カット終了までの期間)における平均吸入空気量が所定量以上であると判定されたときに触媒下流側センサ41の異常診断を許可するようにしたが、燃料カット中の所定期間又は全期間において常に吸入空気量が所定量以上であると判定されたときに触媒下流側センサ41の異常診断を許可するようにしても良い。   In the first embodiment, a predetermined period during the fuel cut (a period from the start of the fuel cut until the output of the catalyst downstream sensor 41 decreases to a predetermined value) or an entire period (a period from the start of the fuel cut to the end of the fuel cut). When the average intake air amount is determined to be equal to or greater than the predetermined amount, the abnormality diagnosis of the catalyst downstream sensor 41 is permitted. However, the intake air amount is always constant during the predetermined period or the entire period during the fuel cut. An abnormality diagnosis of the catalyst downstream side sensor 41 may be permitted when it is determined that the amount is equal to or greater than the fixed amount.

次に、図4を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分は説明を簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIG. However, the description of the substantially same parts as those of the first embodiment will be simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、図4の触媒下流側センサ異常診断ルーチンを実行することで、燃料カット開始時にエアフローメータ14で検出した吸入空気量GAが所定量以上であると判定された場合に、触媒下流側センサ41の応答時間TLのばらつき範囲が小さいと判断して、触媒下流側センサ41の異常診断を許可するようにしている。   In the second embodiment, when the catalyst downstream side sensor abnormality diagnosis routine of FIG. 4 is executed, when it is determined that the intake air amount GA detected by the air flow meter 14 at the start of fuel cut is equal to or greater than a predetermined amount, the catalyst It is determined that the variation range of the response time TL of the downstream side sensor 41 is small, and abnormality diagnosis of the catalyst downstream side sensor 41 is permitted.

図4のルーチンは、前記実施例1で説明した図2のルーチンのステップ105、106処理を、それぞれステップ105a、106aの処理に変更したものであり、それ以外の各ステップの処理は図2と同じである。   The routine of FIG. 4 is obtained by changing steps 105 and 106 of the routine of FIG. 2 described in the first embodiment to steps 105a and 106a, respectively. The same.

以下、図4の触媒下流側センサ異常診断ルーチンの処理内容を説明する。本ルーチンでは、異常診断実行条件が成立していれば、燃料カットの継続時間が所定時間を越えたときに、燃料カット開始時の触媒下流側センサ41の出力が所定電圧よりも高いか否かを判定する(ステップ101〜103)。   Hereinafter, the processing content of the catalyst downstream side sensor abnormality diagnosis routine of FIG. 4 will be described. In this routine, if the abnormality diagnosis execution condition is satisfied, whether or not the output of the catalyst downstream side sensor 41 at the start of the fuel cut is higher than a predetermined voltage when the duration of the fuel cut exceeds a predetermined time. Is determined (steps 101 to 103).

燃料カット開始時の触媒下流側センサ41の出力が所定電圧よりも高いと判定れた場合には、ステップ104で、触媒下流側センサ41の出力が所定区間(上側閾値から下側閾値までの区間)を通過するのに要した時間を応答時間TLとして計測した後、ステップ105aに進み、燃料カット開始時にエアフローメータ14で検出した吸入空気量GAを読み込む。   If it is determined that the output of the catalyst downstream sensor 41 at the start of fuel cut is higher than the predetermined voltage, in step 104, the output of the catalyst downstream sensor 41 is a predetermined interval (interval from the upper threshold value to the lower threshold value). ) Is measured as the response time TL, and then the process proceeds to step 105a, where the intake air amount GA detected by the air flow meter 14 at the start of fuel cut is read.

この後、ステップ106aに進み、燃料カット開始時の吸入空気量GAが所定量以上であるか否かを判定し、燃料カット開始時の吸入空気量GAが所定量以上であると判定された場合には、触媒下流側センサ41の出力がリーン方向に変化する際の応答時間TLのばらつき範囲が小さいと判断して、触媒下流側センサ41の異常診断を許可する。   Thereafter, the process proceeds to step 106a, where it is determined whether or not the intake air amount GA at the start of fuel cut is greater than or equal to a predetermined amount, and it is determined that the intake air amount GA at the start of fuel cut is greater than or equal to a predetermined amount. Therefore, it is determined that the variation range of the response time TL when the output of the catalyst downstream sensor 41 changes in the lean direction is small, and abnormality diagnosis of the catalyst downstream sensor 41 is permitted.

この場合、触媒下流側センサ41の応答時間TLが異常判定値よりも大きいか否かを判定し、触媒下流側センサ41の応答時間TLが異常判定値よりも大きいと判定された場合には、触媒下流側センサ41の異常(応答性劣化)有りと判定し、触媒下流側センサ41の応答時間TLが異常判定値以下であると判定された場合には、触媒下流側センサ41の異常無し(正常)と判定する(ステップ107〜109)。   In this case, it is determined whether or not the response time TL of the catalyst downstream side sensor 41 is larger than the abnormality determination value, and when it is determined that the response time TL of the catalyst downstream side sensor 41 is larger than the abnormality determination value, When it is determined that there is an abnormality (responsiveness degradation) in the catalyst downstream sensor 41 and it is determined that the response time TL of the catalyst downstream sensor 41 is equal to or less than the abnormality determination value, there is no abnormality in the catalyst downstream sensor 41 ( Normal) (steps 107 to 109).

一方、上記ステップ106aで、平均吸入空気量GAavが所定量よりも小さいと判定された場合には、触媒下流側センサ41の出力がリーン方向に変化する際の応答時間TLのばらつき範囲が大きいと判断して、触媒下流側センサ41の異常診断を禁止する。   On the other hand, if it is determined in step 106a that the average intake air amount GAav is smaller than the predetermined amount, the variation range of the response time TL when the output of the catalyst downstream sensor 41 changes in the lean direction is large. Judgment is made and abnormality diagnosis of the catalyst downstream sensor 41 is prohibited.

以上説明した本実施例2においても、触媒下流側センサ41の応答時間TLのばらつき範囲が小さいときに、触媒下流側センサ41の異常診断を許可するようにでき、前記実施例1とほぼ同じ効果を得ることができると共に、吸入空気量の平均値を算出する処理を省略してECU40演算負荷を軽減することができる。   Also in the second embodiment described above, when the variation range of the response time TL of the catalyst downstream side sensor 41 is small, abnormality diagnosis of the catalyst downstream side sensor 41 can be permitted, and substantially the same effect as the first embodiment. And the calculation load on the ECU 40 can be reduced by omitting the process of calculating the average value of the intake air amount.

尚、上記実施例2では、燃料カット開始時の吸入空気量GAが所定量以上であると判定された場合に、触媒下流側センサ41の異常診断を許可するようにしたが、燃料カット中に触媒下流側センサ41の出力が所定値(例えば下側閾値)まで低下したときの吸入空気量GAが所定量以上であると判定された場合に、触媒下流側センサ41の異常診断を許可するようにしても良い。   In the second embodiment, the abnormality diagnosis of the catalyst downstream side sensor 41 is permitted when it is determined that the intake air amount GA at the start of the fuel cut is greater than or equal to the predetermined amount. When it is determined that the intake air amount GA when the output of the catalyst downstream sensor 41 has decreased to a predetermined value (for example, the lower threshold) is greater than or equal to the predetermined amount, abnormality diagnosis of the catalyst downstream sensor 41 is permitted. Anyway.

また、上記各実施例1,2では、燃料カット中(燃料カット中の所定期間又は全期間、燃料カット開始時、燃料カット中の所定時点)にエアフローメータ14で吸入空気量を検出して、燃料カット中の吸入空気量が所定量以上であるか否かを判定するようにしたが、例えば、燃料カット中のアイドル回転速度制御量に基づいて吸入空気量が所定量以上であるか否かを判定するようにしても良い。ここで、アイドルスピードコントロールバルブでアイドル回転速度を制御するシステムの場合には、アイドルスピードコントロールバルブの開度がアイドル回転速度制御量に相当し、スロットル開度でアイドル回転速度を制御するシステムの場合には、スロットル開度がアイドル回転速度制御量に相当する。燃料カット中のアイドル回転速度制御量(アイドルスピードコントロールバルブの開度やスロットル開度)に応じて吸入空気量が変化するため、アイドル回転速度制御量を用いれば、吸入空気量が所定量以上であるか否かを判定することができる。   In each of the first and second embodiments, the intake air amount is detected by the air flow meter 14 during the fuel cut (a predetermined period or all of the fuel cut, at the start of the fuel cut, or a predetermined time during the fuel cut), Whether or not the intake air amount during fuel cut is greater than or equal to a predetermined amount is determined. For example, whether or not the intake air amount is greater than or equal to a predetermined amount based on the idle rotation speed control amount during fuel cut. May be determined. Here, in the case of a system that controls the idling speed by the idling speed control valve, the idling speed control valve opening corresponds to the idling speed control amount, and the idling speed control amount is controlled by the throttle opening. The throttle opening corresponds to the idle rotation speed control amount. Since the intake air amount changes according to the idle rotation speed control amount (the opening degree of the idle speed control valve and the throttle opening degree) during fuel cut, if the idle rotation speed control amount is used, the intake air amount exceeds a predetermined amount. It can be determined whether or not there is.

また、燃料カット中のエンジン回転速度値に基づいて吸入空気量が所定量以上であるか否かを判定するようにしても良い。燃料カット中のエンジン回転速度に応じて吸入空気量が変化するため、エンジン回転速度を用いれば、吸入空気量が所定量以上であるか否かを判定することができる。   Further, it may be determined whether or not the intake air amount is a predetermined amount or more based on the engine rotation speed value during fuel cut. Since the intake air amount changes according to the engine rotation speed during fuel cut, it is possible to determine whether or not the intake air amount is greater than or equal to a predetermined amount by using the engine rotation speed.

また、燃料カット中のエンジン負荷(例えば吸気圧)に基づいて吸入空気量が所定量以上であるか否かを判定するようにしても良い。燃料カット中の吸入空気量に応じてエンジン負荷が変化するため、エンジン負荷を用いれば、吸入空気量が所定量以上であるか否かを判定することができる。   Further, it may be determined whether the intake air amount is a predetermined amount or more based on the engine load (for example, intake pressure) during the fuel cut. Since the engine load changes according to the intake air amount during fuel cut, it is possible to determine whether the intake air amount is equal to or greater than a predetermined amount by using the engine load.

また、燃料カット中の車速に基づいて吸入空気量が所定量以上であるか否かを判定するようにしても良い。燃料カット中の車速に応じてエンジン回転速度が変化して吸入空気量が変化するため、車速を用いれば、吸入空気量が所定量以上であるか否かを判定することができる。尚、車速が同じでも変速機の変速段によってエンジン回転速度が変化して吸入空気量が変化するため、燃料カット中の車速と変速段とに基づいて吸入空気量が所定量以上であるか否かを判定するようにしても良い。   Further, it may be determined whether the intake air amount is a predetermined amount or more based on the vehicle speed during the fuel cut. Since the engine rotation speed changes in accordance with the vehicle speed during fuel cut and the intake air amount changes, it can be determined whether the intake air amount is equal to or greater than a predetermined amount by using the vehicle speed. Even if the vehicle speed is the same, the engine speed changes depending on the gear position of the transmission and the intake air amount changes. Therefore, whether or not the intake air amount is greater than or equal to a predetermined amount based on the vehicle speed and the gear position during fuel cut. You may make it determine.

更に、燃料カット中のアイドル回転速度制御量、エンジン回転速度、エンジン負荷、車速、変速段のうちのいずれか2つ以上を用いて吸入空気量が所定量以上であるか否かを判定するようにしても良い。   Further, it is determined whether or not the intake air amount is a predetermined amount or more by using any two or more of the idle rotational speed control amount, the engine rotational speed, the engine load, the vehicle speed, and the gear position during the fuel cut. Anyway.

また、上記各実施例1,2では、触媒下流側センサ41の出力変化特性として応答時間(触媒下流側センサ41の出力が所定区間を通過するのに要した時間)を用いるようにしたが、これに限定されず、触媒下流側センサ41の出力が所定区間を通過する際の変化速度、所定期間における触媒下流側センサ41の出力の変化量や変化速度等を、触媒下流側センサ41の出力変化特性として用いるようにしても良い。   In the first and second embodiments, the response time (the time required for the output of the catalyst downstream side sensor 41 to pass through the predetermined section) is used as the output change characteristic of the catalyst downstream side sensor 41. However, the present invention is not limited to this, and the rate of change when the output of the catalyst downstream sensor 41 passes through a predetermined section, the amount of change and the rate of change of the output of the catalyst downstream sensor 41 during the predetermined period, and the like. You may make it use as a change characteristic.

また、上記各実施例1,2では、触媒下流側センサ41として酸素センサを用いたシステムに本発明を適用したが、触媒下流側センサ41として空燃比センサを用いたシステムに本発明を適用しても良い。   In the first and second embodiments, the present invention is applied to a system using an oxygen sensor as the catalyst downstream sensor 41. However, the present invention is applied to a system using an air-fuel ratio sensor as the catalyst downstream sensor 41. May be.

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 実施例1の触媒下流側センサ異常診断ルーチンの処理の流れを説明するフローチャートである。6 is a flowchart for explaining a flow of processing of a catalyst downstream side sensor abnormality diagnosis routine of Example 1; 実施例1の触媒下流側センサ異常診断の実行例を説明するタイムチャートである。6 is a time chart for explaining an execution example of catalyst downstream side sensor abnormality diagnosis of Example 1. FIG. 実施例2の触媒下流側センサ異常診断ルーチンの処理の流れを説明するフローチャートである。6 is a flowchart for explaining a flow of processing of a catalyst downstream side sensor abnormality diagnosis routine of Embodiment 2.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、14…エアフローメータ、15…スロットルバルブ、20…燃料噴射弁、38…触媒、40…ECU(異常診断手段,異常診断許可手段,吸入空気量判定手段)、41…触媒下流側センサ   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter, 15 ... Throttle valve, 20 ... Fuel injection valve, 38 ... Catalyst, 40 ... ECU (abnormality diagnosis means, abnormality diagnosis permission means, intake air amount determination) Means), 41 ... Catalyst downstream sensor

Claims (9)

内燃機関の燃料カット中に排出ガス浄化用の触媒の下流側に設置された排出ガスセンサ(以下「触媒下流側センサ」という)の出力変化特性に基づいて該触媒下流側センサの異常診断を行う異常診断手段を備えた排出ガスセンサの異常診断装置において、
前記燃料カット中の吸入空気量が所定量以上であるか否かを判定する吸入空気量判定手段と、
前記吸入空気量判定手段により前記燃料カット中の吸入空気量が所定量以上であると判定されたときに前記異常診断手段による前記触媒下流側センサの異常診断を許可する異常診断許可手段と
を備えていることを特徴とする排出ガスセンサの異常診断装置。
An abnormality that diagnoses abnormality of the downstream sensor of the catalyst based on the output change characteristic of an exhaust gas sensor (hereinafter referred to as “catalyst downstream sensor”) installed downstream of the exhaust gas purifying catalyst during fuel cut of the internal combustion engine In the exhaust gas sensor abnormality diagnosis device provided with a diagnostic means,
Intake air amount determination means for determining whether or not the intake air amount during the fuel cut is a predetermined amount or more;
Abnormality diagnosis permission means for permitting abnormality diagnosis of the catalyst downstream sensor by the abnormality diagnosis means when the intake air amount determination means determines that the amount of intake air during the fuel cut is greater than or equal to a predetermined amount. An exhaust gas sensor abnormality diagnosis device characterized by comprising:
前記吸入空気量判定手段は、前記燃料カット中の内燃機関のアイドル回転速度制御量に基づいて吸入空気量が所定量以上であるか否かを判定することを特徴とする請求項1に記載の排出ガスセンサの異常診断装置。   The intake air amount determination means determines whether or not the intake air amount is a predetermined amount or more based on an idle rotation speed control amount of the internal combustion engine during the fuel cut. An abnormality diagnosis device for exhaust gas sensors. 前記吸入空気量判定手段は、前記燃料カット中の内燃機関の回転速度に基づいて吸入空気量が所定量以上であるか否かを判定することを特徴とする請求項1又は2に記載の排出ガスセンサの異常診断装置。   The exhaust according to claim 1 or 2, wherein the intake air amount determination means determines whether or not the intake air amount is a predetermined amount or more based on a rotational speed of the internal combustion engine during the fuel cut. Gas sensor abnormality diagnosis device. 前記吸入空気量判定手段は、前記燃料カット中の内燃機関の負荷に基づいて吸入空気量が所定量以上であるか否かを判定することを特徴とする請求項1乃至3のいずれかに記載の排出ガスセンサの異常診断装置。   The intake air amount determination means determines whether or not the intake air amount is a predetermined amount or more based on a load of the internal combustion engine during the fuel cut. Abnormality diagnosis device for exhaust gas sensors. 前記吸入空気量判定手段は、前記燃料カット中の車速に基づいて吸入空気量が所定量以上であるか否かを判定することを特徴とする請求項1乃至4のいずれかに記載の排出ガスセンサの異常診断装置。   The exhaust gas sensor according to any one of claims 1 to 4, wherein the intake air amount determination means determines whether or not the intake air amount is a predetermined amount or more based on a vehicle speed during the fuel cut. Abnormality diagnosis device. 前記吸入空気量判定手段は、前記燃料カット中の全期間における吸入空気量の平均値または積算値が所定量以上であるか否かを判定し、
前記異常診断許可手段は、前記吸入空気量判定手段により前記燃料カット中の全期間における吸入空気量の平均値または積算値が所定量以上であると判定されたときに前記異常診断手段による前記触媒下流側センサの異常診断を許可することを特徴とする請求項1乃至5のいずれかに記載の排出ガスセンサの異常診断装置。
The intake air amount determination means determines whether the average value or integrated value of the intake air amount over the entire period during the fuel cut is a predetermined amount or more,
The abnormality diagnosis permission unit is configured to detect the catalyst by the abnormality diagnosis unit when the intake air amount determination unit determines that the average value or integrated value of the intake air amount over the entire period during the fuel cut is equal to or greater than a predetermined amount. The abnormality diagnosis device for an exhaust gas sensor according to any one of claims 1 to 5, wherein abnormality diagnosis of the downstream sensor is permitted.
前記吸入空気量判定手段は、前記燃料カット開始から前記触媒下流側センサの出力が所定値に変化するまでの期間における吸入空気量の平均値または積算値が所定量以上であるか否かを判定し、
前記異常診断許可手段は、前記吸入空気量判定手段により前記燃料カット開始から前記触媒下流側センサの出力が所定値に変化するまでの期間における吸入空気量の平均値または積算値が所定量以上であると判定されたときに前記異常診断手段による前記触媒下流側センサの異常診断を許可することを特徴とする請求項1乃至5のいずれかに記載の排出ガスセンサの異常診断装置。
The intake air amount determination means determines whether the average value or integrated value of the intake air amount in a period from the start of the fuel cut until the output of the catalyst downstream sensor changes to a predetermined value is greater than or equal to a predetermined amount. And
The abnormality diagnosis permission means is configured such that an average value or integrated value of the intake air amount during a period from the start of the fuel cut by the intake air amount determination means until the output of the catalyst downstream sensor changes to a predetermined value is greater than or equal to a predetermined amount. The abnormality diagnosis device for an exhaust gas sensor according to any one of claims 1 to 5, wherein abnormality diagnosis of the downstream sensor of the catalyst by the abnormality diagnosis means is permitted when it is determined that the abnormality exists.
前記吸入空気量判定手段は、前記燃料カット開始時の吸入空気量が所定量以上であるか否かを判定し、
前記異常診断許可手段は、前記吸入空気量判定手段により前記燃料カット開始時の吸入空気量が所定量以上であると判定されたときに前記異常診断手段による前記触媒下流側センサの異常診断を許可することを特徴とする請求項1乃至5のいずれかに記載の排出ガスセンサの異常診断装置。
The intake air amount determination means determines whether or not the intake air amount at the start of the fuel cut is a predetermined amount or more;
The abnormality diagnosis permission unit permits the abnormality diagnosis of the downstream sensor of the catalyst by the abnormality diagnosis unit when the intake air amount determination unit determines that the intake air amount at the start of the fuel cut is equal to or greater than a predetermined amount. An abnormality diagnosis apparatus for an exhaust gas sensor according to any one of claims 1 to 5.
前記吸入空気量判定手段は、前記燃料カット中に前記触媒下流側センサの出力が所定値に変化したときの吸入空気量が所定量以上であるか否かを判定し、
前記異常診断許可手段は、前記吸入空気量判定手段により前記燃料カット中に前記触媒下流側センサの出力が所定値に変化したときの吸入空気量が所定量以上であると判定されたときに前記異常診断手段による前記触媒下流側センサの異常診断を許可することを特徴とする請求項1乃至5のいずれかに記載の排出ガスセンサの異常診断装置。
The intake air amount determination means determines whether or not the intake air amount when the output of the catalyst downstream sensor changes to a predetermined value during the fuel cut is greater than or equal to a predetermined amount;
The abnormality diagnosis permission unit is configured to determine when the intake air amount determination unit determines that the intake air amount when the output of the catalyst downstream sensor changes to a predetermined value during the fuel cut is greater than or equal to a predetermined amount. The abnormality diagnosis device for an exhaust gas sensor according to any one of claims 1 to 5, wherein abnormality diagnosis of the downstream sensor of the catalyst is permitted by an abnormality diagnosis means.
JP2007278585A 2007-10-26 2007-10-26 Abnormality diagnosis device for exhaust gas sensor Active JP4882958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278585A JP4882958B2 (en) 2007-10-26 2007-10-26 Abnormality diagnosis device for exhaust gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278585A JP4882958B2 (en) 2007-10-26 2007-10-26 Abnormality diagnosis device for exhaust gas sensor

Publications (2)

Publication Number Publication Date
JP2009108681A true JP2009108681A (en) 2009-05-21
JP4882958B2 JP4882958B2 (en) 2012-02-22

Family

ID=40777438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278585A Active JP4882958B2 (en) 2007-10-26 2007-10-26 Abnormality diagnosis device for exhaust gas sensor

Country Status (1)

Country Link
JP (1) JP4882958B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052462A (en) * 2010-08-31 2012-03-15 Mitsubishi Motors Corp Device for diagnosing deterioration of catalyst-downstream-side exhaust gas sensor
JP2016121591A (en) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 Failure determination device of oxygen concentration sensor
JP2021124034A (en) * 2020-02-03 2021-08-30 トヨタ自動車株式会社 Abnormality detection device for air-fuel ratio detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055447A (en) * 1991-04-25 1993-01-14 Nippondenso Co Ltd Oxygen sensor deterioration detecting device
JPH09170966A (en) * 1995-12-20 1997-06-30 Fuji Heavy Ind Ltd Apparatus for diagnosing deterioration of oxygen sensor downstream of catalyst in engine
JPH11218045A (en) * 1998-01-30 1999-08-10 Mazda Motor Corp Trouble detecting device for air-fuel ratio detecting device
JPH11257130A (en) * 1998-03-17 1999-09-21 Suzuki Motor Corp Fuel control unit of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055447A (en) * 1991-04-25 1993-01-14 Nippondenso Co Ltd Oxygen sensor deterioration detecting device
JPH09170966A (en) * 1995-12-20 1997-06-30 Fuji Heavy Ind Ltd Apparatus for diagnosing deterioration of oxygen sensor downstream of catalyst in engine
JPH11218045A (en) * 1998-01-30 1999-08-10 Mazda Motor Corp Trouble detecting device for air-fuel ratio detecting device
JPH11257130A (en) * 1998-03-17 1999-09-21 Suzuki Motor Corp Fuel control unit of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052462A (en) * 2010-08-31 2012-03-15 Mitsubishi Motors Corp Device for diagnosing deterioration of catalyst-downstream-side exhaust gas sensor
JP2016121591A (en) * 2014-12-24 2016-07-07 三菱自動車工業株式会社 Failure determination device of oxygen concentration sensor
JP2021124034A (en) * 2020-02-03 2021-08-30 トヨタ自動車株式会社 Abnormality detection device for air-fuel ratio detection device
US11319890B2 (en) 2020-02-03 2022-05-03 Toyota Jidosha Kabushiki Kaisha Abnormality detection device for air-fuel ratio detection device
JP7234956B2 (en) 2020-02-03 2023-03-08 トヨタ自動車株式会社 Abnormality detection device for air-fuel ratio detection device

Also Published As

Publication number Publication date
JP4882958B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US7681565B2 (en) Air/fuel ratio control system for internal combustion engine
JP4831015B2 (en) Abnormality diagnosis device for internal combustion engine
US7387011B2 (en) Deterioration diagnosis system for exhaust gas sensor
JP2009221992A (en) Malfunction diagnosing apparatus for exhaust gas sensor
JP5035140B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP2008121534A (en) Abnormality diagnostic device of internal combustion engine
JP4320778B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP2008144639A (en) Control device for internal combustion engine
JP2008128080A (en) Control device for internal combustion engine
JP4893292B2 (en) Control device for internal combustion engine
JP4882958B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
JP2010275912A (en) Abnormality diagnostic device for variable valve timing control system
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP2006177371A (en) Internal combustion engine control device
JP2008151025A (en) Control device of internal combustion engine
JP4210940B2 (en) Abnormality diagnosis device for intake system sensor
JP3855720B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP4470661B2 (en) Exhaust gas sensor abnormality diagnosis device
JP2010001846A (en) Abnormality diagnosis apparatus for internal combustion engine
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP2008157036A (en) Control device of internal combustion engine
JP2010048117A (en) Abnormality diagnosis device for air-fuel ratio sensor
JP2008038720A (en) Abnormality diagnosis device for downstream side oxygen sensor of exhaust emission control system
JP4591841B2 (en) Water temperature sensor abnormality diagnosis device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4882958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250