JP2009105866A - Distortion and noise canceling system for hfc network - Google Patents

Distortion and noise canceling system for hfc network Download PDF

Info

Publication number
JP2009105866A
JP2009105866A JP2007309214A JP2007309214A JP2009105866A JP 2009105866 A JP2009105866 A JP 2009105866A JP 2007309214 A JP2007309214 A JP 2007309214A JP 2007309214 A JP2007309214 A JP 2007309214A JP 2009105866 A JP2009105866 A JP 2009105866A
Authority
JP
Japan
Prior art keywords
distortion
signal
noise
optical
coaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007309214A
Other languages
Japanese (ja)
Other versions
JP4889619B2 (en
Inventor
Ki Chang Lee
基昌 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academic Cooperation Foundation of Hoseo University
Original Assignee
Academic Cooperation Foundation of Hoseo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academic Cooperation Foundation of Hoseo University filed Critical Academic Cooperation Foundation of Hoseo University
Publication of JP2009105866A publication Critical patent/JP2009105866A/en
Application granted granted Critical
Publication of JP4889619B2 publication Critical patent/JP4889619B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Amplifiers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distortion and noise canceling system for HFC network, capable of canceling and removing distortions and noise components of a signal, generated and accumulated in a hybrid fiber-coax (HFC) network. <P>SOLUTION: A distortion and noise canceling system transmits an optical signal from the input side of an optical network unit (ONU) 108 of an existing HFC network to a coaxial distribution hub 112 through a separate optical fiber jumper (optical cable 120); converts the optical signal into a distortion and noise-free radio frequency (RF) signal; extracts only the distortions and noise components by combining the converted distortion and noise free RF signal with a distortion and noise containing RF signal, in opposite phase, while passing through coaxial cables 110 and multi-stage coaxial trunk-line amplifiers 114 in an HFC network; cancels out the distortions and noise components, by combining the extracted distortion and noise component with the distortion and noise containing RF signal, in opposite phase by a distortion and noise canceling section 122, thereby improving signal transmission properties. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、HFC(Hybrid Fiber-Coax)網から発生して累積される信号の歪み及びノイズ成分を相殺させて除去するHFC網の歪み及びノイズ相殺システムに係る。さらに詳しくは、光ケーブルと同軸ケーブルを共に使用して所定の信号を伝送する光・同軸混合網であるHFC網において、光ケーブルを介して伝送された光信号をONU(Optical Network Unit)がRF(Radio Frequency)信号に変換して同軸ケーブルを介して伝送する場合、同軸ケーブルにカスケード(cascade)接続された複数の同軸幹線増幅器によって発生して累積される歪み及びノイズ成分を、同軸分配ハブ(hub)で相殺させることによって、放送及び通信網の信号伝送特性を向上させることができるHFC網の歪み及びノイズ相殺システムに関する。   The present invention relates to a distortion and noise canceling system for an HFC network that cancels out signal distortion and noise components generated and accumulated from an HFC (Hybrid Fiber-Coax) network. More specifically, in an HFC network that is a mixed optical / coaxial network that transmits a predetermined signal using both an optical cable and a coaxial cable, an optical network unit (ONU) transmits an optical signal transmitted through the optical cable to an RF (Radio). When the signal is converted into a frequency signal and transmitted through a coaxial cable, the distortion and noise components generated and accumulated by a plurality of coaxial trunk amplifiers cascaded to the coaxial cable are converted into a coaxial distribution hub (hub). The present invention relates to a distortion and noise cancellation system for an HFC network that can improve the signal transmission characteristics of broadcasting and communication networks by canceling with the above.

HFC網は、光ケーブルと同軸ケーブルを効率的に結合した通信網であって、多チャンネルケーブルTV放送信号の伝送と分配に多用されている。ケーブルTV放送信号を送り出す放送局では多チャンネルケーブルTV放送信号を集めてヘッドエンド(headend)で光ケーブルを使って分配センターに伝送し、分配センターでは受信された光信号を多数本の光ケーブルに分割して複数のONUに伝送する。   The HFC network is a communication network that efficiently combines an optical cable and a coaxial cable, and is often used for transmission and distribution of multi-channel cable TV broadcast signals. Broadcast stations that send out cable TV broadcast signals collect multi-channel cable TV broadcast signals and transmit them to the distribution center using optical cables at the headend. The distribution center divides the received optical signals into multiple optical cables. To a plurality of ONUs.

前記ヘッドエンドから複数のONUまでは数km〜数十km程度の比較的に長い距離であるが、広帯域の多チャンネルケーブルTV放送信号を光信号により光ケーブルを介して伝送することによって信号の減衰と歪みが極めて小さい。
そして、前記ONUでは前記光信号がRF信号に変換され、変換されたRF信号は同軸ケーブルと多数段の同軸幹線増幅器を通じて同軸分配ハブに伝送された後、同軸分配ハブから再び同軸ケーブルと増幅器を介して加入者端末機まで伝送される。
The distance from the head end to the plurality of ONUs is a relatively long distance of about several kilometers to several tens of kilometers. However, by transmitting a broadband multi-channel cable TV broadcast signal using an optical signal via an optical cable, signal attenuation can be achieved. Distortion is extremely small.
In the ONU, the optical signal is converted into an RF signal, and the converted RF signal is transmitted to the coaxial distribution hub through a coaxial cable and a multi-stage coaxial trunk amplifier, and then the coaxial cable and the amplifier are connected again from the coaxial distribution hub. To the subscriber terminal.

前記ONUにおいて、同軸分配ハブ間の距離は数百m〜数km程度であり、割合に短い距離であるが、同軸ケーブルを介してRF信号を伝送するので信号の減衰が極めて大きく、同軸幹線増幅器が一定した間隔毎に多数段カスケード接続で使用されているので、複数の同軸幹線増幅器によって多くの歪み及びノイズが発生して累積されてしまう。   In the ONU, the distance between the coaxial distribution hubs is about several hundred m to several km, and the distance is relatively short. However, since the RF signal is transmitted through the coaxial cable, the attenuation of the signal is extremely large. Are used in a multistage cascade connection at regular intervals, a large amount of distortion and noise are generated and accumulated by a plurality of coaxial trunk amplifiers.

このようなHFC網は、放送と通信の結合傾向によってTV放送信号の伝送にだけ限らず、インターネット接続、VoIP(Voice Over Internet Protocol)、VOD(Video On Demand)及び遠隔検針などを始めとした各種付加サービスまで提供できるなど、その役割が増大しつつある。   Such an HFC network is not limited to the transmission of TV broadcast signals due to the tendency of the combination of broadcasting and communication, but also various types including Internet connection, VoIP (Voice Over Internet Protocol), VOD (Video On Demand) and remote meter reading. Its role is increasing, such as providing additional services.

特に、最近放送のデジタル化、通信と放送の融合化及び多チャンネル、多媒体化などの技術傾向によって、前記HFC網に求められる伝送チャンネルの数と付加サービスがさらに増加して、伝送帯域幅が拡張され、高性能が求められ、通信及び放送の基幹通信網として大事なインフラ(infrastructure)と位置づけられている。   In particular, due to recent technological trends such as digitalization of broadcasting, integration of communication and broadcasting, and multi-channel and multi-media, the number of transmission channels and additional services required for the HFC network further increase, and the transmission bandwidth is expanded. Therefore, high performance is required, and it is positioned as an important infrastructure as a basic communication network for communication and broadcasting.

前記HFC網は比較的に広帯域の信号伝送が可能であり、信頼性と経済性に富み、作業性に優れ、網の設置、拡張及び除去が容易である。また、1本の同軸ケーブルを用いて双方向の通信を低価格で具現でき、各種能動機器の電力も同軸ケーブルにRF信号と交流電力を重畳させて供給できるなどの長所が多く、ケーブルTVの伝送及び分配網として最も幅広く使用されている。   The HFC network is capable of relatively wideband signal transmission, is highly reliable and economical, has excellent workability, and is easy to install, expand and remove. In addition, bidirectional communication using a single coaxial cable can be implemented at low cost, and the power of various active devices can be supplied by superimposing RF signals and AC power on the coaxial cable. It is most widely used as a transmission and distribution network.

しかし、前記HFC網は種々の短所と限界性を持っている。すなわち、光ケーブル区間は長距離を低損失で伝送でき、無限の帯域幅と平坦な帯域特性が得られる。しかし、同軸ケーブルを使って伝送する区間では比較的に広帯域の伝送は可能であるが、光ケーブル区間における損失に比べると、伝送損失が周波数によって数十倍ないし数百倍に至るほどに極めて大きく、周波数の二乗に比例して損失が増加する平坦ではない帯域特性を有する。   However, the HFC network has various disadvantages and limitations. That is, the optical cable section can transmit a long distance with low loss, and an infinite bandwidth and flat bandwidth characteristics can be obtained. However, relatively wide-band transmission is possible in the section where transmission is performed using a coaxial cable, but compared to the loss in the optical cable section, the transmission loss is extremely large, ranging from tens to hundreds of times depending on the frequency, It has a non-flat band characteristic in which the loss increases in proportion to the square of the frequency.

従って、HFC網はONUから加入者端末機まで同軸ケーブルを使って幹線(trunk line)と枝線(bridger line)に連結し、そして、同軸ケーブルの高い損失を補償するために信号の減衰が約20dB程度になる距離である約200〜400m間隔毎に同軸幹線増幅器を設けて伝送する信号を増幅することで、帯域特性を平坦に調節している。そして加入者端末機は分岐器(tap-off)を通じて引込線(drop cable)に接続している。   Therefore, the HFC network is connected to the trunk line and the bridger line using a coaxial cable from the ONU to the subscriber terminal, and the signal attenuation is reduced to compensate for the high loss of the coaxial cable. The band characteristics are adjusted to be flat by amplifying signals transmitted by providing coaxial trunk amplifiers at intervals of about 200 to 400 m, which is a distance of about 20 dB. The subscriber terminal is connected to a drop cable through a tap-off.

前記同軸幹線増幅器間の距離は、使用される同軸ケーブルにおける伝送損失と、伝送しようとするチャンネル数または伝送帯域幅によって違ってくる。また、前記同軸幹線増幅器をカスケード接続できる段数は、歪み及びノイズ成分の累積量が、求められる加入者の信号品質を満足させられる範囲に制限され、求められる品質によって5〜20段を接続できる。   The distance between the coaxial trunk amplifiers varies depending on the transmission loss in the coaxial cable used and the number of channels or transmission bandwidth to be transmitted. Further, the number of stages in which the coaxial trunk amplifiers can be cascade-connected is limited to a range in which the accumulated amount of distortion and noise components can satisfy the required signal quality of the subscriber, and 5 to 20 stages can be connected depending on the required quality.

従って、前記HFC網の性能は、同軸幹線増幅器のカスケード接続によるノイズ成分の累積と、それぞれの同軸幹線増幅器の非線形性による相互変調及び混変調などの歪み成分の累積とによって左右される。   Therefore, the performance of the HFC network depends on the accumulation of noise components due to the cascade connection of coaxial trunk amplifiers and the accumulation of distortion components such as intermodulation and intermodulation due to the nonlinearity of the respective coaxial trunk amplifiers.

実際に、ケーブルTV放送システムは周波数分割多重(FDM:Frequency Division Multiplex)方式によって60チャンネル以上200チャンネル近くのアナログTVチャンネルとデジタルTVチャンネルとを伝送している。従って、HFC網が下り(downstream)に伝送する信号には、アナログTV放送の映像搬送波、音声搬送波及び色副搬送波とデジタルTV放送の搬送波、インターネットデータ信号及び各種付加サービス用信号などを始めとして数百の搬送波が混合されている。   Actually, the cable TV broadcasting system transmits analog TV channels and digital TV channels of 60 channels or more and close to 200 channels by frequency division multiplexing (FDM). Accordingly, the signals transmitted downstream by the HFC network include video carrier, audio carrier and color subcarrier for analog TV broadcast, carrier for digital TV broadcast, Internet data signal and various additional service signals. One hundred carrier waves are mixed.

もし、同軸ケーブルの伝送区間に使われる同軸幹線増幅器の伝達関数に非線形性が存在する場合には、前記数百の搬送波が非線形に増幅され歪みが発生してしまう。また、任意の複数の搬送波の相互間に振幅変調が生じてしまい、各搬送波周波数の間の和と差成分が発生するようになる。従って、ケーブルTV放送システムでは各搬送波の任意の組合わせによって数千以上の和と差の周波数成分(これをbeat productまたはbeatと称する)となる信号が生成される。前記生成された信号は、伝送しようとする信号成分以外の周波数スペクトル成分なので、歪み成分としてTV伝送チャンネルに重畳され妨害を与える。
前記HFC網の伝送特性のうち最も大事な性能要素は、TV映像信号に最も影響を与える歪み成分である2次歪みを指すCSO(Composite Second Order)及び3次歪みを指すCTB(Composite Triple Beat)成分であり、ノイズの量を指す搬送波対ノイズ比であるCNR(Carrier-to-Noise Ratio)である。
If there is nonlinearity in the transfer function of the coaxial trunk amplifier used in the transmission section of the coaxial cable, the hundreds of carriers are amplified nonlinearly and distortion occurs. In addition, amplitude modulation occurs between a plurality of arbitrary carrier waves, and sum and difference components between the carrier wave frequencies are generated. Therefore, in the cable TV broadcasting system, a signal that becomes a frequency component of several thousand or more sums and differences (referred to as a beat product or a beat) is generated by an arbitrary combination of carrier waves. Since the generated signal is a frequency spectrum component other than the signal component to be transmitted, it is superimposed on the TV transmission channel as a distortion component to cause interference.
Among the transmission characteristics of the HFC network, the most important performance factors are CSO (Composite Second Order) indicating second-order distortion, which is the distortion component that most affects TV video signals, and CTB (Composite Triple Beat) indicating third-order distortion. It is a carrier-to-noise ratio (CNR) that is a component and is a carrier-to-noise ratio indicating the amount of noise.

本発明は前述した従来の問題点を解決するために案出されたもので、その目的はHFC網の同軸カスケード増幅段から発生するCSO及びCTBなど歪み成分とCNRで表現されるノイズ成分を相殺させてHFC網の伝送特性を向上させ、加入者端末機に伝達される信号性能を改善できるHFC網の歪み及びノイズ相殺システムを提供するところにある。   The present invention has been devised to solve the above-mentioned conventional problems, and its purpose is to cancel distortion components such as CSO and CTB generated from the coaxial cascade amplification stage of the HFC network and noise components expressed by CNR. Accordingly, it is an object of the present invention to provide a distortion and noise canceling system for an HFC network that can improve the transmission characteristics of the HFC network and improve the signal performance transmitted to the subscriber terminal.

前述した課題を解決するために本発明のHFC網の歪み及びノイズ相殺システムは、ヘッドエンド側から第1光ケーブルを介して受信される光信号をRF信号に変換して同軸ケーブルを介して同軸分配ハブに伝送するONUと、前記同軸ケーブルにカスケード接続され前記RF信号を増幅する複数の同軸幹線増幅器と、前記第1光ケーブルで光信号を分岐して第2光ケーブルを介して前記同軸分配ハブに伝送する光分岐器と、前記同軸分配ハブに備えられ、前記第2光ケーブルが伝送する光信号を用いて前記同軸ケーブルを介して受信されるRF信号に含まれた歪み及びノイズ成分を抽出し、抽出した歪み及びノイズ成分を前記同軸ケーブルを介して受信されるRF信号に結合して歪み及びノイズ成分を相殺させる歪み及びノイズ相殺部とを含むことを特徴とする。   In order to solve the above-described problems, the HFC network distortion and noise canceling system according to the present invention converts an optical signal received from the head end side via the first optical cable into an RF signal and distributes the coaxial signal via the coaxial cable. An ONU that transmits to a hub, a plurality of coaxial trunk amplifiers that are cascade-connected to the coaxial cable and amplifies the RF signal, and an optical signal that is branched by the first optical cable and transmitted to the coaxial distribution hub via a second optical cable And an optical branching device that is included in the coaxial distribution hub and extracts the distortion and noise components contained in the RF signal received through the coaxial cable using the optical signal transmitted by the second optical cable. A distortion and noise canceling unit that cancels the distortion and noise components by coupling the distortion and noise components to the RF signal received via the coaxial cable. And wherein the Mukoto.

本発明のHFC網の歪み及びノイズ相殺システムによれば、光ケーブルを介して伝送される光信号をONUがRF信号に変換し、同軸ケーブルを介して同軸分配ハブに伝送しつつ複数の同軸幹線増幅器にRF信号を増幅して同軸ケーブルにおける伝送損失を補償する。
そして、光ケーブルに光分配器を設けて光信号を多数に分割し、分割した光信号を必要とする多数箇所の同軸分配ハブまで光ケーブルを介して伝送する。前記同軸分配ハブは歪み及びノイズ相殺部を備える。前記歪み及びノイズ相殺部は、前記光ケーブルを介して伝送された光信号をRF信号に変換し、前記同軸ケーブルと複数の同軸幹線増幅器を通じて伝送されるRF信号との差値を歪み及びノイズ成分として抽出する。
前記抽出した歪み及びノイズ成分を、前記同軸ケーブルと複数の同軸幹線増幅器とを通じて伝送されたRF信号に、位相が互いに反対になるようにして合成する。従って、同軸ケーブルを介して伝送されたRF信号に含まれている歪み及びノイズ成分が互いに相殺され除去され、同軸分配ハブでは次後の網や加入者端末機に歪み及びノイズ成分が除去された優れた信号性能のRF信号を供給することができる。
According to the HFC network distortion and noise cancellation system of the present invention, an ONU converts an optical signal transmitted via an optical cable into an RF signal, and transmits the RF signal to a coaxial distribution hub via a coaxial cable. The RF signal is amplified to compensate for transmission loss in the coaxial cable.
Then, an optical distributor is provided in the optical cable to divide the optical signal into a large number, and the divided optical signal is transmitted through the optical cable to a large number of coaxial distribution hubs that require it. The coaxial distribution hub includes a distortion and noise canceling unit. The distortion and noise cancellation unit converts an optical signal transmitted through the optical cable into an RF signal, and uses a difference value between the coaxial cable and an RF signal transmitted through a plurality of coaxial trunk amplifiers as a distortion and noise component. Extract.
The extracted distortion and noise components are combined with the RF signal transmitted through the coaxial cable and a plurality of coaxial trunk amplifiers so that the phases are opposite to each other. Therefore, the distortion and noise components included in the RF signal transmitted via the coaxial cable are canceled and removed, and the coaxial distribution hub removes the distortion and noise components in the next network and subscriber terminal. An RF signal with excellent signal performance can be supplied.

前記歪み及びノイズ相殺部は、前記第2光ケーブルを介して受信される光信号をRF信号に変換し、変換したRF信号を前記同軸ケーブルを介して受信されるRF信号と結合して歪み及びノイズ成分を抽出する歪み及びノイズ成分抽出部と、前記歪み及びノイズ成分抽出部が抽出した歪み及びノイズ成分を前記同軸ケーブルを介して受信されるRF信号に結合して歪み及びノイズ成分を相殺させる相殺部とを含む構成とすることができる。   The distortion and noise cancellation unit converts an optical signal received through the second optical cable into an RF signal, and combines the converted RF signal with an RF signal received through the coaxial cable to generate distortion and noise. A distortion and noise component extraction unit that extracts components, and an offset that cancels the distortion and noise components by combining the distortion and noise components extracted by the distortion and noise component extraction unit with an RF signal received via the coaxial cable. Part.

また、前記歪み及びノイズ相殺部は、前記同軸ケーブルを介して受信されるRF信号を分割して前記歪み及びノイズ成分抽出部及び前記相殺部にそれぞれ入力させる方向性結合器をさらに含む構成とすることができる。   The distortion and noise cancellation unit further includes a directional coupler that divides an RF signal received via the coaxial cable and inputs the RF signal to the distortion and noise component extraction unit and the cancellation unit, respectively. be able to.

前記歪み及びノイズ成分抽出部は、前記第2光ケーブルを介して受信される光信号をRF信号に変換する光/RF信号変換器と、前記光/RF信号変換器が変換したRF信号を遅らせる遅延器と、前記同軸ケーブルを介して受信されるRF信号から前記遅延器が遅延させたRF信号を減算して歪み及びノイズ成分を抽出する方向性結合器を含む構成とすることができる。   The distortion and noise component extraction unit includes an optical / RF signal converter that converts an optical signal received via the second optical cable into an RF signal, and a delay that delays the RF signal converted by the optical / RF signal converter. And a directional coupler that extracts the distortion and noise components by subtracting the RF signal delayed by the delay device from the RF signal received via the coaxial cable.

前記光/RF信号変換器と遅延器との間に前記光/RF信号変換器が変換したRF信号の総合周波数応答特性を調節する等化器をさらに含む構成とすることができる。   An equalizer for adjusting an overall frequency response characteristic of an RF signal converted by the optical / RF signal converter may be further provided between the optical / RF signal converter and the delay unit.

また、前記歪み及びノイズ成分抽出部は、前記同軸ケーブルを介して受信されるRF信号を減衰させる減衰器をさらに含む構成とすることができる。   The distortion and noise component extraction unit may further include an attenuator that attenuates an RF signal received via the coaxial cable.

前記相殺部は、前記同軸ケーブルを介して受信されるRF信号から前記歪み及びノイズ成分抽出部が抽出した歪み及びノイズ成分を減算する方向性結合器を含む構成とすることができる。   The cancellation unit may include a directional coupler that subtracts the distortion and noise components extracted by the distortion and noise component extraction unit from an RF signal received via the coaxial cable.

また、前記相殺部は、前記歪み及びノイズ成分抽出部が抽出した歪み及びノイズ成分を増幅して前記方向性結合器に入力させるエラー増幅器と、前記同軸ケーブルを介して受信されるRF信号の位相を遷移させて前記方向性結合器に入力させる位相遷移器をさらに含む構成とすることができる。   The canceling unit amplifies the distortion and noise components extracted by the distortion and noise component extraction unit and inputs them to the directional coupler; and a phase of an RF signal received via the coaxial cable It is possible to make a configuration further including a phase shifter that causes the directional coupler to be input to the directional coupler.

以上述べたように、本発明は、HFC網の同軸ケーブル及び同軸幹線増幅器がRF信号を伝送する過程で発生する歪み及びノイズ成分を抽出し、その抽出した歪み及びノイズ成分を同軸ケーブル及び同軸幹線増幅器が伝送するRF信号に逆位相で結合させて前記抽出した歪み及びノイズ成分と前記RF信号に含まれている歪み及びノイズ成分を互いに相殺させることによって、HFC網の最も大事な3種の性能要素である搬送波対ノイズ比(CNR)、2次歪み(CSO)及び3次歪み(CTB)を相当量軽減できるので、HFC網の伝送品質を改善することができる。
従って、本発明はHFC網の加入者端末装置に歪み及びノイズ成分のない優れた信号性能の多チャンネルケーブルTV放送信号を供給でき、信号性能の改善余裕分ほどHFC網のカスケード接続段数を増やすことができるので、HFC網の伝送距離をさらに遠く拡張することができるか、または同じ距離を伝送する場合には伝送可能な総チャンネル数を増大できる効果を奏する。これは、一般のHFC網を高性能のHFC網に進化させることを意味するものである。
As described above, the present invention extracts distortion and noise components generated in the process of transmitting an RF signal by the coaxial cable and coaxial trunk amplifier of the HFC network, and the extracted distortion and noise components are extracted from the coaxial cable and coaxial trunk line. By combining the extracted distortion and noise components and the distortion and noise components contained in the RF signal with each other by coupling to the RF signal transmitted by the amplifier in antiphase, the three most important performances of the HFC network are obtained. Since the carrier-to-noise ratio (CNR), second-order distortion (CSO), and third-order distortion (CTB), which are elements, can be considerably reduced, the transmission quality of the HFC network can be improved.
Therefore, the present invention can supply a multi-channel cable TV broadcast signal with excellent signal performance free of distortion and noise components to the subscriber terminal device of the HFC network, and increase the number of cascade connection stages of the HFC network as the signal performance is improved. Therefore, the transmission distance of the HFC network can be further extended, or when the same distance is transmitted, the total number of transmittable channels can be increased. This means that a general HFC network is evolved into a high-performance HFC network.

以下の詳細な説明は例示に過ぎず、本発明の一実施例を示すに過ぎない。また、本発明の原理と概念は最も有用であり、容易に説明する目的として提供される。従って、本発明の基本理解のための必要以上の詳しい構造を提供しようとしていないことは勿論、通常の知識を有する者が本発明の実体から実施されうる種々の形態を図面を通じて例示する。   The following detailed description is exemplary only and represents only one embodiment of the present invention. Also, the principles and concepts of the present invention are most useful and are provided for purposes of explanation. Accordingly, various forms that can be implemented from the substance of the present invention by those skilled in the art are illustrated through the drawings as well as not intending to provide a detailed structure more than necessary for basic understanding of the present invention.

図1は、本発明に係る歪み及びノイズ相殺システムによるHFC網の全体構成を概略的に示した図である。HFC網はケーブルTV放送信号の送出装置であるヘッドエンド100で光信号を出力する。前記ヘッドエンド100から出力された光信号は光ケーブル102を介して分配センター104まで伝送される。前記分配センター104は前記光信号を複数に分配する。前記分配された複数の光信号はそれぞれ複数の光ケーブル106を介して各地域の光ハブに設けられている複数のONU108に伝送される。
前記ヘッドエンド100から前記ONU108までの距離は数km〜数十km程度に比較的長い距離であるが、ケーブルTV放送信号を光ケーブル102,106を介して光信号により伝送することによって信号の減衰と歪みはごく少ない。
FIG. 1 is a diagram schematically showing the overall configuration of an HFC network using a distortion and noise cancellation system according to the present invention. The HFC network outputs an optical signal at the head end 100 which is a cable TV broadcast signal transmission device. The optical signal output from the head end 100 is transmitted to the distribution center 104 via the optical cable 102. The distribution center 104 distributes the optical signal into a plurality of parts. The plurality of distributed optical signals are transmitted to the plurality of ONUs 108 provided in the optical hubs in the respective regions via the plurality of optical cables 106, respectively.
The distance from the head end 100 to the ONU 108 is a relatively long distance of about several kilometers to several tens of kilometers. However, by transmitting a cable TV broadcast signal through the optical cables 102 and 106 as an optical signal, signal attenuation can be achieved. There is very little distortion.

前記複数のONU108は前記伝送された光信号をRF信号に変換し、変換されたRF信号を同軸ケーブル110を介して複数の同軸分配ハブ112に伝送する。
前記同軸ケーブル110を介してRF信号を伝送する際には減衰が発生する。従って、前記同軸ケーブル110を介して伝送するRF信号の損失が約20dBほどになる位置、例えば約200〜400mの間隔毎に同軸幹線増幅器114を設けてRF信号の減衰を補償する方式により、必要な個数の同軸幹線増幅器114を同軸ケーブル110にカスケード接続してRF信号を同軸分配ハブ112まで伝送する。そして、前記同軸分配ハブ112は前記RF信号を分岐増幅器または延長増幅器(図示せず)などを使って加入者端末機に伝送する。
The plurality of ONUs 108 convert the transmitted optical signals into RF signals, and transmit the converted RF signals to the plurality of coaxial distribution hubs 112 via the coaxial cable 110.
When an RF signal is transmitted through the coaxial cable 110, attenuation occurs. Therefore, it is necessary to provide a coaxial trunk amplifier 114 at a position where the loss of the RF signal transmitted through the coaxial cable 110 is about 20 dB, for example, at intervals of about 200 to 400 m to compensate for attenuation of the RF signal. A large number of coaxial trunk amplifiers 114 are cascaded to the coaxial cable 110 to transmit the RF signal to the coaxial distribution hub 112. The coaxial distribution hub 112 transmits the RF signal to the subscriber station using a branching amplifier or an extension amplifier (not shown).

このように、HFC網は、前記ONU108から出力されるRF信号を同軸ケーブル110を介して同軸分配ハブ112に伝送する過程で発生するRF信号の減衰を補償するために、複数の同軸幹線増幅器114を使用してRF信号を増幅している。しかし、前記複数の同軸幹線増幅器114でRF信号を増幅することによって歪み及びノイズが発生し、その発生した歪み及びノイズ成分は各同軸幹線増幅器114を通過する度に累積されてRF信号が劣化するようになる。   As described above, the HFC network includes a plurality of coaxial trunk amplifiers 114 in order to compensate for the attenuation of the RF signal generated in the process of transmitting the RF signal output from the ONU 108 to the coaxial distribution hub 112 via the coaxial cable 110. Is used to amplify the RF signal. However, distortion and noise are generated by amplifying an RF signal by the plurality of coaxial trunk amplifiers 114, and the generated distortion and noise components are accumulated every time the coaxial trunk amplifiers 114 pass through, thereby degrading the RF signal. It becomes like this.

従って、本発明では、前記分配センター104から前記ONU108に光信号を伝送する光ケーブル106に光分岐器116を備えて、光ケーブル106が伝送する光信号の一部を分岐させる。前記光分岐器116で分岐された光信号は、光分配器118で複数の光信号に分配した後、光ケーブル120を介してそれぞれ複数の同軸分配ハブ112に伝送する。   Therefore, in the present invention, the optical cable 106 that transmits the optical signal from the distribution center 104 to the ONU 108 is provided with the optical branching device 116, and a part of the optical signal transmitted by the optical cable 106 is branched. The optical signals branched by the optical branching device 116 are distributed to a plurality of optical signals by the optical distributor 118 and then transmitted to the plurality of coaxial distribution hubs 112 via the optical cable 120, respectively.

前記光ケーブル106から分岐され前記光分配器118及び光ケーブル120を介して同軸分配ハブ112に伝送される光信号は損失がごく少なく、光ケーブル120だけを経由するので歪みやノイズが殆んど含まれていない。   The optical signal branched from the optical cable 106 and transmitted to the coaxial distribution hub 112 via the optical distributor 118 and the optical cable 120 has very little loss, and since it passes only through the optical cable 120, distortion and noise are almost included. Absent.

前記複数の同軸分配ハブ112のそれぞれは、歪み及びノイズ相殺部122を備える。前記歪み及びノイズ相殺部122は前記同軸ケーブル110を介して受信されるRF信号と前記光ケーブル120を介して受信される光信号を用いて前記RF信号に含まれている歪み及びノイズ成分を抽出する。そして、前記歪み及びノイズ相殺部122は前記抽出した歪み及びノイズ成分を、前記同軸ケーブル110を介して受信されたRF信号に合成してそのRF信号に含まれている歪み及びノイズ成分を相殺させる。   Each of the plurality of coaxial distribution hubs 112 includes a distortion and noise canceling unit 122. The distortion and noise canceling unit 122 extracts distortion and noise components included in the RF signal using an RF signal received via the coaxial cable 110 and an optical signal received via the optical cable 120. . The distortion and noise canceling unit 122 combines the extracted distortion and noise components with the RF signal received via the coaxial cable 110 to cancel the distortion and noise components included in the RF signal. .

図2は本発明の歪み及びノイズ相殺システムの望ましい実施形態の構成を示した図である。同図に示すように、前記同軸ケーブル110を介して受信されるRF信号が、増幅器200で増幅され、方向性結合器210に入力されることで、RF信号の一部が分離される。前記分離されたRF信号は、歪み及びノイズ相殺部122の歪み及びノイズ成分抽出部220に入力される。   FIG. 2 is a diagram showing a configuration of a preferred embodiment of the distortion and noise cancellation system of the present invention. As shown in the figure, an RF signal received via the coaxial cable 110 is amplified by an amplifier 200 and input to a directional coupler 210, whereby a part of the RF signal is separated. The separated RF signal is input to the distortion and noise component extraction unit 220 of the distortion and noise cancellation unit 122.

前記歪み及びノイズ成分抽出部220は、光/RF信号変換器221、等化器(equalizer)223、遅延器225、減衰器227及び方向性結合器229を含む。前記光分配器118で光ケーブル120を介して受信される光信号は、前記歪み及びノイズ成分抽出部220の光/RF信号変換器221に入力され、RF信号に変換される。前記光/RF信号変換器221で変換されたRF信号は、RF信号の総合周波数応答特性を前記同軸ケーブル110を介して受信されるRF信号の総合周波数応答特性と同じく一致させるために、等化器223で等化される。   The distortion and noise component extraction unit 220 includes an optical / RF signal converter 221, an equalizer 223, a delay unit 225, an attenuator 227, and a directional coupler 229. An optical signal received by the optical distributor 118 via the optical cable 120 is input to the optical / RF signal converter 221 of the distortion and noise component extraction unit 220 and converted into an RF signal. The RF signal converted by the optical / RF signal converter 221 is equalized so that the total frequency response characteristic of the RF signal matches the total frequency response characteristic of the RF signal received via the coaxial cable 110. It is equalized by the device 223.

前記等化器223で等化されたRF信号は、遅延器225に入力されることで、前記同軸ケーブル110及び同軸幹線増幅器114を全て通過して伝送されるRF信号の遅延時間と同じ程度に遅延した後、方向性結合器229の負極性入力端子(−)に入力される。   The RF signal equalized by the equalizer 223 is input to the delay unit 225 so that the delay time of the RF signal transmitted through all the coaxial cable 110 and the coaxial trunk amplifier 114 is the same as that of the RF signal. After the delay, the signal is input to the negative input terminal (−) of the directional coupler 229.

そして、前記方向性結合器210で一部が分離されたRF信号は、減衰器227に入力されることで、前記遅延器225から出力されるRF信号と電圧レベルが同じくなるように減衰した後、方向性結合器229の正極性入力端子(+)に入力される。
すると、前記方向性結合器229が前記遅延器225から負極性入力端子(−)に入力されるRF信号と、前記減衰器227から正極性入力端子(+)に入力される歪み及びノイズ成分が含まれたRF信号とを合成することで、RF信号でシグナル(signal)成分が除去され、歪み(distortion)及びノイズ(noise)成分だけを抽出することができる。
The RF signal partially separated by the directional coupler 210 is input to the attenuator 227 and attenuated so that the voltage level is the same as that of the RF signal output from the delay unit 225. , And input to the positive input terminal (+) of the directional coupler 229.
Then, the directional coupler 229 has an RF signal input from the delay unit 225 to the negative input terminal (−), and a distortion and noise component input from the attenuator 227 to the positive input terminal (+). By synthesizing with the included RF signal, the signal component is removed from the RF signal, and only the distortion and noise components can be extracted.

前記方向性結合器229で抽出された歪み及びノイズ成分は、相殺部230のエラー増幅器231に入力されることで増幅された後、方向性結合器235の負極性入力端子(−)に入力される。   The distortion and noise components extracted by the directional coupler 229 are amplified by being input to the error amplifier 231 of the canceling unit 230 and then input to the negative input terminal (−) of the directional coupler 235. The

また、前記方向性結合器210を通過したRF信号は、位相遷移器233において、前記エラー増幅器231における位相遅延ほど位相が遷移され方向性結合器235の正極性入力端子(+)に入力される。   In addition, the phase of the RF signal that has passed through the directional coupler 210 is shifted by the phase shifter 233 as the phase delay of the error amplifier 231 is input to the positive input terminal (+) of the directional coupler 235. .

従って、前記方向性結合器235は、前記位相遷移器233から正極性入力端子(+)に入力される歪み及びノイズ成分が含まれたRF信号に、前記エラー増幅器231から負極性入力端子(−)に入力される歪み及びノイズ成分を相互間に結合することで、歪み及びノイズ成分が相殺されたきれいなRF信号を出力することができる。   Therefore, the directional coupler 235 receives an RF signal including distortion and noise components input from the phase shifter 233 to the positive input terminal (+), and the negative input terminal (− By combining the distortion and noise components input to each other), a clean RF signal with the distortion and noise components canceled can be output.

このような本発明の歪み及びノイズ相殺システムについて、RF信号に混合されている歪み及びノイズ成分を除去し、きれいなRF信号を出力するという動作を、図3に基づいてさらに詳述する。   With respect to the distortion and noise cancellation system of the present invention, the operation of removing the distortion and noise components mixed in the RF signal and outputting a clean RF signal will be described in detail with reference to FIG.

例えば、歪み及びノイズ成分がないきれいなRF信号のシグナル成分をS(t)とし、RF信号に混合されている歪み及びノイズ成分をD(t)と仮定する。
すると、同軸ケーブル110(図2参照)を介して受信されるノイズ及び歪み成分が含まれたRF信号S(t)+D(t)は増幅器200で増幅される。ここで、増幅器200の増幅利得をGと仮定した場合、増幅器200の出力信号はG・S(t)+G・D(t)になる。
For example, it is assumed that the signal component of a clean RF signal free from distortion and noise components is S (t), and the distortion and noise component mixed in the RF signal is D (t).
Then, the RF signal S (t) + D (t) including noise and distortion components received via the coaxial cable 110 (see FIG. 2) is amplified by the amplifier 200. Here, assuming that the amplification gain of the amplifier 200 is G, the output signal of the amplifier 200 is G · S (t) + G · D (t).

前記増幅器200の出力信号G・S(t)+G・D(t)は方向性結合器210でそのレベルが各々G1とG2とに分割され、G1レベルが減衰器227に入力される。ここで、前記方向性結合器210の損失値を含んだ減衰器227の総減衰値を1/G1と設定すれば、減衰器227は前記増幅器200の出力信号G1・S(t)+G1・D(t)を1/G1減衰させてS(t)+D(t)を出力する。前記減衰器227の出力信号S(t)+D(t)は方向性結合器229の正極性入力端子(+)に入力される。   The level of the output signal G · S (t) + G · D (t) of the amplifier 200 is divided into G 1 and G 2 by the directional coupler 210, and the G 1 level is input to the attenuator 227. Here, if the total attenuation value of the attenuator 227 including the loss value of the directional coupler 210 is set to 1 / G1, the attenuator 227 outputs the output signal G1 · S (t) + G1 · D of the amplifier 200. (T) is attenuated by 1 / G1, and S (t) + D (t) is output. The output signal S (t) + D (t) of the attenuator 227 is input to the positive input terminal (+) of the directional coupler 229.

そして、図2または図3に示す光分配器118と光ケーブル120を介して受信される光信号を、光/RF信号変換器221が入力して、歪み及びノイズ成分が殆んどないきれいなRF信号S(t)に変換する。前記光/RF信号変換器221が変換したRF信号S(t)は等化器223及び遅延器225を通じて方向性結合器229の負極性入力端子(−)に入力される。   Then, the optical signal received via the optical distributor 118 and the optical cable 120 shown in FIG. 2 or FIG. 3 is input by the optical / RF signal converter 221, and a clean RF signal with almost no distortion and noise components is input. Convert to S (t). The RF signal S (t) converted by the optical / RF signal converter 221 is input to the negative input terminal (−) of the directional coupler 229 through the equalizer 223 and the delay unit 225.

ここで、前記遅延器225はRF信号S(t)を遅らせて、前記減衰器227から出力されるノイズ及び歪み成分が含まれたRF信号S(t)+D(t)の遅延時間と一致させる。   Here, the delay unit 225 delays the RF signal S (t) to match the delay time of the RF signal S (t) + D (t) including noise and distortion components output from the attenuator 227. .

前記方向性結合器229は、前記減衰器227から正極性入力端子(+)に入力されるノイズ及び歪み成分が含まれたRF信号S(t)+D(t)と、前記遅延器225から負極性入力端子(‐)に入力されるきれいなRF信号S(t)とを結合することで、式1のようにRF信号のシグナル成分であるS(t)が互いに相殺されるので、ノイズ及び歪み成分D(t)だけを抽出することができる。
[S(t)+D(t)]−S(t)=D(t)・・・(式1)
The directional coupler 229 includes an RF signal S (t) + D (t) including noise and distortion components input from the attenuator 227 to the positive input terminal (+), and a negative electrode from the delay 225. By combining the clean RF signal S (t) input to the sex input terminal (−), the signal components S (t) of the RF signal cancel each other as shown in Equation 1, so noise and distortion Only component D (t) can be extracted.
[S (t) + D (t)] − S (t) = D (t) (Formula 1)

前記方向性結合器229が抽出したノイズ及び歪み成分D(t)はエラー増幅器231で増幅される。
ここで、エラー増幅器231の増幅利得がG2と設定されていると仮定する。すると、前記エラー増幅器231の出力信号はG2・D(t)となる。前記エラー増幅器231の出力信号G2・D(t)は方向性結合器235の負極性入力端子(−)に入力される。
The noise and distortion component D (t) extracted by the directional coupler 229 is amplified by the error amplifier 231.
Here, it is assumed that the amplification gain of the error amplifier 231 is set to G2. Then, the output signal of the error amplifier 231 becomes G2 · D (t). The output signal G 2 · D (t) of the error amplifier 231 is input to the negative input terminal (−) of the directional coupler 235.

そして、前記方向性結合器210で損失を考慮して分配されたノイズ及び歪み成分が含まれたRF信号のレベルをG2・S(t)+G2・D(t)とすれば、これが位相遷移器233で位相を調節することで、前記エラー増幅器231から出力されるノイズ及び歪み成分G2・D(t)と位相を一致させた後、前記方向性結合器235の正極性入力端子(+)に入力される。   If the level of the RF signal including noise and distortion components distributed in consideration of the loss in the directional coupler 210 is G2 · S (t) + G2 · D (t), this is the phase shifter. By adjusting the phase at 233 to make the phase coincide with the noise and distortion components G 2 · D (t) output from the error amplifier 231, the positive input terminal (+) of the directional coupler 235 is applied. Entered.

従って、前記方向性結合器235は、前記エラー増幅器231から負極性入力端子(−)に入力されるノイズ及び歪み成分G2・D(t)と、前記位相遷移器233から正極性入力端子(+)に入力されるノイズ及び歪み成分が含まれたRF信号G2・S(t)+G2・D(t)とを結合することで、式2のようにノイズ及び歪み成分G2・D(t)が相殺されるので、ノイズ及び歪み成分のないきれいなRF信号G2・S(t)を出力することができる。
[G2・S(t)+G2・D(t)]−G2・D(t)=G2・S(t)・・・(式2)
Accordingly, the directional coupler 235 includes the noise and distortion components G2 · D (t) input from the error amplifier 231 to the negative input terminal (−) and the positive polarity input terminal (+) from the phase shifter 233. ) And the RF signal G2 · S (t) + G2 · D (t) including noise and distortion components input to the noise and distortion component G2 · D (t) as shown in Equation 2 Since they are canceled out, a clean RF signal G2 · S (t) free from noise and distortion components can be output.
[G2 · S (t) + G2 · D (t)] − G2 · D (t) = G2 · S (t) (Expression 2)

図4は、本発明の歪み及びノイズ相殺システムをHFC網の同軸分配ハブ分岐増幅器に適用した実施例の構成を示した図である。ここで、符号300は、既存のHFC網で典型的に使用されている同軸分岐増幅器(Bridger Amplifier)の回路構成図であって、上り及び下り信号部分と、交流電力の供給部分及び網監視(Network Management System)用トランスポンダ(transponder)部分などを含む全構成要素が含まれた商用製品の構成図を示した例である。   FIG. 4 is a diagram showing a configuration of an embodiment in which the distortion and noise cancellation system of the present invention is applied to a coaxial distribution hub branch amplifier of an HFC network. Here, reference numeral 300 is a circuit configuration diagram of a coaxial amplifier (Bridger Amplifier) typically used in an existing HFC network, and includes an upstream and downstream signal portion, an AC power supply portion, and network monitoring ( It is the example which showed the block diagram of the commercial product containing all the components including the transponder (transponder) part for (Network Management System).

そして、図4において符号400は、既存のHFC網用同軸分岐増幅器300の部分にさらに本発明によって付加する部分であって、基本的に図2に示す歪み及びノイズ相殺部122と同じ構成を有する。但し、この歪み及びノイズ相殺装置400は、実際商用製品として設置及び調整の便宜のために必要なプラグインディレイ(plug-in-delay)及びプラグインパッド(plug-in-pad)などを追加し、その他構成の少しを変更したもので、具体的な動作は図2の説明に含まれているので省略する。   In FIG. 4, reference numeral 400 denotes a part added to the existing HFC network coaxial branch amplifier 300 according to the present invention, and basically has the same configuration as the distortion and noise canceling unit 122 shown in FIG. 2. . However, the distortion and noise canceling device 400 is actually added as a commercial product with a plug-in-delay and a plug-in-pad necessary for the convenience of installation and adjustment. The other configuration is slightly changed, and a specific operation is included in the description of FIG.

前記同軸分岐増幅器300において符号302,304,306,308及び310は全て同軸ケーブル接続端子である。同軸ケーブル接続端子302はHFC網のONU108(図2参照)から同軸ケーブル110を介して伝送されるRF信号の入力端子である。また、同軸ケーブル接続端子304,306,308,310は分岐出力端子であって、全て双方向に信号を伝送する際に使用される。すなわち、低域周波数と高域周波数とを分けてそれぞれ上り(upstream)信号及び下り(downstream)信号として使う。   In the coaxial branch amplifier 300, reference numerals 302, 304, 306, 308 and 310 are all coaxial cable connection terminals. The coaxial cable connection terminal 302 is an input terminal for an RF signal transmitted from the ONU 108 (see FIG. 2) of the HFC network via the coaxial cable 110. The coaxial cable connection terminals 304, 306, 308, and 310 are branch output terminals, and are all used when signals are transmitted bidirectionally. That is, the low frequency and the high frequency are divided and used as an upstream signal and a downstream signal, respectively.

符号312はRF/AC分離器である。前記RF/AC分離器312は、RF信号とAC電力とを分離するLCインピーダンス回路網であって、HFC網用同軸ケーブルにRF信号を送り出しながら同時に50〜60HzのAC電力を共に通過させて、RF信号とAC電力とを分離したり、RF信号にAC電力を挿入して混合したりするものである。前記AC電力は整流器(図示せず)で整流して直流電圧に変換された後、増幅器及び全ての能動回路の動作電圧に供給される。   Reference numeral 312 denotes an RF / AC separator. The RF / AC separator 312 is an LC impedance circuit network that separates the RF signal and the AC power, and simultaneously passes the AC power of 50-60 Hz while sending the RF signal to the coaxial cable for the HFC network, The RF signal and AC power are separated, or AC power is inserted into the RF signal and mixed. The AC power is rectified by a rectifier (not shown) and converted into a DC voltage, and then supplied to the operating voltage of the amplifier and all active circuits.

図4では、同軸ケーブル接続端子302にだけRF/AC分離器312を示しているが、同軸ケーブル接続端子304,306,308,310の全てにRF/AC分離器を備えることもできる。   In FIG. 4, the RF / AC separator 312 is shown only at the coaxial cable connection terminal 302. However, all of the coaxial cable connection terminals 304, 306, 308, and 310 can be provided with an RF / AC separator.

符号314はダイプレクサ(diplexer)である。前記ダイプレクサ314は、中央に低域及び高域周波数の信号が入力されれば、高域周波数の信号は上側(H)部分に出力され、低域周波数の信号は下側(L)に出力される。また、その逆の動作も可能な高域及び低域フィルタを結合している。   Reference numeral 314 denotes a diplexer. The diplexer 314 outputs a high frequency signal to the upper (H) portion and a low frequency signal to the lower (L) when a low frequency and high frequency signal is input to the center. The In addition, a high-pass filter and a low-pass filter that can perform the reverse operation are combined.

従って、同軸ケーブル接続端子302に入力されるRF信号は、RF/AC分離器312からRF側に入り、AC電力は下部のAC側に分離され電源供給器(図示せず)に連結される。前記RF/AC分離器312のRF端子に出力されるRF信号はダイプレクサ314に入力されるが、高域周波数である下り信号は上側(H)に出力され等化器316に入力されることで下り信号の帯域周波数応答特性の平坦度が調節され、減衰器パッド318で後端の前置増幅器(pre-amplifier)320の入力に適するように信号レベルが適宜に減少される。   Therefore, the RF signal input to the coaxial cable connection terminal 302 enters the RF side from the RF / AC separator 312 and the AC power is separated to the lower AC side and connected to a power supply (not shown). The RF signal output to the RF terminal of the RF / AC separator 312 is input to the diplexer 314, but the downstream signal having a high frequency is output to the upper side (H) and input to the equalizer 316. The flatness of the band frequency response characteristic of the downstream signal is adjusted, and the signal level is appropriately reduced by the attenuator pad 318 so as to be suitable for the input of the rear-end preamplifier 320.

前記前置増幅器320で増幅された下り信号は、高域通過フィルタ及び利得制御器322を通過し、減衰器パッド324と等化器326で信号の振幅レベルと出力信号の帯域周波数応答特性である平坦度がそれぞれ調節された後、ピンダイオード328を通じて後置増幅器(post-amplifier)330に入力され、最終振幅レベルに増幅される。   The downstream signal amplified by the preamplifier 320 passes through a high-pass filter and gain controller 322, and has an amplitude level of the signal and a band frequency response characteristic of the output signal by the attenuator pad 324 and the equalizer 326. After each flatness is adjusted, it is input to a post-amplifier 330 through a pin diode 328 and amplified to a final amplitude level.

ここで、前記ピンダイオード328は、自動振幅調整(ALC: Automatic Level Control)回路336の制御電圧に分岐回路出力用増幅器366の振幅レベルを抜粋してフィードバックされ後置増幅器330の入力レベルを加減、制御することによって分岐回路出力信号レベルを安定化させる。すなわち、前記自動振幅調整回路336は、方向性結合器332から減衰器パッド334を通過した分岐出力のレベルを感知し、レベルの変動によって出力を安定化させる負帰還回路である。   Here, the pin diode 328 extracts and feeds back the amplitude level of the branch circuit output amplifier 366 to the control voltage of the automatic amplitude control (ALC: Automatic Level Control) circuit 336, and adjusts the input level of the post-amplifier 330. By controlling, the branch circuit output signal level is stabilized. In other words, the automatic amplitude adjusting circuit 336 is a negative feedback circuit that senses the level of the branch output that has passed from the directional coupler 332 through the attenuator pad 334 and stabilizes the output according to the level fluctuation.

前記後置増幅器330の出力信号は、直接、出力−歪み/ノイズ相殺切換スイッチ338に入力されるが、出力−歪み/ノイズ相殺切換スイッチ338の可動端子を一側となる固定端子aに接続させる場合では、前記後置増幅器330の出力信号が本発明の歪み及びノイズ相殺装置400を通過せずに、方向性結合器340に直接入力される。そして、出力−歪み/ノイズ相殺切換スイッチ338の可動端子を他側となる固定端子bに接続させる場合では、前記後置増幅器330の出力信号が本発明の歪み及びノイズ相殺装置400に入力され、歪み及びノイズ成分が相殺された後、方向性結合器340に入力される。
前記本発明の歪み及びノイズ相殺装置400は前述した図2の動作と同じなので、具体的な動作説明は省く。
The output signal of the post-amplifier 330 is directly input to the output-distortion / noise canceling changeover switch 338. The movable terminal of the output-distortion / noise canceling changeover switch 338 is connected to the fixed terminal a on one side. In some cases, the output signal of the post-amplifier 330 is directly input to the directional coupler 340 without passing through the distortion and noise canceling apparatus 400 of the present invention. When the movable terminal of the output-distortion / noise canceling changeover switch 338 is connected to the fixed terminal b on the other side, the output signal of the post-amplifier 330 is input to the distortion and noise canceling device 400 of the present invention, After the distortion and noise components are canceled, they are input to the directional coupler 340.
Since the distortion and noise canceling apparatus 400 of the present invention is the same as the operation of FIG. 2 described above, a detailed description of the operation is omitted.

前記方向性結合器340に入力された信号の小さいレベルの一部がトランスポンダ342に入力されることで、状態監視システム(status monitoring system)や網管理システム(network management system)の作動のために、下り信号中に含まれる網装備制御用受信信号が解読される。また、前記トランスポンダ342から出力される網監視用または状態監視用の送信信号は、方向性結合器344と、上り増幅器(reverse amplifier)346と、低域通過フィルタ(LPF)及び利得制御装置348と、上り減衰器パッド350と、上り等化器352とを通じてダイプレクサ314の低域通過フィルタのL部分とRF/AC分離器312を通じて同軸ケーブル接続端子302に出力されヘッドエンドの方向に上り信号が伝送される。   A part of a small level of the signal input to the directional coupler 340 is input to the transponder 342 so that a status monitoring system and a network management system can be operated. The network equipment control reception signal included in the downstream signal is decoded. The network monitoring or status monitoring transmission signal output from the transponder 342 includes a directional coupler 344, an upstream amplifier 346, a low-pass filter (LPF), and a gain controller 348. , Through the upstream attenuator pad 350 and the upstream equalizer 352, the L portion of the low pass filter of the diplexer 314 and the RF / AC separator 312 are output to the coaxial cable connection terminal 302 and the upstream signal is transmitted in the direction of the head end. Is done.

前記方向性結合器340の主経路側に出力される信号は、分岐出力用等化器354と、分岐出力用減衰器パッド356を通じて高周波分配器(RF splitter)358で同等なレベルの二つの信号に分割される。前記高周波分配器358で分割された一方の信号は分岐増幅器360及びダイプレクサ362を通じて同軸ケーブル接続端子304、306に出力され加入者端末機側に伝送される。   The signals output to the main path side of the directional coupler 340 are two signals of the same level by a high frequency splitter (RF splitter) 358 through a branch output equalizer 354 and a branch output attenuator pad 356. It is divided into. One of the signals divided by the high frequency distributor 358 is output to the coaxial cable connection terminals 304 and 306 through the branch amplifier 360 and the diplexer 362 and transmitted to the subscriber terminal side.

そして、前記高周波分配器358で分割されたもう一方の信号は、分岐用パッド364と方向性結合器332及びダイプレクサ368を通じて同軸ケーブル接続端子308,310に出力され加入者端末機側に伝送される。前記方向性結合器332は前述したように分岐出力のレベルを検出して自動振幅調節に使われる。   The other signal divided by the high frequency distributor 358 is output to the coaxial cable connection terminals 308 and 310 through the branching pad 364, the directional coupler 332, and the diplexer 368, and transmitted to the subscriber terminal side. . As described above, the directional coupler 332 detects the branch output level and is used for automatic amplitude adjustment.

また、加入者端末機や本装置の後端に位置する装置から同軸ケーブル接続端子304,306と同軸ケーブル接続端子308,310に入力される上り信号は、ダイプレクサ362,368の低域通過フィルタとリターンスイッチ370,372を通じて高周波合成器(RF Combiner)374に入力され、一つの信号に合成される。前記合成された信号は方向性結合器344を通じて上り増幅器346で増幅された後低域通過フィルタ及び利得制御装置348と、上り減衰器パッド350と、上り等化器352を通じてダイプレクサ314の低域通過フィルタとRF/AC分離器312を通じて同軸ケーブル接続端子302に出力されヘッドエンドの方向に信号が伝送される。   Further, the upstream signals input to the coaxial cable connection terminals 304 and 306 and the coaxial cable connection terminals 308 and 310 from the subscriber terminal or the device located at the rear end of the present apparatus are transmitted to the low-pass filter of the diplexers 362 and 368. The signals are input to a high frequency synthesizer (RF Combiner) 374 through return switches 370 and 372 and synthesized into one signal. The synthesized signal is amplified by the upstream amplifier 346 through the directional coupler 344, and then the low-pass filter and gain control device 348, the upstream attenuator pad 350, and the downstream of the diplexer 314 through the upstream equalizer 352. The signal is output to the coaxial cable connection terminal 302 through the filter and the RF / AC separator 312 and transmitted in the direction of the head end.

前記リターンスイッチ370,372は、上り信号が存在する場合には通過させ、存在しない場合には回路を遮断させて上流に向かう不要なノイズを除去する役割を果たす。   The return switches 370 and 372 play a role of passing an upstream signal when it exists, and blocking unnecessary circuits when there is no upstream signal so as to remove unnecessary noise upstream.

以上、代表的な実施形態を通じて本発明について詳述してきたが、本発明が属する技術の分野における通常の知識を有する者は前述した実施形態について、本発明の範疇に逸脱しない限度内で多様な変形が可能であることが理解できよう。
従って、本発明の権利範囲は、説明された実施例に限定すべきでものではなく、特許請求の範囲だけでなく、この特許請求の範囲と均等なものによって定まるべきである。
As described above, the present invention has been described in detail through the representative embodiments. However, those having ordinary knowledge in the technical field to which the present invention belongs can be applied to the above-described embodiments in various ways without departing from the scope of the present invention. It will be understood that variations are possible.
Accordingly, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the claims but also by the equivalents thereof.

本発明に係る歪み及びノイズ相殺システムをHFC網に構成する場合にシステム装備の構築によって差があるが、CNR、CSO及びCTBがそれぞれ最小限2db、4dB及び10dB以上向上させることができる。これは、既存のHFC網の同軸ケーブル区間距離が約2kmと仮定する場合、これを4〜6km程度とすることで伝送距離を2〜3倍に増加させることができる。そして、伝送距離を既存の距離のままにすれば、このような性能マージンによって収容できるチャンネルの数を約2倍近く(例えば、伝送したTVチャンネル数が60チャンネルであったとすれば90〜120チャンネルほどに増大する)拡張して伝送できる。   When the distortion and noise cancellation system according to the present invention is configured in an HFC network, there is a difference depending on the construction of the system equipment, but CNR, CSO, and CTB can be improved by at least 2 db, 4 dB, and 10 dB, respectively. Assuming that the coaxial cable section distance of the existing HFC network is about 2 km, the transmission distance can be increased 2 to 3 times by setting the distance to about 4 to 6 km. If the transmission distance is left as it is, the number of channels that can be accommodated by such a performance margin is almost doubled (for example, 90 to 120 channels if the number of transmitted TV channels is 60 channels). It can be extended and transmitted.

従って、本発明の歪み及びノイズ相殺システムのうち歪み及びノイズ相殺装置400を既に設けられている既存HFC網にさらに付加すれば、既存のHFC網の伝送特性を高性能にアップグレードして改造することができ、新規に設けるHFC網に本発明のシステムを適用すれば、高性能のHFC網を新たに構築することができる。   Therefore, if the distortion and noise cancellation apparatus 400 of the distortion and noise cancellation system of the present invention is further added to the existing HFC network, the transmission characteristics of the existing HFC network can be upgraded and modified to high performance. If the system of the present invention is applied to a newly provided HFC network, a high-performance HFC network can be newly constructed.

本発明の歪み及びノイズ相殺システムを含むHFC網の全体構成を概略的に示した図である。It is the figure which showed roughly the whole structure of the HFC network containing the distortion and noise cancellation system of this invention. 本発明の歪み及びノイズ相殺システムの望ましい実施例の構成を示した図である。1 is a diagram illustrating a configuration of a preferred embodiment of a distortion and noise cancellation system according to the present invention. 本発明の歪み及びノイズ相殺システムの動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of the distortion and noise cancellation system of this invention. 本発明の歪み及びノイズ相殺システムをHFC網の同軸分配ハブ分岐増幅器に適用した実施例の構成を示した図である。It is the figure which showed the structure of the Example which applied the distortion and noise cancellation system of this invention to the coaxial distribution hub branching amplifier of the HFC network.

符号の説明Explanation of symbols

100 ヘッドエンド
102 光ケーブル
104 分配センター
106 光ケーブル
108 ONU
110 同軸ケーブル
112 同軸分配ハブ
114 同軸幹線増幅器
116 光分岐器
118 光分配器
120 光ケーブル
122 歪み及びノイズ相殺部
200 増幅器
210 方向性結合器
220 歪み及びノイズ成分抽出部
221 光/RF信号変換器
223 等化器
225 遅延器
227 減衰器
229 方向性結合器
230 相殺部
231 エラー増幅器
233 位相遷移器
235 方向性結合器
300 同軸分岐増幅器
302,304,306,308,310 同軸ケーブル接続端子
312 RF/AC分離器
314 ダイプレクサ
316 等化器
320 前置増幅器
322 高域通過フィルタ及び利得制御器
324 減衰器パッド
326 等化器
328 ピンダイオード
330 後置増幅器
332 方向性結合器
334 減衰器パッド
336 自動振幅調整回路
338 出力−歪み/ノイズ相殺切換スイッチ
340 方向性結合器
342 トランスポンダ
344 方向性結合器
346 上り増幅器
348 低域通過フィルタ及び利得制御装置
350 上り減衰器パッド
352 上り等化器
354 分岐出力用等化器
356 分岐出力用減衰器パッド
358 高周波分配器
360 分岐増幅器
362 ダイプレクサ
364 分岐用パッド
366 分岐回路出力用増幅器
368 ダイプレクサ
370 リターンスイッチ
374 高周波合成器
400 歪み及びノイズ相殺装置
100 Head end 102 Optical cable 104 Distribution center 106 Optical cable 108 ONU
DESCRIPTION OF SYMBOLS 110 Coaxial cable 112 Coaxial distribution hub 114 Coaxial trunk amplifier 116 Optical branching device 118 Optical distributor 120 Optical cable 122 Distortion and noise cancellation part 200 Amplifier 210 Directional coupler 220 Distortion and noise component extraction part 221 Optical / RF signal converter 223 etc. 225 Delay unit 227 Attenuator 229 Directional coupler 230 Cancellation unit 231 Error amplifier 233 Phase transition unit 235 Directional coupler 300 Coaxial branch amplifier 302, 304, 306, 308, 310 Coaxial cable connection terminal 312 RF / AC separation 314 Diplexer 316 Equalizer 320 Preamplifier 322 High pass filter and gain controller 324 Attenuator pad 326 Equalizer 328 Pin diode 330 Post amplifier 332 Directional coupler 334 Attenuator pad 336 Automatic Width adjustment circuit 338 Output-distortion / noise canceling switch 340 Directional coupler 342 Transponder 344 Directional coupler 346 Up amplifier 348 Low pass filter and gain control device 350 Up attenuator pad 352 Up equalizer 354 For branch output Equalizer 356 Branch output attenuator pad 358 High frequency distributor 360 Branch amplifier 362 Diplexer 364 Branch pad 366 Branch circuit output amplifier 368 Diplexer 370 Return switch 374 High frequency synthesizer 400 Distortion and noise canceling device

Claims (8)

ヘッドエンド側から第1光ケーブルを介して受信される光信号をRF信号に変換して同軸ケーブルを介して同軸分配ハブに伝送するONUと、
前記同軸ケーブルにカスケード接続され前記RF信号を増幅する複数の同軸幹線増幅器と、
前記第1光ケーブルで光信号を分岐して第2光ケーブルを介して前記同軸分配ハブに伝送する光分岐器と、
前記同軸分配ハブに備えられ、前記第2光ケーブルが伝送する光信号を用いて前記同軸ケーブルを介して受信されるRF信号に含まれた歪み及びノイズ成分を抽出し、抽出した歪み及びノイズ成分を前記同軸ケーブルを介して受信されるRF信号に結合して歪み及びノイズ成分を相殺させる歪み及びノイズ相殺部とを含むことを特徴とするHFC網の歪み及びノイズ相殺システム。
An ONU that converts an optical signal received from the head end side via the first optical cable into an RF signal and transmits the RF signal to the coaxial distribution hub via the coaxial cable;
A plurality of coaxial trunk amplifiers that are cascaded to the coaxial cable and amplify the RF signal;
An optical branching device for branching an optical signal through the first optical cable and transmitting the optical signal to the coaxial distribution hub through a second optical cable;
The distortion and noise components included in the RF signal received through the coaxial cable are extracted using the optical signal that is provided in the coaxial distribution hub and transmitted by the second optical cable, and the extracted distortion and noise components are extracted. A distortion and noise canceling system for an HFC network, comprising: a distortion and noise canceling unit that couples to an RF signal received via the coaxial cable to cancel distortion and noise components.
前記歪み及びノイズ相殺部は、
前記第2光ケーブルを介して受信される光信号をRF信号に変換し、変換したRF信号を前記同軸ケーブルを介して受信されるRF信号と結合して歪み及びノイズ成分を抽出する歪み及びノイズ成分抽出部と、
前記歪み及びノイズ成分抽出部が抽出した歪み及びノイズ成分を前記同軸ケーブルを介して受信されるRF信号に結合して歪み及びノイズ成分を相殺させる相殺部とを含む請求項1に記載のHFC網の歪み及びノイズ相殺システム。
The distortion and noise canceling unit is
Distortion and noise components for converting an optical signal received via the second optical cable into an RF signal and combining the converted RF signal with an RF signal received via the coaxial cable to extract distortion and noise components An extractor;
The HFC network according to claim 1, further comprising: a canceling unit configured to combine the distortion and noise components extracted by the distortion and noise component extraction unit with an RF signal received via the coaxial cable to cancel the distortion and noise components. Distortion and noise cancellation system.
前記歪み及びノイズ相殺部は、
前記同軸ケーブルを介して受信されるRF信号を分割して前記歪み及びノイズ成分抽出部及び前記相殺部にそれぞれ入力させる方向性結合器をさらに含む請求項2に記載のHFC網の歪み及びノイズ相殺システム。
The distortion and noise canceling unit is
The distortion and noise cancellation of the HFC network according to claim 2, further comprising a directional coupler that divides an RF signal received through the coaxial cable and inputs the RF signal to the distortion and noise component extraction unit and the cancellation unit, respectively. system.
前記歪み及びノイズ成分抽出部は、
前記第2光ケーブルを介して受信される光信号をRF信号に変換する光/RF信号変換器と、
前記光/RF信号変換器が変換したRF信号を遅らせる遅延器と、
前記同軸ケーブルを介して受信されるRF信号から前記遅延器が遅延させたRF信号を減算して歪み及びノイズ成分を抽出する方向性結合器とを含む請求項2に記載のHFC網の歪み及びノイズ相殺システム。
The distortion and noise component extraction unit is
An optical / RF signal converter for converting an optical signal received via the second optical cable into an RF signal;
A delayer for delaying the RF signal converted by the optical / RF signal converter;
A directional coupler that subtracts an RF signal delayed by the delay unit from an RF signal received via the coaxial cable to extract distortion and noise components, and distortion of the HFC network according to claim 2. Noise cancellation system.
前記光/RF信号変換器と遅延器との間に、前記光/RF信号変換器が変換したRF信号の総合周波数応答特性を調節する等化器をさらに含む請求項4に記載のHFC網の歪み及びノイズ相殺システム。   The HFC network of claim 4, further comprising an equalizer between the optical / RF signal converter and the delay unit that adjusts an overall frequency response characteristic of an RF signal converted by the optical / RF signal converter. Distortion and noise cancellation system. 前記歪み及びノイズ成分抽出部は、
前記同軸ケーブルを介して受信されるRF信号を減衰させる減衰器をさらに含む請求項4に記載のHFC網の歪み及びノイズ相殺システム。
The distortion and noise component extraction unit is
The distortion and noise cancellation system of an HFC network according to claim 4, further comprising an attenuator that attenuates an RF signal received via the coaxial cable.
前記相殺部は、
前記同軸ケーブルを介して受信されるRF信号から前記歪み及びノイズ成分抽出部が抽出した歪み及びノイズ成分を減算する方向性結合器を含む請求項2に記載のHFC網の歪み及びノイズ相殺システム。
The offset unit is
The distortion and noise cancellation system for an HFC network according to claim 2, further comprising a directional coupler that subtracts the distortion and noise components extracted by the distortion and noise component extraction unit from an RF signal received via the coaxial cable.
前記相殺部は、
前記歪み及びノイズ成分抽出部が抽出した歪み及びノイズ成分を増幅して前記方向性結合器に入力させるエラー増幅器と、
前記同軸ケーブルを介して受信されるRF信号の位相を遷移させて前記方向性結合器に入力させる位相遷移器をさらに含む請求項7に記載のHFC網の歪み及びノイズ相殺システム。
The offset unit is
An error amplifier that amplifies the distortion and noise components extracted by the distortion and noise component extraction unit and inputs them to the directional coupler;
The HFC network distortion and noise canceling system according to claim 7, further comprising a phase shifter that shifts a phase of an RF signal received via the coaxial cable and inputs the phase of the RF signal to the directional coupler.
JP2007309214A 2007-10-25 2007-11-29 Distortion and noise cancellation system for coaxial cascade amplification section in HFC network Expired - Fee Related JP4889619B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2007-0107716 2007-10-25
KR1020070107716A KR100887156B1 (en) 2007-10-25 2007-10-25 Distortion and noise cancellation system for an hybrid fiber-coax network

Publications (2)

Publication Number Publication Date
JP2009105866A true JP2009105866A (en) 2009-05-14
JP4889619B2 JP4889619B2 (en) 2012-03-07

Family

ID=39688588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309214A Expired - Fee Related JP4889619B2 (en) 2007-10-25 2007-11-29 Distortion and noise cancellation system for coaxial cascade amplification section in HFC network

Country Status (5)

Country Link
US (1) US20090113511A1 (en)
JP (1) JP4889619B2 (en)
KR (1) KR100887156B1 (en)
DE (1) DE202007017887U1 (en)
RU (1) RU2389136C2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8483318B2 (en) * 2008-11-04 2013-07-09 Agilent Technologies, Inc. Split band signal processing
US8422539B2 (en) * 2010-08-19 2013-04-16 Industrial Technology Research Institute Multi-carrier receiver, multi-carrier transmitter and multi-carrier transceiver system
WO2012088350A2 (en) * 2010-12-21 2012-06-28 John Mezzalingua Associates, Inc. Method and apparatus for reducing isolation in a home network
KR101285800B1 (en) 2011-09-28 2013-07-15 인하대학교 산학협력단 System for distortion compensation of ultra fast impulse signal on coaxial cable
US9654218B2 (en) * 2013-04-18 2017-05-16 Trilithic, Inc. RF ingress in fiber-to-the-premises
WO2015160660A1 (en) * 2014-04-15 2015-10-22 Arris Enterprises, Inc. Smart receivers and transmitters for catv networks
EP3471406A1 (en) * 2017-10-13 2019-04-17 Teleste Oyj An arrangement for catv network
KR102127481B1 (en) * 2019-03-29 2020-06-26 에스케이브로드밴드주식회사 Uplink noise control device and uplink noise control method
KR102637980B1 (en) * 2022-04-01 2024-02-19 빛샘전자주식회사 System and method for noise removal using radio frequency open close switch

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629926A (en) * 1992-02-25 1994-02-04 Northern Telecom Ltd Optical transmission system
JP2942553B1 (en) * 1998-08-20 1999-08-30 新怡力科技股▲分▼有限公司 Distortion compensation circuit for broadband optical fiber communication system
JP2000223958A (en) * 1999-01-29 2000-08-11 Nec Corp Feedforward amplifier
JP2000295048A (en) * 1999-04-02 2000-10-20 Fujitsu Ltd Feed forward amplifier
JP2003009112A (en) * 2001-06-19 2003-01-10 N Ii C Cable Media Kk Catv transmission method
JP3371355B2 (en) * 1996-04-05 2003-01-27 日本電信電話株式会社 Modulation system conversion circuit and optical signal transmission device
JP3471630B2 (en) * 1998-09-01 2003-12-02 富士通株式会社 Subscriber termination equipment
JP2005229581A (en) * 2004-02-12 2005-08-25 Korea Electronics Telecommun Integrated communication and broadcasting access system and its method
JP2005229580A (en) * 2004-02-12 2005-08-25 Korea Electronics Telecommun Communication/broadcast unified access system and its method
JP2005229572A (en) * 2004-02-11 2005-08-25 Korea Electronics Telecommun Photoelectric transmitter/receiver system for coupling and providing broadcast signals through optical subscriber network

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051704A (en) * 1990-02-06 1991-09-24 Motorola, Inc. Feedforward distortion cancellation circuit
US5408259A (en) * 1993-12-30 1995-04-18 Northern Telecom Limited Data modulation arrangement for selectively distributing data
US5606725A (en) * 1994-11-29 1997-02-25 Xel Communications, Inc. Broadband network having an upstream power transmission level that is dynamically adjusted as a function of the bit error rate
US5515199A (en) * 1995-01-31 1996-05-07 Photonic Applications, Inc. Optical system employing near-incoherent processing for distortion correction
US5684799A (en) * 1995-03-28 1997-11-04 Bell Atlantic Network Services, Inc. Full service network having distributed architecture
US5699179A (en) * 1996-02-23 1997-12-16 General Instrument Corporation Of Delaware Cancellation of distortion components in a fiber optic link with feed-forward linearization
US5822677A (en) * 1996-08-26 1998-10-13 At&T Corp. Shared hybrid-fiber coax transmission system having increased bandwidth in the upstream and downstream directions
IL119972A (en) * 1997-01-07 2001-01-28 Foxcom Ltd Satellite distributed television
US6219095B1 (en) * 1998-02-10 2001-04-17 Wavetek Corporation Noise measurement system
US6285252B1 (en) * 1999-09-30 2001-09-04 Harmonic Inc. Apparatus and method for broadband feedforward predistortion
US7146630B2 (en) * 2000-09-22 2006-12-05 Narad Networks, Inc. Broadband system with intelligent network devices
ATE449465T1 (en) * 2001-04-12 2009-12-15 Juniper Networks Inc ACCESS NOISE CANCELLATION IN A DIGITAL RECEIVER
US6734726B2 (en) * 2001-06-29 2004-05-11 Remec, Inc. Balanced distortion reduction circuit
US7080400B1 (en) * 2001-08-06 2006-07-18 Navar Murgesh S System and method for distributed storage and presentation of multimedia in a cable network environment
JP3407254B1 (en) * 2002-01-31 2003-05-19 富士通株式会社 Data transmission system and data transmission control method
KR20030010481A (en) * 2002-03-08 2003-02-05 주식회사 이트로닉스 Public device for Hybrid Fiber Coaxial
KR100483483B1 (en) * 2002-12-18 2005-04-15 주식회사 넷웨이브 System for Managing a HFC Network
US7415367B2 (en) * 2003-05-20 2008-08-19 Arcom Digital, Llc System and method to locate common path distortion on cable systems
US9014571B2 (en) * 2006-11-01 2015-04-21 Arris Technology, Inc. Small form pluggable analog optical transmitter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629926A (en) * 1992-02-25 1994-02-04 Northern Telecom Ltd Optical transmission system
JP3371355B2 (en) * 1996-04-05 2003-01-27 日本電信電話株式会社 Modulation system conversion circuit and optical signal transmission device
JP2942553B1 (en) * 1998-08-20 1999-08-30 新怡力科技股▲分▼有限公司 Distortion compensation circuit for broadband optical fiber communication system
JP3471630B2 (en) * 1998-09-01 2003-12-02 富士通株式会社 Subscriber termination equipment
JP2000223958A (en) * 1999-01-29 2000-08-11 Nec Corp Feedforward amplifier
JP2000295048A (en) * 1999-04-02 2000-10-20 Fujitsu Ltd Feed forward amplifier
JP2003009112A (en) * 2001-06-19 2003-01-10 N Ii C Cable Media Kk Catv transmission method
JP2005229572A (en) * 2004-02-11 2005-08-25 Korea Electronics Telecommun Photoelectric transmitter/receiver system for coupling and providing broadcast signals through optical subscriber network
JP2005229581A (en) * 2004-02-12 2005-08-25 Korea Electronics Telecommun Integrated communication and broadcasting access system and its method
JP2005229580A (en) * 2004-02-12 2005-08-25 Korea Electronics Telecommun Communication/broadcast unified access system and its method

Also Published As

Publication number Publication date
RU2007144217A (en) 2009-06-10
KR100887156B1 (en) 2009-03-04
DE202007017887U1 (en) 2008-08-14
RU2389136C2 (en) 2010-05-10
US20090113511A1 (en) 2009-04-30
JP4889619B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4889619B2 (en) Distortion and noise cancellation system for coaxial cascade amplification section in HFC network
US6348837B1 (en) Bi-directional amplifier having a single gain block for amplifying both forward and reverse signals
US5963844A (en) Hybrid fiber-coax system having at least one digital fiber node and increased upstream bandwidth
US5864748A (en) Hybrid fiber-coax system having at least one digital fiber node and increased upstream and downstream bandwidth
US5430568A (en) Optical communications system for transmitting information signals having different wavelengths over a same optical fiber
KR100724902B1 (en) Ftth system based on passive optical network for broadcasting service
CA3048146C (en) Amplifier with power dissipation reduction using single radio frequency digital-to-analog converter
US20040264964A1 (en) Deep fiber network with high speed data and video on demand
EP1505833A2 (en) A wideband catv tap device
KR100671052B1 (en) An Optical transceiver having a function of multiplexing in hybrid fiber coaxial network
US20090028564A1 (en) Dual Broadcast and Narrowcast Systems and Methods
CA2200600A1 (en) Hybrid fiber/coax video and telephony communication system
US7486892B2 (en) Multiport optical amplifier with narrowcast power equalization
KR100744540B1 (en) Apparatus for electric-optic receiving/transmitting and optic-electric receiving/providing for combined broadcasting signal
US8098426B2 (en) Two-way amplifier for passive optical network (PON)
JP4205788B2 (en) Apparatus for combining and amplifying two wideband signals
KR101190339B1 (en) Apparatus and method for hybrid transmission of combining passive optical network and hybrid fiber coaxial network for data and broadcasting service
JP2005229572A (en) Photoelectric transmitter/receiver system for coupling and providing broadcast signals through optical subscriber network
KR100609696B1 (en) Apparatus for electric/optic transmitter and receiver providing the broadcasting signal through optical subscriber network
KR20040094141A (en) Media Integrated Home Gateway System Using Optical Fiber
KR102231329B1 (en) Frequency bandwidth dividing and combining apparatus for catv signal and catv signal processing method using the same
KR100687708B1 (en) Apparatus for electric/optic transmitter and receiver providing the combined broadcasting signal through optical subscriber network
US12126388B2 (en) Forward and reverse test point circuit with switchable termination for use in an RF amplifier
WO2008002056A1 (en) Trunk bridge amplifier using multi channel diplexer
US20240080110A1 (en) Forward and reverse test point circuit with switchable termination for use in an rf amplifier

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100514

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees