JP2009105548A - Threshold measuring method and its apparatus of optical module circuit - Google Patents

Threshold measuring method and its apparatus of optical module circuit Download PDF

Info

Publication number
JP2009105548A
JP2009105548A JP2007273895A JP2007273895A JP2009105548A JP 2009105548 A JP2009105548 A JP 2009105548A JP 2007273895 A JP2007273895 A JP 2007273895A JP 2007273895 A JP2007273895 A JP 2007273895A JP 2009105548 A JP2009105548 A JP 2009105548A
Authority
JP
Japan
Prior art keywords
value
optical signal
search range
signal intensity
input optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007273895A
Other languages
Japanese (ja)
Other versions
JP4946786B2 (en
Inventor
Hiroshi Sano
泰士 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007273895A priority Critical patent/JP4946786B2/en
Publication of JP2009105548A publication Critical patent/JP2009105548A/en
Application granted granted Critical
Publication of JP4946786B2 publication Critical patent/JP4946786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress relaxation oscillation of input optical signal strength, and accurately measure the threshold. <P>SOLUTION: A threshold measuring apparatus 1 is provided with an optical attenuator 3 which attenuates an optical signal of fixed strength from an optical source 2, and inputs into an optical module circuit 6. Moreover, a multimeter 8 which detects an output optical signal, is connected to an output terminal of the optical module circuit 6. A control device 9 controls the optical attenuator 3 and the multimeter 8, and measures a lower threshold Pt1 and an upper threshold Pt2 of the optical module circuit 6 using a two division method. Moreover, when input optical signal strength is changed to a mean value Pmid by the two division method, the control device 9 gradually changes an attenuation amount of the optical attenuator 3 in a step. Thereby, it is possible to suppress the relaxation oscillation of the input optical signal strength. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、入力光信号強度と出力電気信号との間にヒステリシス特性を有する光モジュール回路の閾値測定方法およびその装置に関する。   The present invention relates to a method and apparatus for measuring a threshold value of an optical module circuit having a hysteresis characteristic between an input optical signal intensity and an output electrical signal.

光通信、光センサ等には例えばフォトトランジスタ、フォトダイオード等の受光素子を備えた光モジュール回路が使用される。この光モジュール回路として、例えばノイズによる誤動作を防止するために、入力光信号強度と出力電気信号との間にヒステリシス特性を有するものがある。この場合、光モジュール回路は、入力光信号強度が小さい値から大きい値へ変化している途中で出力電気信号が反転する入力光信号強度の上限閾値と、入力光信号強度が大きい値から小さい値へ変化している途中で出力電気信号が反転する入力光信号強度の下限閾値とを有している。そして、ヒステリシス特性は、この上限閾値と下限閾値とが異なっている特性をいい、上限閾値は下限閾値よりも大きな値となっている。   An optical module circuit including a light receiving element such as a phototransistor or a photodiode is used for optical communication, an optical sensor, or the like. Some of these optical module circuits have hysteresis characteristics between the input optical signal intensity and the output electric signal in order to prevent malfunction due to noise, for example. In this case, the optical module circuit has an upper limit threshold value of the input optical signal strength at which the output electric signal is inverted while the input optical signal strength is changing from a small value to a large value, and a value from a large value to a small value of the input optical signal strength. And a lower limit threshold value of the input optical signal intensity at which the output electric signal is inverted while changing to. The hysteresis characteristic is a characteristic in which the upper limit threshold and the lower limit threshold are different, and the upper limit threshold is larger than the lower limit threshold.

従来、このようなヒステリシス特性を有する電子回路の上限閾値および下限閾値の測定方法として、2分法を用いたものが知られている(例えば、特許文献1参照)。   Conventionally, a method using a bisection method is known as a method for measuring an upper limit threshold and a lower limit threshold of an electronic circuit having such hysteresis characteristics (see, for example, Patent Document 1).

この2分法では、下限閾値を測定する場合、当初検索範囲以上の入力信号を初期値として設定した後に、入力信号を該初期値から当初検索範囲の中間値に変化させる。そして、この中間値での出力信号に基づいて前記下限閾値が存在する領域を、当初検索範囲中の中間値より上か下かを判定してその結果から次の検索範囲を当初の1/2に絞り込む。この絞り込み作業を検索範囲が0になるまで繰り返し、検索範囲が0になったときの入力信号を下限閾値として測定する。   In this bisection method, when the lower threshold is measured, an input signal equal to or greater than the initial search range is set as an initial value, and then the input signal is changed from the initial value to an intermediate value of the initial search range. Then, based on the output signal at the intermediate value, it is determined whether the region where the lower limit threshold exists is above or below the intermediate value in the initial search range, and the next search range is set to the original 1/2 based on the result. Refine to. This narrowing down operation is repeated until the search range becomes 0, and the input signal when the search range becomes 0 is measured as the lower limit threshold value.

同様に、上限閾値を測定する場合、当初検索範囲以下の入力信号を初期値として設定した後に、入力信号を該初期値から当初検索範囲の中間値に変化させる。そして、この中間値での出力信号に基づいて前記上限閾値が存在する領域を、当初検索範囲中の中間値より上か下かを判定してその結果から次の検索範囲を当初の1/2に絞り込む。この絞り込み作業を検索範囲が0になるまで繰り返し、検索範囲が0になったときの入力信号を上限閾値として測定する。   Similarly, when measuring the upper threshold, after setting an input signal that is equal to or less than the initial search range as an initial value, the input signal is changed from the initial value to an intermediate value of the initial search range. Then, based on the output signal at the intermediate value, it is determined whether the region where the upper limit threshold exists is above or below the intermediate value in the initial search range, and the next search range is determined from the result to the original 1/2. Refine to. This narrowing operation is repeated until the search range becomes 0, and the input signal when the search range becomes 0 is measured as the upper limit threshold value.

特開平11−72542号公報JP-A-11-72542

ところで、光モジュール回路の測定装置として、光源から出力される一定強度の光信号を光減衰器を用いて減衰させることによって入力光信号強度を調整するものがある。この場合、光減衰器は角度に応じて減衰量が異なる円板状の減衰板をサーボモータ等を用いて回転させることによって、減衰量を調整する。   By the way, there is an optical module circuit measuring apparatus that adjusts the input optical signal intensity by attenuating an optical signal having a constant intensity output from a light source using an optical attenuator. In this case, the optical attenuator adjusts the attenuation amount by rotating a disk-shaped attenuation plate having a different attenuation amount according to the angle by using a servo motor or the like.

また、特許文献1による測定方法では、中間値が上限閾値や下限閾値に徐々に近付く。一方、入力光信号強度を所定の値(例えば初期値)から中間値に変化させると、光減衰器(サーボモータ等)の動作特性によって、入力光信号強度に緩和振動が生じる傾向がある。このとき、この緩和振動によって入力光信号強度が一時的に上限閾値や下限閾値を超えてしまい、出力電気信号が中間値に対する値と異なって変化する。この結果、上限閾値や下限閾値が検索範囲中の中間値より上か下かを判定するときに、誤った範囲を判定することになり、閾値の測定誤差等が生じるという問題がある。   Further, in the measurement method according to Patent Document 1, the intermediate value gradually approaches the upper limit threshold and the lower limit threshold. On the other hand, when the input optical signal intensity is changed from a predetermined value (for example, an initial value) to an intermediate value, relaxation vibration tends to occur in the input optical signal intensity due to the operating characteristics of the optical attenuator (servo motor or the like). At this time, due to the relaxation oscillation, the input optical signal intensity temporarily exceeds the upper limit threshold and the lower limit threshold, and the output electrical signal changes different from the value for the intermediate value. As a result, when determining whether the upper limit threshold and the lower limit threshold are above or below the intermediate value in the search range, an incorrect range is determined, and there is a problem that a threshold measurement error or the like occurs.

本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、入力光信号強度の緩和振動を抑制して閾値を正確に測定することができる光モジュール回路の閾値測定方法およびその装置を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an optical module circuit threshold measurement method capable of accurately measuring a threshold by suppressing relaxation oscillation of input optical signal intensity and The object is to provide such a device.

上述した課題を解決するために、請求項1の発明は、入力光信号強度が小さい値から大きい値へ変化している途中に出力電気信号が変化する上限閾値と、入力光信号強度が大きい値から小さい値へ変化している途中に出力電気信号が変化する下限閾値とを有し、入力光信号強度と出力電気信号との間にヒステリシス特性を有する光モジュール回路の閾値測定方法であって、前記下限閾値を測定する場合、当初検索範囲以上の入力光信号強度を上限初期値として設定した後、入力光信号強度を該上限初期値から当初検索範囲の中間値に変化させ、該中間値での出力電気信号に基づいて前記下限閾値が存在する領域を、当初検索範囲中の中間値より上か下かを判定してその結果から次の検索範囲を当初の1/2に絞り込み、この絞り込み作業を検索範囲が0になるまで繰り返し、検索範囲が0になったときの中間値を下限閾値として測定する下限閾値測定工程と、前記上限閾値を測定する場合、当初検索範囲以下の入力光信号強度を下限初期値として設定した後、入力光信号強度を該下限初期値から当初検索範囲の中間値に変化させ、該中間値での出力電気信号に基づいて前記上限閾値が存在する領域を、当初検索範囲中の中間値より上か下かを判定してその結果から次の検索範囲を当初の1/2に絞り込み、この絞り込み作業を検索範囲が0になるまで繰り返し、検索範囲が0になったときの中間値を上限閾値として測定する上限閾値測定工程とを有し、前記入力光信号強度は、一定強度の光信号を光減衰器を用いて減衰させることによって調整し、前記入力光信号強度を中間値に変化させるときに、前記光減衰器の減衰量を段階的に変化させる減衰量変化工程を備える構成としている。   In order to solve the above-described problem, the invention of claim 1 is directed to an upper limit threshold value at which the output electrical signal changes while the input optical signal intensity is changing from a small value to a large value, and a value with a large input optical signal intensity. A threshold value measuring method for an optical module circuit having a hysteresis characteristic between an input optical signal intensity and an output electrical signal, and a lower limit threshold value at which the output electrical signal changes in the middle of changing from a small value to a small value, When measuring the lower limit threshold, after setting the input optical signal intensity equal to or higher than the initial search range as the upper limit initial value, the input optical signal intensity is changed from the upper limit initial value to the intermediate value of the initial search range, the intermediate value Based on the output electrical signal, the region where the lower threshold value exists is determined whether it is above or below the intermediate value in the initial search range, and the next search range is narrowed down to ½ of the initial range based on the result. Inspect work It repeats until the range becomes 0, and the lower limit threshold measurement step for measuring the intermediate value when the search range becomes 0 as the lower limit threshold, and when measuring the upper limit threshold, lowers the input optical signal intensity below the initial search range. After setting as the initial value, the input optical signal intensity is changed from the lower limit initial value to the intermediate value of the initial search range, and the region where the upper limit threshold exists based on the output electrical signal at the intermediate value is determined as the initial search range. When it is above or below the intermediate value in the middle, the next search range is narrowed down to the original half from the result, and this narrowing operation is repeated until the search range becomes 0, and when the search range becomes 0 An upper threshold measuring step for measuring the intermediate value of the optical signal as an upper threshold, wherein the input optical signal intensity is adjusted by attenuating an optical signal having a constant intensity using an optical attenuator, and the input optical signal intensity is adjusted. Change to intermediate value When to be, has a configuration comprising an attenuation amount change step of stepwise changing the attenuation amount of the optical attenuator.

請求項2の発明では、前記減衰量変化工程は、前記入力光信号強度を中間値に変化させるときの変化量を前記光減衰器に基づく分解能で割り、この値を定数bのべき級数で表した多項式の高次の項から低次の項に向けて順番に入力光信号強度が変化するように、前記光減衰器の減衰量を変化させる構成としている。   According to a second aspect of the present invention, in the attenuation amount changing step, the amount of change when the input optical signal intensity is changed to an intermediate value is divided by the resolution based on the optical attenuator, and this value is expressed as a power series of a constant b. The attenuation amount of the optical attenuator is changed so that the input optical signal intensity changes in order from the higher order term to the lower order term of the polynomial.

請求項3の発明は、入力光信号強度が小さい値から大きい値へ変化している途中に出力電気信号が変化する上限閾値と、入力光信号強度が大きい値から小さい値へ変化している途中に出力電気信号が変化する下限閾値とを有し、入力光信号強度と出力電気信号との間にヒステリシス特性を有する光モジュール回路の閾値測定装置であって、前記下限閾値を測定する場合、当初検索範囲以上の入力光信号強度を上限初期値として設定した後、入力光信号強度を該上限初期値から当初検索範囲の中間値に変化させ、該中間値での出力電気信号に基づいて前記下限閾値が存在する領域を、当初検索範囲中の中間値より上か下かを判定してその結果から次の検索範囲を当初の1/2に絞り込み、この絞り込み作業を検索範囲が0になるまで繰り返し、検索範囲が0になったときの中間値を下限閾値として測定する下限閾値測定手段と、前記上限閾値を測定する場合、当初検索範囲以下の入力光信号強度を下限初期値として設定した後、入力光信号強度を該下限初期値から当初検索範囲の中間値に変化させ、該中間値での出力電気信号に基づいて前記上限閾値が存在する領域を、当初検索範囲中の中間値より上か下かを判定してその結果から次の検索範囲を当初の1/2に絞り込み、この絞り込み作業を検索範囲が0になるまで繰り返し、検索範囲が0になったときの中間値を上限閾値として測定する上限閾値測定手段とを有し、前記入力光信号強度は、一定強度の光信号を光減衰器を用いて減衰させることによって調整し、前記入力光信号強度を中間値に変化させるときに、前記光減衰器の減衰量を段階的に変化させる減衰量変化手段を備える構成としている。   According to the invention of claim 3, the upper threshold value at which the output electrical signal changes while the input optical signal intensity is changing from a small value to a large value, and the middle when the input optical signal intensity is changing from a large value to a small value A threshold value measuring apparatus for an optical module circuit having a hysteresis characteristic between the input optical signal intensity and the output electric signal, and when measuring the lower limit threshold, After setting the input optical signal intensity equal to or higher than the search range as the upper limit initial value, the input optical signal intensity is changed from the upper limit initial value to the intermediate value of the initial search range, and the lower limit based on the output electric signal at the intermediate value It is determined whether the region where the threshold exists is above or below the intermediate value in the initial search range, and the next search range is narrowed down to ½ of the initial value from the result, and this narrowing work is performed until the search range becomes zero. repetition, Lower limit threshold measurement means for measuring an intermediate value when the search range becomes 0 as a lower limit threshold, and when measuring the upper limit threshold, input light signal intensity below the initial search range is set as a lower limit initial value, and then input The optical signal intensity is changed from the lower limit initial value to the intermediate value of the initial search range, and the region where the upper limit threshold exists based on the output electrical signal at the intermediate value is above or below the intermediate value in the initial search range. The next search range is narrowed down to 1/2 of the initial range from the result, and this narrowing operation is repeated until the search range becomes 0, and the intermediate value when the search range becomes 0 is measured as the upper threshold. The input optical signal intensity is adjusted by attenuating an optical signal having a constant intensity using an optical attenuator, and the input optical signal intensity is changed to an intermediate value. Of the optical attenuator It is configured to include the attenuation amount change means for stepwise changing the 衰量.

請求項4の発明では、前記減衰量変化手段は、前記入力光信号強度を中間値に変化させるときの変化量を前記光減衰器に基づく分解能で割り、この値を定数bのべき級数で表した多項式の高次の項から低次の項に向けて順番に入力光信号強度が変化するように、前記光減衰器の減衰量を変化させる構成としている。   According to a fourth aspect of the present invention, the attenuation amount changing means divides the amount of change when changing the input optical signal intensity to an intermediate value by the resolution based on the optical attenuator, and expresses this value as a power series of a constant b. The attenuation amount of the optical attenuator is changed so that the input optical signal intensity changes in order from the higher order term to the lower order term of the polynomial.

請求項1,3の発明によれば、入力光信号強度を中間値に変化させるときに、光減衰器の減衰量を段階的に変化させるから、入力光信号強度を中間値に向けて直接的に変化させた場合に比べて減衰量の緩和振動を抑制することができる。このため、入力光振動強度が中間値から超過(オーバーシュート)することがなくなるから、検索範囲を絞り込むときの誤りをなくすことができ、閾値を正確に測定することができる。   According to the first and third aspects of the present invention, when the input optical signal intensity is changed to the intermediate value, the attenuation amount of the optical attenuator is changed stepwise, so that the input optical signal intensity is directly directed to the intermediate value. As compared with the case of changing to, the relaxation oscillation of the attenuation amount can be suppressed. For this reason, since the input light vibration intensity does not exceed (overshoot) from the intermediate value, errors in narrowing the search range can be eliminated, and the threshold value can be measured accurately.

請求項2,4の発明によれば、入力光信号強度の変化量を光減衰器による分解能で割り、この値を定数bのべき級数で表した多項式の高次の項から低次の項に向けて順番に入力光信号強度が変化するように、光減衰器の減衰量を変化させる。このため、光減衰器の減衰量を最初は大きく変化させて入力光信号強度を中間値に素早く近付けることができる。また、入力光信号強度が中間値に近付くに従って光減衰器の減衰量の変化が小さくなるから、入力光信号強度が中間値から超過するのを防ぐことができる。   According to the second and fourth aspects of the present invention, the amount of change in the input optical signal intensity is divided by the resolution by the optical attenuator, and this value is changed from a higher-order term to a lower-order term of the polynomial expressed as a power series of the constant b. The attenuation amount of the optical attenuator is changed so that the input optical signal intensity changes sequentially. For this reason, the attenuation amount of the optical attenuator can be largely changed at first to quickly bring the input optical signal intensity close to the intermediate value. Further, since the change in the attenuation amount of the optical attenuator becomes smaller as the input optical signal intensity approaches the intermediate value, it is possible to prevent the input optical signal intensity from exceeding the intermediate value.

以下、本発明の実施の形態による光モジュール回路の閾値測定装置について、添付図面を参照しつつ詳細に説明する。   Hereinafter, an optical module circuit threshold measurement device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

まず、図1は発明の実施の形態による閾値測定装置1を示し、該閾値測定装置1は、後述する光源2、光減衰器3、マルチメータ8等によって構成されている。   First, FIG. 1 shows a threshold measurement device 1 according to an embodiment of the invention, and the threshold measurement device 1 is composed of a light source 2, an optical attenuator 3, a multimeter 8, and the like which will be described later.

光源2は、例えばレーザダイオード等の発光素子を含んで構成され、一定強度の光信号を出力する。また、光減衰器3は、光源2による光信号を可変に減衰し、減衰した入力光信号Iを光チャネルセレクタ4を介して光モジュール回路6を含む被試験デバイス5(Device Under Test)に入力する。ここで、光減衰器3は、例えば角度に応じて減衰量が異なる円板状の減衰板を備え、該減衰板を例えばサーボモータを用いて回転させることによって、減衰量を調整する構成となっている。   The light source 2 includes a light emitting element such as a laser diode, for example, and outputs a light signal having a constant intensity. Further, the optical attenuator 3 variably attenuates the optical signal from the light source 2 and inputs the attenuated input optical signal I to the device under test 5 (Device Under Test) including the optical module circuit 6 via the optical channel selector 4. To do. Here, the optical attenuator 3 includes, for example, a disc-shaped attenuation plate having different attenuation amounts according to angles, and the attenuation amount is adjusted by rotating the attenuation plate using, for example, a servo motor. ing.

光チャネルセレクタ4は、被試験デバイス5および光パワーメータ7のうちいずれか一方に対して入力光信号Iを選択的に入力する。そして、光パワーメータ7は、光減衰器3によって減衰された入力光信号Iの強度を測定する。   The optical channel selector 4 selectively inputs an input optical signal I to either the device under test 5 or the optical power meter 7. The optical power meter 7 measures the intensity of the input optical signal I attenuated by the optical attenuator 3.

被試験デバイス5は光モジュール回路6を含んで構成され、光モジュール回路6は、例えばフォトダイオード、フォトトランジスタ等の受光素子6Aを備えている。そして、入力光信号Iが被試験デバイス5に入力されると、光モジュール回路6は、この入力光信号Iを受光素子6Aを用いて受光し、入力光信号強度に応じた電流、電圧等の出力電気信号Eを出力する。   The device under test 5 includes an optical module circuit 6. The optical module circuit 6 includes a light receiving element 6A such as a photodiode or a phototransistor. When the input optical signal I is input to the device under test 5, the optical module circuit 6 receives the input optical signal I using the light receiving element 6 </ b> A, and the current, voltage, etc. according to the input optical signal intensity are received. An output electrical signal E is output.

また、光モジュール回路6は、図6に示すように、入力光信号強度が大きい値から小さい値へ変化している途中に出力電気信号Eが高レベルHから低レベルLに反転する入力光信号強度の下限閾値Pt1と、入力光信号強度が小さい値から大きい値へ変化している途中に出力電気信号Eが低レベルLから高レベルHに反転する入力光信号強度の上限閾値Pt2とを有している。このとき、上限閾値Pt2は、下限閾値Pt1よりも大きな値(Pt2>Pt1)となっている。   Further, as shown in FIG. 6, the optical module circuit 6 has an input optical signal in which the output electrical signal E is inverted from a high level H to a low level L while the input optical signal intensity is changing from a large value to a small value. An intensity lower limit threshold Pt1 and an input optical signal intensity upper limit threshold Pt2 at which the output electric signal E is inverted from a low level L to a high level H while the input optical signal intensity is changing from a small value to a large value. is doing. At this time, the upper limit threshold Pt2 is larger than the lower limit threshold Pt1 (Pt2> Pt1).

マルチメータ8は、光モジュール回路6の出力端子に接続され、光モジュール回路6の出力電気信号Eを検出する。また、制御装置9は、光減衰器3、光チャネルセレクタ4、光パワーメータ7およびマルチメータ8に接続されている。そして、制御装置9は、後述する閾値測定プログラムに基づいて、これらを制御し、2分法を用いて光モジュール回路6の下限閾値Pt1および上限閾値Pt2を測定する。   The multimeter 8 is connected to the output terminal of the optical module circuit 6 and detects the output electric signal E of the optical module circuit 6. The control device 9 is connected to the optical attenuator 3, the optical channel selector 4, the optical power meter 7 and the multimeter 8. And the control apparatus 9 controls these based on the threshold value measurement program mentioned later, and measures the minimum threshold value Pt1 and the upper limit threshold value Pt2 of the optical module circuit 6 using a bisection method.

本実施の形態による閾値測定装置1は上述の如き構成を有するもので、次に閾値測定装置1による閾値測定プログラムについて、図2および図3を参照しつつ説明する。なお、ステップ2〜11は下限閾値Pt1の測定処理を示し、ステップ12〜21は上限閾値Pt2の測定処理を示している。   The threshold measurement apparatus 1 according to the present embodiment has the above-described configuration. Next, a threshold measurement program by the threshold measurement apparatus 1 will be described with reference to FIGS. Steps 2 to 11 show a measurement process for the lower limit threshold value Pt1, and steps 12 to 21 show a measurement process for the upper limit threshold value Pt2.

まず、ステップ1では、上限初期値Pmaxとして検索範囲以上の値を設定すると共に、下限初期値Pminとして検索範囲以下の値を設定する。   First, in step 1, a value greater than or equal to the search range is set as the upper limit initial value Pmax, and a value less than or equal to the search range is set as the lower limit initial value Pmin.

次に、ステップ2では、上限初期値Pmaxから中間値Pmidまでの変化分ΔPs1として、入力光信号Iの初期検索範囲(Pmax−Pmin)の半分の大きさを演算する。そして、ステップ3では、上限初期値Pmaxから変化分ΔPs1を減算し、最初の中間値Pmidを演算する。   Next, in step 2, the magnitude of half of the initial search range (Pmax−Pmin) of the input optical signal I is calculated as the change ΔPs1 from the upper limit initial value Pmax to the intermediate value Pmid. In step 3, the change ΔPs1 is subtracted from the upper limit initial value Pmax to calculate the first intermediate value Pmid.

次に、ステップ4では、後述するように入力光信号強度を上限初期値Pmaxから中間値Pmidに変化させる処理を行い、入力光信号強度を中間値Pmidに設定する。   Next, in step 4, as will be described later, a process for changing the input optical signal intensity from the upper limit initial value Pmax to the intermediate value Pmid is performed, and the input optical signal intensity is set to the intermediate value Pmid.

次に、ステップ5では、出力電気信号Eが高レベルHか否かを判定する。そして、ステップ5で「YES」と判定したときには、出力電気信号Eが高レベルHから低レベルLに反転していないから、下限閾値Pt1は現在の中間値Pmidよりも低い値であると考えられる。このため、ステップ6で現在の中間値Pmidから次回の中間値Pmidまでの変化分ΔPs1として、現在の変化分ΔPs1を半分にする。その後、ステップ7に移って、中間値Pmidの更新処理として、現在の中間値Pmidから新たな変化分ΔPs1を減算し、次回の中間値Pmidを算出する。   Next, in step 5, it is determined whether or not the output electrical signal E is at a high level H. When it is determined “YES” in step 5, since the output electrical signal E is not inverted from the high level H to the low level L, the lower limit threshold value Pt1 is considered to be a value lower than the current intermediate value Pmid. . Therefore, in step 6, the current change ΔPs1 is halved as the change ΔPs1 from the current intermediate value Pmid to the next intermediate value Pmid. Thereafter, the process proceeds to step 7, and as a process of updating the intermediate value Pmid, a new change ΔPs1 is subtracted from the current intermediate value Pmid to calculate the next intermediate value Pmid.

一方、ステップ5で「NO」と判定したときには、出力電気信号Eが高レベルHから低レベルLに反転したから、下限閾値Pt1は現在の中間値Pmidよりも高い値であると考えられる。このため、ステップ8で現在の中間値Pmidから次回の中間値Pmidまでの変化分ΔPs1として、現在の変化分ΔPs1を半分にする。その後、ステップ9に移って、中間値Pmidの更新処理として、現在の中間値Pmidに新たな変化分ΔPs1を加算し、次回の中間値Pmidを算出する。   On the other hand, when “NO” is determined in Step 5, the output electric signal E is inverted from the high level H to the low level L, and therefore, the lower limit threshold value Pt1 is considered to be higher than the current intermediate value Pmid. Therefore, in step 8, the current change ΔPs1 is halved as the change ΔPs1 from the current intermediate value Pmid to the next intermediate value Pmid. Thereafter, the process proceeds to step 9, and as a process for updating the intermediate value Pmid, a new change ΔPs1 is added to the current intermediate value Pmid to calculate the next intermediate value Pmid.

ステップ7,9が終了すると、ステップ10に移って、次回の検索範囲が0となったか否かを判定するために、更新した変化分ΔPs1が所定の収束判定値Rよりも小さいか否かを判定する。そして、ステップ10で「YES」と判定したときには、検索範囲が実質的に0となっているから、ステップ11に移って、ステップ7,9によって算出した中間値Pmidを下限閾値Pt1に決定する(Pt1=Pmid)。   When Steps 7 and 9 are completed, the process proceeds to Step 10 to determine whether or not the updated change ΔPs1 is smaller than a predetermined convergence determination value R in order to determine whether or not the next search range has become zero. judge. If “YES” is determined in Step 10, the search range is substantially 0. Therefore, the process proceeds to Step 11, and the intermediate value Pmid calculated in Steps 7 and 9 is determined as the lower limit threshold value Pt1 ( Pt1 = Pmid).

一方、ステップ10で「NO」と判定したときには、検索範囲が0となっていないから、ステップ4〜10までの処理を繰り返す。   On the other hand, if “NO” is determined in step 10, the search range is not 0, and thus the processing from steps 4 to 10 is repeated.

次に、ステップ12では、下限初期値Pminから中間値Pmidまでの変化分ΔPs2として、入力光信号Iの初期検索範囲(Pmax−Pmin)の半分の大きさを演算する。そして、ステップ13では、下限初期値Pminに変化分ΔPs2を加算し、最初の中間値Pmidを演算する。   Next, in step 12, as the change ΔPs2 from the lower limit initial value Pmin to the intermediate value Pmid, half the initial search range (Pmax−Pmin) of the input optical signal I is calculated. In step 13, the change ΔPs2 is added to the lower limit initial value Pmin to calculate the first intermediate value Pmid.

次に、ステップ14では、後述するように入力光信号強度を下限初期値Pminから中間値Pmidに変化させる処理を行い、入力光信号強度を中間値Pmidに設定する。   Next, in step 14, as will be described later, a process of changing the input optical signal intensity from the lower limit initial value Pmin to the intermediate value Pmid is performed, and the input optical signal intensity is set to the intermediate value Pmid.

次に、ステップ15では、出力電気信号Eが低レベルLか否かを判定する。そして、ステップ15で「YES」と判定したときには、出力電気信号Eが低レベルLから高レベルHに反転していないから、上限閾値Pt2は現在の中間値Pmidよりも高い値であると考えられる。このため、ステップ16で現在の中間値Pmidから次回の中間値Pmidまでの変化分ΔPs2として、現在の変化分ΔPs2を半分にする。その後、ステップ17に移って、中間値Pmidの更新処理として、現在の中間値Pmidに新たな変化分ΔPs2を加算し、次回の中間値Pmidを算出する。   Next, in step 15, it is determined whether or not the output electrical signal E is at a low level L. When it is determined as “YES” in step 15, the output electric signal E is not inverted from the low level L to the high level H, so the upper limit threshold value Pt 2 is considered to be a value higher than the current intermediate value Pmid. . Therefore, in step 16, the current change ΔPs2 is halved as the change ΔPs2 from the current intermediate value Pmid to the next intermediate value Pmid. Thereafter, the process proceeds to step 17, and as a process for updating the intermediate value Pmid, a new change ΔPs2 is added to the current intermediate value Pmid to calculate the next intermediate value Pmid.

一方、ステップ15で「NO」と判定したときには、出力電気信号Eが低レベルLから高レベルHに反転したから、上限閾値Pt2は現在の中間値Pmidよりも低い値であると考えられる。このため、ステップ18で現在の中間値Pmidから次回の中間値Pmidまでの変化分ΔPs2として、現在の変化分ΔPs2を半分にする。その後、ステップ19に移って、中間値Pmidの更新処理として、現在の中間値Pmidから新たな変化分ΔPs2を減算し、次回の中間値Pmidを算出する。   On the other hand, when “NO” is determined in step 15, since the output electrical signal E is inverted from the low level L to the high level H, the upper limit threshold value Pt 2 is considered to be a value lower than the current intermediate value Pmid. Therefore, in step 18, the current change ΔPs2 is halved as the change ΔPs2 from the current intermediate value Pmid to the next intermediate value Pmid. Thereafter, the process proceeds to step 19, and as a process for updating the intermediate value Pmid, a new change ΔPs2 is subtracted from the current intermediate value Pmid to calculate the next intermediate value Pmid.

ステップ17,19が終了すると、ステップ20に移って、次回の検索範囲が0となったか否かを判定するために、更新した変化分ΔPs2が所定の収束判定値Rよりも小さいか否かを判定する。そして、ステップ20で「YES」と判定したときには、検索範囲が実質的に0となっているから、ステップ21に移って、ステップ17,19によって算出した中間値Pmidを上限閾値Pt2に決定する(Pt2=Pmid)。   When Steps 17 and 19 are completed, the process proceeds to Step 20 to determine whether or not the updated change ΔPs2 is smaller than a predetermined convergence determination value R in order to determine whether or not the next search range has become zero. judge. If “YES” is determined in the step 20, the search range is substantially 0. Therefore, the process proceeds to the step 21, and the intermediate value Pmid calculated in the steps 17 and 19 is determined as the upper limit threshold value Pt2 ( Pt2 = Pmid).

一方、ステップ20で「NO」と判定したときには、検索範囲が0となっていないから、ステップ14〜20までの処理を繰り返す。   On the other hand, if “NO” is determined in step 20, the search range is not 0, and thus the processes in steps 14 to 20 are repeated.

次に、ステップ4の入力光信号強度を上限初期値Pmaxから中間値Pmidに変化させる処理について、図4を参照しつつ説明する。   Next, the process of changing the input optical signal intensity in step 4 from the upper limit initial value Pmax to the intermediate value Pmid will be described with reference to FIG.

まず、ステップ31では、変化量係数S1として、上限初期値Pmaxと中間値Pmidとの間の変化量を光減衰器3に基づく分解能で割る。ここで、入力光信号強度は光減衰器3の減衰量によって調整されるため、その分解能は光減衰器3の減衰量の分解能によって決まる。   First, in step 31, the change amount between the upper limit initial value Pmax and the intermediate value Pmid is divided by the resolution based on the optical attenuator 3 as the change amount coefficient S 1. Here, since the input optical signal intensity is adjusted by the attenuation amount of the optical attenuator 3, the resolution is determined by the resolution of the attenuation amount of the optical attenuator 3.

次に、ステップ32では、以下の数1に示すように、変化量係数S1を定数bのべき級数で表す。但し、定数bは1よりも大きく、変化量係数S1よりも小さい値(1<b<S1)である。   Next, in step 32, as shown in the following equation 1, the variation coefficient S1 is expressed by a power series of a constant b. However, the constant b is larger than 1 and smaller than the variation coefficient S1 (1 <b <S1).

Figure 2009105548
Figure 2009105548

例えば、変化量係数S1が300で、定数bが2のときには、この変化量係数S1は、以下の数2に示す多項式で表すことができる。   For example, when the variation coefficient S1 is 300 and the constant b is 2, the variation coefficient S1 can be expressed by a polynomial shown in the following formula 2.

Figure 2009105548
Figure 2009105548

次に、ステップ33では、べき級数で表した多項式の低次数の項の係数kiを調整し、全ての係数kiが1以上の値となるようにする。具体的には、以下の数3の式に示すように、高次数の項の係数ki+1から1を減算し、低次数の項の係数kiに定数bを加える。本実施の形態では、後述するように、多項式の項毎に入力光信号強度を変化させる。これに対し、例えば変化量係数S1がbのn乗に該当する場合には、上限初期値Pmaxと中間値Pmidに一気に変化させることになり、緩和振動が生じる。このような急激な入力光信号強度の変化を防止するために、係数kiの調整を行うものである。 Next, in step 33, the coefficient k i of the low-order term of the polynomial expressed by a power series is adjusted so that all the coefficients k i have values of 1 or more. Specifically, as shown in the following equation (3), 1 is subtracted from the coefficient k i + 1 of the high-order term, and a constant b is added to the coefficient k i of the low-order term. In the present embodiment, as will be described later, the input optical signal intensity is changed for each polynomial term. On the other hand, for example, when the variation coefficient S1 corresponds to the nth power of b, the upper limit initial value Pmax and the intermediate value Pmid are changed all at once, and relaxation oscillation occurs. In order to prevent such a sudden change in input optical signal intensity, the coefficient k i is adjusted.

Figure 2009105548
Figure 2009105548

例えば、変化量係数S1が300で、定数bが2のときには、係数kiを調整した後の多項式は、以下の数4の式のように表すことができる。 For example, when the variation coefficient S1 is 300 and the constant b is 2, the polynomial after the coefficient k i is adjusted can be expressed as the following equation (4).

Figure 2009105548
Figure 2009105548

次に、ステップ34では、以下の数5の式に示すように、上限初期値Pmaxに対して高次数の項から低次数の項の順番で減算処理を行い、入力光信号強度をP0,P1,…の順番で変化させる。そして、最終的に入力光信号強度を中間値Pmidに一致させる。 Next, in step 34, as shown in the following equation (5), the upper limit initial value Pmax is subtracted in the order of high-order terms to low-order terms, and the input optical signal intensity is set to P 0 , Change in the order of P 1 ,. Finally, the input optical signal intensity is made to coincide with the intermediate value Pmid.

Figure 2009105548
Figure 2009105548

例えば、変化量係数S1が300で、定数bが2のときには、1回目の強度P0は上限初期値Pmaxから128を減算した値に変化させる。2回目の強度P1は上限初期値Pmaxから192(=128+64)を減算した値に変化させる。3回目の強度P2は上限初期値Pmaxから224(=128+64+32)を減算した値に変化させる。4回目の強度P3は上限初期値Pmaxから256(=128+64+2×32)を減算した値に変化させる。以下同様な手順を繰り返して、12回目の強度P11で上限初期値Pmaxから300を減算し、中間値Pmidに一致させる。これにより、段階的に上限初期値Pmaxから中間値Pmidに近付ける構成となっている。そして、ステップ34が終了するとリターンする。 For example, when the variation coefficient S1 is 300 and the constant b is 2, the first intensity P 0 is changed to a value obtained by subtracting 128 from the upper limit initial value Pmax. The second intensity P 1 is changed to a value obtained by subtracting 192 (= 128 + 64) from the upper limit initial value Pmax. The third strength P 2 is changed to a value obtained by subtracting 224 (= 128 + 64 + 32) from the upper limit initial value Pmax. The fourth intensity P 3 is changed to a value obtained by subtracting 256 (= 128 + 64 + 2 × 32) from the upper limit initial value Pmax. Following repeating the same procedure, in 12 th intensity P 11 subtracts 300 from the upper limit initial value Pmax, to match the intermediate value Pmid. Accordingly, the upper limit initial value Pmax is gradually approached to the intermediate value Pmid in a stepwise manner. Then, when step 34 ends, the process returns.

次に、ステップ14の入力光信号強度を下限初期値Pminから中間値Pmidに変化させる処理について、図5を参照しつつ説明する。   Next, the process of changing the input optical signal intensity in step 14 from the lower limit initial value Pmin to the intermediate value Pmid will be described with reference to FIG.

まず、ステップ41では、変化量係数S2として、下限初期値Pminと中間値Pmidとの間の変化量を光減衰器3に基づく分解能で割る。   First, in step 41, the change amount between the lower limit initial value Pmin and the intermediate value Pmid is divided by the resolution based on the optical attenuator 3 as the change amount coefficient S2.

次に、ステップ42では、以下の数6の式に示すように、変化量係数S2を定数bのべき級数で表す。但し、定数bは1よりも大きく、変化量係数S2よりも小さい値(1<b<S2)である。   Next, in step 42, the change coefficient S2 is expressed by a power series of a constant b as shown in the following equation (6). However, the constant b is a value greater than 1 and smaller than the variation coefficient S2 (1 <b <S2).

Figure 2009105548
Figure 2009105548

次に、ステップ43では、べき級数で表した多項式の低次数の項の係数kiを調整し、全ての係数kiが1以上の値となるようにする。具体的には、ステップ33と同様に、以下の数7に示すように、高次数の項の係数ki+1から1を減算し、低次数の項の係数kiに定数bを加える。 Next, in step 43, the coefficient k i of the low-order term of the polynomial expressed by a power series is adjusted so that all the coefficients k i have values of 1 or more. Specifically, as in step 33, as shown in the following Expression 7, 1 is subtracted from the coefficient k i + 1 of the high-order term, and a constant b is added to the coefficient k i of the low-order term.

Figure 2009105548
Figure 2009105548

次に、ステップ44では、以下の数8の式に示すように、下限初期値Pminに対して高次数の項から低次数の項の順番で加算処理を行い、入力光信号強度をP0,P1,…の順番で変化させる。そして、最終的に入力光信号強度を中間値Pmidに一致させる。これにより、段階的に下限初期値Pminから中間値Pmidに近付ける構成となっている。そして、ステップ44が終了するとリターンする。 Next, in step 44, as shown in the following equation (8), an addition process is performed on the lower limit initial value Pmin in the order of high-order terms to low-order terms, and the input optical signal intensity is set to P 0 , Change in the order of P 1 ,. Finally, the input optical signal intensity is made to coincide with the intermediate value Pmid. Thus, the lower limit initial value Pmin is gradually approached to the intermediate value Pmid in a stepwise manner. Then, when step 44 ends, the process returns.

Figure 2009105548
Figure 2009105548

本実施の形態による閾値測定装置1は、上述の処理に基づいて入力光信号強度を中間値Pmidに変化させる。これにより、入力光信号強度は複数回のステップに分かれて段階的に中間値Pmidに近付く。例えば、変化量係数S2が300で、定数bが2のときには、図9に示すように、12回のステップに分かれて徐々に中間値Pmidに近付く。ここで、図8に示す比較例のように、例えば上限初期値Pmaxから中間値Pmidに向けて、入力光信号強度を1回のステップで一気に変化させた場合には、入力光信号強度に緩和振動が生じる。この場合、入力光信号強度が一時的に下限閾値Pt1を超えて低下し、出力電気信号Eが誤って反転してしまうことがある。これに対し、本実施の形態では、図7に示すように、入力光信号強度を複数回のステップに分けて段階的に中間値Pmidに近付けるから、入力光信号強度を1回のステップで一気に変化させた場合に比べて、入力光信号強度の緩和振動を抑制することができる。   The threshold value measuring apparatus 1 according to the present embodiment changes the input optical signal intensity to the intermediate value Pmid based on the above-described processing. Thereby, the input optical signal intensity is divided into a plurality of steps and gradually approaches the intermediate value Pmid. For example, when the variation coefficient S2 is 300 and the constant b is 2, as shown in FIG. 9, it is divided into 12 steps and gradually approaches the intermediate value Pmid. Here, as in the comparative example shown in FIG. 8, for example, when the input optical signal intensity is changed at a stroke from the upper limit initial value Pmax to the intermediate value Pmid, the input optical signal intensity is relaxed. Vibration occurs. In this case, the input optical signal intensity temporarily falls below the lower limit threshold value Pt1, and the output electrical signal E may be inverted by mistake. On the other hand, in the present embodiment, as shown in FIG. 7, the input optical signal intensity is divided into a plurality of steps and gradually approaches the intermediate value Pmid, so that the input optical signal intensity can be rapidly increased in one step. Compared with the case of changing, the relaxation oscillation of the input optical signal intensity can be suppressed.

但し、ステップ数が多くなると、入力光信号強度の変化時間が長くなり、測定効率が低下する。また、ステップ数は定数bに応じて変化する傾向がある。そこで、定数bとステップ数との関係について検討した。その結果を図10に示す。なお、図10の結果は、変化量係数S1(S2)は1000になった場合について示している。   However, when the number of steps increases, the change time of the input optical signal intensity becomes longer, and the measurement efficiency decreases. Also, the number of steps tends to change according to the constant b. Therefore, the relationship between the constant b and the number of steps was examined. The result is shown in FIG. The result of FIG. 10 shows a case where the variation coefficient S1 (S2) is 1000.

この結果から、定数bが大きくなると、ステップ数も増加し易い傾向であることが分かる。この理由について検討すると、本実施の形態では、入力光信号強度が一気に変化するのを防止するために、べき級数の低次数の項の係数を調整し、全ての次数の係数kiが正の値(ki>0)となるようにしている。このため、低次数の項の係数(例えばk0)が大きくなる傾向があり、ステップ数が増加するものと考えられる。以上の結果から、適切なステップ数で処理を行うためには、定数bは2〜10程度の値に設定するのが好ましいと考えられる。 From this result, it can be seen that as the constant b increases, the number of steps tends to increase. Considering this reason, in this embodiment, in order to prevent the input optical signal intensity from changing at a stretch, the coefficient of the low-order term of the power series is adjusted, and the coefficients k i of all orders are positive. The value (k i > 0) is set. For this reason, the coefficient (for example, k 0 ) of the low-order term tends to increase, and the number of steps is considered to increase. From the above results, it is considered that the constant b is preferably set to a value of about 2 to 10 in order to perform processing with an appropriate number of steps.

かくして、本実施の形態では、入力光信号強度を中間値Pmidに変化させるときに、光減衰器3の減衰量を段階的に変化させるから、中間値Pmidに対して直接的に変化させた場合に比べて減衰量の緩和振動を抑制することができる。このため、入力光振動強度が中間値Pmidから超過(オーバーシュート)することがなくなるから、検索範囲を絞り込むときの誤りをなくすことができ、下限閾値Pt1および上限閾値Pt2を正確に測定することができる。   Thus, in the present embodiment, when the input optical signal intensity is changed to the intermediate value Pmid, the attenuation amount of the optical attenuator 3 is changed in a stepwise manner. As compared with the above, the relaxation oscillation of the attenuation can be suppressed. For this reason, since the input light vibration intensity does not exceed (overshoot) the intermediate value Pmid, errors in narrowing the search range can be eliminated, and the lower limit threshold value Pt1 and the upper limit threshold value Pt2 can be accurately measured. it can.

また、入力光信号強度の変化量を光減衰器3による分解能で割り、この値を定数bのべき級数で表した多項式の高次の項から低次の項に向けて順番に入力光信号強度が変化させる。このため、光減衰器3の減衰量を最初は大きく変化させて入力光信号強度を中間値Pmidに素早く近付けることができる。また、入力光信号強度が中間値Pmidに近付くに従って光減衰器3の減衰量の変化が小さくなるから、入力光信号強度が中間値Pmidから超過するのを防ぐことができる。   Further, the amount of change in the input optical signal intensity is divided by the resolution of the optical attenuator 3, and this value is expressed in order from the higher order term to the lower order term of the polynomial expressed as a power series of the constant b. Change. For this reason, the attenuation amount of the optical attenuator 3 can be greatly changed at the beginning to quickly bring the input optical signal intensity close to the intermediate value Pmid. Further, since the change in the attenuation amount of the optical attenuator 3 decreases as the input optical signal intensity approaches the intermediate value Pmid, it is possible to prevent the input optical signal intensity from exceeding the intermediate value Pmid.

なお、前記実施の形態では、図2中のステップ2〜11が下限閾値測定工程(下限閾値測定手段)の具体例を示し、図3中のステップ12〜21が上限閾値測定工程(上限閾値測定手段)の具体例を示している。また、図4中のステップ31〜34および図5中のステップ41〜44が減衰量変化工程(減衰量変化手段)の具体例を示している。   In the above embodiment, steps 2 to 11 in FIG. 2 show a specific example of the lower threshold measurement process (lower threshold measurement means), and steps 12 to 21 in FIG. 3 represent the upper threshold measurement process (upper threshold measurement). A specific example of the means) is shown. Further, steps 31 to 34 in FIG. 4 and steps 41 to 44 in FIG. 5 show specific examples of the attenuation amount changing step (attenuation amount changing means).

本発明の実施の形態による閾値測定装置を示すブロック図である。It is a block diagram which shows the threshold value measuring apparatus by embodiment of this invention. 図1中の閾値測定装置で用いる閾値測定プログラムを示すフローチャートである。It is a flowchart which shows the threshold value measurement program used with the threshold value measuring apparatus in FIG. 図2に続くフローチャートである。It is a flowchart following FIG. 図2中の入力光信号強度を上限初期値から中間値に変化させる処理を示すフローチャートである。3 is a flowchart showing a process of changing the input optical signal intensity in FIG. 2 from an upper limit initial value to an intermediate value. 図3中の入力光信号強度を下限初期値から中間値に変化させる処理を示すフローチャートである。It is a flowchart which shows the process which changes the input optical signal intensity | strength in FIG. 3 from a lower limit initial value to an intermediate value. 図1中の光モジュール回路の入力光信号強度と出力電気信号との関係を示す特性線図である。FIG. 2 is a characteristic diagram showing a relationship between an input optical signal intensity and an output electric signal of the optical module circuit in FIG. 1. 本実施の形態による閾値測定装置を用いた場合の入力光信号強度および出力電気信号の時間変化を示す特性線図である。It is a characteristic diagram which shows the time change of the input optical signal strength at the time of using the threshold value measuring apparatus by this Embodiment, and an output electrical signal. 比較例による閾値測定装置を用いた場合の入力光信号強度および出力電気信号の時間変化を示す特性線図である。It is a characteristic diagram which shows the time change of the input optical signal strength at the time of using the threshold value measuring apparatus by a comparative example, and an output electrical signal. 本実施の形態による閾値測定装置を用いた場合の入力光信号強度のステップ毎の変化を示す特性線図である。It is a characteristic diagram which shows the change for every step of input optical signal intensity at the time of using the threshold value measuring apparatus by this Embodiment. べき級数の定数bとステップ数との関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the constant b of a power series, and the number of steps.

符号の説明Explanation of symbols

1 閾値測定装置
2 光源
3 光減衰器
8 マルチメータ
9 制御装置
1 Threshold Measurement Device 2 Light Source 3 Optical Attenuator 8 Multimeter 9 Control Device

Claims (4)

入力光信号強度が小さい値から大きい値へ変化している途中に出力電気信号が変化する上限閾値と、入力光信号強度が大きい値から小さい値へ変化している途中に出力電気信号が変化する下限閾値とを有し、入力光信号強度と出力電気信号との間にヒステリシス特性を有する光モジュール回路の閾値測定方法であって、
前記下限閾値を測定する場合、当初検索範囲以上の入力光信号強度を上限初期値として設定した後、入力光信号強度を該上限初期値から当初検索範囲の中間値に変化させ、該中間値での出力電気信号に基づいて前記下限閾値が存在する領域を、当初検索範囲中の中間値より上か下かを判定してその結果から次の検索範囲を当初の1/2に絞り込み、この絞り込み作業を検索範囲が0になるまで繰り返し、検索範囲が0になったときの中間値を下限閾値として測定する下限閾値測定工程と、
前記上限閾値を測定する場合、当初検索範囲以下の入力光信号強度を下限初期値として設定した後、入力光信号強度を該下限初期値から当初検索範囲の中間値に変化させ、該中間値での出力電気信号に基づいて前記上限閾値が存在する領域を、当初検索範囲中の中間値より上か下かを判定してその結果から次の検索範囲を当初の1/2に絞り込み、この絞り込み作業を検索範囲が0になるまで繰り返し、検索範囲が0になったときの中間値を上限閾値として測定する上限閾値測定工程とを有し、
前記入力光信号強度は、一定強度の光信号を光減衰器を用いて減衰させることによって調整し、
前記入力光信号強度を中間値に変化させるときに、前記光減衰器の減衰量を段階的に変化させる減衰量変化工程を備える構成としてなる光モジュール回路の閾値測定方法。
The upper limit threshold for changing the output electrical signal while the input optical signal intensity is changing from a small value to a large value, and the output electrical signal changing while the input optical signal intensity is changing from a large value to a small value A threshold measurement method of an optical module circuit having a lower limit threshold and having a hysteresis characteristic between an input optical signal intensity and an output electrical signal,
When measuring the lower limit threshold, after setting the input optical signal intensity equal to or higher than the initial search range as the upper limit initial value, the input optical signal intensity is changed from the upper limit initial value to the intermediate value of the initial search range, the intermediate value Based on the output electrical signal, the region where the lower threshold value exists is determined whether it is above or below the intermediate value in the initial search range, and the next search range is narrowed down to ½ of the initial range based on the result. A lower limit threshold measurement step of repeating the work until the search range becomes 0, and measuring an intermediate value when the search range becomes 0 as a lower limit threshold;
When measuring the upper threshold, after setting the input optical signal intensity below the initial search range as the lower limit initial value, the input optical signal intensity is changed from the lower limit initial value to the intermediate value of the initial search range, the intermediate value Based on the output electrical signal, the region where the upper limit threshold exists is judged whether it is above or below the intermediate value in the initial search range, and the next search range is narrowed down to the original 1/2 based on the result. An upper limit threshold measurement step of repeating the work until the search range becomes 0, and measuring an intermediate value when the search range becomes 0 as an upper limit threshold,
The input optical signal intensity is adjusted by attenuating a constant intensity optical signal using an optical attenuator,
A method for measuring a threshold value of an optical module circuit, comprising: an attenuation amount changing step of changing the attenuation amount of the optical attenuator stepwise when the input optical signal intensity is changed to an intermediate value.
前記減衰量変化工程は、前記入力光信号強度を中間値に変化させるときの変化量を前記光減衰器に基づく分解能で割り、この値を定数bのべき級数で表した多項式の高次の項から低次の項に向けて順番に入力光信号強度が変化するように、前記光減衰器の減衰量を変化させる構成としてなる請求項1に記載の光モジュール回路の閾値測定方法。   In the attenuation amount changing step, the amount of change when changing the input optical signal intensity to an intermediate value is divided by the resolution based on the optical attenuator, and this value is expressed by a higher-order term of a polynomial expressed by a power series of a constant b. The method of measuring a threshold value of an optical module circuit according to claim 1, wherein the attenuation amount of the optical attenuator is changed so that the input optical signal intensity changes sequentially from low to high-order terms. 入力光信号強度が小さい値から大きい値へ変化している途中に出力電気信号が変化する上限閾値と、入力光信号強度が大きい値から小さい値へ変化している途中に出力電気信号が変化する下限閾値とを有し、入力光信号強度と出力電気信号との間にヒステリシス特性を有する光モジュール回路の閾値測定装置であって、
前記下限閾値を測定する場合、当初検索範囲以上の入力光信号強度を上限初期値として設定した後、入力光信号強度を該上限初期値から当初検索範囲の中間値に変化させ、該中間値での出力電気信号に基づいて前記下限閾値が存在する領域を、当初検索範囲中の中間値より上か下かを判定してその結果から次の検索範囲を当初の1/2に絞り込み、この絞り込み作業を検索範囲が0になるまで繰り返し、検索範囲が0になったときの中間値を下限閾値として測定する下限閾値測定手段と、
前記上限閾値を測定する場合、当初検索範囲以下の入力光信号強度を下限初期値として設定した後、入力光信号強度を該下限初期値から当初検索範囲の中間値に変化させ、該中間値での出力電気信号に基づいて前記上限閾値が存在する領域を、当初検索範囲中の中間値より上か下かを判定してその結果から次の検索範囲を当初の1/2に絞り込み、この絞り込み作業を検索範囲が0になるまで繰り返し、検索範囲が0になったときの中間値を上限閾値として測定する上限閾値測定手段とを有し、
前記入力光信号強度は、一定強度の光信号を光減衰器を用いて減衰させることによって調整し、
前記入力光信号強度を中間値に変化させるときに、前記光減衰器の減衰量を段階的に変化させる減衰量変化手段を備える構成としてなる光モジュール回路の閾値測定装置。
The upper limit threshold for changing the output electrical signal while the input optical signal intensity is changing from a small value to a large value, and the output electrical signal changing while the input optical signal intensity is changing from a large value to a small value A threshold measurement device for an optical module circuit having a lower limit threshold and having a hysteresis characteristic between an input optical signal intensity and an output electrical signal,
When measuring the lower limit threshold, after setting the input optical signal intensity equal to or higher than the initial search range as the upper limit initial value, the input optical signal intensity is changed from the upper limit initial value to the intermediate value of the initial search range, the intermediate value Based on the output electrical signal, the region where the lower threshold value exists is determined whether it is above or below the intermediate value in the initial search range, and the next search range is narrowed down to ½ of the initial range based on the result. A lower limit threshold measuring means for repeating the work until the search range becomes 0, and measuring an intermediate value when the search range becomes 0 as a lower limit threshold;
When measuring the upper threshold, after setting the input optical signal intensity below the initial search range as the lower limit initial value, the input optical signal intensity is changed from the lower limit initial value to the intermediate value of the initial search range, the intermediate value Based on the output electrical signal, the region where the upper limit threshold exists is judged whether it is above or below the intermediate value in the initial search range, and the next search range is narrowed down to the original 1/2 based on the result. An upper limit threshold measurement unit that repeats the work until the search range becomes 0, and measures an intermediate value when the search range becomes 0 as an upper limit threshold;
The input optical signal intensity is adjusted by attenuating a constant intensity optical signal using an optical attenuator,
A threshold measuring device for an optical module circuit, comprising: an attenuation amount changing means for changing the attenuation amount of the optical attenuator stepwise when the input optical signal intensity is changed to an intermediate value.
前記減衰量変化手段は、前記入力光信号強度を中間値に変化させるときの変化量を前記光減衰器に基づく分解能で割り、この値を定数bのべき級数で表した多項式の高次の項から低次の項に向けて順番に入力光信号強度が変化するように、前記光減衰器の減衰量を変化させる構成としてなる請求項3に記載の光モジュール回路の閾値測定装置。   The attenuation amount changing means divides the amount of change when the input optical signal intensity is changed to an intermediate value by the resolution based on the optical attenuator, and this value is expressed by a higher order term of a polynomial expressed by a power series of a constant b. 4. The threshold measuring apparatus for an optical module circuit according to claim 3, wherein the attenuation amount of the optical attenuator is changed so that the input optical signal intensity changes sequentially from low to high-order terms.
JP2007273895A 2007-10-22 2007-10-22 Threshold measurement method and apparatus for optical module circuit Expired - Fee Related JP4946786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273895A JP4946786B2 (en) 2007-10-22 2007-10-22 Threshold measurement method and apparatus for optical module circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273895A JP4946786B2 (en) 2007-10-22 2007-10-22 Threshold measurement method and apparatus for optical module circuit

Publications (2)

Publication Number Publication Date
JP2009105548A true JP2009105548A (en) 2009-05-14
JP4946786B2 JP4946786B2 (en) 2012-06-06

Family

ID=40706847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273895A Expired - Fee Related JP4946786B2 (en) 2007-10-22 2007-10-22 Threshold measurement method and apparatus for optical module circuit

Country Status (1)

Country Link
JP (1) JP4946786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017898A (en) * 2011-09-21 2013-04-03 夏普株式会社 Optical sensor and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214647A (en) * 1984-04-10 1985-10-26 Nec Corp Optical receiving circuit
JPH0735614A (en) * 1993-07-20 1995-02-07 Stanley Electric Co Ltd Photo detector
JPH07140212A (en) * 1993-02-04 1995-06-02 Internatl Business Mach Corp <Ibm> Automatic system for testing of electro-optical module and method for compliance with it
JPH1172542A (en) * 1997-08-29 1999-03-16 Aoi Denshi Kk Threshold voltage measurement method for electronic circuit having hysterisis characteristic
JP2002357645A (en) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd Inspection device and inspection method for integrated circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214647A (en) * 1984-04-10 1985-10-26 Nec Corp Optical receiving circuit
JPH07140212A (en) * 1993-02-04 1995-06-02 Internatl Business Mach Corp <Ibm> Automatic system for testing of electro-optical module and method for compliance with it
JPH0735614A (en) * 1993-07-20 1995-02-07 Stanley Electric Co Ltd Photo detector
JPH1172542A (en) * 1997-08-29 1999-03-16 Aoi Denshi Kk Threshold voltage measurement method for electronic circuit having hysterisis characteristic
JP2002357645A (en) * 2001-05-31 2002-12-13 Matsushita Electric Ind Co Ltd Inspection device and inspection method for integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017898A (en) * 2011-09-21 2013-04-03 夏普株式会社 Optical sensor and electronic device
JP2013080892A (en) * 2011-09-21 2013-05-02 Sharp Corp Optical sensor and electronic device
US9176007B2 (en) 2011-09-21 2015-11-03 Sharp Kabushiki Kaisha Optical sensor including light-receiving element having two terminals and electronics device including the optical sensor

Also Published As

Publication number Publication date
JP4946786B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
CN109696630B (en) Voice coil motor parameter self-detection method
TWI501063B (en) Power supply device and testing device using the same
CN115753022B (en) Testing system and testing method for performance of optical device
US7405683B1 (en) Extending the dynamic range in an energy measurement device
Schmid et al. A new noise-suppression algorithm for transient thermal analysis in semiconductors over pulse superposition
KR20150097677A (en) Method for setting up a current sensor
JP2016211923A (en) Charging amount estimation method and charging amount estimation device
RU2014153145A (en) CHECK THE CURRENT CONTROL OF THE PROCESS
JP4946786B2 (en) Threshold measurement method and apparatus for optical module circuit
KR20100020865A (en) Partial discharge corrector with self correction and tracing management
KR100909660B1 (en) Error compensator of sensor measurement circuit and its method
RU2571445C2 (en) Correction of voltage measurement at transducer terminals
KR102114103B1 (en) Apparatus and Method for Testing Oxide Semiconductor Thin Film
US20170010321A1 (en) Latch-up test device and method
KR20190138822A (en) Apparatus and method for determining power value of target
Zulkifli et al. Self-calibrating automated characterization system for depressed cladding EDFA applications using LabVIEW software with GPIB
US7499821B2 (en) Sensor drift characteristic testing
JP2011185625A (en) Inspection device
US20220069753A1 (en) Method for Adjusting Values of a Plurality of Parameters of at Least One Controller of an Electric Drive System, and Electric Drive System
CN110945330B (en) Temperature sensor circuit
RU2616871C1 (en) Method of determining current localization voltage in powerful hf and uhf bipolar transistors
CN111934636B (en) Attenuator calibration device and method
Gao et al. Test method of current-voltage characterisation of perovskite PV module
JP5145859B2 (en) Method and apparatus for adjusting optical module circuit
RU2635340C2 (en) Method and device for measuring high-voltage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4946786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees