JP2009105049A - Field emission element with silicide nanowire and its manufacturing method - Google Patents

Field emission element with silicide nanowire and its manufacturing method Download PDF

Info

Publication number
JP2009105049A
JP2009105049A JP2008270434A JP2008270434A JP2009105049A JP 2009105049 A JP2009105049 A JP 2009105049A JP 2008270434 A JP2008270434 A JP 2008270434A JP 2008270434 A JP2008270434 A JP 2008270434A JP 2009105049 A JP2009105049 A JP 2009105049A
Authority
JP
Japan
Prior art keywords
field emission
substrate
silicide
metal
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008270434A
Other languages
Japanese (ja)
Other versions
JP4870133B2 (en
Inventor
Joon Dong Kim
俊東 金
Chang Soo Han
昌洙 韓
Eung Sug Lee
應淑 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Machinery and Materials KIMM
Original Assignee
Korea Institute of Machinery and Materials KIMM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Machinery and Materials KIMM filed Critical Korea Institute of Machinery and Materials KIMM
Publication of JP2009105049A publication Critical patent/JP2009105049A/en
Application granted granted Critical
Publication of JP4870133B2 publication Critical patent/JP4870133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/28Heaters for thermionic cathodes
    • H01J2201/2892Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30449Metals and metal alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/01Generalised techniques
    • H01J2209/012Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a field emission element which can be applied to a display and a high efficiency lamp field and provide its manufacturing method. <P>SOLUTION: The manufacturing method of the field emission element which is provided a substrate and an anode and is applied to a display field and a high efficiency lamp includes a step in which a metallic catalyst is coated on an upper surface of the substrate, a step in which the metallic catalyst is made to react with silicon to form a metallic cinocide layer, and a step in which a metallic silicide layer is grown on the metallic silicide layer by a metallic diffusion. A doping step and a step in which a sharp shape is formed are saved and a manufacturing process can be shortened to reduce a manufacturing cost and improve efficiency, and since a silicide nanowire can be grown by using all of a physical deposition and a chemical deposition method, an application range can be expanded. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シリサイドナノワイヤーを有する電界放出素子及びその製造方法に関するもので、より詳細には、シリコンと金属触媒を合成して電気伝導性の優秀な金属シリサイドを形成し、金属の拡散を介してシリサイドナノワイヤーを成長させて、ディスプレイ及び高効率ランプ分野に適用可能な電界放出素子及びその製造方法に関するものである。   The present invention relates to a field emission device having silicide nanowires and a method for manufacturing the same, and more particularly, to form a metal silicide having excellent electrical conductivity by synthesizing silicon and a metal catalyst, and through metal diffusion. The present invention relates to a field emission device that can be applied to the field of displays and high-efficiency lamps by growing silicide nanowires, and a method of manufacturing the same.

情報通信技術の急速な発達と多様化される情報の視覚化要求によって、電子ディスプレイの需要は更に増加し、要求されるディスプレイの姿も多様になっており、最近は電界放出を利用した素子がディスプレイ分野に適用されながら、大きさ及び電力消耗を減少させながらも、高い解像度を提供する薄膜ディスプレイの開発が活発になっている。   Due to the rapid development of information and communication technology and the demand for visualization of diversified information, the demand for electronic displays has further increased, and the required display forms have been diversified. Recently, devices using field emission have been developed. While being applied to the display field, development of thin film displays that provide high resolution while reducing size and power consumption is active.

前記電界放出素子ディスプレイは、電極構造が簡単で、CRTのような原理で高速動作が可能であり、無限大のカラー、無限大のグレースケール、高い輝度、高いビデオ(Video rate)速度などディスプレイが有するべき長点を一様に有している。   The field emission device display has a simple electrode structure and can operate at a high speed based on the principle of CRT. The display such as infinite color, infinite gray scale, high brightness, high video rate, etc. It has the long points that it should have uniformly.

このようなディスプレイに適用される電界放出素子は、電子放出源であるエミッタと、放出された電子が衝突して発光するアノード部、前記エミッタに電源を供給するカソード電極とを含んで構成される。   A field emission device applied to such a display includes an emitter that is an electron emission source, an anode portion that emits light when the emitted electrons collide, and a cathode electrode that supplies power to the emitter. .

このように、電子を放出するためのエミッタの形状は、伝導性が低い物性を利用する時、必需的にドーピング過程が行われなければならず、また尖った形状を作るための工程が追加的に行われなければならない。つまり、伝導性の低い物質を電界放出素子に適用するためには、物理的工程を通じて尖った形状を作り、効率を高めるためのドーピングが必需的である。従って、多くの工程を必要とせず、望みの電界放出素子の形状を有する一次元ナノ素材(1-Dimensional nanostructure)が電界放出素子として注目を受けている。また、導電性のよい金属性のナノ素材を利用する場合、効率を高めるために使用されるドーピング工程あるいは金属コーティングの過程を必要としないので、工程の簡便化及び電界放出素子‐エミッタ(Emitter)の損傷を減らすことができるので、工程及び信頼性を向上させることができて、金属性ナノ素材を利用した電界放出素子に対する研究が必要である。   As described above, the shape of the emitter for emitting electrons must be subjected to a doping process when using a material with low conductivity, and an additional process for creating a sharp shape is added. Must be done. In other words, in order to apply a low-conductivity substance to a field emission device, it is necessary to form a pointed shape through a physical process and to increase the efficiency. Accordingly, a one-dimensional nanostructure having a desired shape of a field emission device does not require many steps, and has attracted attention as a field emission device. In addition, when using metallic nanomaterials with good electrical conductivity, there is no need for a doping process or a metal coating process that is used to increase efficiency, thus simplifying the process and field emission element-emitter. Therefore, it is necessary to study a field emission device using a metallic nanomaterial because the process and reliability can be improved.

前記課題を解消するための本発明のシリサイドナノワイヤーを有する電界放出素子及びその製造方法は、
基板とアノードが具備され、ディスプレイ分野と高効率ランプに使用する電界放出素子の製造方法において、基板の上部に金属触媒をコーティングする段階と;前記金属触媒をシリコンと反応させて金属シリサイド層を形成する段階と;前記金属シリサイド層の上に金属拡散でシリサイドナノワイヤーを成長させる段階;とを含んでなる。
A field emission device having a silicide nanowire of the present invention and a method for manufacturing the same in order to solve the above-mentioned problems are as follows.
A method of manufacturing a field emission device for use in a display field and a high-efficiency lamp, comprising a substrate and an anode, and coating a metal catalyst on the substrate; reacting the metal catalyst with silicon to form a metal silicide layer And growing silicide nanowires by metal diffusion on the metal silicide layer.

また、前記方法によって製造されたナノワイヤーを有する電界放出素子は、成長されたナノワイヤーが、シリサイド層と接する下端は広い面を有し、成長された上端部は尖った円錐形態に形成されている。   In addition, the field emission device having nanowires manufactured by the above method is formed such that the grown nanowires have a wide surface at the lower end in contact with the silicide layer, and the grown upper end has a pointed cone shape. Yes.

以上で詳細に記述したように、本発明のシリサイドナノワイヤーを有する電界放出素子及びその製造方法は、
金属触媒を利用して優秀な結晶質に成長された高伝導性のナノ素材を利用して電界放出素子を製造するのだが、ここでドーピング過程と尖った形状を作るための過程を省略して、生産工程の短縮で生産費を節減することができ、小さな電圧で放出電流を増大させることができて性能の向上を図り、物理的蒸着と化学的蒸着方法すべてを適用してシリサイドナノワイヤーを成長させることができるので、適用範囲を拡張させることができる。ナノワイヤー成長の基底層を形成するニッケルシリサイド層は、電気的に伝導が優秀なので、これを伝導性電極に使用することができるため、回路構成に容易性を提供することができ、絶縁基板を使用する時も、付加的な電極の形成の必要なく、シリサイド層を使用すれば電界放出特性を確保できて、ディスプレイ及び高効率ランプ分野に適用可能な有用な製品及び製造方法を提供することができる。
As described in detail above, the field emission device having the silicide nanowire of the present invention and the manufacturing method thereof are
A field emission device is manufactured using a highly conductive nanomaterial that has been grown into an excellent crystalline material using a metal catalyst, but the doping process and the process for creating a sharp shape are omitted here. The production process can be reduced by shortening the production process, the emission current can be increased with a small voltage, the performance can be improved, and all the physical vapor deposition and chemical vapor deposition methods can be applied. Since it can be grown, the application range can be expanded. The nickel silicide layer that forms the base layer for nanowire growth has excellent electrical conductivity, and can be used as a conductive electrode. It is possible to provide a useful product and a manufacturing method applicable to the field of displays and high-efficiency lamps by using a silicide layer without using the formation of an additional electrode even when it is used. it can.

以下、本発明の好ましい実施例を添付の図面を参照して詳細に説明すると、次のとおりである。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明のシリサイドナノワイヤー50を有する電界放出素子10の製造方法は、図1と図2に示したように、基板20上部に金属触媒をコーティングする段階と;前記金属触媒をシリコンと反応させて金属シリサイド層30を形成する段階と;前記金属シリサイド層の上に金属拡散でシリサイドナノワイヤー50を成長させる段階;とを含んでなる。   As shown in FIGS. 1 and 2, the method of manufacturing the field emission device 10 having the silicide nanowire 50 according to the present invention includes coating a metal catalyst on the substrate 20, and reacting the metal catalyst with silicon. Forming a metal silicide layer 30; and growing a silicide nanowire 50 on the metal silicide layer by metal diffusion.

前記基板20は、導電体や非導電体すべて使用可能であり、基板20の上部には、伝導性の優秀なニッケル、鉄、コバルト、白金、モリブデン、タングステン、イットリウム、金、パラジウムからなる群から一種選択した金属が含まれた金属触媒をコーティングする。   The substrate 20 can use all conductors and non-conductors, and the upper portion of the substrate 20 is made of nickel, iron, cobalt, platinum, molybdenum, tungsten, yttrium, gold, and palladium having excellent conductivity. A metal catalyst containing a selected metal is coated.

ここで、前記基板20は、シリコンウェーハの上部面にシリコン層を形成し、前記シリコン層を金属触媒と反応させて伝導性の優秀な金属シリサイド層30を形成するようにするのが好ましい。前記反応は、安定的なシリサイド形状(Phase)を確保し、金属シリサイド層のOhmic特性を確保するために、200〜900℃温度下で行われるのが好ましい。   Here, it is preferable that the substrate 20 is formed with a silicon layer on an upper surface of a silicon wafer, and the silicon layer is reacted with a metal catalyst to form a metal silicide layer 30 having excellent conductivity. The reaction is preferably performed at a temperature of 200 to 900 ° C. in order to secure a stable silicide shape (Phase) and to secure Ohmic characteristics of the metal silicide layer.

また、前記シリサイドナノワイヤー50の成長方式は、物理的方式(PVD, physical vapor deposition)及び化学的方式(CVD, chemical vapor deposition)によって成長されることができる。例えば、前記CVDの場合、SiH:シラン、及びSiHジシランを利用し、1-500SCCMのガス流入速度で反応をさせ、この時温度は200−500℃でシリサイドナノワイヤーを成長させる。また、PVDの場合、固体シリコンSourceをスパッタリングなどの物理的方式を利用して400−700℃の温度でナノパーティクル形態に供給して反応させ、成長が行われるようにする。 The silicide nanowire 50 may be grown by a physical method (PVD, physical vapor deposition) and a chemical method (CVD, chemical vapor deposition). For example, in the case of the CVD, SiH 4 : silane and Si 2 H 6 disilane are used and the reaction is performed at a gas inflow rate of 1-500 SCCM, and at this time, the temperature is 200-500 ° C. to grow silicide nanowires. Also, in the case of PVD, solid silicon source is supplied and reacted in a nanoparticle form at a temperature of 400-700 ° C. using a physical method such as sputtering so that the growth is performed.

前記のように、金属シリサイド層30上に成長されたシリサイドナノワイヤー50は、金属シリサイド層と接する下端が広い面を有し、成長された上端部は尖った円錐形態に形成され、尖頭での電界印加を増加させた優秀な電界放出素子になる。電界放出のための回路は、シリサイドナノワイヤーから放出された電子がアノード40に接続する形態に駆動される。低抵抗の金属シリサイド層30は、導電性のカソードに使用されることができるので、導電性基板だけでなく、非導電性の基板を使用可能にする。導電性基板の場合、金属シリサイド層と基板がオーミック接合が行われ、基板20自体または金属シリサイド層30をカソードに利用することができ、非導電性の基板の場合は、金属シリサイド層30をカソードに利用することができるので、基板の利用及び選択性を向上させることができる。   As described above, the silicide nanowire 50 grown on the metal silicide layer 30 has a wide surface at the lower end in contact with the metal silicide layer, and the grown upper end is formed in the shape of a pointed cone. Thus, an excellent field emission device with increased electric field application is obtained. The circuit for field emission is driven to a form in which electrons emitted from the silicide nanowire are connected to the anode 40. Since the low-resistance metal silicide layer 30 can be used for a conductive cathode, not only a conductive substrate but also a non-conductive substrate can be used. In the case of a conductive substrate, the metal silicide layer and the substrate are in ohmic contact, and the substrate 20 itself or the metal silicide layer 30 can be used as a cathode. In the case of a non-conductive substrate, the metal silicide layer 30 is used as a cathode. Therefore, the utilization and selectivity of the substrate can be improved.

図3aは、非導電性であるSi(SiO-coated)基板上にシリサイドナノワイヤーを成長させたイメージで、図3bは、導電性のタングステン(W)基板上にシリサイドナノワイヤーを成長させたイメージで、基板の種類と関係なく、シリサイドナノワイヤーが成長されることが分かる。 FIG. 3a is an image of growing silicide nanowires on a non-conductive Si (SiO 2 -coated) substrate, and FIG. 3b is a diagram of growing silicide nanowires on a conductive tungsten (W) substrate. The image shows that silicide nanowires are grown regardless of the type of substrate.

図4は、図3aと図3bの各々の基板で成長したシリサイドナノワイヤーに関するX-rayスペクトラム分析グラフで、お互い異なる基板の成分を明確に見せている。   FIG. 4 is an X-ray spectrum analysis graph for silicide nanowires grown on each of the substrates of FIGS. 3a and 3b, clearly showing the components of the different substrates.

図5は、本発明によって製作されたシリサイドナノワイヤーの電界放出特性を示している。電界増倍係数(Field enhancement factor)は、一般的なシリコンチップを使用する時より大きく増大され、導電基板の場合3180、非導電基板の場合も3002を有する。また、このように均一な数値の電界増倍係数は、シリサイドナノワイヤーの均一性から起因すると見られる。導電性基板あるいは金属シリサイド層をカソードに使用した場合は、非導電性の基板をカソードに使用した時より放出臨界電圧(Turn-on voltage)が大きく減少され、放出電流では大きな増加を見せた。これは非導電性基板を利用すれば、電界放出時にはOxide/semiconductorで生じる電圧降下による損失が発生して放出電界の減少結果をもたらすが、導電性基板あるいは金属シリサイド層を使用する場合は、Metal/Oxide/Semiconductorの構造から発生されるOxide層及び基板での電圧減圧が発生しないためである。   FIG. 5 shows the field emission characteristics of silicide nanowires fabricated according to the present invention. The field enhancement factor is greatly increased when using a general silicon chip, and has 3180 for a conductive substrate and 3002 for a non-conductive substrate. In addition, the electric field multiplication coefficient having such a uniform numerical value can be attributed to the uniformity of the silicide nanowires. When a conductive substrate or a metal silicide layer was used for the cathode, the emission critical voltage (Turn-on voltage) was greatly reduced compared to when a non-conductive substrate was used for the cathode, and the emission current increased significantly. If a non-conductive substrate is used, a loss due to a voltage drop that occurs in Oxide / semiconductor occurs during field emission, resulting in a reduction in the emission electric field, but if a conductive substrate or metal silicide layer is used, Metal This is because voltage reduction in the Oxide layer and the substrate generated from the structure of / Oxide / Semiconductor does not occur.

一方、前述した例は、本発明を説明するための例に過ぎず、従って本発明が属する技術分野で通常的な専門家が本詳細な説明を参照して部分変更使用したものも本発明の範囲に属するのは当然のことである。   On the other hand, the above-described example is only an example for explaining the present invention, and therefore, an expert who is ordinary in the technical field to which the present invention belongs and which is partially modified with reference to this detailed description is used. It goes without saying that it belongs to the range.

本発明によるシリサイドナノワイヤーを有する電界放出素子製造過程のフローチャートである。3 is a flowchart of a process for manufacturing a field emission device having silicide nanowires according to the present invention. 本発明によるシリサイドナノワイヤーを有する電界放出素子の製造工程図である。It is a manufacturing process diagram of a field emission device having a silicide nanowire according to the present invention. 成長されたシリサイドナノワイヤーのイメージである。It is an image of the grown silicide nanowire. 図3aと図3bのナノワイヤーのX−rayスペクトラム分析グラフである。4 is an X-ray spectrum analysis graph of the nanowires of FIGS. 3a and 3b. FIG. 本発明によるナノワイヤーの電場による電流密度を示したグラフである。3 is a graph illustrating a current density according to an electric field of a nanowire according to the present invention.

符号の説明Explanation of symbols

10:電界放出素子
20:基板
30:金属シリサイド層
40:アノード
50:シリサイドナノワイヤー
10: Field emission device 20: Substrate 30: Metal silicide layer 40: Anode 50: Silicide nanowire

Claims (7)

基板20とアノード40が具備され、ディスプレイ分野と高効率ランプに使用する電界放出素子の製造方法において、
基板20の上部に金属触媒をコーティングする段階と;
前記金属触媒をシリコンと反応させて金属シリサイド層30を形成する段階と;
前記金属シリサイド層の上に金属拡散でシリサイドナノワイヤー50を成長させる段階;とを含んでなることを特徴とするシリサイドナノワイヤーを有した電界放出素子の製造方法。
In a manufacturing method of a field emission device, which includes a substrate 20 and an anode 40, and is used in a display field and a high efficiency lamp,
Coating the top of the substrate 20 with a metal catalyst;
Reacting the metal catalyst with silicon to form a metal silicide layer 30;
Growing a silicide nanowire 50 on the metal silicide layer by metal diffusion; and a method of manufacturing a field emission device having a silicide nanowire.
前記金属シリサイド層30を形成する段階は、200〜900℃の温度下で行われることを特徴とする請求項1に記載のシリサイドナノワイヤーを有した電界放出素子の製造方法。   The method of manufacturing a field emission device having silicide nanowires according to claim 1, wherein the step of forming the metal silicide layer 30 is performed at a temperature of 200 to 900C. 前記金属触媒は、ニッケル、コバルト、鉄(Fe)、パラジウム(Pd)、白金(Pt)からなる群から選択使用されることを特徴とする請求項1に記載のシリサイドナノワイヤーを有した電界放出素子の製造方法。   The field emission having a silicide nanowire according to claim 1, wherein the metal catalyst is selected from the group consisting of nickel, cobalt, iron (Fe), palladium (Pd), and platinum (Pt). Device manufacturing method. 基板に金属触媒をコーティングし、これをシリコンと反応させて金属シリサイド層を形成し、ここに金属を拡散させてシリサイドナノワイヤーを成長させる製造方法によって製造された基板とアノードが具備される電界放出素子において、
前記基板20上部に形成された金属シリサイド層30と、前記金属シリサイド層上部に形成されたシリサイドナノワイヤー50とを有することを特徴とするシリサイドナノワイヤーを有する電界放出素子。
A field emission comprising a substrate and an anode manufactured by a manufacturing method in which a metal catalyst is coated on a substrate and reacted with silicon to form a metal silicide layer, and then metal is diffused to grow silicide nanowires. In the element
A field emission device having silicide nanowires, comprising a metal silicide layer 30 formed on the substrate 20 and a silicide nanowire 50 formed on the metal silicide layer.
前記シリサイドナノワイヤー50は、金属シリサイド層30と接する下端は広い面を有し、成長された上端部は尖った円錐形態に形成されていることを特徴とする請求項4に記載のシリサイドナノワイヤーを有する電界放出素子。   5. The silicide nanowire according to claim 4, wherein the lower end of the silicide nanowire 50 in contact with the metal silicide layer 30 has a wide surface, and the grown upper end is formed in a pointed cone shape. A field emission device. 前記基板20は、非導電体を使用し、金属シリサイド層30をカソードに使用することを特徴とする請求項4に記載のシリサイドナノワイヤーを有する電界放出素子。   The field emission device of claim 4, wherein the substrate (20) is made of a non-conductor and the metal silicide layer (30) is used as a cathode. 前記基板20は、導電体を使用し、金属シリサイド層30は、導電体基板とオーミック接合が行われ、基板と金属シリサイド層をカソードに使用することを特徴とする請求項4に記載のシリサイドナノワイヤーを有する電界放出素子。   5. The silicide nano of claim 4, wherein the substrate 20 uses a conductor, the metal silicide layer 30 is in ohmic contact with the conductor substrate, and the substrate and the metal silicide layer are used as a cathode. A field emission device having a wire.
JP2008270434A 2007-10-24 2008-10-21 Field emission device having silicide nanowire and method of manufacturing the same Expired - Fee Related JP4870133B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2007-0107471 2007-10-24
KR1020070107471A KR100883531B1 (en) 2007-10-24 2007-10-24 The field emission with silicide nanowires and the device fabrication method

Publications (2)

Publication Number Publication Date
JP2009105049A true JP2009105049A (en) 2009-05-14
JP4870133B2 JP4870133B2 (en) 2012-02-08

Family

ID=40681591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270434A Expired - Fee Related JP4870133B2 (en) 2007-10-24 2008-10-21 Field emission device having silicide nanowire and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP4870133B2 (en)
KR (1) KR100883531B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118685B1 (en) 2009-09-30 2012-03-07 연세대학교 산학협력단 Nanowires semiconductor and the manufacturing method of the same by self catalytic growth
PL219413B1 (en) 2011-09-26 2015-04-30 Inst Tele I Radiotech Method for producing nanowires from palladium silicide
KR101575438B1 (en) 2013-12-27 2015-12-07 현대자동차주식회사 Silicon nanowires embedded in nickel silicide nanowires for lithium-based battery anodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087510A (en) * 2002-06-25 2004-03-18 Fujitsu Ltd Electronic device using linear carbon structure and method of manufacturing the same
JP2005060920A (en) * 2003-07-31 2005-03-10 Semiconductor Energy Lab Co Ltd Method for manufacturing ultrafine carbon fiber and field emission element
JP2006041518A (en) * 2004-07-21 2006-02-09 Samsung Electronics Co Ltd Silicon-based material layer having wire-type metal silicide and producing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058114A (en) * 2000-12-29 2002-07-12 실리콘 디스플레이 (주) Carbon nanotip and method of forming carbon nanotips
JP2004055141A (en) 2002-07-16 2004-02-19 Matsushita Electric Ind Co Ltd Manufacturing method of field emission element
KR100652410B1 (en) * 2005-05-07 2006-12-01 삼성전자주식회사 Nano semiconductor switch device using electromechanism of cabon nano tube and method of fabricating the same and semiconductor memory device using electromechanism of cabon nano tube and method for driving the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087510A (en) * 2002-06-25 2004-03-18 Fujitsu Ltd Electronic device using linear carbon structure and method of manufacturing the same
JP2005060920A (en) * 2003-07-31 2005-03-10 Semiconductor Energy Lab Co Ltd Method for manufacturing ultrafine carbon fiber and field emission element
JP2006041518A (en) * 2004-07-21 2006-02-09 Samsung Electronics Co Ltd Silicon-based material layer having wire-type metal silicide and producing method therefor

Also Published As

Publication number Publication date
JP4870133B2 (en) 2012-02-08
KR100883531B1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
US7462499B2 (en) Carbon nanotube with ZnO asperities
KR100803194B1 (en) Method of forming carbon nanutubes structure
CN110277421A (en) Array substrate and its manufacturing method, display device
JP2007096136A (en) Photovoltaic element using carbon nanostructure
JP2006224296A (en) Carbon nanotube structure and method of manufacturing the same, and field emission device using the carbon nanotube structure and method of manufacturing the device
JP2004087510A (en) Electronic device using linear carbon structure and method of manufacturing the same
CN101189372B (en) Controlled growth of a nanostructure on a substrate, and electron emission devices based on the same
JP2008297197A (en) Growth method of branch type carbon nanotubes
CN101580267A (en) Method for growing nanometer zinc oxide structure through low-temperature heating of zinc and catalyst and application thereof
JP4870133B2 (en) Field emission device having silicide nanowire and method of manufacturing the same
JP2007096135A (en) Diode using carbon nanostructure
KR20020003782A (en) fabrication method of carbon nanotubes
JP2007504607A (en) Field emission device
JP2004362960A (en) Electron emitting element and manufacturing method of the same
CN116387428B (en) LED chip preparation method
CN102593296A (en) Semiconductor light emitting device
JP2001229807A (en) Carbon film and field emission type cold cathode using the same and its production method
US9142376B2 (en) Method for fabricating field emission cathode, field emission cathode thereof, and field emission lighting source using the same
JP2010006670A (en) Nanowire structure and method for producing the same
JP2004107118A (en) Method for manufacturing graphite nano-fiber, electron emitting source and display element
JP2004186245A (en) Manufacturing method of carbon nanotube, and carbon nanotube device
KR100536483B1 (en) Zinc oxide nanoneedle, preparation thereof, and electronic device using same
CN103904108B (en) GaN base semiconductor device with Graphene electrodes and preparation method thereof
JP2002352694A (en) Electrode, electron emission element and device using it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees