JP2009106794A - Hydrogen separation body and hydrogen separation apparatus - Google Patents
Hydrogen separation body and hydrogen separation apparatus Download PDFInfo
- Publication number
- JP2009106794A JP2009106794A JP2007278767A JP2007278767A JP2009106794A JP 2009106794 A JP2009106794 A JP 2009106794A JP 2007278767 A JP2007278767 A JP 2007278767A JP 2007278767 A JP2007278767 A JP 2007278767A JP 2009106794 A JP2009106794 A JP 2009106794A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- permeable membrane
- hydrogen permeable
- pair
- support plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
本発明は、水素を含む混合ガスから水素ガスを取り出すのに用いられる水素透過膜を備えた水素分離体及び水素分離装置に関する。 The present invention relates to a hydrogen separator and a hydrogen separator provided with a hydrogen permeable membrane used for extracting hydrogen gas from a mixed gas containing hydrogen.
水素透過膜は、水素ガス及び水素を含む混合ガスから水素ガスを選択的に取り出すために使用されている。水素透過膜としては、水素の吸着、解離、拡散、結合する能力を有するものが使用されており、代表的な水素透過膜として、例えば、パラジウム(Pd)系合金から成るものが挙げられる。このパラジウム(Pd)は貴金属であり、高価であるために、バナジウム(V)系やネオジム(Nd)系などの水素透過膜の研究も盛んに行われている。 The hydrogen permeable membrane is used for selectively extracting hydrogen gas from a mixed gas containing hydrogen gas and hydrogen. As the hydrogen permeable membrane, those having the ability to adsorb, dissociate, diffuse, and bond hydrogen are used. As a typical hydrogen permeable membrane, for example, a membrane made of a palladium (Pd) alloy can be cited. Since this palladium (Pd) is a noble metal and is expensive, research on hydrogen permeable membranes such as vanadium (V) and neodymium (Nd) has been actively conducted.
近年、地球環境問題への関心の高まりから、燃料電池の開発が盛んに行われており、液体燃料等から触媒等によって改質された水素を選択的に得るために、水素透過膜が必要となってきている。また、燃料電池に限らず、例えば、内燃機関等の水素を必要とする部位に水素を供給するために、水素透過膜の利用が検討されている。
例えば、燃料電池の車体への搭載を考慮した場合、燃料電池システム全体の体積(容積)は、可能な限り小さくすることが好ましい。燃料電池システムを小さくするためには、燃料源として水素ガスよりも液体燃料を用いることが望ましく、液体燃料を用いる場合は、該燃料から改質された水素を選択的に取り出すことのできる水素透過膜の機能が重要となる。
In recent years, fuel cells have been actively developed due to increasing interest in global environmental problems, and a hydrogen permeable membrane is required to selectively obtain hydrogen reformed by a catalyst from liquid fuel. It has become to. In addition to the fuel cell, for example, use of a hydrogen permeable membrane is being studied in order to supply hydrogen to a site that requires hydrogen, such as an internal combustion engine.
For example, considering the mounting of the fuel cell on the vehicle body, the volume (volume) of the entire fuel cell system is preferably as small as possible. In order to reduce the size of the fuel cell system, it is desirable to use liquid fuel rather than hydrogen gas as a fuel source. When liquid fuel is used, hydrogen permeation that can selectively take out reformed hydrogen from the fuel. The function of the membrane is important.
従来、水素透過膜としては、多孔質支持体の表面に、Pd又はPd合金製の水素透過膜を、メッキ、CVD(気相化学反応)、スパッタリング、イオンプレーティング、蒸着などの方法によって成膜した成膜タイプのものが知られている(例えば、特許文献1)。
水素透過膜は、膜厚が薄いほど、水素の透過性を向上させることができる。水素透過膜の膜厚が薄ければ、多孔質支持体と水素透過膜を備えた水素分離体の体積(容積)も小さくすることができ、例えば、車体に搭載する燃料電池に用いる場合に好適である。
例えば、水素分離膜の膜厚を10分の1(1/10)にした場合、透過性は10倍になり、水素分離体の体積(容積)も10分の1(1/10)にすることが可能となる。また、この場合、水素分離膜を形成するために必要となるPdの使用量は、100分の1(1/100)となり、Pdの使用量を削減して、大幅にコストを低減することが可能となる。
As the hydrogen permeable membrane is thinner, the hydrogen permeability can be improved. If the film thickness of the hydrogen permeable membrane is thin, the volume (volume) of the hydrogen separator provided with the porous support and the hydrogen permeable membrane can be reduced. For example, it is suitable for use in a fuel cell mounted on a vehicle body. It is.
For example, when the thickness of the hydrogen separation membrane is reduced to 1/10 (1/10), the permeability is increased 10 times, and the volume (volume) of the hydrogen separator is also reduced to 1/10 (1/10). It becomes possible. In this case, the amount of Pd used to form the hydrogen separation membrane is 1 / 100th (1/100), and the amount of Pd used can be reduced, greatly reducing the cost. It becomes possible.
また、水素透過膜として、金属製又は合金製の自立膜タイプの水素透過膜も検討されている。自立膜タイプの水素透過膜は、上述の成膜タイプのように、多孔質支持体上に水素透過膜を成膜する必要がないため、より薄膜化することが可能となる。一方、水素透過膜を薄膜化したために、十分な強度を得ることができず、強度を補うために、水素透過膜を保持する構造が必要となる。 Further, as a hydrogen permeable membrane, a metal or alloy free-standing membrane type hydrogen permeable membrane has been studied. The self-supporting membrane type hydrogen permeable membrane does not need to form a hydrogen permeable membrane on the porous support unlike the above-described film forming type, and thus can be made thinner. On the other hand, since the hydrogen permeable membrane is thinned, sufficient strength cannot be obtained, and a structure for holding the hydrogen permeable membrane is required to supplement the strength.
このような自立膜タイプの水素透過膜を保持する構造として、水素透過膜を、多数の貫通孔を備えた一対の金属製のプレートで挟持する構造が提案されている(特許文献2)。
この構造では、一方と他方の金属製のプレートに形成された各々の貫通孔が、水素透過膜を介して連通するように形成されている。また、水素透過膜を支持する金属製のプレートには、貫通孔以外の水素透過膜と接触する接触面の端部に、水素透過膜との接触面に対する角度が鈍角になるように設定された鈍角面が形成されている。
In this structure, each through-hole formed in one and the other metal plates is formed so as to communicate with each other through the hydrogen permeable membrane. In addition, the metal plate that supports the hydrogen permeable membrane was set so that the angle with respect to the contact surface with the hydrogen permeable membrane was an obtuse angle at the end of the contact surface that was in contact with the hydrogen permeable membrane other than the through hole. An obtuse angle surface is formed.
しかしながら、かかる従来の技術において、例えば、上記特許文献1の成膜タイプの水素透過膜にあっては、水素透過膜を成膜する多孔質支持体の孔径が大きいと、ピンホール等が形成され易くなるという問題がある。この問題を避けるために、膜厚を厚くするか、多孔質支持体の孔径を小さくする必要があり、どちらの方法を採用しても、水素の透過性が低くなるという問題がある。
However, in such a conventional technique, for example, in the film-forming type hydrogen permeable membrane of
一方、上記特許文献2の自立膜タイプの水素透過膜にあっては、薄膜化された水素透過膜の変形が生じやすく、水素透過膜が損傷し易いという問題がある。水素透過膜は、供給側の水素分圧と抽出側の水素分圧との圧力差を利用して、水素を選択的に透過させているため、この圧力差によって、水素透過膜が変形し易く、この変形から損傷が生じ易い。また、水素透過膜は、水素の吸蔵による体積膨張や熱による熱膨張によっても、膜が変形し易く、この変形からも損傷が生じ易い。例えば、燃料電池に使用した水素透過膜に損傷が生じてしまうと、電極等に含まれる白金(Pt)等が被毒し、燃料電池の出力が低下してしまうという問題がある。
On the other hand, the hydrogen permeable membrane of the self-supporting membrane type of
また、上記特許文献2の水素分離装置は、水素透過膜を保持する金属製のプレートの接触面の端部に、該接触面に対する角度が鈍角になるように設定した鈍角面を形成して、供給側と抽出側の圧力差により水素透過膜が金属製のプレートから受ける応力を小さくしようとしている。しかし、貫通孔の孔径や圧力差の大きさなどによっては、プレートから受ける応力を小さくしても、水素透過膜の変形を防止することができず、水素透過膜の損傷が避けられない場合もある。
Further, the hydrogen separation device of
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、自立膜タイプの水素透過膜の大きな変形を防いで損傷を防止することが可能な、水素の透過性に優れた水素分離体、及び、これを用いたものであって、簡易な構成でシール性に優れた水素分離装置を提供することである。 The present invention has been made in view of such problems of the prior art, and the object of the present invention is to prevent large deformation of a self-supporting membrane type hydrogen permeable membrane and prevent damage. A hydrogen separator excellent in hydrogen permeability and a hydrogen separator using the same and having a simple structure and excellent sealing properties.
本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、金属又は合金製の水素透過膜を、一対の多孔質材からなる支持板で両面から支持し、該一対の支持板の一方と他方とを有意に異ならせることなどによって、上記目的を達成することができることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above object, the inventors of the present invention supported a metal or alloy hydrogen permeable membrane from both sides with a pair of porous material support plates, and the pair of support plates The inventors have found that the above object can be achieved by making one and the other significantly different, and completed the present invention.
即ち、本発明の水素分離体は、金属又は合金製の水素透過膜と、該水素透過膜を両面から支持する一対の多孔質材から成る支持板を備えたものであり、この一対の支持板は、一方と他方とで機械的強度が異なるものである。 That is, the hydrogen separator of the present invention comprises a metal or alloy hydrogen permeable membrane and a pair of porous plates that support the hydrogen permeable membrane from both sides. Is different in mechanical strength between one and the other.
また、本発明の水素分離装置は、上記水素分離体と、該水素分離体を間に挟んで、該水素分離体の両側にガス室を形成する一対の金属製の筺体部材を備えたものであり、上記水素分離体の接合部又は接合部材と、上記金属製の筺体部材の縁部を接合して成るものである。 A hydrogen separator according to the present invention includes the hydrogen separator and a pair of metal casing members that form gas chambers on both sides of the hydrogen separator with the hydrogen separator interposed therebetween. Yes, it is formed by joining the joint or member of the hydrogen separator and the edge of the metal housing member.
本発明によれば、金属又は合金製の水素透過膜を、一方と他方とで有意に異ならせるようにした一対の多孔質材から成る支持板で支持するようにしたので、水素透過膜が変形しにくく、水素透過膜の大きな変形に起因する損傷を防止することができ、水素の透過性に優れた水素分離体を提供することができる。
また、本発明によれば、上記水素分離体を、この水素分離体の両側にガス室を形成する一対の金属製の筺体部材で挟んで、この金属製の筺体部材の縁部と水素分離体の縁部周囲に形成された接合部又は接合部材とを接合するようにしたので、簡易な構造でシール性と水素の透過性に優れた水素分離装置を提供することができる。
According to the present invention, the hydrogen permeable membrane made of a metal or an alloy is supported by the support plate made of a pair of porous materials that are significantly different from each other, so that the hydrogen permeable membrane is deformed. Therefore, it is possible to prevent damage caused by large deformation of the hydrogen permeable membrane and to provide a hydrogen separator excellent in hydrogen permeability.
According to the present invention, the hydrogen separator is sandwiched between a pair of metal casing members that form gas chambers on both sides of the hydrogen separator, and the edge of the metal casing member and the hydrogen separator Since the joining part or the joining member formed around the edge of the material is joined, a hydrogen separator having a simple structure and excellent in sealing performance and hydrogen permeability can be provided.
以下、本発明の水素分離体につき詳細に説明する。
上述の如く、本発明の水素分離体は、金属又は合金製の水素透過膜と、該水素透過膜を両面から支持する一対の多孔質材から成る支持板を備え、上記一対の支持板の一方と他方とで機械的強度が異なるものである。
Hereinafter, the hydrogen separator of the present invention will be described in detail.
As described above, the hydrogen separator of the present invention includes a metal or alloy hydrogen permeable membrane and a support plate made of a pair of porous materials that support the hydrogen permeable membrane from both sides, and one of the pair of support plates. And the other have different mechanical strengths.
水素透過膜としては、例えば、Pd製のものや、Pd系合金、V系合金、Nd系合金、Zr系合金のものが挙げられる。
水素透過膜は、その膜厚が薄いものほど、水素の透過性が向上されることから、好ましくは膜厚が5〜10μm、より好ましくは、大きな変形が生じにくい程度の厚さであって膜厚が5μm以下のものを使用する。
Examples of the hydrogen permeable membrane include those made of Pd, Pd alloys, V alloys, Nd alloys, and Zr alloys.
Since the hydrogen permeable membrane has a smaller thickness, the hydrogen permeability is improved. Therefore, the thickness is preferably 5 to 10 μm, and more preferably, the membrane is thick enough to prevent large deformation. Use a thickness of 5 μm or less.
水素透過膜を両面から支持する一対の多孔質材からなる支持板としては、一方と他方とで、例えば、材質、厚さ、空隙率、孔径等が異なることにより、機械的強度が異なるようにしたものであることが好ましい。
このように、水素透過膜を両面から支持する一対の支持板の一方と他方との機械的強度が異なるようにしたことによって、水素透過膜の変形を防止することができる。
次に、本発明の水素分離体の構成によって、水素透過膜の変形を防止することが可能となるメカニズムについて説明する。
As a support plate made of a pair of porous materials that support the hydrogen permeable membrane from both sides, the mechanical strength differs depending on, for example, the material, thickness, porosity, pore diameter, etc. of one and the other. It is preferable that
As described above, by making the mechanical strength of one of the pair of support plates that support the hydrogen permeable membrane from both sides different from the other, deformation of the hydrogen permeable membrane can be prevented.
Next, a mechanism capable of preventing the deformation of the hydrogen permeable membrane by the configuration of the hydrogen separator of the present invention will be described.
図1〜5は、水素透過膜の供給側と透過側のうち、透過側の面を多孔質材から成る支持板で支持した場合に、水素透過膜に変形(皺)が生じ、該変形(皺)に起因して、水素透過膜に損傷が生じる状態を示す説明図である。
図1〜3は、一方の面のみが支持板で支持された水素透過膜に変形が生じる状態を示す断面図であり、図4及び5は、皺及び損傷が生じた水素透過膜を説明する写真(平面図)である。
FIGS. 1 to 5 show that when the surface on the permeation side of the supply side and the permeation side of the hydrogen permeation membrane is supported by a support plate made of a porous material, the hydrogen permeation membrane is deformed (raised). It is explanatory drawing which shows the state which causes damage to a hydrogen permeable film due to (ii).
1 to 3 are cross-sectional views showing a state in which deformation occurs in the hydrogen permeable membrane supported only on one surface by a support plate, and FIGS. 4 and 5 illustrate the hydrogen permeable membrane in which wrinkles and damage have occurred. It is a photograph (plan view).
図1に示すように、水素透過膜の水素の透過側の面が支持板2で支持された水素透過膜1は、熱膨張や水素による体積膨張により、水素透過膜1の一部が支持板2から浮き上がって、支持板2のない側(供給側)に突出するように変形(変形部1a)する(図2)。
水素透過膜1の供給側と透過側とでは、一般的に、供給側(燃料電池に用いる場合は、燃料の混合ガスを改質する改質側)の方が透過側より圧力が高いため、供給側に突出した水素透過膜は、供給側の圧力を受けて鋭角状に押し潰され、先端が尖った状態の大きな皺(変形部1a’)が形成される(図3及び図4)。
この大きな皺(変形部1a’)は、水素透過膜1の供給側と透過側の圧力差が緩和されたり、水素透過膜から水素が全て放出されたり、温度が下がると、再び、図2の過程を経て、図1の状態に戻ろうとする。
水素透過膜の使用条件によっては、図1の状態、図2の状態、図3の状態、再び、図2の状態と、水素透過膜の変形が繰り返され、最終的には、皺の頂部に亀裂が入り、水素透過膜が損傷する(図5)。
As shown in FIG. 1, a hydrogen
The supply side and the permeate side of the hydrogen
This large soot (
Depending on the conditions of use of the hydrogen permeable membrane, the state of FIG. 1, the state of FIG. 2, the state of FIG. 3, the state of FIG. 2 again, and the deformation of the hydrogen permeable membrane are repeated. Cracks occur and the hydrogen permeable membrane is damaged (FIG. 5).
上述のような大きな皺は、水素の供給側から受けた高い圧力によって、水素透過膜の膨張部分が集中して、生成されると考えられる。
一方、小さな皺の生成は、水素透過膜に大きな皺が生成されるのを防ぐため、小さな皺の生成に止めることができれば、水素透過膜の損傷につながりにくい。
It is considered that the large soot as described above is generated by concentration of the expanded portion of the hydrogen permeable membrane due to the high pressure received from the hydrogen supply side.
On the other hand, the generation of small soot prevents the generation of large soot on the hydrogen permeable membrane. Therefore, if the generation of small soot can be stopped, the hydrogen permeable membrane is unlikely to be damaged.
本発明の水素分離体は、圧力差が異なる水素透過膜の供給側と透過側に、圧力差に応じて各々機械的強度が異なる支持板を設け、この一対の支持板によって水素透過膜にかかる皺を作る応力を水素透過膜の両面に分散するようにしているので、大きな皺が生成されにくく、水素透過膜に変形が生じたとしても、小さな皺の生成に止まるので、水素透過膜の損傷を防ぐことができる。
一般的に、水素透過膜の供給側と透過側では、供給側の方が透過側よりも圧力が高いので、供給側の圧力を受ける透過側に、機械的強度の大きい支持板を設け、供給側に機械的強度の小さい支持板を設けることが好ましい。
The hydrogen separator of the present invention is provided with support plates having different mechanical strengths according to the pressure difference on the supply side and the permeation side of the hydrogen permeable membrane having different pressure differences, and the hydrogen permeable membrane is applied by the pair of support plates. Since the stress that creates the soot is distributed on both sides of the hydrogen permeable membrane, it is difficult for large soot to be produced, and even if the hydrogen permeable membrane is deformed, the formation of small soot will stop, so the hydrogen permeable membrane will be damaged. Can be prevented.
Generally, on the supply side and the permeation side of the hydrogen permeable membrane, the pressure on the supply side is higher than that on the permeation side. Therefore, a support plate having a high mechanical strength is provided on the permeation side that receives the pressure on the supply side. It is preferable to provide a support plate having low mechanical strength on the side.
このように、本発明の水素分離体は、自立膜タイプの厚さの薄い水素透過膜を使用した場合であっても、水素透過膜の大きな変形を防ぎ、水素透過膜の損傷を防止することができるので、厚さの薄い自立膜タイプの水素透過膜を使用して、水素分離体又は水素分離装置を小型化(薄型化)することができる。 Thus, the hydrogen separator of the present invention prevents large deformation of the hydrogen permeable membrane and prevents damage to the hydrogen permeable membrane even when a thin hydrogen permeable membrane of a self-supporting membrane type is used. Therefore, the hydrogen separator or the hydrogen separator can be reduced in size (thinned) using a thin self-supporting membrane type hydrogen permeable membrane.
例えば、一対の支持板の各々を異なる材質で形成することにより、一方と他方とで機械的強度を異なるようにすることができる。例えば、一方の供給側にセラミック製の支持板を設け、他方の透過側に金属製の支持板を設けることが好ましい。 For example, the mechanical strength can be made different between one and the other by forming each of the pair of support plates with different materials. For example, it is preferable to provide a ceramic support plate on one supply side and a metal support plate on the other transmission side.
次に、本発明の水素分離体の実施形態の例(実施形態1〜14)を図面に基づき説明する。本発明の水素分離体は、図6〜21に示す実施形態に限定されるものではない。各図面に共通する部材には、同一の符号を付した。 Next, the example (Embodiment 1-14) of embodiment of the hydrogen separator of this invention is described based on drawing. The hydrogen separator of the present invention is not limited to the embodiment shown in FIGS. Members common to the drawings are denoted by the same reference numerals.
(実施形態1)
図6に示すように、本発明の実施形態1の水素分離体10は、水素透過膜1の供給側(改質側)に厚さの薄い支持板2aを設け、水素透過膜1の透過側に厚さの厚い支持板2bを設けている。なお、図6中、符号20は、支持板2a,2bを合金化して接合した接合部を示す。
このように、水素透過膜を両面から支持する支持板の一方と他方との厚さを変えることにより、機械的強度が異なるようにしてもよい。
この場合は、例えば、水素透過膜の供給側の支持板の厚さを薄くし、水素透過膜の透過側の支持板の厚さを厚くすることが好ましい。
(Embodiment 1)
As shown in FIG. 6, the
Thus, the mechanical strength may be varied by changing the thickness of one and the other of the support plates that support the hydrogen permeable membrane from both sides.
In this case, for example, it is preferable to reduce the thickness of the support plate on the supply side of the hydrogen permeable membrane and increase the thickness of the support plate on the permeate side of the hydrogen permeable membrane.
図7は、両面から機械的強度の異なる一対の支持板で支持された水素透過1に形成された変形(皺)の状態を示す写真(平面図)である。
図7に示すように、水素透過膜1は、両面から機械的強度の異なる一対の支持板で支持されることによって、水素透過膜1には、大きな変形(皺)が生じておらず、小さな変形(皺)の生成に止まっており、損傷が生じにくくなっていることが確認できる。
FIG. 7 is a photograph (plan view) showing a state of deformation (flaw) formed in the
As shown in FIG. 7, the hydrogen
一対の支持板のうち、水素透過膜の供給側に設ける支持板の厚さは、部材の通気率により異なるが0.5mm程度が好ましい。 Of the pair of support plates, the thickness of the support plate provided on the hydrogen permeable membrane supply side varies depending on the air permeability of the member, but is preferably about 0.5 mm.
また、図示を省略したが、水素透過膜1の供給側(改質側)に空隙率の大きい支持板を設け、水素透過膜の透過側に空隙率の小さい支持板を設けて水素分離体1を形成してもよい。
このように、水素透過膜を両面から支持する支持板の一方と他方との空隙率を変えることにより、機械的強度が異なるようにしてもよい。
Although not shown, the
In this way, the mechanical strength may be varied by changing the porosity of one and the other of the support plates that support the hydrogen permeable membrane from both sides.
一対の支持板のうち、水素透過膜の供給側に設ける支持板の空隙率は、水素透過膜表面への水素の到達を容易にするため、水素透過膜の透過側に設ける空隙率より高く設定する必要がある。各々の好ましい空隙率は多孔質体の素材により異なる。 Of the pair of support plates, the porosity of the support plate provided on the supply side of the hydrogen permeable membrane is set higher than the porosity provided on the permeation side of the hydrogen permeable membrane in order to facilitate the arrival of hydrogen to the hydrogen permeable membrane surface. There is a need to. Each preferable porosity varies depending on the material of the porous body.
(実施形態2)
図8は、本発明の水素分離体の実施形態2を示し、水素分離体10は、水素透過膜1の供給側(改質側)に孔径の大きい支持板2cを備え、水素透過膜の透過側に孔径の小さい支持板2dを備えている。
一対の支持板の各々の孔径が異なることにより、一方と他方とで機械的強度が異なるようにすることができる。
例えば、供給側の支持体2cの平均細孔径Aと、透過側の支持体2dの平均細孔径Bを、A>Bにし、供給側の支持体2cの平均細孔径Aを、透過側の支持体2dの平均細孔径Bよりも疎にして、透過側の支持体2dの機械的強度を向上させてもよい。このように、透過側の支持板2dの機械的強度が大きいと、供給側から透過側にかかる大きな圧力により変形を生じることなく、水素透過膜1の膨張による変形を分散させ、水素透過膜1に大きな変形(皺)が生成されるのを防止することができる。
(Embodiment 2)
FIG. 8 shows
When the hole diameters of the pair of support plates are different, the mechanical strength can be made different between one and the other.
For example, the average pore diameter A of the
水素透過膜の透過側に設ける支持板の平均細孔径は、少なくとも0.5μm程度の大きさが必要である。一方、水素透過膜の供給側に設ける支持板の平均細孔径は、水素透過膜表面への水素の到達を容易にするため、透過側に設ける支持板の平均細孔径よりかなり大きな孔径が必要である。水素透過膜の供給側に設ける支持板の平均細孔径は、通気率を顧慮して定める必要がある。 The average pore diameter of the support plate provided on the permeation side of the hydrogen permeable membrane needs to be at least about 0.5 μm. On the other hand, the average pore diameter of the support plate provided on the supply side of the hydrogen permeable membrane needs to be much larger than the average pore size of the support plate provided on the permeation side in order to facilitate the arrival of hydrogen to the surface of the hydrogen permeable membrane. is there. The average pore diameter of the support plate provided on the supply side of the hydrogen permeable membrane needs to be determined in consideration of the air permeability.
(実施形態3)
図9は、本発明の水素分離体の実施形態3を示す。本例の水素分離体は、一対の支持板の一方と他方とで孔径を変える手段として、例えば、供給側に、金属製の網状体を支持板2eとして備え、透過側に、金属製の多孔質材から成る板状体を支持板2fとして備えている。
水素透過膜1の供給側に網状体である支持板2eを設けた場合(図10(a)参照)、熱と水素の透過により網状体である支持板2eが変形し、この変形に伴って水素透過膜1も変形するが、網状体である支持板2eによって、水素透過膜1の局所的な大きな変形が防止され、水素透過膜1の変形が分散されて、一定の間隔で小さく変形するので、水素透過膜1の損傷を防ぐことができる(図10(b)参照)。
なお、金属製の網状体を支持板として用いる場合は、水素透過膜と接触側の面に、後述する合金化阻止部を形成することが好ましい。
(Embodiment 3)
FIG. 9 shows Embodiment 3 of the hydrogen separator of the present invention. The hydrogen separator of the present example includes, as a means for changing the pore diameter between one and the other of the pair of support plates, for example, a metal mesh body is provided as a
When the
When a metal net is used as the support plate, it is preferable to form an alloying prevention portion to be described later on the surface in contact with the hydrogen permeable membrane.
(実施形態4)
図11(a)及び(b)は、本発明の水素分離体の実施形態4を示す。本例の水素分離体10は、水素分離体10を構成する一対の支持板2g,2hのうち、少なくとも一方の支持板2gが、水素透過膜1の対向面から裏面に連通する連通孔3aを有するものである。 支持板2gが連通孔3aを有することにより、一対の支持板2g,2hの一方と他方とで機械的強度を異ならせるようにすることができる。
図11(a)及び(b)に示すように、支持板2gは、水素透過膜1の対向面から裏面に連通する連通孔3aを有することによって、供給側で改質された水素ガスの水素透過膜1への供給量を増大することができ、水素透過膜1を通して、水素ガスを透過側に多量に供給することができるようになる。
(Embodiment 4)
11 (a) and 11 (b) show a fourth embodiment of the hydrogen separator of the present invention. In the
As shown in FIGS. 11A and 11B, the
(実施形態5)
また、図12は、本発明の水素分離体の実施形態5を示し、本例のように、水素分離体の支持板2gに形成する連通孔3bは、水素透過膜の対向面と裏面とで孔径が異なるように形成してもよい。例えば、支持板の裏面(水素透過膜と接触しない面、即ち、供給側の面)の孔径を大きくし、その一方で、支持板の水素透過膜との対向面(水素透過膜側の面)の孔径を小さく形成することによって、供給側で改質された水素ガスの水素透過膜への供給量を増大することができる。
(Embodiment 5)
FIG. 12 shows
(実施形態6)
図13は、本発明の水素分離体の実施形態6を示す。図13に示すように、水素分離体10は、一対の支持板2i,2jのうち、少なくとも一方の支持板2iに、例えば、水素を選択的に透過させる、分子ふるいの機能を有する選択機能層4を設けた例を示す。この選択機能層4は、例えば、水素透過膜1の供給側に設ける支持板2iの水素透過膜1との対向面に設けることが好ましい。
例えば、本発明の水素分離体10を燃料電池に用いた場合、供給側の混合ガス中に、一酸化炭素や二酸化炭素、水、メタン等が含まれている場合、水素以外の水素透過を阻害する物質が水素透過膜に流通すると水素の透過が阻害される。このため、支持板2iに、例えば、水素を選択的に透過させる、分子ふるいの機能を有する選択機能層4を設けることによって、供給側の混合ガス中に含まれている水素以外の一酸化炭素等の膜への接近を阻止したり、一酸化炭素よりも透過妨害性能がより小さい二酸化炭素は透過させるようにして、水素透過膜の透過性をより向上させることができる。
(Embodiment 6)
FIG. 13 shows
For example, when the
選択機能層としては、例えば、多孔質材からなる支持板の一方の表面にCVD法やゾルゲル法により形成した、分子ふるい機能を有するシリカ層や、CVD法により成膜したAl2O3等から成る、分子ふるい機能を有するセラミック層等が挙げられる。 Examples of the selective function layer include a silica layer having a molecular sieving function formed on one surface of a support plate made of a porous material by a CVD method or a sol-gel method, Al 2 O 3 formed by a CVD method, or the like. And a ceramic layer having a molecular sieving function.
(実施形態7)
図14は、本発明の水素分離体の実施形態7を示す。図14に示すように、水素分離体10は、一対の支持板2c,2dのうち、少なくとも一方の支持板2iには、例えば、燃料の改質を行う触媒層5を設けたものであってもよい。この触媒層5は、例えば、水素透過膜1の供給側の支持板2cの混合ガスと接触し易い外側(水素透過膜1と接触する側の反対側)に設けることが好ましい。
この触媒層5としては、例えば、燃料を改質して水素を発生させる触媒と同じものを用いることができる。支持板2cに触媒層5を設けた場合は、水素透過膜1を透過させる前に燃料の改質を行う触媒層を増大させて、改質の効率を向上させることができるので、好ましい。
(Embodiment 7)
FIG. 14 shows
As the
本発明の水素分離体として、金属又は合金製の水素透過膜と、金属又は合金製の一対の支持板を用いた場合は、これらの水素透過膜と支持板とを合金化することによって、一体化することができる(図6、図8、図10、図11及び図14等参照)。 When a hydrogen permeable membrane made of a metal or an alloy and a pair of support plates made of a metal or an alloy are used as the hydrogen separator of the present invention, the hydrogen permeable membrane and the support plate are alloyed to form an integral body. (See FIGS. 6, 8, 10, 11, and 14).
(実施形態8)
上述のように、金属又は合金製の水素透過膜と、金属又は合金製の一対の支持板を合金化して接合する場合は、図15に示す実施形態8のように、支持板2k,2lの水素透過膜1との対向面の少なくとも一部、好ましくは支持板2k,2lの水素透過膜1と対向面の縁部全周を除く残部の全てに合金化を阻止する合金化阻止部6を設けることが好ましい(図中、矢印は、支持板2k,2lの接合方向を示す。)。合金化阻止部を設けていない縁部全周は、合金化促進部20’として機能し、この合金化促進部が接合して接合部20となる。なお、図示を省略したが、他の例においても、支持板として、金属又は合金製の支持板を用いる場合は、水素透過膜との対向面に、合金化阻止部を設けた支持板を用いることが好ましい。
この合金化阻止部6を設けることによって、支持板2k,2lの縁部全周と水素透過膜とを合金化して一体化させる際に、合金化によって水素透過膜1の水素の透過が阻止されることなく、水素透過膜1と支持板2k,2lとを一体化することができる。
(Embodiment 8)
As described above, when the metal or alloy hydrogen permeable membrane and the pair of metal or alloy support plates are alloyed and joined, the
By providing this
合金化阻止部としては、支持板の表面に形成したSiO2、Al2O3及びZrO2等の耐熱性無機酸化物製の膜が挙げられる。この膜は、めっきなどのCVD法、さらに、真空蒸着やスパッタリングなどのPVD法、塗布などにより形成することができる。 The alloying blocking unit, SiO 2, Al 2 O 3 and heat-resistant inorganic oxide film made of a ZrO 2 or the like formed on the surface of the support plate and the like. This film can be formed by a CVD method such as plating, a PVD method such as vacuum deposition or sputtering, or coating.
(実施形態9)
図16は、本発明の水素分離体10の実施形態9を示す。図16に示すように、例えば、水素分離体10の支持板2m,2nとしてセラミック製のものを用いた場合は、金属製の支持板と比較して、支持板2m,2nの剛性が小さいので、これらの支持板2m,2nの水素透過膜1との対向面の裏面側に、更に多孔質材又は複数の通孔を有する第2の支持板として、サポート部材7a,7bを設けてもよい。
また、図16に示すように、第2の支持板であるサポート部材7a,7bが、金属製の多孔質材から成るものである場合は、供給側に設けるサポート部材7aと、透過側に設けるサポート部材7bとでは、各々のサポート部材7a,7bに形成される平均孔径等が異なるものであってもよい。
(Embodiment 9)
FIG. 16 shows Embodiment 9 of the
As shown in FIG. 16, when the
サポート部材7は、水素透過膜の一方の支持板のみを支持するように設けてもよく、図16に示すように、両方の支持板を支持するように設けてもよい。
一対の支持板として、セラミック製の支持板を設け、該一対の支持板の水素透過膜との対向面の裏面に、更に、一対の金属製の板状のサポート部材を設けた場合は、この金属製のサポート部材の縁部全周を合金化して接合し、一体化して水素分離体を形成してもよい。
The
When a ceramic support plate is provided as a pair of support plates, and a pair of metal plate-shaped support members are further provided on the back surface of the pair of support plates facing the hydrogen permeable membrane, The entire periphery of the edge of the metal support member may be alloyed and joined, and integrated to form a hydrogen separator.
(実施形態10)
図17は、本発明の水素分離体10の実施形態10を示し、図17に示すように、水素分離体10として、例えば、一対の支持体2o,2pのうち、一方の支持板2pの厚さを大きくしても水素透過膜1の変形を防止できない場合も、支持板2pの水素透過膜1との対向面の裏面に、更に、第2の支持板として、サポート部材7cを設けてもよい。なお、図17には、選択機能層4を有する支持板2oを用いた例を示す。
例えば、水素透過膜1の供給側の圧力が数百kPaと高い場合は、水素透過膜1の透過側の支持板2pの厚さを大きくしただけでは、水素透過膜1及び支持板2pの変形を防止できない場合がある。この場合には、水素透過膜1の透過側の支持板2pを更に支持する第2の支持板であるサポート部材7cを設けて、透過側の部材の剛性を大きくすることで、水素透過膜1の大きな変形を防止することができる。
この場合は、サポート部材7cに多数の通孔8を形成し、透過側の支持板2pから透過してきた水素ガスが透過側に抜け易い構造にすることが好ましい。
(Embodiment 10)
FIG. 17
For example, when the pressure on the supply side of the hydrogen
In this case, it is preferable that a large number of through
次に、水素透過膜と一対の支持板とを一体化させた水素分離体の実施形態の例(実施形態11〜14)、及び、その製造方法を図面に基づき説明する。図18〜21は、水素分離体の製造方法の例を示す説明図である。 Next, examples (embodiments 11 to 14) of an embodiment of a hydrogen separator in which a hydrogen permeable membrane and a pair of support plates are integrated, and a manufacturing method thereof will be described with reference to the drawings. 18-21 is explanatory drawing which shows the example of the manufacturing method of a hydrogen separator.
本発明の水素分離体10として、金属又は合金製の水素透過膜1と、金属又は合金製の支持板(例えば、支持板2a,2b)を用いた場合は、水素透過膜と一対の支持板との縁部全周を合金化することによって接合し、該合金化した部分を接合部20として、一体化して水素分離体を製造することができる(図6、図8、図10、図11及び図14等参照)。
As the
(実施形態11)
図18は、本発明の水素分離体の実施形態11を示す。図18に示すように、水素分離体10として、水素透過膜1と、該水素透過膜1を両面から支持する支持板2a,2bの外縁部に、水素透過膜1及び支持板2a,2bの外縁部全体を囲繞する枠状体から成る接合部材21を設け、この接合部材21に、一対の支持板2a,2bの端縁部の一部又は全部を溶接し一体化して、水素分離体10を製造してもよい。なお、図18中、2a’及び2b’は溶接部分を示し、6は合金化阻止部を示す。
例えば、支持板2a,2bがステンレス製である場合は、接合部材21として、ステンレス製のものを用いれば、支持板2a,2bと接合部材21との溶接が容易であり、組み立て作業性を向上させることができる。
(Embodiment 11)
FIG. 18 shows Embodiment 11 of the hydrogen separator of the present invention. As shown in FIG. 18, as the
For example, when the
(実施形態12)
図19は、本発明の水素分離体の実施形態12を示す。図19に示すように、水素分離体10として、水素透過膜1と、該水素透過膜を両面から支持する支持板2a,2bの外縁部に、この外縁部の一部又は外縁部の全体を囲繞して、例えば、600℃以下の温度で、水素透過膜1及び一対の支持板2a,2bを、積層方向にカシメて固定する接合部材22を設けてもよい。この接合部材22を用いて、水素透過膜1と一対の支持板2a,2bを積層方向に押圧し、気密に一体化して、水素分離体10を製造する。図19中、矢印は接合部材22のカシメる方向を示し、6は合金化阻止部を示す。
なお、接合部材を用いて、水素透過膜及び一対の支持板を積層方向にカシメて固定する場合は、溶接して固定する場合のように、局所的な温度上昇によって、水素透過膜や支持板がアッセンブリ(組み付け)後にひずみを生じることがないという利点を有する。
Embodiment 12
FIG. 19 shows Embodiment 12 of the hydrogen separator of the present invention. As shown in FIG. 19, as the
When the hydrogen permeable membrane and the pair of support plates are caulked and fixed in the laminating direction using the joining member, the hydrogen permeable membrane or the support plate is caused by a local temperature rise as in the case of fixing by welding. Has the advantage that no distortion occurs after assembly.
(実施形態13)
図20は、本発明の水素分離体の実施形態13を示す。図20に示すように、水素分離体10は、支持板2a,2bの接合部20又は接合部材の部分を外方側から圧縮加工してもよい。接合部20又は接合部材の部分を外方側から圧縮加工することによって、支持板2a,2b及び/又はサポート部材の空隙を潰して密度を大きくすることができ、水素分離体を装置に組み付ける際に、供給側から透過側へのガス漏れを防止することができる。
なお、図20中、矢印は、支持板2a,2bの接合部20又は接合部材の部分を圧縮する方向を示している。
水素分離体の接合部又は接合部材を圧縮加工する場合は、接合部又は接合部材を予め厚く形成しておき、圧縮加工後に、圧縮加工した部分と圧縮加工していない部分が同一の厚さになるようにしておくことにより、水素分離体の装置への組み付けを容易にすることができる。
(Embodiment 13)
FIG. 20 shows a thirteenth embodiment of the hydrogen separator of the present invention. As shown in FIG. 20, the
In addition, the arrow in FIG. 20 has shown the direction which compresses the
When compressing the joined portion or joining member of the hydrogen separator, the joining portion or joining member is formed thick in advance, and after compression processing, the compressed portion and the uncompressed portion have the same thickness. By doing so, the assembly of the hydrogen separator into the apparatus can be facilitated.
(実施形態14)
図21は、本発明の水素分離体の実施形態14を示す。図21に示すように、本例の水素分離体10は、水素透過膜1の支持板2m,2nとしてセラミック製のものを用い、このセラミック製の支持板2m,2nを更に支持する第2の支持板として、一対の金属製のサポート部材7a,7bを用いている。
図21に示すように、水素分離体10は、第2の支持板である金属製のサポート部材7a,7bの縁部の一部又は全周に、水素透過膜1、支持板2m,2n、第2の支持板であるサポート部材7a,7bを積層方向にカシメて固定する多孔質体から成る接合部材22を設け、この接合部材22の外周に、更に金属製の多孔質体からなる保持枠23を設け、接合部材22と保持枠23を溶接し、強固な構造としている。
(Embodiment 14)
FIG. 21 shows Embodiment 14 of the hydrogen separator of the present invention. As shown in FIG. 21, the
As shown in FIG. 21, the
図21に示す水素分離体10は、水素透過膜1の外縁が、支持板2m,2n及びサポート部材7a,7bからはみ出すようにし、はみ出した水素透過膜1を、接合部材22の内面に接するように折り曲げて(折曲部1b)組み立てることが好ましい。水素分離体10は、水素透過膜1が折り曲げられた(折曲部1b)側が、供給側となるように配置することにより、供給側(改質側)で改質された水素以外の成分が透過側に漏れることがないという利点を有する。
In the
次に、本発明の水素分離体を用いた水素分離装置及びその製造方法を図面に基づき説明する。図22は、本発明の水素分離体を用いた水素分離装置の実施形態の例(実施形態15)を説明する分解斜視図であり、図23は、本発明の水素分離体を用いた水素分離装置の実施形態の他の例(実施形態16)を説明する断面図である。なお、本発明の水素分離装置は、図22及び23に示す実施形態に限られるものではない。 Next, a hydrogen separator using the hydrogen separator of the present invention and a manufacturing method thereof will be described with reference to the drawings. FIG. 22 is an exploded perspective view for explaining an example (embodiment 15) of an embodiment of a hydrogen separator using the hydrogen separator of the present invention, and FIG. 23 is a hydrogen separation using the hydrogen separator of the present invention. It is sectional drawing explaining the other example (Embodiment 16) of embodiment of an apparatus. The hydrogen separator according to the present invention is not limited to the embodiment shown in FIGS.
(実施形態15)
図22に示すように、水素分離装置100は、水素透過膜1と、一対の支持板2a,2bとを備えた水素分離体10と、該水素分離体10を間に挟んで、水素分離体10の両側にガス室を形成する一対の金属製の筐体部材30,30を備え、水素分離体10の接合部又は接合部材(図示略)と、一対の金属製の筐体部材30,30とを接合している。水素分離体10の接合部又は接合部材と筐体部材30,30との接合は、合金化してもよく、溶接してもよい。なお、図22中、6は合金化阻止部を示す。
水素分離装置100は、水素分離体10の接合部又は接合部材と、一対の筐体部材30,30の枠部縁部とを合金化又は溶接して接合していることにより、良好な気密性を有する。
(Embodiment 15)
As shown in FIG. 22, the
The
また、図22に示すように、水素分離装置100は、一方の筐体部材30の枠部内側に水素分離体10の厚さに対応した段差部31を形成し、この段差部31に水素分離体10を嵌合させ、この筐体部材30の枠部内側に水素分離体10を溶接した後、他方の筐体部材30を一方の筐体部材30と合金化又は溶接して形成してもよい。
Further, as shown in FIG. 22, the
(実施形態16)
また、図23に示すように、水素分離装置100は、水素分離体10と、一対の筐体部材30,30との間に触媒部材40,40を設けてもよい。
図23に示す水素分離装置100は、2つの水素分離体10,10と、この2つの水素分離体10,10を間に挟んで、一方側と他方側に、混合ガスの改質を行う改質触媒加熱部41と改質触媒部42を備えた一対の改質触媒部材40,40を備え、更にこの改質触媒部材40,40を挟んで、一対の筐体部材30,30を備えている。
本例において、水素分離装置100は、水素分離体10の接合部材22と、改質触媒部材40,40の縁部全周に位置する固定部43,43が合金化又は溶接により接合され、更に、改質触媒部材40,40の固定部43,43と、筐体部材30,30の縁部全周が合金化又は溶接により接合されて成るものである。
(Embodiment 16)
Further, as shown in FIG. 23, the
The
In this example, in the
以上のように、本発明の範囲に属する上記実施形態の水素分離体及び水素分離装置は、水素透過膜の大きな変形を防いで、水素透過膜の損傷を防止できるので、厚さの薄い自立膜タイプの水素透過膜を使用することができ、小型化(薄型化)することができる。よって、これらの実施形態の水素分離体及び水素分離装置は、燃料電池又は内燃機関に好適に用いることができる。
また、上記実施形態の水素分離体及び水素分離装置は、小型化(薄型化)することができるので、起動時に必要な熱量を減らすことができ、例えば、燃料電池システムの効率を高めることができる。
As described above, the hydrogen separator and the hydrogen separator according to the above embodiments belonging to the scope of the present invention can prevent the hydrogen permeable membrane from being greatly deformed and prevent the hydrogen permeable membrane from being damaged. A type of hydrogen permeable membrane can be used, and the size can be reduced (thinned). Therefore, the hydrogen separator and the hydrogen separator of these embodiments can be suitably used for a fuel cell or an internal combustion engine.
In addition, since the hydrogen separator and the hydrogen separator of the above embodiment can be reduced in size (thinned), the amount of heat required at startup can be reduced, and for example, the efficiency of the fuel cell system can be increased. .
1 水素透過膜
1a 変形部
1a’ 皺
1b 折曲部
2a〜2p 支持体
3a,3b 連通孔
4 選択機能層
5 触媒層
6 合金化阻止部
7a〜7c サポート部材
8 通孔
10 水素分離体
20 接合部
20’ 合金化促進部
21,22 接合部材
23 保持枠
30 筐体部材
31 段差部
40 触媒部材
41 改質触媒加熱部
42 改質触媒層
43 固定部
100 水素分離装置
DESCRIPTION OF
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007278767A JP5212888B2 (en) | 2007-10-26 | 2007-10-26 | Hydrogen separator and hydrogen separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007278767A JP5212888B2 (en) | 2007-10-26 | 2007-10-26 | Hydrogen separator and hydrogen separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009106794A true JP2009106794A (en) | 2009-05-21 |
JP5212888B2 JP5212888B2 (en) | 2013-06-19 |
Family
ID=40775932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007278767A Expired - Fee Related JP5212888B2 (en) | 2007-10-26 | 2007-10-26 | Hydrogen separator and hydrogen separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5212888B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016172229A (en) * | 2015-03-17 | 2016-09-29 | 京セラ株式会社 | Hydrogen separation membrane, hydrogen separation module, hydrogen separation device and hydrogen production device |
EP3228380A1 (en) * | 2016-04-06 | 2017-10-11 | Horiba Stec, Co., Ltd. | Hydrogen purification device and hydrogen purification system using hydrogen purification device |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097024A (en) * | 1983-09-08 | 1985-05-30 | ケルンフオルシユングスアンラ−ゲ・ユ−リツヒ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング | Hydrogen pervious wall |
JPH04227035A (en) * | 1990-08-10 | 1992-08-17 | Bend Res Inc | Hydrogen permeable composite metallic membrane |
JPH0576738A (en) * | 1991-09-25 | 1993-03-30 | Mitsubishi Heavy Ind Ltd | Hydrogen gas separation membrane |
JPH07124453A (en) * | 1993-10-29 | 1995-05-16 | Mitsubishi Kakoki Kaisha Ltd | Hydrogen separation membrane and its production |
JP2002355537A (en) * | 2001-05-29 | 2002-12-10 | Daido Steel Co Ltd | Hydrogen permeable film and producing method thereof |
JP2003135942A (en) * | 2001-10-31 | 2003-05-13 | Daido Steel Co Ltd | Hydrogen separating permeable membrane and method for manufacturing the same |
JP2003305346A (en) * | 2002-04-11 | 2003-10-28 | Toyo Kohan Co Ltd | Separation film laminate and production method for component using the same |
JP2004000862A (en) * | 2002-06-03 | 2004-01-08 | Araco Corp | Hydrogen permeable film and method for producing the same |
JP2004130226A (en) * | 2002-10-10 | 2004-04-30 | Honda Motor Co Ltd | Hydrogen separation member |
JP2004149332A (en) * | 2002-10-29 | 2004-05-27 | Tokyo Gas Co Ltd | Hydrogen production system |
JP2007117843A (en) * | 2005-10-26 | 2007-05-17 | Mitsubishi Heavy Ind Ltd | Fluid-permeable thin film structure body and its manufacturing method |
JP2007144404A (en) * | 2005-10-24 | 2007-06-14 | Mitsubishi Heavy Ind Ltd | Hydrogen separating membrane module, method for manufacturing the same and hydrogen manufacturing apparatus |
-
2007
- 2007-10-26 JP JP2007278767A patent/JP5212888B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6097024A (en) * | 1983-09-08 | 1985-05-30 | ケルンフオルシユングスアンラ−ゲ・ユ−リツヒ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング | Hydrogen pervious wall |
JPH04227035A (en) * | 1990-08-10 | 1992-08-17 | Bend Res Inc | Hydrogen permeable composite metallic membrane |
JPH0576738A (en) * | 1991-09-25 | 1993-03-30 | Mitsubishi Heavy Ind Ltd | Hydrogen gas separation membrane |
JPH07124453A (en) * | 1993-10-29 | 1995-05-16 | Mitsubishi Kakoki Kaisha Ltd | Hydrogen separation membrane and its production |
JP2002355537A (en) * | 2001-05-29 | 2002-12-10 | Daido Steel Co Ltd | Hydrogen permeable film and producing method thereof |
JP2003135942A (en) * | 2001-10-31 | 2003-05-13 | Daido Steel Co Ltd | Hydrogen separating permeable membrane and method for manufacturing the same |
JP2003305346A (en) * | 2002-04-11 | 2003-10-28 | Toyo Kohan Co Ltd | Separation film laminate and production method for component using the same |
JP2004000862A (en) * | 2002-06-03 | 2004-01-08 | Araco Corp | Hydrogen permeable film and method for producing the same |
JP2004130226A (en) * | 2002-10-10 | 2004-04-30 | Honda Motor Co Ltd | Hydrogen separation member |
JP2004149332A (en) * | 2002-10-29 | 2004-05-27 | Tokyo Gas Co Ltd | Hydrogen production system |
JP2007144404A (en) * | 2005-10-24 | 2007-06-14 | Mitsubishi Heavy Ind Ltd | Hydrogen separating membrane module, method for manufacturing the same and hydrogen manufacturing apparatus |
JP2007117843A (en) * | 2005-10-26 | 2007-05-17 | Mitsubishi Heavy Ind Ltd | Fluid-permeable thin film structure body and its manufacturing method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016172229A (en) * | 2015-03-17 | 2016-09-29 | 京セラ株式会社 | Hydrogen separation membrane, hydrogen separation module, hydrogen separation device and hydrogen production device |
EP3228380A1 (en) * | 2016-04-06 | 2017-10-11 | Horiba Stec, Co., Ltd. | Hydrogen purification device and hydrogen purification system using hydrogen purification device |
JP2017189765A (en) * | 2016-04-06 | 2017-10-19 | 株式会社堀場エステック | Hydrogen purification device and hydrogen purification system using hydrogen purification device |
CN107324282A (en) * | 2016-04-06 | 2017-11-07 | 株式会社堀场Stec | Hydrogen purification apparatus and the hydrogen refining system using hydrogen purification apparatus |
US10105641B2 (en) | 2016-04-06 | 2018-10-23 | Horiba Stec, Co., Ltd. | Hydrogen purification device and hydrogen purification system using hydrogen purification device |
CN107324282B (en) * | 2016-04-06 | 2022-03-15 | 株式会社堀场Stec | Hydrogen refining apparatus and hydrogen refining system using the same |
Also Published As
Publication number | Publication date |
---|---|
JP5212888B2 (en) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6660069B2 (en) | Hydrogen extraction unit | |
US8603219B2 (en) | Membrane support module for permeate separation in a fuel cell | |
US6913736B2 (en) | Metal gas separation membrane module design | |
US7018446B2 (en) | Metal gas separation membrane | |
JPH09255306A (en) | Hydrogen separating membrane | |
JP2004149332A (en) | Hydrogen production system | |
JP2007007565A (en) | Reinforcing structure for hydrogen-permeable film, and its manufacturing method | |
JP2006272420A (en) | Diffusion welding method for metallic foil | |
JP2002128506A (en) | Hydrogen-forming unit | |
TWI523679B (en) | Hydrogen separation apparatus | |
JP5212888B2 (en) | Hydrogen separator and hydrogen separator | |
JP2009286637A (en) | Hydrogen generator | |
JP2004202479A (en) | Hydrogen separating permeation membrane, production method therefor, and separator for hydrogen production | |
JP2008080234A (en) | Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method | |
JPH11276867A (en) | Joining of hydrogen-permeable membrane | |
JP4934949B2 (en) | Fuel cell, hydrogen separation membrane module, and manufacturing method thereof | |
JP5149026B2 (en) | Hydrogen separator | |
JP2007136337A (en) | Hydrogen separation-membrane member | |
JP4806867B2 (en) | Hydrogen extraction device | |
JP4792598B2 (en) | Hydrogen permeation module and method of use thereof | |
JP2004290900A (en) | Hydrogen separation membrane, production method therefor, hydrogen separation unit using the membrane, and membrane reactor | |
JP2002201004A (en) | Hydrogen extracting apparatus | |
JP4192463B2 (en) | Hydrogen separator | |
JP4661102B2 (en) | Manufacturing method of electrolyte membrane for fuel cell and fuel cell | |
JP2002164071A (en) | Stacked heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130204 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130217 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160308 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |