JP2009106874A - Reaction tank and aeration device - Google Patents

Reaction tank and aeration device Download PDF

Info

Publication number
JP2009106874A
JP2009106874A JP2007282597A JP2007282597A JP2009106874A JP 2009106874 A JP2009106874 A JP 2009106874A JP 2007282597 A JP2007282597 A JP 2007282597A JP 2007282597 A JP2007282597 A JP 2007282597A JP 2009106874 A JP2009106874 A JP 2009106874A
Authority
JP
Japan
Prior art keywords
air
diffuser
holes
cleaning fluid
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007282597A
Other languages
Japanese (ja)
Inventor
Koji Kageyama
晃治 陰山
Takeshi Takemoto
剛 武本
Naoki Hara
直樹 原
Misaki Sumikura
みさき 隅倉
Ichiro Yamanoi
一郎 山野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007282597A priority Critical patent/JP2009106874A/en
Publication of JP2009106874A publication Critical patent/JP2009106874A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reaction tank and an aeration device which can uniformize an effect of removing extraneous matter from an aeration hole, eliminate necessity of controlling the purchase cost of a chemical liquid, and wash the aeration hole by exerting no bad influence on treated water quality. <P>SOLUTION: The reaction tank 24 comprises a plurality of flat membranes 28 immersed in the reaction tank 24, piping 30 for taking out treated water filtered with the flat membranes 28, an aeration pipe 10 installed below the flat membranes 28 and having a plurality of aeration holes 12, an injection device sending air for aeration into the aeration pipe 10, and an aeration device provided in the aeration pipe 10 and having a part for peeling off the deposited matter adhering to the aeration holes 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、浸漬型の膜モジュールを用いた反応槽及び散気装置に関する。   The present invention relates to a reaction tank and a diffuser using an immersion type membrane module.

浸漬型の膜モジュールを用いた下水処理装置として、例えば、複数の外圧式固液分離平膜を、反応槽内に膜面が垂直となるよう配置するものがある。このような下水処理装置では、反応槽の下部に設置された散気管から空気気泡を曝気している。この空気気泡の曝気の目的は、反応槽内の活性汚泥を構成する微生物へ酸素を供給し、気泡上昇に伴って生成される水流により膜表面を洗浄して膜面の付着物を除去し、目詰まりを抑制することである。   As a sewage treatment apparatus using an immersion type membrane module, for example, there is one in which a plurality of external pressure solid-liquid separation flat membranes are arranged in a reaction tank so that their membrane surfaces are vertical. In such a sewage treatment apparatus, air bubbles are aerated from an air diffuser installed in the lower part of the reaction tank. The purpose of this aeration of air bubbles is to supply oxygen to the microorganisms that make up the activated sludge in the reaction tank, wash the membrane surface with the water flow generated as the bubbles rise, and remove deposits on the membrane surface. It is to prevent clogging.

このような下水処理装置では濁質成分の流出を防ぐことが可能であるため、最終沈殿池で固液分離する場合と比べて活性汚泥の濃度を高くして運転することが可能である。その結果、装置を小型化でき、さらに発生汚泥を低減することが可能である。   In such a sewage treatment apparatus, it is possible to prevent the turbid components from flowing out, so that the activated sludge can be operated at a higher concentration than in the case of solid-liquid separation in the final sedimentation basin. As a result, the apparatus can be miniaturized and the generated sludge can be reduced.

膜分離活性汚泥法では、活性汚泥濃度が高いことや、一定以上の大きさの気泡でなければ膜面の洗浄効果が得られないことから、散気管の散気孔の径は3〜10mmと比較的大きくする必要があり、一般に、このサイズの複数の孔をパイプに空けた構造の散気管が用いられる。   In the membrane-separated activated sludge method, the diameter of the air diffuser in the air diffuser is 3-10 mm, because the activated sludge concentration is high and the membrane surface cleaning effect cannot be obtained unless the air bubbles are larger than a certain size. In general, a diffuser having a structure in which a plurality of holes of this size are formed in a pipe is used.

膜表面の洗浄効果にばらつきが生じないように、散気管はそれぞれの散気孔から均一に気泡が反応槽内へ注入されるように設計,製作される。しかし、連続運転をしていると散気孔へ徐々に固形物が付着する。これは、加圧空気の温度が高いので、活性汚泥が乾燥することが原因の一つと考えられる。   The air diffuser is designed and manufactured so that air bubbles are uniformly injected into the reaction tank from each air diffuser so that the cleaning effect on the membrane surface does not vary. However, during continuous operation, solid matter gradually adheres to the air holes. This is thought to be one of the reasons that the activated sludge dries because the temperature of the pressurized air is high.

固形物が付着した散気孔では、通過する空気の流量が減少するため、散気孔の外側における活性汚泥液の並行流速度が低下し、付着物の付着がさらに加速される。その結果、散気孔ごとの付着物の量に差異が生じ、散気量の差異が生じて膜表面の洗浄が不均一となる。この散気管の付着物を除去するため、例えば、〔特許文献1〕から〔特許文献4〕に記載の従来の技術や手法が提案されている。   In the air diffuser to which the solid matter adheres, the flow rate of the air passing therethrough decreases, so that the parallel flow speed of the activated sludge liquid on the outside of the air diffuser decreases, and the adherence of the adhering matter is further accelerated. As a result, a difference occurs in the amount of adhering matter for each air hole, resulting in a difference in the amount of air diffused and uneven cleaning of the film surface. In order to remove the deposits on the air diffuser, for example, conventional techniques and methods described in [Patent Document 1] to [Patent Document 4] have been proposed.

〔特許文献1〕は、散気管が目詰まりした際に散気管へ供給する空気の流量を一時的に増大し、その空気の流体抵抗により付着物を除去するものである。〔特許文献2〕は、散気管が目詰まりした際に散気管の中に外部から水を注入し、供給空気の圧力で水を散気孔から押し出して、水の流体抵抗により付着物を除去するものである。〔特許文献3〕は、散気管の外側の活性汚泥を散気管内に逆流させ、付着物を湿潤化してから供給空気の圧力で活性汚泥とともに散気孔から押し出して、その活性汚泥および供給空気の流体抵抗により付着物を除去するものである。   [Patent Document 1] temporarily increases the flow rate of air supplied to the air diffuser when the air diffuser is clogged, and removes deposits by the fluid resistance of the air. In [Patent Document 2], when the diffuser tube is clogged, water is injected from the outside into the diffuser tube, and water is pushed out from the diffuser hole by the pressure of the supply air, and the deposit is removed by the fluid resistance of the water. Is. In [Patent Document 3], the activated sludge outside the diffuser pipe is caused to flow back into the diffuser pipe, the adhering matter is moistened, and then extruded from the diffuser holes together with the activated sludge by the pressure of the supplied air. The deposit is removed by fluid resistance.

しかしながら、〔特許文献1〕〜〔特許文献3〕に記載の付着物除去技術および手法は、以下の問題点を有しており、十分な除去効果を得ることができない。液体あるいは気体を散気管内に注入し、その流体抵抗を利用して付着物を除去する方式は、散気孔を通過する流体の流速により除去効果が異なるという問題がある。   However, the deposit removal technique and method described in [Patent Document 1] to [Patent Document 3] have the following problems, and a sufficient removal effect cannot be obtained. The method of injecting liquid or gas into the diffuser tube and removing the deposits using the fluid resistance has a problem that the removal effect differs depending on the flow velocity of the fluid passing through the diffuser holes.

散気管内に流体を同じ圧力で与えた場合、付着物が最も少ない散気孔での流体の流速が最も大きく、逆に最も付着物が多く目詰まりが進行している散気孔での流体流速が最も小さい。すなわち、最も付着物が多い散気孔の洗浄効果が最も小さい。その結果、散気の不均一を解決するためには長時間,多量の流体を流す必要があり、膜分離活性汚泥処理装置の運転停止時間が長くなる。長時間,多量の流体を流しても付着物が最も少ない散気孔における流体の流速が最も大きい現象に変わりはなく、場合によっては散気量の不均一がさらに悪化する場合もある。   When fluid is applied to the air diffuser at the same pressure, the flow velocity of the fluid at the diffuser hole with the smallest amount of deposit is the largest, and conversely, the fluid flow velocity at the diffuser hole with the largest amount of deposit and clogging is the same. Smallest. That is, the cleaning effect of the diffuser with the most adhering matter is the smallest. As a result, it is necessary to flow a large amount of fluid for a long time in order to solve the non-uniformity of aeration, and the operation stop time of the membrane separation activated sludge treatment apparatus becomes longer. Even when a large amount of fluid is flowed for a long period of time, the phenomenon that the flow velocity of the fluid in the air diffuser with the least amount of deposits remains the same is not changed, and in some cases, the unevenness of the air diffused amount may be further deteriorated.

そこで、〔特許文献4〕に記載の従来の技術では、洗浄用薬液を散気管の中に注入し、薬液の化学反応を利用して付着物を除去している。   Therefore, in the conventional technique described in [Patent Document 4], a cleaning chemical solution is injected into the aeration tube, and deposits are removed using a chemical reaction of the chemical solution.

特開2003−181480号公報JP 2003-181480 A 特開2005−152777号公報JP 2005-152777 A 特開2002−166290号公報JP 2002-166290 A 特開2003−154236号公報JP 2003-154236 A

〔特許文献4〕に記載の方法では、付着物の量に関係なく全ての散気孔に対して等しい洗浄効果を期待することができる。しかし、洗浄用薬液を用いる方法は、薬液の購入コストや管理業務が発生する上、微生物の活性や処理水質への悪影響がある。処理水質に悪影響を及ぼさないよう、洗浄後の薬液を散気管から逆に吸引回収することも可能であるが、その場合には新たに回収薬液の廃液処理に関するコストや手間が発生する問題がある。   In the method described in [Patent Document 4], it is possible to expect an equal cleaning effect for all the air holes regardless of the amount of deposits. However, the method using the chemical for cleaning has a negative effect on the activity of microorganisms and the quality of treated water as well as the cost of purchasing the chemical and management work. It is possible to reversely collect the chemical after washing from the air diffuser so that the quality of the treated water is not adversely affected. However, in that case, there is a problem that costs and labor related to waste liquid treatment of the recovered chemical are newly generated. .

また、散気管の散気孔ごとの散気量の不均一が問題であるのに対し、不均一の程度を外部から計測して評価する技術的な提案は、これまでみられない。   Further, while the non-uniformity of the amount of air diffused in each air diffuser of the air diffuser is a problem, no technical proposal for measuring and evaluating the degree of non-uniformity from the outside has been found so far.

本発明の目的は、散気孔で付着物の除去効果を均一化でき、薬液の購入コストや管理の必要がなく、処理水質へ悪影響を及ぼさない散気孔洗が行える反応槽及び散気装置を提供することにある。   An object of the present invention is to provide a reaction tank and a diffuser that can uniformize the effect of removing deposits with diffused holes, do not require the purchase cost or management of chemicals, and can perform diffused hole washing without adversely affecting the quality of treated water There is to do.

上記の目的を達成するために、本発明は、反応槽内に浸漬して配置され複数の散気孔を有する散気管と、散気管内に散気するための空気を送る注入装置と、散気管内に設けられ前記散気孔の付着物の剥離,除去部と、を備えたものである。   In order to achieve the above-mentioned object, the present invention includes an air diffuser tube that is arranged so as to be immersed in a reaction vessel and has a plurality of air diffusers, an injection device that sends air to diffuse air into the air diffuser, and an air diffuser. And an exfoliation / removal part for the adhering matter of the air diffuser provided in the tube.

又、反応槽内に浸漬された複数の平膜と、平膜で膜ろ過された処理水を取り出すための配管と、複数の平膜の下方に設置され、複数の散気孔を有する散気管と、散気管内に散気するための空気を送る注入装置と、散気管内に設けられ前記散気孔の付着物の剥離,除去部とを有する散気装置と、を備えたものである。   Also, a plurality of flat membranes immersed in the reaction vessel, a pipe for taking out treated water membrane-filtered by the flat membrane, a diffuser tube installed below the plurality of flat membranes and having a plurality of air diffusion holes, And an infusion device for sending air for diffusing into the diffusing tube, and an diffusing device provided in the diffusing tube and having an exfoliation / removal part for the adhering matter of the diffusing holes.

本発明によれば、散気管の散気孔の付着物を効果的に除去できるため、均一な散気状態を維持することができ、膜分離活性汚泥法の場合には膜面付着物の除去効果が高まり水処理性能を高めることができる。   According to the present invention, it is possible to effectively remove the adhering matter of the air diffuser of the air diffuser, so that a uniform air diffused state can be maintained. In the case of the membrane separation activated sludge method, the effect of removing the adhering matter on the membrane surface The water treatment performance can be improved.

以下、本発明の複数の実施例について図面を用いて説明する。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1のノズルを備えた散気装置の模式図である。この散気装置は図2で示すように、例えば膜分離活性汚泥処理装置の反応槽24の底部に浸漬して設置される。反応槽24には処理対象となる被処理水26が入っており、散気管10の散気管接続口14から流入する散気用空気22は、複数の散気孔12から被処理水26の中へ気泡として注入される。散気用空気22を注入する装置には、図示しない例えばブロワ,圧縮機などが用いられ、散気管内連通配管48により散気用空気22を散気管10内に送るようになっている。   FIG. 1 is a schematic diagram of an air diffuser including a nozzle according to a first embodiment of the present invention. As shown in FIG. 2, for example, the air diffuser is immersed in the bottom of the reaction tank 24 of the membrane separation activated sludge treatment apparatus. The water to be treated 26 to be treated is contained in the reaction tank 24, and the air for diffusion 22 flowing in from the air diffuser connection port 14 of the air diffuser 10 enters the water to be treated 26 from the plurality of air diffusers 12. Injected as bubbles. For example, a blower or a compressor (not shown) is used as an apparatus for injecting the air 22 for air diffusion, and the air 22 for air diffusion is sent into the air diffusion pipe 10 by the communication pipe 48 in the air diffusion pipe.

反応槽24内には、平膜28が複数枚、垂直方向に設置されており、平膜28間を曝気された気泡が上昇して膜表面を洗浄して付着物を除去し、平膜28の目詰まりを抑制している。   A plurality of flat membranes 28 are installed in the reaction tank 24 in the vertical direction. Bubbles aerated between the flat membranes 28 rise to clean the membrane surface and remove the deposits. Suppresses clogging.

反応槽24内に流入した被処理水26は、平膜28によりろ過されて処理水として、配管30から取り出される。被処理水26は、例えば高濃度の活性汚泥を含んだ液体であるが、濃度が低い活性汚泥液でも良い。   The treated water 26 that has flowed into the reaction tank 24 is filtered by the flat membrane 28 and taken out from the pipe 30 as treated water. The water to be treated 26 is, for example, a liquid containing high-concentration activated sludge, but may be an activated sludge liquid having a low concentration.

散気管10は、例えば図1に示すように、円筒形状であり、両端が板により封止されている。散気管10の上方には、洗浄用流体配管18が設けられ、散気管10内には空間が形成されている。散気管10には、散気孔12に向けてノズル16が備えられる。ノズル16は、洗浄用流体配管18と連通しており、洗浄用流体配管18は、図示しない配管によって図示しない洗浄用流体注入装置と接続されている。洗浄用流体注入装置を稼動させることによって、洗浄用流体20を洗浄用流体配管18から散気孔12に向けて噴出する。洗浄用流体注入装置は、ポンプあるいはブロワで構成される。ここで、図1で示すように、ノズル16の噴出口の位置は、散気管接続口14より鉛直方向の上方に位置することが望ましい。   For example, as shown in FIG. 1, the air diffuser 10 has a cylindrical shape, and both ends are sealed with plates. A cleaning fluid pipe 18 is provided above the diffuser tube 10, and a space is formed in the diffuser tube 10. The air diffuser 10 is provided with a nozzle 16 toward the air diffuser 12. The nozzle 16 communicates with a cleaning fluid pipe 18, and the cleaning fluid pipe 18 is connected to a cleaning fluid injection device (not shown) by a pipe (not shown). By operating the cleaning fluid injection device, the cleaning fluid 20 is ejected from the cleaning fluid pipe 18 toward the diffuser holes 12. The cleaning fluid injection device is constituted by a pump or a blower. Here, as shown in FIG. 1, it is desirable that the position of the nozzle 16 outlet is located above the diffuser pipe connection port 14 in the vertical direction.

なお、図1に示す例では、散気孔12は鉛直方向の下方に、ノズル16は鉛直方向の上方に配置しているが、散気孔12,ノズル16の配置はこれに限らず、例えば散気孔12が鉛直方向の下方以外にある場合や1つの散気孔12に対しノズル16が複数本存在してもよく、洗浄用流体20が散気孔12に向けて噴出される構造であれば良い。   In the example shown in FIG. 1, the air diffuser 12 is disposed below the vertical direction and the nozzle 16 is disposed above the vertical direction. However, the disposition of the air diffuser 12 and the nozzle 16 is not limited to this, and for example, the air diffuser. When the nozzle 12 is not located below the vertical direction, a plurality of nozzles 16 may exist for one air diffuser 12, and the cleaning fluid 20 may be ejected toward the air diffuser 12.

また、洗浄用流体20は液体であることが望ましいが、気体であっても良く、液体と気体の混合物であっても良い。さらに洗浄効果を高めるため、温度が高い温水や水蒸気を洗浄用流体20として用いても良い。   The cleaning fluid 20 is preferably a liquid, but may be a gas or a mixture of liquid and gas. In order to further enhance the cleaning effect, hot water or steam having a high temperature may be used as the cleaning fluid 20.

このように構成された散気装置の動作について説明する。散気装置は、付着物の剥離,除去部であるノズル16から噴出する流体の運動エネルギーによって付着物を除去する。散気管の外部から流体を衝突させる方法が考えられるが、活性汚泥液の粘性が高いため、付着物に達するまでに洗浄用流体の運動エネルギーの大半が散逸し、効果的な洗浄は難しい。さらに、ノズルの噴出口が活性汚泥液に接触するため、ノズルの噴出口の目詰まりが生じやすい。   The operation of the air diffuser configured in this way will be described. The diffuser removes the deposits by the kinetic energy of the fluid ejected from the nozzle 16 which is a part for removing and removing the deposits. Although a method of causing a fluid to collide from the outside of the air diffuser can be considered, since the viscosity of the activated sludge liquid is high, most of the kinetic energy of the cleaning fluid is dissipated before reaching the deposit, and effective cleaning is difficult. Further, since the nozzle outlet contacts the activated sludge liquid, the nozzle outlet tends to be clogged.

これに対して、本実施例では、上述したように、ノズル16を散気管10の内部に設けているので、ノズル16から噴出される洗浄用流体20は、十分な運動エネルギーを有しているので、散気用空気22中を通過して散気孔12に到達する。洗浄用流体20は、散気孔12を通過した後、被処理水26の中に入って運動エネルギーを失う。   On the other hand, in the present embodiment, as described above, the nozzle 16 is provided in the diffuser tube 10, so that the cleaning fluid 20 ejected from the nozzle 16 has sufficient kinetic energy. Therefore, it passes through the air 22 for diffusion and reaches the diffusion hole 12. The cleaning fluid 20 passes through the diffuser holes 12 and then enters the treated water 26 to lose kinetic energy.

従って、散気孔12付近に生じる付着物に対し、ほとんどロスなく洗浄用流体20の運動エネルギーを付着物の剥離,除去に使うことができる。また、散気管10中には散気用空気22が満たされているため、ノズル16の噴出口は被処理水26に含まれる活性汚泥などの固形物による目詰まりがほとんど生じない。   Therefore, the kinetic energy of the cleaning fluid 20 can be used for the separation and removal of the deposits with little loss with respect to the deposits generated near the air diffusion holes 12. Further, since the air diffuser 10 is filled with the air diffuser 10, the nozzle 16 is hardly clogged with solid matter such as activated sludge contained in the water to be treated 26.

その結果、いずれの散気孔12から同等の運動エネルギーを有する洗浄用流体20を噴出できるため、散気孔12の付着物の量に関係なく均一な洗浄効果が得られ、散気量の均一化が実現される。   As a result, since the cleaning fluid 20 having the same kinetic energy can be ejected from any of the diffuser holes 12, a uniform cleaning effect can be obtained regardless of the amount of deposits on the diffuser holes 12, and the amount of diffused air can be made uniform. Realized.

長期的には、ノズル16の噴出口の目詰まりも想定されるが、その都度、洗浄用流体配管18内に洗浄用の薬液や温水,高温水蒸気などを加圧注入することで容易に対処可能である。このノズル16の洗浄頻度は極めて低く、必要となる薬液などの量も洗浄用流体配管18とノズル16の容積程度で済むため極めて少量ですむ。   In the long term, the nozzle 16 may be clogged, but each time it can be easily dealt with by injecting cleaning chemicals, hot water, high-temperature steam, etc. into the cleaning fluid pipe 18 under pressure. It is. The cleaning frequency of the nozzle 16 is extremely low, and the amount of the chemical solution required is very small because the volume of the cleaning fluid pipe 18 and the nozzle 16 is sufficient.

ノズル16から散気孔12の付着物に向けて噴出される洗浄用流体20の運動エネルギーは、その質量に比例し、噴出速度の2乗に比例する。従って、質量が等しければ噴出速度が速いほうが効果は大きく、噴出速度が等しければ質量が大きいほうが望ましい。   The kinetic energy of the cleaning fluid 20 ejected from the nozzle 16 toward the deposit on the air diffuser 12 is proportional to its mass and proportional to the square of the ejection speed. Therefore, if the mass is equal, the higher the ejection speed, the greater the effect, and if the ejection speed is equal, the larger the mass is desirable.

より大きな洗浄効果を得るためには、洗浄用流体20として温水を用いることが良い。温水は冷水に比べて粘性抵抗が小さいため、ノズル16からより早い速度で噴出される。また、付着物が乾燥している場合には、冷水よりも温水のほうが湿潤化するために要する時間が短く、より短時間で付着物を除去することができる。   In order to obtain a greater cleaning effect, it is preferable to use hot water as the cleaning fluid 20. Since hot water has a smaller viscous resistance than cold water, it is ejected from the nozzle 16 at a higher speed. Further, when the deposit is dry, the time required for the warm water to be wetted is shorter than the cold water, and the deposit can be removed in a shorter time.

このように、洗浄用流体20は液体、特に温度の高い液体であることが望ましいが、気体であっても噴出速度が充分速ければ問題はない。また、洗浄用流体20は、液体と気体の混合物であっても良く、洗浄用流体20は洗浄に寄与する固体を含んでいても良い。   As described above, it is desirable that the cleaning fluid 20 is a liquid, particularly a liquid having a high temperature. However, even if it is a gas, there is no problem as long as the ejection speed is sufficiently high. The cleaning fluid 20 may be a mixture of liquid and gas, and the cleaning fluid 20 may include a solid that contributes to cleaning.

実用上は、ノズル16の噴出口の位置を散気管接続口14より鉛直方向の上方に位置することが望ましく、これにより噴出口の目詰まりの可能性を低減することができる。通常、散気用空気22が注入されて気泡を生成している期間は散気管10内に被処理水26が流入することはない。しかし、散気用空気22を注入する装置、例えばブロワや弁,配管などの不具合が生じた場合は、散気管10内へ被処理水26が流入する可能性がある。その場合、例えば図1で示すようにノズル16の噴出口の位置が散気管接続口14に比べて鉛直上方であると、被処理水26が散気管10内に流入してもノズル16の噴出口を含む空間に空気溜まりが生じるため、ノズル16の噴出口が被処理水26に接触することがない。その結果、ノズル16からいずれの散気孔12に対しても同等の運動エネルギーの洗浄用流体20を噴出する機能をより長期間にわたって維持できる。   Practically, it is desirable that the position of the jet outlet of the nozzle 16 be positioned above the diffuser pipe connection port 14 in the vertical direction, thereby reducing the possibility of clogging of the jet outlet. Normally, the water to be treated 26 does not flow into the air diffuser 10 during the period when the air 22 for air diffusion is injected to generate bubbles. However, if a malfunction occurs in a device that injects the air 22 for aeration, such as a blower, a valve, or a pipe, the treated water 26 may flow into the air diffuser 10. In this case, for example, as shown in FIG. 1, if the position of the nozzle 16 outlet is vertically above the diffuser tube connection port 14, the nozzle 16 jets even if the water to be treated 26 flows into the diffuser tube 10. Since an air pool is generated in the space including the outlet, the jet outlet of the nozzle 16 does not come into contact with the water to be treated 26. As a result, it is possible to maintain the function of ejecting the cleaning fluid 20 having the same kinetic energy from the nozzle 16 to any of the diffuser holes 12 for a longer period of time.

図3は、本発明の実施例2の摺動体を備えた散気装置の模式図である。本実施例の散気装置も、図2で示すように、例えば膜分離活性汚泥処理装置の反応槽24の底部に浸漬して設置される。反応槽24には処理対象となる被処理水26が入っており、散気管10の散気管接続口14から流入する散気用空気22は複数の散気孔12から被処理水26の中へ気泡として注入される。被処理水26は例えば高濃度の活性汚泥を含んだ液体が想定されるが、濃度が低い活性汚泥液でも良い。   FIG. 3 is a schematic diagram of an air diffuser including a sliding body according to a second embodiment of the present invention. As shown in FIG. 2, the air diffuser of the present embodiment is also installed by being immersed in the bottom of the reaction tank 24 of the membrane separation activated sludge treatment apparatus, for example. The water to be treated 26 to be treated is contained in the reaction tank 24, and the air for diffusion 22 flowing from the air diffuser connection port 14 of the air diffuser 10 is bubbled into the water to be treated 26 from the plurality of air diffusers 12. As injected. The treated water 26 is assumed to be a liquid containing, for example, a high concentration activated sludge, but an activated sludge liquid having a low concentration may be used.

散気管10の内部には、付着物の剥離,除去部である、摺動体駆動装置36と、摺動体駆動装置36によって駆動される摺動体34が備えられる。付着物を除去する洗浄時には、摺動体34は散気孔12を貫通して移動する。通常運転時には、摺動体34は散気孔12を流れる散気用空気22の流れを邪魔しない位置に移動する。摺動体34は固形物であればどのような形状でも良いが、活性汚泥液に含まれる繊維状物質の絡み付きを考えると、ブラシではなく円柱状やテーパー付円柱状が好ましい。   Inside the air diffuser 10, there are provided a sliding body driving device 36 which is a part for removing and removing the adhered matter, and a sliding body 34 driven by the sliding body driving device 36. At the time of cleaning to remove the deposit, the sliding body 34 moves through the air diffuser 12. During normal operation, the sliding body 34 moves to a position that does not obstruct the flow of the air 22 for aeration flowing through the air holes 12. The sliding body 34 may have any shape as long as it is solid, but considering the entanglement of the fibrous substance contained in the activated sludge liquid, a cylindrical shape or a tapered cylindrical shape is preferable instead of a brush.

摺動体駆動装置36は、摺動体34を散気孔12に向けて並行移動できる機構であれば良く、電磁気的駆動,モータ駆動,水圧駆動,空気圧駆動,ワイヤ駆動のうちいずれでも良い。特に電磁気的駆動やモータ駆動の場合は、それぞれの摺動体34を個別に動作させることが比較的容易なため、特に付着物が多い散気孔12の摺動体34を集中的に繰り返し動作させて付着物を効果的に除去することが可能となる。また、その際の電圧電流波形と動作時間の関係から、付着物の状況等を外部でモニタリングすることも可能となる。また、摺動体駆動装置36の設置位置は、散気管接続口14に比べて鉛直方向の上方に位置することが望ましい。   The sliding body drive device 36 may be any mechanism that can move the sliding body 34 in parallel toward the air diffuser 12 and may be any one of electromagnetic drive, motor drive, hydraulic drive, pneumatic drive, and wire drive. In particular, in the case of electromagnetic drive or motor drive, it is relatively easy to operate each slide body 34 individually. The kimono can be effectively removed. In addition, it is possible to externally monitor the state of deposits and the like from the relationship between the voltage / current waveform and the operation time. Moreover, it is desirable that the installation position of the sliding body drive device 36 is located above the vertical direction as compared with the air diffuser connection port 14.

このように構成された散気装置の動作,作用について説明する。   The operation and action of the air diffuser configured as described above will be described.

付着物は摺動体34の運動エネルギーによって機械的に除去される。散気管10内に摺動体34と摺動体駆動装置36が設けられているので、摺動体34および摺動体駆動装置36は被処理水26に含まれる活性汚泥などの固形物による目詰まりや不具合がほとんど生じない。その結果、いずれの散気孔12に対しても同等の運動エネルギーを与えて付着物を除去できるため、散気孔12の付着物の量に関係なく均一な洗浄効果が得られる。その結果、散気量の均一化が実現される。   The deposit is mechanically removed by the kinetic energy of the sliding body 34. Since the sliding body 34 and the sliding body driving device 36 are provided in the air diffuser 10, the sliding body 34 and the sliding body driving device 36 are clogged or defective due to solid matter such as activated sludge contained in the water to be treated 26. It hardly occurs. As a result, the same kinetic energy can be applied to any of the diffuser holes 12 to remove the deposits, so that a uniform cleaning effect can be obtained regardless of the amount of deposits on the diffuser holes 12. As a result, the amount of diffused air is made uniform.

実用上は、摺動体駆動装置36の位置は散気管接続口14より鉛直方向の上方に位置することが望ましく、これにより摺動体駆動装置36に不具合が発生する可能性を低減することができる。通常、散気用空気22が注入されて気泡を生成している期間は、散気管10内に被処理水26が流入することはない。しかし、散気用空気22を注入する装置、例えばブロワや弁,配管などの不具合が生じた場合には、散気管10内へ被処理水26が流入する可能性ある。その場合、摺動体駆動装置36の位置が散気管接続口14より鉛直方向上方にあると、被処理水26が散気管10内に流入しても摺動体駆動装置36を含む空間に空気溜まりが生じるため、摺動体駆動装置36が被処理水26に接触することがない。その結果、摺動体34が同等の運動エネルギーで付着物を除する機能をより長期間にわたって維持できる。   Practically, it is desirable that the position of the sliding body driving device 36 is located above the diffuser pipe connection port 14 in the vertical direction. This can reduce the possibility that the sliding body driving device 36 has a problem. Normally, the water to be treated 26 does not flow into the air diffuser 10 during the period when the air 22 for air diffusion is injected to generate bubbles. However, if a malfunction occurs in a device for injecting air 22 such as a blower, a valve, or piping, the treated water 26 may flow into the air diffuser 10. In that case, if the position of the sliding body drive device 36 is above the diffuser pipe connection port 14 in the vertical direction, even if the water 26 to be treated flows into the diffuser pipe 10, an air pocket is left in the space including the slide body drive apparatus 36. Therefore, the sliding body driving device 36 does not come into contact with the water to be treated 26. As a result, the function that the sliding body 34 removes the deposit with the same kinetic energy can be maintained for a longer period of time.

なお、摺動体駆動装置36が被処理水26に接触しても機能上問題が生じない場合には、摺動体駆動装置36を散気管10の内部に備える必要性はなく、散気管10の外部に備えても良い。   If there is no functional problem even when the sliding body driving device 36 contacts the water to be treated 26, it is not necessary to provide the sliding body driving device 36 inside the diffuser tube 10. You may be prepared for.

図4は、本発明の実施例3の弁機構を備えた散気装置の模式図である。本実施例の散気装置も図2で示すように、例えば膜分離活性汚泥処理装置の反応槽24の底部に浸漬して設置される。反応槽24には処理対象となる被処理水26が入っており、散気管10の散気管接続口14から流入する散気用空気22は複数の散気孔12から被処理水26の中へ気泡として注入される。被処理水26は例えば高濃度の活性汚泥を含んだ液体が想定されるが、濃度が低い活性汚泥液でも良い。   FIG. 4 is a schematic diagram of an air diffuser including a valve mechanism according to a third embodiment of the present invention. As shown in FIG. 2, the air diffuser of the present embodiment is also installed by being immersed in the bottom of the reaction tank 24 of the membrane separation activated sludge treatment apparatus, for example. The water to be treated 26 to be treated is contained in the reaction tank 24, and the air for diffusion 22 flowing from the air diffuser connection port 14 of the air diffuser 10 is bubbled into the water to be treated 26 from the plurality of air diffusers 12. As injected. The treated water 26 is assumed to be a liquid containing, for example, a high concentration activated sludge, but an activated sludge liquid having a low concentration may be used.

散気管10の内部には、付着物の剥離,除去部である、弁機構駆動装置40と、弁機構駆動装置40によって駆動される弁機構38が備えられている。弁機構駆動装置40は、弁機構38を移動させて、複数個の散気孔12のうちの一部の散気孔12を閉じる、或いは一部の散気孔12の有効面積を縮小する。弁機構駆動装置40としては、電磁気的駆動,モータ駆動,水圧駆動,空気圧駆動,ワイヤ駆動のうちいずれかが適用される。特に電磁気的駆動やモータ駆動とすると、それぞれの弁機構38を個別に動作させることが比較的容易に実現できるため望ましい。また、弁機構38の動作状況を動作電力供給時の電圧電流波形および動作時間の関係に基づき外部でモニタリングすることも可能となる。弁機構駆動装置40の設置位置は、散気管接続口14より鉛直方法の上方に位置することが望ましい。   Inside the air diffuser 10, there are provided a valve mechanism driving device 40 that is a part for removing and removing the deposit, and a valve mechanism 38 driven by the valve mechanism driving device 40. The valve mechanism driving device 40 moves the valve mechanism 38 to close a part of the plurality of air diffusion holes 12 or reduce the effective area of the part of the air diffusion holes 12. As the valve mechanism driving device 40, any one of electromagnetic driving, motor driving, hydraulic driving, pneumatic driving, and wire driving is applied. In particular, electromagnetic driving or motor driving is desirable because it is relatively easy to operate each valve mechanism 38 individually. In addition, it is possible to monitor the operating status of the valve mechanism 38 based on the relationship between the voltage / current waveform and the operating time when operating power is supplied. As for the installation position of the valve mechanism drive device 40, it is desirable to be located above the aeration pipe connection port 14 in the vertical direction.

本実施例では、このように構成しているので、一部の散気孔12を個別に閉じる、或いは一部の散気孔12の有効面積を減少できる。その結果、散気用空気22を残りの開状態の散気孔12から集中的に被処理水26内へ散気することができる。   In the present embodiment, since it is configured as described above, it is possible to individually close some of the air holes 12 or reduce the effective area of some of the air holes 12. As a result, the air for aeration 22 can be diffused intensively into the water to be treated 26 from the remaining air diffusion holes 12 in the open state.

弁機構38の動作状況を動作電力供給時の電圧電流波形および動作時間の関係に基づき外部でモニタリングすることによって、付着物の多い散気孔12を判別し、開状態とする散気孔12として付着物の多い散気孔12を重点的に選択することで、付着物を取り除くことができ、それぞれの散気孔12からの散気量を均一化することができる。又、開状態とする散気孔12を順番に周期的に変更するようにしてもよい。   The operating state of the valve mechanism 38 is monitored externally based on the relationship between the voltage / current waveform and the operating time when operating power is supplied, so that the air diffuser 12 with a large amount of adhering matter is discriminated and the air diffuser 12 is opened. By carefully selecting the diffuser holes 12 having a large amount, the deposits can be removed, and the amount of diffused air from each diffuser hole 12 can be made uniform. Moreover, you may make it change the diffuser hole 12 made into an open state periodically in order.

散気用空気22の代わりに水又は洗浄用液体を散気管接続口14から散気管10内に導入して洗浄する場合、或いは被処理水26を一旦散気管10内に逆流させてから散気用空気22を吹き込んで、液体の流体抵抗を用いて付着物を除去する場合についても、同様に開状態とする散気孔12として付着物の多い散気孔12を重点的に選択することで、それぞれの散気孔12からの散気量を均一化することができる。   When water or cleaning liquid is introduced into the diffuser pipe 10 from the diffuser pipe connection port 14 for cleaning instead of the diffused air 22, or the treated water 26 is once flown back into the diffuser pipe 10 and diffused. In the case where the air 22 is blown and the deposits are removed using the fluid resistance of the liquid, the diffuser holes 12 having a large amount of deposits are selected as the diffuser holes 12 to be opened in the same manner. The amount of air diffused from the air diffuser holes 12 can be made uniform.

実用上、弁機構駆動装置40の位置は、散気管接続口14より鉛直方向の上方に位置することが望ましく、これにより弁機構駆動装置40に不具合が発生する可能性を低減することができる。   In practice, it is desirable that the position of the valve mechanism driving device 40 is located above the diffuser pipe connection port 14 in the vertical direction, thereby reducing the possibility of occurrence of problems in the valve mechanism driving device 40.

通常、散気用空気22が注入されて気泡を生成している期間は、散気管10内に被処理水26が流入することはない。しかし、散気用空気22を注入する装置、例えばブロワや弁,配管などの不具合が生じた場合は、散気管10内へ被処理水26が流入する可能性がある。   Normally, the water to be treated 26 does not flow into the air diffuser 10 during the period when the air 22 for air diffusion is injected to generate bubbles. However, if a malfunction occurs in a device that injects the air 22 for aeration, such as a blower, a valve, or a pipe, the treated water 26 may flow into the air diffuser 10.

また、散気用空気22の代わりに水あるいは洗浄用液体を散気管接続口14から散気管10内に導入して洗浄する場合、或いは被処理水26を一旦散気管10内に逆流させてから散気用空気22を吹き込んで液体の流体抵抗を用いて付着物を除去する場合には、散気管10内に液体が存在することとなる。   In addition, when water or a cleaning liquid is introduced into the diffuser pipe 10 from the diffuser pipe connection port 14 for cleaning instead of the diffused air 22, or after the water 26 to be treated has flowed back into the diffuser pipe 10 once. When the diffused air 22 is blown and the deposits are removed using the fluid resistance of the liquid, the liquid is present in the diffuser tube 10.

その場合、弁機構駆動装置40の位置が散気管接続口14より鉛直方向の上方にあると、被処理水26などの液体が散気管10内に流入しても弁機構駆動装置40を含む空間に空気溜まりが生じるため、弁機構駆動装置40が被処理水26などの液体に接触することがない。その結果、弁機構38の機能をより長期間にわたって維持できる。   In that case, if the position of the valve mechanism driving device 40 is above the diffuser pipe connection port 14 in the vertical direction, the space including the valve mechanism drive device 40 even if liquid such as the water to be treated 26 flows into the diffuser pipe 10. Therefore, the valve mechanism driving device 40 does not come into contact with liquid such as the water to be treated 26. As a result, the function of the valve mechanism 38 can be maintained for a longer period.

なお、弁機構駆動装置40が被処理水26に接触しても機能上問題が生じない場合には、弁機構駆動装置40を散気管10の内部に備える必要性はなく、散気管10の外部に備えても良い。   If no functional problem occurs even when the valve mechanism driving device 40 comes into contact with the water to be treated 26, the valve mechanism driving device 40 does not need to be provided inside the diffuser tube 10, and the outside of the diffuser tube 10 is not necessary. You may be prepared for.

図5は、本発明の実施例4である洗浄用流体加熱装置を備えた散気装置の模式図である。散気管10と接続された散気管内連通配管48には洗浄用流体注入装置44が設けられており、洗浄用流体注入装置44は、洗浄用流体加熱装置42と接続されている。   FIG. 5 is a schematic diagram of an air diffuser equipped with a cleaning fluid heating apparatus that is Embodiment 4 of the present invention. A cleaning fluid injection device 44 is provided in the communication pipe 48 in the diffusion tube connected to the diffusion tube 10, and the cleaning fluid injection device 44 is connected to the cleaning fluid heating device 42.

洗浄用流体46は、洗浄用流体加熱装置42により加熱されて温水又は水蒸気として、洗浄用流体注入装置44へ供給される。洗浄用流体注入装置44は、散気管10内と連通配管48で接続されており、洗浄用流体46を散気管10の内部まで送液する。   The cleaning fluid 46 is heated by the cleaning fluid heating device 42 and supplied to the cleaning fluid injection device 44 as warm water or water vapor. The cleaning fluid injection device 44 is connected to the inside of the diffuser pipe 10 through a communication pipe 48, and sends the cleaning fluid 46 to the inside of the diffuser pipe 10.

このように構成された散気装置の動作,作用について説明する。   The operation and action of the air diffuser configured as described above will be described.

温水又は水蒸気である洗浄用流体46は、一様に散気孔12に付着した付着物まで到達するので、付着物の湿潤化が速くでき、洗浄効果も高まる。付着物の存在する領域を超えて被処理水26の中に入った洗浄用流体46は熱を失い、無害な低水温の水となる。従って、化学薬品などの薬液を用いる場合と異なり、微生物活性の低下や処理水質に残存する薬液の影響,反応副生成物の問題が発生しない。このため、廃液処理装置および廃液処理作業,廃液回収装置および廃液回収作業などが不要である。   The cleaning fluid 46, which is warm water or water vapor, reaches the deposits uniformly attached to the air diffusion holes 12, so that the deposits can be wetted quickly and the cleaning effect is enhanced. The cleaning fluid 46 that has entered the treated water 26 beyond the area where the deposits are present loses heat and becomes harmless low-temperature water. Therefore, unlike the case of using a chemical solution such as a chemical, there is no problem of a decrease in microbial activity, the influence of the chemical solution remaining in the treated water quality, or a problem of reaction by-products. For this reason, a waste liquid processing apparatus and waste liquid processing work, a waste liquid recovery apparatus and waste liquid recovery work, etc. are unnecessary.

温水あるいは水蒸気は、水を加熱するだけで生成でき、薬液を用いる場合に比べて、イニシャルコストおよびランニングコストのいずれも極めて小さい。   Warm water or water vapor can be generated simply by heating water, and both the initial cost and running cost are extremely small compared to the case of using a chemical solution.

図6は、本発明の実施例5の気泡生成センサを備えた散気装置の模式図である。   FIG. 6 is a schematic diagram of an air diffuser including a bubble generation sensor according to Embodiment 5 of the present invention.

気泡生成センサ50は、散気管10の外面に配置される。散気用空気22が送気されない時には、気泡生成センサ50は被処理水26の中に浸漬された状態であり、散気用空気22が送気される時には、気泡生成センサ50の少なくとも一部に気泡が発生する。気泡生成センサ50は、気泡の発生によって生じる圧力変動,電気抵抗変動,電気容量変動,温度変動などの時間的な変化を電気的信号に変換する。このような気泡生成センサ50には、例えばひずみゲージ,導電性ゴムなどの圧力センシングデバイス,対向配置される露出電極,対向配置される非露出電極,サーミスタなどの温度センシングデバイスが用いられる。   The bubble generation sensor 50 is disposed on the outer surface of the diffuser tube 10. When the aeration air 22 is not supplied, the bubble generation sensor 50 is immersed in the water to be treated 26. When the aeration air 22 is supplied, at least a part of the bubble generation sensor 50 is present. Bubbles are generated. The bubble generation sensor 50 converts temporal changes such as pressure fluctuations, electric resistance fluctuations, electric capacity fluctuations, temperature fluctuations, and the like caused by the generation of bubbles into electrical signals. For the bubble generation sensor 50, for example, a pressure sensing device such as a strain gauge or conductive rubber, an exposed electrode disposed oppositely, a non-exposed electrode disposed oppositely, or a temperature sensing device such as a thermistor is used.

気泡生成センサ50の出力信号は、無線あるいは有線の通信回線を経由して伝送され、計測値が収集される。計測値は、常時収集することが望ましいが、急を要しない場合には、気泡生成センサ50と信号的に繋がっているコネクタ端子を反応槽24の外部に備えておき、メンテナンス時など時間間隔を置いて適宜コネクタ端子に情報機器を接続して情報を収集しても良い。   The output signal of the bubble generation sensor 50 is transmitted via a wireless or wired communication line, and measured values are collected. It is desirable to collect the measured values at all times. However, if it is not urgent, a connector terminal connected in a signal manner to the bubble generation sensor 50 is provided outside the reaction tank 24, and a time interval such as during maintenance is provided. The information may be collected by connecting an information device to the connector terminal as appropriate.

気泡生成センサ50は、気泡の生成によって生じる時間的変化を捉えることができればよく、散気管10の外面のどこに配置されても良いが、一部が散気孔12に接するように配置されることが望ましい。気泡生成センサ50をこのように配置することで、例えば実施例1から実施例4で説明した散気孔12の洗浄方法により、センサ表面に付着した付着物も同時に除去することが可能となる。散気孔12に接するよう配置できない場合には、散気管10の下半分の外面で、気泡が高頻度で通過する箇所に配置しても良い。   The bubble generation sensor 50 only needs to be able to capture temporal changes caused by the generation of bubbles, and may be disposed anywhere on the outer surface of the diffuser tube 10, but may be disposed so that a part thereof is in contact with the diffuser holes 12. desirable. By disposing the bubble generation sensor 50 in this manner, for example, by the method for cleaning the air diffusion holes 12 described in the first to fourth embodiments, the deposits attached to the sensor surface can be removed at the same time. When it cannot arrange | position so that the diffuser hole 12 may be contacted, you may arrange | position in the location where a bubble passes with high frequency on the outer surface of the lower half of the diffuser tube 10.

このように構成された散気装置の動作,作用を説明する。   The operation and action of the air diffuser configured as described above will be described.

複数の散気孔12を有する散気管10は、図2で示すように反応槽24の底部に浸漬される。反応槽24の中には活性汚泥液など一般に不透明の被処理水26が入っているので、散気孔12に付着物がどの程度付着しているかは、外部からは全く計測できない。   The diffuser tube 10 having a plurality of diffuser holes 12 is immersed in the bottom of the reaction vessel 24 as shown in FIG. Since generally opaque water 26 such as activated sludge liquid is contained in the reaction tank 24, it cannot be measured at all from the outside how much deposits are attached to the air diffusion holes 12.

本実施例では、上記のように構成しているので、散気孔12にどの程度付着物が付着しているか、外部から計測することが可能となる。この計測値に基づいて、どの散気孔12を集中的に洗浄すべきかが判断でき、より効率的に均一な散気量を実現できる。   In the present embodiment, since it is configured as described above, it is possible to measure from the outside how much deposits are attached to the diffuser holes 12. Based on this measured value, it can be determined which diffuser holes 12 should be cleaned intensively, and a uniform diffuser amount can be realized more efficiently.

気泡生成センサ50として、圧力センシングデバイスを用いた場合の信号例を図7に示す。多量の付着物が付着している散気孔12から発生する気泡の径は、小さく、発生頻度も低い。逆に、付着物が少ない散気孔12から発生する気泡の径は大きく、発生頻度も高い。   An example of a signal when a pressure sensing device is used as the bubble generation sensor 50 is shown in FIG. The diameter of the bubble generated from the air diffuser 12 to which a large amount of deposits are attached is small and the frequency of occurrence is low. On the other hand, the diameter of the bubbles generated from the diffuser holes 12 with few deposits is large and the frequency of occurrence is high.

これらの判別は、得られた信号から行うことができる。具体的には、図7中に示す周期Tから気泡の発生頻度が分かる。また、時間t1は気泡の通過時間を示しており、この値から気泡径を推測することができる。また、変化量Δpは気泡の浮力によって生じるため、平均値と最大値,最小値から気泡径を推測することができる。結果として、周期Tが最も長く、かつ時間t1および変化量Δpの平均値が最も小さい散気孔12が最も付着物が多いと判断され、その散気孔12を集中的に洗浄することで散気量をより均一化することが可能となる。   These determinations can be made from the obtained signals. Specifically, the generation frequency of bubbles is known from the period T shown in FIG. The time t1 indicates the passage time of the bubble, and the bubble diameter can be estimated from this value. Further, since the change amount Δp is generated by the buoyancy of the bubbles, the bubble diameter can be estimated from the average value, the maximum value, and the minimum value. As a result, it is determined that the air diffuser 12 with the longest period T and the smallest average value of the time t1 and the amount of change Δp has the most adhering matter, and the air diffuser 12 is intensively washed to concentrate the air diffused amount. Can be made more uniform.

図8は、気泡生成センサ50で得られた気泡生成情報54をとりこみ、その情報を操作員に提示する散気装置の監視装置52を備えた膜分離活性汚泥処理装置の模式図である。   FIG. 8 is a schematic diagram of a membrane separation activated sludge treatment apparatus equipped with a monitoring device 52 for an air diffuser that takes in the bubble generation information 54 obtained by the bubble generation sensor 50 and presents the information to the operator.

散気装置の監視装置52は、表示装置の画面上には、散気管の番号を一つの軸に、もう一つの軸に散気孔の番号をとった表あるいはグラフが表示される。表あるいはグラフの中には少なくともそれぞれの散気孔から発生している気泡に関する物理量を数値,色,濃淡を用いて表示する。この表示により、操作員はどの散気管10のどの散気孔12に最も多量の付着物があるかを容易に判断でき、洗浄をより効率的に実施することができる。   The air diffuser monitoring device 52 displays a table or graph with the number of the air diffuser on one axis and the number of the air diffuser on the other axis on the screen of the display device. In the table or graph, at least the physical quantities related to the bubbles generated from each air hole are displayed using numerical values, colors, and shades. By this display, the operator can easily determine which diffuser hole 12 of which diffuser tube 10 has the most amount of deposits, and can perform cleaning more efficiently.

散気装置の監視装置52には、気泡生成センサ50で得られた気泡生成情報54に基づき、洗浄実施タイミングを決定する洗浄実施タイミング決定部を有する自動洗浄制御装置が備えられていることが望ましい。洗浄実施のタイミングは、例えば付着物の量が設定された値を超過した場合、あるいは全散気孔12の付着物推定値の平均値からの偏差が設定された値以上となった場合などにより決定される。自動洗浄制御装置は、例えば実施例1で説明した洗浄機構を稼動させる信号を発生し、その信号により、例えば実施例1に示すノズル16を用いる場合には、洗浄用流体20を送液するポンプが起動される。又、実施例2に示す摺動体34を用いる場合には、摺動体駆動装置36に電力が送られる、又は駆動用流体を送るためのポンプ,ブロワが起動される。実施例3で説明した弁機構38を用いる場合には、弁機構駆動装置40に電力が送られる、又は駆動用流体を送るためのポンプ,ブロワが起動される。実施例4で説明した洗浄用流体46を用いる場合には、洗浄用流体加熱装置42と洗浄用流体注入装置44に電力が送られる。自動洗浄制御装置は、既存の洗浄機構に対して洗浄実施のタイミングを信号を送っても良い。   Desirably, the air diffuser monitoring device 52 includes an automatic cleaning control device having a cleaning execution timing determination unit that determines the cleaning execution timing based on the bubble generation information 54 obtained by the bubble generation sensor 50. . The timing of performing cleaning is determined, for example, when the amount of deposits exceeds a set value or when the deviation from the average value of the estimated deposits of all the diffuser holes 12 exceeds a set value. Is done. The automatic cleaning control device generates, for example, a signal for operating the cleaning mechanism described in the first embodiment, and when the nozzle 16 shown in the first embodiment is used based on the signal, for example, a pump for feeding the cleaning fluid 20 Is activated. When the sliding body 34 shown in the second embodiment is used, electric power is sent to the sliding body driving device 36, or a pump and a blower for sending a driving fluid are started. When the valve mechanism 38 described in the third embodiment is used, electric power is sent to the valve mechanism driving device 40, or a pump and a blower for sending a driving fluid are started. When the cleaning fluid 46 described in the fourth embodiment is used, electric power is sent to the cleaning fluid heating device 42 and the cleaning fluid injection device 44. The automatic cleaning control device may send a signal to the cleaning timing to the existing cleaning mechanism.

図9は、本発明の実施例6の加湿装置を備えた散気装置の模式図である。散気管10と接続された散気管内連通配管48には加湿装置56が設けられており、加湿装置56は水蒸気あるいは霧状の水の粒子を散気管10の内部に注入する。   FIG. 9 is a schematic diagram of an air diffuser provided with a humidifier according to Embodiment 6 of the present invention. A humidifier 56 is provided in the diffuser pipe communication pipe 48 connected to the diffuser pipe 10, and the humidifier 56 injects water vapor or mist-like water particles into the diffuser pipe 10.

このように構成されているので、散気用空気22の湿度が高くなり、散気孔12付近の活性汚泥が乾燥することを予防でき、付着物の発生を抑制することができる。   Since it comprises in this way, the humidity of the air 22 for aeration becomes high, it can prevent that the activated sludge near the aeration hole 12 dries, and can suppress generation | occurrence | production of a deposit | attachment.

このため、特別な散気孔の洗浄機構や洗浄用薬液,洗浄工程が不要となる。加湿装置56は、水を加熱あるいは噴霧するだけで良く、イニシャルコストおよびランニングコストは極めて小さい。なお、加湿装置56として霧状の水の粒子を噴出する機構を備えた場合には、水の粒子が散気用空気22内で蒸発する際に熱を奪うため、散気用空気22の温度を下げる効果もあり、結果として散気孔12付近の活性汚泥の乾燥をさらに予防することが可能となる。   This eliminates the need for a special air hole cleaning mechanism, a cleaning chemical, and a cleaning process. The humidifier 56 only needs to heat or spray water, and the initial cost and running cost are extremely low. When the humidifying device 56 is provided with a mechanism for ejecting mist-like water particles, the water particles take heat when they evaporate in the aeration air 22, and therefore the temperature of the aeration air 22. As a result, it becomes possible to further prevent the activated sludge near the air diffuser 12 from drying.

図10は、本発明の実施例7の冷却機構を備えた散気装置の模式図である。散気管10と接続された散気管内連通配管48には冷却機構58が設けられている。冷却機構58は散気用空気22の温度を下げる機能を有すれば良く、熱交換器を備える。冷却の原理は空冷や水冷のほか、機械的冷却や電気的冷却のいずれでも良い。また、実施例6でも述べたように、噴霧した霧状の水の気化熱により散気用空気22の温度を下げる方法でも良い。   FIG. 10 is a schematic diagram of an air diffuser provided with a cooling mechanism according to a seventh embodiment of the present invention. A cooling mechanism 58 is provided in the diffuser pipe communication pipe 48 connected to the diffuser pipe 10. The cooling mechanism 58 only needs to have a function of lowering the temperature of the air 22 for diffusion, and includes a heat exchanger. The cooling principle may be air cooling, water cooling, mechanical cooling or electrical cooling. Further, as described in the sixth embodiment, a method of lowering the temperature of the air 22 for aeration by the heat of vaporization of sprayed mist-like water may be used.

このように構成されているので、散気用空気22の温度が低くなる。その結果、散気孔22付近の活性汚泥が乾燥することを予防でき、付着物の発生を抑制することができ、特別な散気孔の洗浄機構や洗浄用薬液,洗浄工程が不要となる。   Since it is comprised in this way, the temperature of the air 22 for aeration becomes low. As a result, it is possible to prevent the activated sludge in the vicinity of the air diffuser 22 from being dried, to suppress the generation of deposits, and a special air diffuser cleaning mechanism, a cleaning chemical, and a cleaning process are not required.

本発明の実施例1であるノズルを備えた散気装置の模式図。The schematic diagram of the diffuser provided with the nozzle which is Example 1 of the present invention. 膜分離活性汚泥処理装置の模式図。The schematic diagram of a membrane separation activated sludge processing apparatus. 本発明の実施例2である摺動体を備えた散気装置の模式図。The schematic diagram of the diffuser provided with the sliding body which is Example 2 of this invention. 本発明の実施例3である弁機構を備えた散気装置の模式図。The schematic diagram of the diffuser provided with the valve mechanism which is Example 3 of this invention. 本発明の実施例4である洗浄用流体加熱装置を備えた散気装置の模式図。The schematic diagram of the diffuser provided with the fluid heating apparatus for washing | cleaning which is Example 4 of this invention. 本発明の実施例5である気泡生成センサを備えた散気装置の模式図。The schematic diagram of the diffuser provided with the bubble production | generation sensor which is Example 5 of this invention. 気泡生成センサが出力する信号の模式図。The schematic diagram of the signal which a bubble production | generation sensor outputs. 本発明の実施例5である散気装置の監視装置を備えた膜分離活性汚泥処理装置の模式図。The schematic diagram of the membrane separation activated sludge processing apparatus provided with the monitoring apparatus of the aeration apparatus which is Example 5 of this invention. 本発明の実施例6である加湿装置を備えた散気装置の模式図。The schematic diagram of the diffuser provided with the humidification apparatus which is Example 6 of this invention. 本発明の実施例7である冷却機構を備えた散気装置の模式図。The schematic diagram of the diffuser provided with the cooling mechanism which is Example 7 of this invention.

符号の説明Explanation of symbols

10 散気管
12 散気孔
14 散気管接続口
16 ノズル
18 洗浄用流体配管
20 洗浄用流体
22 散気用空気
24 反応槽
26 被処理水
28 平膜
30 配管
32 散気装置
34 摺動体
36 摺動体駆動装置
38 弁機構
40 弁機構駆動装置
42 洗浄用流体加熱装置
44 洗浄用流体注入装置
46 洗浄用流体
48 散気管内連通配管
50 気泡生成センサ
52 散気装置の監視装置
54 気泡生成情報
56 加湿装置
58 冷却機構
DESCRIPTION OF SYMBOLS 10 Aeration pipe 12 Aeration hole 14 Aeration pipe connection port 16 Nozzle 18 Cleaning fluid piping 20 Cleaning fluid 22 Aeration air 24 Reaction tank 26 Water to be treated 28 Flat membrane 30 Piping 32 Aeration device 34 Sliding body 36 Sliding body drive Device 38 Valve mechanism 40 Valve mechanism driving device 42 Cleaning fluid heating device 44 Cleaning fluid injection device 46 Cleaning fluid 48 Aeration tube communication piping 50 Bubble generation sensor 52 Aeration device monitoring device 54 Bubble generation information 56 Humidification device 58 Cooling mechanism

Claims (17)

反応槽内に浸漬して配置され複数の散気孔を有する散気管と、該散気管内に散気するための空気を送る注入装置と、前記散気管内に設けられ前記散気孔の付着物の剥離,除去部と、を備えた散気装置。   A diffuser tube that is immersed in the reaction vessel and has a plurality of diffuser holes, an injection device that sends air to diffuse into the diffuser tube, and an attachment of the diffuser holes provided in the diffuser tube An air diffuser comprising a peeling and removing unit. 前記付着物の剥離,除去部が、前記散気管に設けられ洗浄用流体が内部を流れる洗浄用流体配管と、前記洗浄用流体を洗浄用流体配管内に注入する洗浄用流体注入装置と、散気管内に配置され、洗浄用流体を前記散気孔に向けて噴出するノズルで構成される請求項1に記載の散気装置。   A separation / removal part for the adhered matter is provided in the aeration pipe, a cleaning fluid pipe through which the cleaning fluid flows, a cleaning fluid injection device for injecting the cleaning fluid into the cleaning fluid pipe, The aeration apparatus according to claim 1, wherein the aeration apparatus is configured by a nozzle that is disposed in a trachea and that ejects a cleaning fluid toward the aeration holes. 前記付着物の剥離,除去部が、前記散気管内に配置され、散気孔の付着物を機械的に除去する摺動体と、該摺動体を駆動する摺動体駆動装置で構成される請求項1に記載の散気装置。   2. The depositing / removing part is disposed in the diffuser tube, and is configured by a sliding body that mechanically removes the deposits of the diffuser holes and a sliding body driving device that drives the sliding body. The air diffuser described in 1. 前記付着物の剥離,除去部が、前記散気管内に配置され、一部の散気孔を閉じる或いは散気孔の有効面積を縮小する弁機構と、該弁機構を駆動する弁機構駆動装置で構成される請求項1に記載の散気装置。   The adhering material peeling / removal part is disposed in the air diffuser and includes a valve mechanism that closes some air holes or reduces the effective area of the air diffuser, and a valve mechanism driving device that drives the valve mechanism. The aeration apparatus according to claim 1. 反応槽内に浸漬して配置され複数の散気孔を有する散気管と、該散気管内に散気するための空気を送る注入装置と、温水あるいは水蒸気を生成する洗浄用流体加熱装置と、該洗浄用流体加熱装置で生成された温水あるいは水蒸気を前記散気管内に注入する洗浄用流体注入装置と、を備えた散気装置。   A diffuser tube that is immersed in the reaction vessel and has a plurality of diffuser holes, an injection device that sends air to diffuse into the diffuser tube, a washing fluid heating device that generates hot water or water vapor, An air diffuser comprising: a cleaning fluid injection device that injects hot water or water vapor generated by the cleaning fluid heating device into the air diffusion pipe. 反応槽内に浸漬して配置され複数の散気孔を有する散気管と、該散気管内に散気するための空気を送る注入装置と、水蒸気あるいは霧状の水の粒子を前記散気管内に注入する加湿装置と、を備えた散気装置。   A diffuser tube having a plurality of diffuser holes arranged soaked in a reaction vessel, an injection device for sending air to diffuse into the diffuser tube, and water vapor or mist-like water particles in the diffuser tube A humidifying device for infusing; 反応槽内に浸漬して配置される複数の散気孔を有する散気管と、該散気管内に散気するための空気を送る注入装置と、前記散気管内に散気する空気を冷却する冷却機構と、を備えた散気装置。   A diffuser tube having a plurality of diffuser holes arranged so as to be immersed in the reaction tank, an injection device for sending air to diffuse into the diffuser tube, and cooling for cooling the air diffused in the diffuser tube An air diffuser comprising a mechanism. 前記複数の散気孔に、散気管の外部に配置され、気泡生成に関する物理量を計測する気泡生成センサを具備した請求項1から7のいずれかに記載の散気装置。   The aeration apparatus according to claim 1, further comprising a bubble generation sensor that is disposed outside the diffusion tube in the plurality of diffusion holes and measures a physical quantity related to bubble generation. 反応槽内に浸漬された複数の平膜と、該平膜で膜ろ過された処理水を取り出すための配管と、前記複数の平膜の下方に設置され、複数の散気孔を有する散気管と、該散気管内に散気するための空気を送る注入装置と、前記散気管内に設けられ前記散気孔の付着物の剥離,除去部とを有する散気装置と、を備えた反応槽。   A plurality of flat membranes immersed in the reaction vessel, a pipe for taking out the treated water membrane-filtered by the flat membrane, a diffuser tube installed below the plurality of flat membranes and having a plurality of air holes A reaction tank comprising: an injection device for sending air for diffusing into the air diffusing tube; and an air diffusing device provided in the air diffusing tube and having a separation / removal part for deposits on the air diffusing holes. 前記付着物の剥離,除去部が、前記散気管に設けられ洗浄用流体が内部を流れる洗浄用流体配管と、前記洗浄用流体を洗浄用流体配管内に注入する洗浄用流体注入装置と、散気管内に配置され、洗浄用流体を前記散気孔に向けて噴出するノズルで構成される請求項9に記載の反応槽。   A separation / removal part for the adhered matter is provided in the aeration pipe, a cleaning fluid pipe through which the cleaning fluid flows, a cleaning fluid injection device for injecting the cleaning fluid into the cleaning fluid pipe, The reaction tank according to claim 9, wherein the reaction tank is configured by a nozzle that is disposed in a trachea and that ejects a cleaning fluid toward the diffuser holes. 前記付着物の剥離,除去部が、前記散気管内に配置され、散気孔の付着物を機械的に除去する摺動体と、該摺動体を駆動する摺動体駆動装置で構成される請求項9に記載の反応槽。   The peeling and removing portion of the deposit is disposed in the diffuser tube, and is configured by a sliding body that mechanically removes the deposit on the diffuser and a sliding body driving device that drives the sliding body. The reaction tank described in 1. 前記付着物の剥離,除去部が、前記散気管内に配置され、一部の散気孔を閉じる或いは散気孔の有効面積を縮小する弁機構と、該弁機構を駆動する弁機構駆動装置で構成される請求項9に記載の反応槽。   The adhering material peeling / removal part is disposed in the air diffuser and includes a valve mechanism that closes some air holes or reduces the effective area of the air diffuser, and a valve mechanism driving device that drives the valve mechanism. The reaction vessel according to claim 9. 反応槽内に浸漬された複数の平膜と、該平膜で膜ろ過された処理水を取り出すための配管と、前記複数の平膜の下方に設置され、複数の散気孔を有する散気管と、該散気管内に散気するための空気を送る注入装置と、温水あるいは水蒸気を生成する洗浄用流体加熱装置と、該洗浄用流体加熱装置で生成された温水あるいは水蒸気を前記散気管内に注入する洗浄用流体注入装置とを有する散気装置と、を備えた反応槽。   A plurality of flat membranes immersed in the reaction vessel, a pipe for taking out the treated water membrane-filtered by the flat membrane, a diffuser tube installed below the plurality of flat membranes and having a plurality of air holes An injection device for sending air to diffuse into the diffuser tube, a cleaning fluid heating device for generating hot water or steam, and hot water or steam generated by the cleaning fluid heating device into the diffuser tube An air diffuser having a cleaning fluid injection device for injection. 反応槽内に浸漬された複数の平膜と、該平膜で膜ろ過された処理水を取り出すための配管と、前記複数の平膜の下方に設置され、複数の散気孔を有する散気管と、該散気管内に散気するための空気を送る注入装置と、水蒸気あるいは霧状の水の粒子を前記散気管内に注入する加湿装置とを有する散気装置と、を備えた反応槽。   A plurality of flat membranes immersed in the reaction vessel, a pipe for taking out the treated water membrane-filtered by the flat membrane, a diffuser tube installed below the plurality of flat membranes and having a plurality of air holes A reaction tank comprising: an infusion device for sending air for aeration into the aeration tube; and an aeration device having a humidifier for injecting water vapor or mist-like water particles into the aeration tube. 反応槽内に浸漬された複数の平膜と、該平膜で膜ろ過された処理水を取り出すための配管と、前記複数の平膜の下方に設置され、複数の散気孔を有する散気管と、該散気管内に散気するための空気を送る注入装置と、前記散気管内に散気する空気を冷却する冷却機構とを有する散気装置と、を備えた反応槽。   A plurality of flat membranes immersed in the reaction vessel, a pipe for taking out the treated water membrane-filtered by the flat membrane, a diffuser tube installed below the plurality of flat membranes and having a plurality of air holes A reaction tank comprising: an injection device that sends air for diffusing into the diffusing tube; and a diffusing device that has a cooling mechanism that cools the air diffusing into the diffusing tube. 前記複数の散気孔に、散気管の外部に配置され、気泡生成に関する物理量を計測する気泡生成センサを具備し、該気泡生成センサからの信号を受信して散気孔から発生している気泡に関する物理量を数値あるいは図を用いて表示する表示装置を具備する請求項9から15のいずれかに記載の反応槽。   The plurality of air diffusion holes are provided outside the air diffusion pipe and include a bubble generation sensor that measures a physical quantity related to bubble generation. A physical quantity related to the bubbles generated from the air diffusion holes by receiving a signal from the bubble generation sensor The reaction tank according to any one of claims 9 to 15, further comprising a display device that displays the value using numerical values or figures. 前記気泡生成センサの計測値に基づき洗浄実施タイミングを決定する洗浄実施タイミング決定部を備えた請求項16に記載の反応槽。   The reaction vessel according to claim 16, further comprising a cleaning execution timing determination unit that determines a cleaning execution timing based on a measurement value of the bubble generation sensor.
JP2007282597A 2007-10-31 2007-10-31 Reaction tank and aeration device Pending JP2009106874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282597A JP2009106874A (en) 2007-10-31 2007-10-31 Reaction tank and aeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282597A JP2009106874A (en) 2007-10-31 2007-10-31 Reaction tank and aeration device

Publications (1)

Publication Number Publication Date
JP2009106874A true JP2009106874A (en) 2009-05-21

Family

ID=40776005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282597A Pending JP2009106874A (en) 2007-10-31 2007-10-31 Reaction tank and aeration device

Country Status (1)

Country Link
JP (1) JP2009106874A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017567A1 (en) * 2010-08-06 2012-02-09 三菱重工業株式会社 Aeration device, seawater flue gas desulfurization device provided with same, and method for humidifying aeration device
WO2012023293A1 (en) * 2010-08-18 2012-02-23 三菱重工業株式会社 Aerator, seawater flue-gas desulfurization system equipped with same, and method for operating the aerator
WO2012046356A1 (en) * 2010-10-08 2012-04-12 三菱重工業株式会社 Aeration device and seawater flue gas desulfurization device provided with same
WO2012046355A1 (en) * 2010-10-08 2012-04-12 三菱重工業株式会社 Aeration device and seawater flue gas desulfurization device provided with same
WO2013011727A1 (en) * 2011-07-15 2013-01-24 パナソニック株式会社 Plasma generator and cleaning/purification apparatus using same
JP2014204698A (en) * 2013-04-15 2014-10-30 清水建設株式会社 Air supply system, and microorganism culture apparatus including the same
JP2015231591A (en) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 Remote supervisory control system
CN107151060A (en) * 2017-06-21 2017-09-12 胡海平 A kind of pressure type self-cleaning aeration group
CN110028212A (en) * 2019-05-26 2019-07-19 天津泰兴工程技术有限公司 A kind of method and device of novel Air Exposure oil sludge and sand
JP2019188273A (en) * 2018-04-19 2019-10-31 株式会社明電舎 Washing method of diffuser tube and membrane separation apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017567A1 (en) * 2010-08-06 2012-02-09 三菱重工業株式会社 Aeration device, seawater flue gas desulfurization device provided with same, and method for humidifying aeration device
CN102985370A (en) * 2010-08-06 2013-03-20 三菱重工业株式会社 Aeration apparatus, seawater flue gas desulphurization apparatus including the same, and humidification method for aeration apparatus
WO2012023293A1 (en) * 2010-08-18 2012-02-23 三菱重工業株式会社 Aerator, seawater flue-gas desulfurization system equipped with same, and method for operating the aerator
JP2012040492A (en) * 2010-08-18 2012-03-01 Mitsubishi Heavy Ind Ltd Aeration apparatus, seawater flue gas desulfurization apparatus including the same, and method for operating aeration apparatus
WO2012046355A1 (en) * 2010-10-08 2012-04-12 三菱重工業株式会社 Aeration device and seawater flue gas desulfurization device provided with same
JP2012081401A (en) * 2010-10-08 2012-04-26 Mitsubishi Heavy Ind Ltd Aeration apparatus and seawater flue gas desulfurization apparatus including the same
JP2012081402A (en) * 2010-10-08 2012-04-26 Mitsubishi Heavy Ind Ltd Aeration apparatus and seawater flue gas desulfurization apparatus including the same
WO2012046356A1 (en) * 2010-10-08 2012-04-12 三菱重工業株式会社 Aeration device and seawater flue gas desulfurization device provided with same
CN103003203A (en) * 2010-10-08 2013-03-27 三菱重工业株式会社 Aeration device and seawater flue gas desulfurization device provided with same
CN103080014A (en) * 2010-10-08 2013-05-01 三菱重工业株式会社 Aeration device and seawater flue gas desulfurization device provided with same
WO2013011727A1 (en) * 2011-07-15 2013-01-24 パナソニック株式会社 Plasma generator and cleaning/purification apparatus using same
JP2014204698A (en) * 2013-04-15 2014-10-30 清水建設株式会社 Air supply system, and microorganism culture apparatus including the same
JP2015231591A (en) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 Remote supervisory control system
CN107151060A (en) * 2017-06-21 2017-09-12 胡海平 A kind of pressure type self-cleaning aeration group
JP2019188273A (en) * 2018-04-19 2019-10-31 株式会社明電舎 Washing method of diffuser tube and membrane separation apparatus
CN110028212A (en) * 2019-05-26 2019-07-19 天津泰兴工程技术有限公司 A kind of method and device of novel Air Exposure oil sludge and sand

Similar Documents

Publication Publication Date Title
JP2009106874A (en) Reaction tank and aeration device
TWI406698B (en) A degassing device and an ultrasonic cleaning device using the degassing device
JP3744447B2 (en) Membrane separator
JP6248637B2 (en) Air diffuser, operation method thereof, and water treatment apparatus
JPWO2014061737A1 (en) Air diffuser, air diffuser, and water treatment device
JP2016028806A (en) Air diffuser, and water treatment apparatus and method for operating the same
CN101116797A (en) Chemical scrubbing method of the flat-plate film
JP2012200706A (en) Air diffusion system and washing method of air diffusion apparatus
WO2014073947A1 (en) An ultrafiltration system for concentration of latices
JP2006205119A (en) Method for using immersion type membrane separation apparatus and immersion type membrane separation apparatus
JP2009161601A (en) Organism desulfurization apparatus
JP6308062B2 (en) Air diffuser and water treatment device
CN107827262B (en) Flat ceramic membrane water purifier and purification process thereof
KR100788202B1 (en) An artificial air reactor device
CN102601073B (en) Cleaning device for oil smoke purifier
CN202802923U (en) Filtering cloth cleaning device of horizontal belt type vacuum filtering machine
JP6890204B1 (en) Water treatment equipment and water treatment method
JP3452381B2 (en) Bath water heat purifier
JP3827410B2 (en) Air diffuser for membrane separator
KR20230096996A (en) Water treatment device and estimation method
CN215447958U (en) A prevent biological adhesion device for sensor
CN221333382U (en) Dust removing device
JP2009112883A (en) Air diffuser and membrane separator using the same
JP2572811Y2 (en) Bathtub cleaning equipment
JP2009247977A5 (en)