JP2009104452A - Constant current circuit - Google Patents

Constant current circuit Download PDF

Info

Publication number
JP2009104452A
JP2009104452A JP2007276433A JP2007276433A JP2009104452A JP 2009104452 A JP2009104452 A JP 2009104452A JP 2007276433 A JP2007276433 A JP 2007276433A JP 2007276433 A JP2007276433 A JP 2007276433A JP 2009104452 A JP2009104452 A JP 2009104452A
Authority
JP
Japan
Prior art keywords
current
circuit
voltage
resistance element
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007276433A
Other languages
Japanese (ja)
Inventor
Yasushi Shimizu
水 簡 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007276433A priority Critical patent/JP2009104452A/en
Publication of JP2009104452A publication Critical patent/JP2009104452A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure starting of a band gap reference (BGR), without use of a control signal supplied from outside, and without relying on rise characteristics of a power supply voltage. <P>SOLUTION: A constant current circuit includes: a first circuit 101 including a first resistance device R101-1, and a first diode D101-2; a second circuit 102 including a second resistance device R102-1, a second diode D102-2, and a third resistance device R102-3 connected in series with the second diode D102-2; a voltage current converter 103 supplying the first circuit 101 with a first current, supplying the second circuit 102 with a second current, and outputting a third current; and a starting circuit 104 on/off-controlling a starting current according to the third current and supplying the voltage current converter 103 with the starting current. The voltage current converter 103 is connected so as to convert a potential difference between the first circuit 101 and the second circuit 102 into a current, and increases the first current, the second current and the third current according to the starting current. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、定電流回路に関し、特に、起動回路を含むバンドギャップリファレンス(BGR)に分類される定電流回路に関する。   The present invention relates to a constant current circuit, and more particularly to a constant current circuit classified as a band gap reference (BGR) including a startup circuit.

一般的なバンドギャップリファレンス(以下「BGR」という)は、2組のダイオードに流れるエミッタ面積当りの電流に比をつけたときに絶対温度に比例した電圧が得られるという原理を利用して、絶対温度に比例した電流を抵抗器とダイオードから構成される直列回路に流し、抵抗器による正の温度係数の電圧降下とダイオードによる負の温度係数の電圧降下を加算することによってほぼ零の温度係数の電圧を得るものである。   A general band gap reference (hereinafter referred to as “BGR”) is based on the principle that a voltage proportional to absolute temperature can be obtained when the current per emitter area flowing through two sets of diodes is compared. A current proportional to the temperature is passed through a series circuit consisting of a resistor and a diode, and the voltage drop of the positive temperature coefficient due to the resistor and the voltage drop of the negative temperature coefficient due to the diode are added, so that a temperature coefficient of almost zero is obtained. The voltage is obtained.

特許文献1は、上記原理を利用して正の温度係数の電流を得るとともに、ダイオードと並列に接続された抵抗器に流れる電流を加算することによってほぼ零の温度係数の電流を得る技術を開示している。但し、ダイオードによる電圧降下は負の温度係数を有するので、ダイオードと並列に接続された抵抗器に流れる電流も負の温度係数を有する。特許文献1の技術は、電源電圧が低い場合(例えば、1V以下)であっても動作するような有用な技術である。   Patent Document 1 discloses a technique for obtaining a current having a temperature coefficient of approximately zero by adding a current flowing through a resistor connected in parallel with a diode while obtaining a current having a positive temperature coefficient using the above principle. is doing. However, since the voltage drop due to the diode has a negative temperature coefficient, the current flowing through the resistor connected in parallel with the diode also has a negative temperature coefficient. The technique of Patent Document 1 is a useful technique that operates even when the power supply voltage is low (for example, 1 V or less).

一般的なBGRには、BGRの起動を保証する起動回路が必要である。外部から供給される制御信号を使うことなく起動回路を動作させるためには、BGRが正常動作範囲内で動作しているか否かを検出する機能が必要である。一般的なBGRでは、例えば、ダイオードと直列に接続された抵抗器による電圧降下を観測し、観測結果に従ってBGRが正常動作範囲内で動作していることを検出する。   A general BGR requires an activation circuit that guarantees the activation of the BGR. In order to operate the activation circuit without using an externally supplied control signal, a function for detecting whether or not the BGR is operating within the normal operation range is necessary. In general BGR, for example, a voltage drop due to a resistor connected in series with a diode is observed, and it is detected that the BGR is operating within a normal operating range according to the observation result.

しかし、特許文献1では、ダイオードと直列に接続される抵抗器は存在するが、この抵抗器による電圧降下が100mV以下と小さく且つ両端子の電位が固定されない。従って、特許文献1には、ダイオードと直列に接続された抵抗器による電圧降下を観測してBGRが正常動作範囲内で動作しているか否かを検出することが困難であるという問題がある。   However, in Patent Document 1, there is a resistor connected in series with a diode, but the voltage drop due to this resistor is as small as 100 mV or less, and the potentials at both terminals are not fixed. Therefore, Patent Document 1 has a problem that it is difficult to detect whether or not the BGR is operating within a normal operating range by observing a voltage drop caused by a resistor connected in series with a diode.

抵抗器に因る電圧降下が小さいという問題に対して、ダイオードに流れる電流及びダイオードと並列に接続された抵抗器に流れる電流の合計の電流値に対して、カレントミラー回路を用いて推定値を得るという解決手段が考えられる。   For the problem that the voltage drop due to the resistor is small, an estimated value is calculated using a current mirror circuit for the total current value of the current flowing in the diode and the current flowing in the resistor connected in parallel with the diode. A solution to obtain is conceivable.

しかし、正常動作しているか否かの判定を行うためには、正常動作している時の電流の例えば2分の1以上且つ正常動作している時の電流未満という高精度な閾値を設定する必要があり、実現が困難であるという問題がある。   However, in order to determine whether or not it is operating normally, a highly accurate threshold value is set, for example, more than half of the current during normal operation and less than the current during normal operation. There is a problem that it is necessary and difficult to realize.

また、コンデンサと抵抗器から構成されるタイマを用いて、起動電流を生成する技術が知られている。   A technique for generating a starting current using a timer composed of a capacitor and a resistor is known.

しかし、タイマを用いるためには、電源電圧の立ち上りの最長時間が一定以下に保証されることが条件となり、この条件が満たされない場合には、電源電圧が定格電源電圧に達したか否かの検出回路とタイマを組み合わせて用いる必要があり、実現が困難であるという問題がある。   However, in order to use the timer, it is a condition that the maximum time of rising of the power supply voltage is guaranteed to be a certain value or less, and if this condition is not satisfied, whether the power supply voltage has reached the rated power supply voltage or not. It is necessary to use a combination of a detection circuit and a timer, and there is a problem that it is difficult to realize.

すなわち、従来の定電流回路には、外部から供給される制御信号を使うことなく且つ電源電圧の立ち上り時間が一定値以下でない場合にBGRの起動を保証することができないという問題がある。
特開平11−45125号公報
That is, the conventional constant current circuit has a problem that it is not possible to guarantee the start of the BGR without using a control signal supplied from the outside and when the rising time of the power supply voltage is not less than a certain value.
Japanese Patent Laid-Open No. 11-45125

本発明の目的は、外部から供給される制御信号を使うことなく且つ電源電圧の立ち上り特性に依存することなくバンドギャップリファレンス(BGR)の起動を保証することである。   An object of the present invention is to guarantee the start-up of the band gap reference (BGR) without using a control signal supplied from the outside and without depending on the rising characteristic of the power supply voltage.

本発明の第1態様によれば、第1抵抗素子及び第1ダイオードを含む第1回路と、第2抵抗素子、第2ダイオード及び当該第2ダイオードと直列に接続された第3抵抗素子を含む第2回路と、前記第1回路に第1電流を供給し、前記第2回路に第2電流を供給し、第3電流を出力する電圧電流変換部と、前記第3電流に従って起動電流のオン/オフを制御し、前記電圧電流変換部に供給する起動回路と、を備え、前記電圧電流変換部は、前記第1回路と前記第2回路の間の電位差を電流に変換するように接続され、前記電圧電流変換部は、前記起動電流に従って、前記第1電流乃至前記第3電流を増加させ、前記第1抵抗素子の素子値と前記第1電流の積は、前記第2抵抗素子の素子値と前記第2電流の積より大きいことを特徴とする定電流回路が提供される。   According to a first aspect of the present invention, a first circuit including a first resistance element and a first diode, a second resistance element, a second diode, and a third resistance element connected in series with the second diode are included. A second current circuit; a voltage-current converter that supplies a first current to the first circuit; a second current to the second circuit; and outputs a third current; and an on-state activation current according to the third current. A start-up circuit that controls / off and supplies the voltage / current converter to the voltage / current converter, and the voltage / current converter is connected to convert a potential difference between the first circuit and the second circuit into a current. The voltage-current converter increases the first current to the third current according to the start-up current, and a product of an element value of the first resistance element and the first current is an element of the second resistance element A constant current greater than the product of the value and the second current The road is provided.

本発明によれば、外部から供給される制御信号を使うことなく且つ電源電圧の立ち上り特性に依存することなくバンドギャップリファレンス(BGR)の起動を保証することができる。   According to the present invention, it is possible to guarantee the start of the band gap reference (BGR) without using a control signal supplied from the outside and without depending on the rising characteristic of the power supply voltage.

以下、本発明の実施例について図面を参照して説明する。なお、以下の実施例は、本発明の実施の一形態であって、本発明の範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following examples are one embodiment of the present invention and do not limit the scope of the present invention.

はじめに、本発明の実施例1について説明する。   First, Example 1 of the present invention will be described.

図1は、本発明の実施例1に係る定電流回路の回路構成を示す回路図である。   1 is a circuit diagram showing a circuit configuration of a constant current circuit according to a first embodiment of the present invention.

本発明の実施例1に係る定電流回路は、第1回路101、第2回路102、電圧電流変換部103及び起動回路104を備えている。   The constant current circuit according to the first embodiment of the present invention includes a first circuit 101, a second circuit 102, a voltage / current converter 103, and a starting circuit 104.

第1回路101は、第1抵抗素子R101−1及び第1ダイオードD101−2を有する。第1回路101は、第1抵抗素子R101−1と第1ダイオードD101−2との並列回路である。   The first circuit 101 includes a first resistance element R101-1 and a first diode D101-2. The first circuit 101 is a parallel circuit of a first resistance element R101-1 and a first diode D101-2.

第2回路102は、第2抵抗素子R102−1、第2ダイオードD102−2及び第3抵抗素子R102−3を有する。第2回路102は、第3抵抗素子R102−3及び第2ダイオードD102−2の直列回路と第2抵抗素子R102−1との並列回路である。   The second circuit 102 includes a second resistance element R102-1, a second diode D102-2, and a third resistance element R102-3. The second circuit 102 is a parallel circuit of a series circuit of the third resistance element R102-3 and the second diode D102-2 and the second resistance element R102-1.

電圧電流変換部103は、第1回路101と第2回路102の間の電位差を電流に変換するように接続されている。電圧電流変換部103は、第1回路101に第1電流Iを供給し、第2回路102に第2電流Iを供給し、起動回路104に第3電流Iを供給する。 The voltage / current converter 103 is connected to convert a potential difference between the first circuit 101 and the second circuit 102 into a current. The voltage / current converter 103 supplies the first current I 1 to the first circuit 101, the second current I 2 to the second circuit 102, and the third current I 3 to the activation circuit 104.

第1電流I、第2電流I及び第3電流Iはカレントミラーによって生成されるので、第3電流Iは、第1及び第2電流I,Iに略比例する。電圧電流変換部103は、起動電流Iが正の値のときは第1乃至第3電流I〜Iを増加させる。 Since the first current I 1 , the second current I 2 and the third current I 3 are generated by the current mirror, the third current I 3 is substantially proportional to the first and second currents I 1 and I 2 . The voltage-current converter 103 increases the first to third currents I 1 to I 3 when the starting current I 4 is a positive value.

ここで、第1抵抗素子R101−1の素子値Rと第1電流Iの積と第2抵抗素子R102−1の素子値Rと第2電流Iの積は、式1の関係を満たす。例えば、k=1.05である。すなわち、従来技術では、k=1とされていたのに対して、本発明の実施例1では、k>1とする。

Figure 2009104452
Here, the product of the element value R 1 and the first current I 1 of the first resistance element R 101-1 and the product of the element value R 2 and the second current I 2 of the second resistance element R 102-1 are expressed by the relationship of Equation 1. Meet. For example, k = 1.05. That is, while k = 1 in the prior art, k> 1 in the first embodiment of the present invention.
Figure 2009104452

起動回路104は、MOSトランジスタM104−1,104−2及びこれらのMOSトランジスタM104−1,104−2にバイアス電圧を印加するバイアス回路104−3を有する。起動回路104は、第3電流Iの値が零のときは、大凡MOSトランジスタM104−1に印加されるバイアス電圧に従った電流Ithを、MOSトランジスタM104−2を通して起動電流Iとして出力する。MOSトランジスタM104−1とMOSトランジスタM104−2の接続点には電圧電流変換部103から供給される第3電流Iが供給され、起動回路104は、電圧電流変換部103から供給される第3電流Iと閾値電流Ithの大小関係に従って起動電流Iを出力する。第3電流Iが閾値電流Ith以下のときの起動電流Iは約Ith−Iとなり、第3電流Iが閾値電流Ith以上となるような条件では、起動電流Iはオフされる。 The activation circuit 104 includes MOS transistors M104-1 and 104-2 and a bias circuit 104-3 that applies a bias voltage to the MOS transistors M104-1 and 104-2. Starting circuit 104, the output when the value of the third current I 3 is zero, the current I th according to the bias voltage applied to approximately MOS transistor M104-1, as the starting current I 4 through MOS transistors M104-2 To do. MOS to a connection point between the transistors M104-1 and MOS transistor M104-2 is supplied third current I 3 is supplied from the voltage current conversion section 103, the starting circuit 104, a third supplied from the voltage current conversion section 103 outputs an activation current I 4 in accordance with the magnitude relationship between the current I 3 and the threshold current I th. The starting current I 4 of the third when the current I 3 is equal to or lower than a threshold current I th about I th -I 3 becomes, in such conditions the third current I 3 is the threshold current I th or more, the startup current I 4 is Turned off.

2つのMOSトランジスタM104−1,104−2は、第3電流Iに従って起動電流Iのオン/オフを切り替える電流制御の電流スイッチとして動作する。閾値電流Ithは、電圧電流変換部103の誤差増幅器103−2が正常に動作する入力電圧V,V及び入力信号V−Vの絶対値が充分に大きくなるように設定される。 Two MOS transistors M104-1,104-2 operates as a current switch for the current control to switch the starting current I 4 of the on / off according to the third current I 3. The threshold current I th is set so that the absolute values of the input voltages V A and V B and the input signal V B −V A at which the error amplifier 103-2 of the voltage-current converter 103 operates normally become sufficiently large. .

バイアス回路104−1は、起動電流Iに従って設計される。第3電流Iと第1電流I又は第2電流Iとの比は、起動電流Iのオフを保証できる最小値に設定される。 Bias circuit 104-1 is designed according to the starting current I 4. A third current I 3 ratio of the first current I 1 or the second current I 2 is set to the minimum value which can guarantee off the starting current I 4.

図2は、電圧電流変換部103の回路構成を示す回路構成図である。   FIG. 2 is a circuit configuration diagram showing a circuit configuration of the voltage / current converter 103.

電圧電流変換部103は、電圧電流変換回路103−1及び誤差増幅器103−2を有する。   The voltage / current converter 103 includes a voltage / current converter 103-1 and an error amplifier 103-2.

電圧電流変換回路103−1は、互いのソース電極が並列に接続され且つ互いのゲート電極が並列に接続された複数のMOSトランジスタのドレインから第1電流I、第2電流I、第3電流I及び本発明の実施例1に係る定電流回路の出力電流Ioutを出力する。 The voltage-current conversion circuit 103-1 has a first current I 1 , a second current I 2 , a third current from the drains of a plurality of MOS transistors in which the source electrodes are connected in parallel and the gate electrodes are connected in parallel. and it outputs an output current I out of the constant current circuit according to embodiment 1 of the current I 3 and the present invention.

誤差増幅器103−2には入力電圧V及び入力電圧Vが入力され、入力信号V−Vの絶対値が小さくなるように、電圧電流変換回路103−1を制御する。また、誤差増幅器103−2には起動電流Iが入力され、起動電流Iに従って誤差増幅器103−2の出力が変化する。起動電流Iが正の値のときは、電圧電流変換回路103−1の各出力電流を増加させるように誤差増幅器103−2の出力が変化する。 The input voltage V A and the input voltage V B are input to the error amplifier 103-2, and the voltage / current conversion circuit 103-1 is controlled so that the absolute value of the input signal V B −V A becomes small. Further, the starting current I 4 is input to the error amplifier 103-2, and the output of the error amplifier 103-2 changes according to the starting current I 4 . Starting current I 4 is when the positive value, the output of the error amplifier 103-2 to increase the output current of the voltage-current conversion circuit 103-1 is changed.

以上の構成によって、誤差増幅器103−2が正しく入力信号の極性を判定して電圧電流変換回路103−1を制御できないほど第1及び第2電流I,Iが小さいときには、起動回路104は、起動電流Iを電圧電流変換回路103−1に供給して第1及び第2電流I,Iを増加させて誤差増幅器103−2が正しく入力信号を判定して電圧電流変換回路103−1を制御できるようにする。また、起動回路104は、第1及び第2電流I,Iが定格電流となったときには、起動電流Iをオフするので、本発明の実施例1に係る定電流回路の出力電流IOUTが起動電流Iの影響を受けなくなる。よって、バンドギャップリファレンス(BGR)の起動を保証することができる。 With the above configuration, when the first and second currents I 1 and I 2 are so small that the error amplifier 103-2 cannot correctly determine the polarity of the input signal and control the voltage-current conversion circuit 103-1, The start-up current I 4 is supplied to the voltage-current conversion circuit 103-1, the first and second currents I 1 and I 2 are increased, and the error amplifier 103-2 correctly determines the input signal and the voltage-current conversion circuit 103 -1 can be controlled. Moreover, the starting circuit 104, when the first and second currents I 1, I 2 becomes the rated current, starting current turned off so that the I 4, the output current I of the constant current circuit according to a first embodiment of the present invention OUT is not affected by the starting current I 4 . Therefore, it is possible to guarantee activation of the band gap reference (BGR).

ここで、本発明の実施例1のようにI×R=k×I×R(k>1)とした場合には、従来技術のようにI×R=I×R(k=1)とした場合と大きく温度特性が異なることが懸念される。 Here, when the I 1 × R 1 = k × I 2 × R 2 (k> 1) as in Example 1 of the present invention, I 1 × R 1 = I 2 × as in the prior art There is a concern that the temperature characteristics are significantly different from the case of R 2 (k = 1).

図3は本発明の実施例1及び従来技術に係る温度特性を示すグラフである。   FIG. 3 is a graph showing temperature characteristics according to Example 1 of the present invention and the related art.

図3に示されるように、式1中のkをk=1.05にした場合は、その温度特性の違いが元の温度特性による電流変動量よりも小さい。kを大きくした場合には、許容される起動回路104の閾値の範囲が広くなるが、温度特性が犠牲となって出力電流IOUTの変動範囲が広くなる。 As shown in FIG. 3, when k in Equation 1 is set to k = 1.05, the difference in temperature characteristics is smaller than the current fluctuation amount due to the original temperature characteristics. When k is increased, the allowable threshold range of the activation circuit 104 is widened, but the fluctuation range of the output current I OUT is widened at the expense of temperature characteristics.

次に、本発明の実施例1において式1中のkをk>1としたことの効果を説明する。   Next, the effect of setting k> 1 in Equation 1 in Example 1 of the present invention will be described.

図4は、式1中のkがk=1.05のときの電圧電流変換回路103−1の第1及び第2電流I,Iと、誤差増幅器103−2の入力電圧V,Vの関係の例を温度毎に示すグラフであって、従来技術のようにk=1とした場合と比べて第1及び第2電流I,Iが小さい場合の入力信号V−Vの絶対値が大きい。 4 shows the first and second currents I 1 and I 2 of the voltage-current conversion circuit 103-1 and the input voltage V A of the error amplifier 103-2 when k in Equation 1 is k = 1.05. a graph showing an example for each temperature relationship V B, k = 1 and then first and second currents as compared with the case were I 1 as in the prior art, the input signal when I 2 is smaller V B - The absolute value of VA is large.

図5は、第1及び第2電流I,Iと誤差増幅器103−2の入力信号V−Vの関系について本発明の実施例1と従来技術の比較を示すグラフである。 Figure 5 is a graph showing a comparison of Example 1 and the prior art of the present invention will function system of the first and second currents I 1, I 2 and the input signal V B -V A of the error amplifier 103-2.

なお、電圧電流変換部103は、入力信号V−Vが負の場合には第1乃至第3電流I〜Iを増加させ、正の場合には第1乃至第3電流I〜Iを減少させる。 The voltage-current converter 103, the input signal V B -V when A is negative increases the first through third current I 1 ~I 3, positive if the first to third current I 1 reduce the ~I 3.

図5に示されるように、本発明の実施例1では、第1及び第2電流I,Iが定格電流(V−Vが零になる電流)である2.4μAの4分の1以下(例えば、0.5μA 以下)のような小さい電流値であっても、電圧電流変換部103の入力信号V−Vは約−10mVで、その絶対値は約10mVと大きい。 As shown in FIG. 5, in Example 1 of the present invention, the first and second currents I 1 and I 2 are rated currents (currents at which V B −V A becomes zero) of 4 μA of 4 minutes. 1 or less (e.g., 0.5 .mu.A or less) of even a small current value, such as, at about the input signal V B -V a voltage-current converter 103 -10 mV, and its absolute value is as large as approximately 10 mV.

これに対して、従来技術では、第1及び第2電流I,Iが0.5μAの場合、電圧電流変換部103の入力信号V−Vは約0mVであって、電圧電流変換部103の入力信号が−10mV以下(絶対値で10mV以上)となる第1及び第2電流I,Iは、定格電流2.4μAの2分の1を超す約1.4μAである。 In contrast, in the prior art, the first and second currents I 1, if I 2 is 0.5 .mu.A, the input signal V B -V A voltage-current conversion section 103 is about 0 mV, voltage-current conversion The first and second currents I 1 and I 2 at which the input signal of the unit 103 is −10 mV or less (10 mV or more in absolute value) are about 1.4 μA, which is more than half of the rated current 2.4 μA.

例えば、誤差増幅器に絶対値で10mVのオフセット電圧があって、入力信号V−Vが−10mVのときに平衡する(すなわち、出力電流IOUTを維持する)ように誤差増幅器103−2が動作した場合には、従来技術と本発明の実施例1とでは以下のような違いがある。 For example, if there is an offset voltage of 10mV absolute value to the error amplifier, the input signal V B -V A to equilibrate at -10 mV (i.e., to maintain the output current I OUT) so that the error amplifier 103-2 When operating, there are the following differences between the prior art and the first embodiment of the present invention.

従来技術では、第1及び第2電流I,Iが0.5μAのとき、誤差増幅器103−2の入力は約0mVで、誤差増幅器103−2のオフセット電圧のために第1及び第2電流I,Iを減少させるよう電圧電流変換部103を制御し、第1及び第2電流I1,I2が零の状態でとどまり、定電流回路は起動しない。起動を保証するためには、第1及び第2電流I,Iが1.4μA以上となるように電圧電流変換部103に起動電流Iを供給し且つ第1及び第2電流I,Iが2.2μA以上の電流では起動電流Iを停止させなければならない。 In the prior art, when the first and second currents I 1 and I 2 are 0.5 μA, the input of the error amplifier 103-2 is about 0 mV, and the first and second currents are offset due to the offset voltage of the error amplifier 103-2. The voltage-current converter 103 is controlled so as to decrease the currents I 1 and I 2, and the first and second currents I 1 and I 2 remain zero, and the constant current circuit does not start. In order to guarantee the start-up, the start-up current I 4 is supplied to the voltage-current converter 103 so that the first and second currents I 1 and I 2 are 1.4 μA or more, and the first and second currents I 1 , I 2 must stop the starting current I 4 in the above current 2.2Myuei.

これに対して、本発明の実施例1では、第1及び第2電流I,Iが0.5μAのときでも誤差増幅器103−2は第1及び第2電流I,Iを増加させるように電圧電流変換部103を制御し、第1及び第2電流I,Iは2.2μAで平衡する(すなわち、起動する)。起動を保証するためには、第1及び第2電流I,Iが0.5μA以上となるように電圧電流変換部103に起動電流Iを供給し且つ第1及び第2電流I,Iが2.2μA以上の電流では起動電流Iを停止させればよい。 On the other hand, in the first embodiment of the present invention, the error amplifier 103-2 increases the first and second currents I 1 and I 2 even when the first and second currents I 1 and I 2 are 0.5 μA. The voltage-current converter 103 is controlled so that the first and second currents I 1 and I 2 are balanced at 2.2 μA (that is, activated). In order to guarantee the start-up, the start-up current I 4 is supplied to the voltage-current converter 103 so that the first and second currents I 1 and I 2 are 0.5 μA or more, and the first and second currents I 1 , I 2 is a current above 2.2μA it is sufficient to stop the starting current I 4.

本発明の実施例1では、起動回路104に要求される精度が大幅に緩和され、従来技術と比べて、より広い温度範囲且つより広い電源電圧範囲で起動を保証することができる。   In the first embodiment of the present invention, the accuracy required for the start-up circuit 104 is greatly relaxed, and start-up can be guaranteed in a wider temperature range and a wider power supply voltage range than in the prior art.

次に、第1ダイオードD101−2及び第2ダイオードD102−2が導通しない場合に、第1電流Iと第2電流Iの小電流領域において、誤差増幅器103−2の入力信号V−Vの絶対値が従来技術と比べて増加する原理について説明する。 Then, when the first diode D101-2 and second diodes D102-2 does not conduct, in the first current I 1 and the small-current region of the second current I 2, the input signal V B of the error amplifier 103-2 - The principle of increasing the absolute value of VA compared to the prior art will be described.

従来技術(式1中のk=1)では、第1ダイオードD101−2及び第2ダイオードD102−2が導通しない第1電流Iと第2電流Iの小電流領域において、I×R−I×R=0となるため、入力信号V−Vは零となる。 In the conventional technique (k = 1 in Equation 1), in the small current region of the first current I 1 and the second current I 2 where the first diode D 101-2 and the second diode D 102-2 are not conducted, I 2 × R Since 3 −I 1 × R 1 = 0, the input signal V B −V A becomes zero.

これに対して、式2に示されるように、本発明の実施例1では、(1−k)×I×Rとなって、kを1よりも大きくするほど負極性で絶対値の大きな入力信号V−Vが得られる。

Figure 2009104452
On the other hand, as shown in Formula 2, in Example 1 of the present invention, (1−k) × I 2 × R 2 is obtained, and the larger the k is, the more negative the absolute value. A large input signal V B -V A is obtained.
Figure 2009104452

本発明の実施例1によれば、I×R=k×I×R(k>1)とすることによって、起動電流Iの精度に関する要求が緩和され、起動回路104は、電圧電流変換部103が所望の動作をしないほど第1及び第2電流I,Iが小さい場合には起動電流Iを電圧電流変換部103に供給することによって第1及び第2電流I,Iを増加させ、電圧電流変換部103が所望の動作をするほど第1及び第2電流I,Iが大きい場合には第3電流Iを起動回路104に供給することによって起動電流Iをオフするので、外部から供給される制御信号を使うことなく且つ電源電圧の立ち上り特性に依存することなく定電流回路の起動を保証することができる。 According to the first embodiment of the present invention, by setting I 1 × R 1 = k × I 2 × R 2 (k> 1), the requirement regarding the accuracy of the starting current I 4 is alleviated, and the starting circuit 104 is When the first and second currents I 1 and I 2 are so small that the voltage-current conversion unit 103 does not perform a desired operation, the first and second currents I 4 are supplied by supplying the starting current I 4 to the voltage-current conversion unit 103. 1 and I 2 are increased, and when the first and second currents I 1 and I 2 are so large that the voltage-current converter 103 performs a desired operation, the third current I 3 is supplied to the starting circuit 104. because off the starting current I 4, it is possible to ensure the startup of the constant current circuit without depending on the rising characteristics of and the power supply voltage without using a control signal supplied from the outside.

次に、本発明の実施例2について説明する。本発明の実施例2は、本発明の実施例1に対して温度特性調整抵抗器205が追加された定電流回路の例である。なお、本発明の実施例1と同様の内容についての説明は省略する。   Next, a second embodiment of the present invention will be described. The second embodiment of the present invention is an example of a constant current circuit in which a temperature characteristic adjusting resistor 205 is added to the first embodiment of the present invention. In addition, the description about the content similar to Example 1 of this invention is abbreviate | omitted.

図6は、本発明の実施例2に係る定電流回路の回路構成を示す回路図である。   FIG. 6 is a circuit diagram showing a circuit configuration of a constant current circuit according to the second embodiment of the present invention.

本発明の実施例2に係る定電流回路は、第1回路201、第2回路202、電圧電流変換部203、起動回路204及び温度特性調整抵抗器205を備えている。   The constant current circuit according to the second embodiment of the present invention includes a first circuit 201, a second circuit 202, a voltage / current converter 203, a starting circuit 204, and a temperature characteristic adjusting resistor 205.

第1回路201、第2回路202、電圧電流変換部203及び起動回路204は、本発明の実施例1に係る第1回路101、第2回路102、電圧電流変換部103及び起動回路104と同様であるので、説明は省略する。   The first circuit 201, the second circuit 202, the voltage / current converter 203, and the startup circuit 204 are the same as the first circuit 101, the second circuit 102, the voltage / current converter 103, and the startup circuit 104 according to the first embodiment of the present invention. Therefore, explanation is omitted.

温度特性調整抵抗器205は、第1回路201の第1抵抗素子R201−1と電源(GND)の間及び第2回路202の第2抵抗素子R202−1と電源(GND)の間に共通に設けられている。   The temperature characteristic adjusting resistor 205 is commonly used between the first resistance element R201-1 of the first circuit 201 and the power supply (GND) and between the second resistance element R202-1 of the second circuit 202 and the power supply (GND). Is provided.

温度特性調整抵抗器205を除く回路の動作原理は、本発明の実施例1と同様であるので、説明は省略する。   Since the operation principle of the circuit excluding the temperature characteristic adjusting resistor 205 is the same as that of the first embodiment of the present invention, description thereof is omitted.

温度特性調整抵抗器205の抵抗値に従って、出力電流の温度特性が変化する。すなわち、温度特性調整抵抗器205の抵抗値を変えることによって、出力電流IOUTの温度特性を調整することができる。 According to the resistance value of the temperature characteristic adjusting resistor 205, the temperature characteristic of the output current changes. That is, by changing the resistance value of the temperature characteristic adjusting resistor 205, the temperature characteristic of the output current IOUT can be adjusted.

本発明の実施例2によれば、第1抵抗素子R201−1又は第2抵抗素子R202−1のどちらか一方を調整する場合と比べて、調整によるkの値の変化を小さくすることができる。   According to the second embodiment of the present invention, the change in the value of k due to the adjustment can be reduced as compared with the case where either the first resistance element R201-1 or the second resistance element R202-1 is adjusted. .

また、本発明の実施例2によれば、温度特性調整抵抗器205が第1抵抗素子R201−1及び第2抵抗素子R201−1と電源(GND)との間に設けられるので、中間電位に設けられる場合と比べて、温度特性調整抵抗器205をアナログスイッチで切替える場合の副作用を小さくすることができる。   Further, according to the second embodiment of the present invention, the temperature characteristic adjusting resistor 205 is provided between the first resistance element R201-1 and the second resistance element R201-1 and the power supply (GND), so that the intermediate potential is set. Compared with the case where the temperature characteristic adjusting resistor 205 is provided, side effects when the temperature characteristic adjusting resistor 205 is switched by an analog switch can be reduced.

本発明の実施例1に係る定電流回路の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the constant current circuit which concerns on Example 1 of this invention. 電圧電流変換部103の回路構成を示す回路図である。3 is a circuit diagram showing a circuit configuration of a voltage / current converter 103. FIG. 本発明の実施例1及び従来技術に係る温度特性を示すグラフである。It is a graph which shows the temperature characteristic which concerns on Example 1 of this invention, and a prior art. k=1.05のときの電圧電流変換回路103−1の第1及び第2電流I,Iと誤差増幅器103−2の入力電圧V,Vの関係を温度毎に示すグラフである。6 is a graph showing the relationship between the first and second currents I 1 and I 2 of the voltage-current conversion circuit 103-1 and the input voltages V A and V B of the error amplifier 103-2 for each temperature when k = 1.05. is there. −40℃のときの本発明の実施例1及び従来技術に係る第1及び第2電流I,Iと誤差増幅器103−2の入力信号V−Vの関を示すグラフである。It is a graph showing a first embodiment and related input signals V B -V A conventional first and second current according to a technique I 1, I 2 and the error amplifier 103-2 of the present invention when the -40 ° C.. 本発明の実施例2に係る定電流回路の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the constant current circuit which concerns on Example 2 of this invention.

符号の説明Explanation of symbols

101,201 第1回路
101−1,201−1 第1抵抗素子
101−2,201−2 第1ダイオード
102,202 第2回路
102−1,202−1 第2抵抗素子
102−2,202−2 第2ダイオード
102−3,202−3 第3抵抗素子
103,203 電圧電流変換部
103−1,203−1 電圧電流変換回路
103−2,203−2 誤差増幅器
104,204 起動回路
104−1,104−2,204−1,204−2 MOSトランジスタ
104−3,204−3 バイアス回路
205 温度特性調整抵抗器
101, 201 1st circuit 101-1, 201-1 1st resistance element 101-2, 201-2 1st diode 102, 202 2nd circuit 102-1, 202-1 2nd resistance element 102-2, 202- 2 2nd diode 102-3, 202-3 3rd resistance element 103,203 Voltage current conversion part 103-1, 203-1 Voltage current conversion circuit 103-2, 203-2 Error amplifier 104,204 Starting circuit 104-1 , 104-2, 204-1, 204-2 MOS transistors 104-3, 204-3 Bias circuit 205 Temperature characteristic adjusting resistor

Claims (5)

第1抵抗素子及び第1ダイオードを含む第1回路と、
第2抵抗素子、第2ダイオード及び当該第2ダイオードと直列に接続された第3抵抗素子を含む第2回路と、
前記第1回路に第1電流を供給し、前記第2回路に第2電流を供給し、第3電流を出力する電圧電流変換部と、
前記第3電流に従って起動電流のオン/オフを制御し、前記電圧電流変換部に供給する起動回路と、を備え、
前記電圧電流変換部は、前記第1回路と前記第2回路の間の電位差を電流に変換するように接続され、
前記電圧電流変換部は、前記起動電流に従って、前記第1電流乃至前記第3電流を増加させ、
前記第1抵抗素子の素子値と前記第1電流の積は、前記第2抵抗素子の素子値と前記第2電流の積より大きいことを特徴とする定電流回路。
A first circuit including a first resistance element and a first diode;
A second circuit including a second resistance element, a second diode, and a third resistance element connected in series with the second diode;
A voltage-current converter for supplying a first current to the first circuit, supplying a second current to the second circuit, and outputting a third current;
A startup circuit that controls on / off of the startup current according to the third current and supplies the voltage to the voltage-current converter,
The voltage-current converter is connected to convert a potential difference between the first circuit and the second circuit into a current,
The voltage-current converter increases the first current to the third current according to the startup current,
A constant current circuit, wherein a product of an element value of the first resistance element and the first current is larger than a product of the element value of the second resistance element and the second current.
前記第1抵抗素子は、前記第1ダイオードと並列に接続され、
前記第2抵抗素子は、前記第2ダイオード及び前記第3抵抗素子から成る直列回路と並列に接続されている請求項1に記載の定電流回路。
The first resistance element is connected in parallel with the first diode,
The constant current circuit according to claim 1, wherein the second resistance element is connected in parallel with a series circuit including the second diode and the third resistance element.
温度係数を調整する温度特性調整抵抗器をさらに備え、
前記第1及び第2抵抗素子は、前記温度係数調整抵抗器と直列に接続されている請求項1に記載の定電流回路。
Further equipped with a temperature characteristic adjusting resistor for adjusting the temperature coefficient,
The constant current circuit according to claim 1, wherein the first and second resistance elements are connected in series with the temperature coefficient adjusting resistor.
前記電圧電流変換部は、誤差増幅器及び電圧電流変換回路を有し、前記誤差増幅器の入力電圧特性において入力電圧差が前記電圧電流変換回路のオフセット電圧より大きくなるような電流値の前記第3電流を前記起動回路に供給する請求項1乃至3の何れか1項に記載の定電流回路。   The voltage-current conversion unit includes an error amplifier and a voltage-current conversion circuit, and the third current has a current value such that an input voltage difference is larger than an offset voltage of the voltage-current conversion circuit in an input voltage characteristic of the error amplifier. The constant current circuit according to claim 1, wherein the constant current circuit is supplied to the starting circuit. 前記起動回路は、電流出力回路及び当該電流出力回路と直列に接続された複数のMOSトランジスタを有し、当該複数のMOSトランジスタを通して前記起動電流を供給し、前記電圧電流変換部によって当該複数のMOSトランジスタの接続点に当該電流出力回路の出力電流より大きな前記第3電流が供給された場合に前記起動電流をオフする請求項1乃至4の何れか1項に記載の定電流回路。   The start circuit includes a current output circuit and a plurality of MOS transistors connected in series with the current output circuit, supplies the start current through the plurality of MOS transistors, and the plurality of MOS transistors by the voltage-current converter. 5. The constant current circuit according to claim 1, wherein the start-up current is turned off when the third current larger than the output current of the current output circuit is supplied to a connection point of the transistor.
JP2007276433A 2007-10-24 2007-10-24 Constant current circuit Withdrawn JP2009104452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007276433A JP2009104452A (en) 2007-10-24 2007-10-24 Constant current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007276433A JP2009104452A (en) 2007-10-24 2007-10-24 Constant current circuit

Publications (1)

Publication Number Publication Date
JP2009104452A true JP2009104452A (en) 2009-05-14

Family

ID=40706051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276433A Withdrawn JP2009104452A (en) 2007-10-24 2007-10-24 Constant current circuit

Country Status (1)

Country Link
JP (1) JP2009104452A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944255B2 (en) 2009-03-16 2011-05-17 Kabushiki Kaisha Toshiba CMOS bias circuit
JP2013054471A (en) * 2011-09-02 2013-03-21 Toshiba Corp Reference signal generating circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944255B2 (en) 2009-03-16 2011-05-17 Kabushiki Kaisha Toshiba CMOS bias circuit
JP2013054471A (en) * 2011-09-02 2013-03-21 Toshiba Corp Reference signal generating circuit

Similar Documents

Publication Publication Date Title
JP3889402B2 (en) Overcurrent detection circuit and regulator provided with the same
KR101071799B1 (en) Constant voltage circuit and method of controlling output voltage of constant voltage circuit
JP5093037B2 (en) Load drive circuit
US7301347B2 (en) Current sensing circuit
KR101422924B1 (en) Low drop-out regulator
US8665020B2 (en) Differential amplifier circuit that can change current flowing through a constant-current source according to load variation, and series regulator including the same
JP2014174737A (en) Constant voltage circuit
US9209822B2 (en) A/D converter and semiconductor integrated circuit
JP2017126259A (en) Power supply unit
KR20090082137A (en) Voltage regulator
US10175708B2 (en) Power supply device
JP2006343253A (en) Circuit characteristic control device
US9494959B2 (en) Current source for voltage regulator and voltage regulator thereof
US9806613B2 (en) Combined high side and low side current sensing
JP2009289048A (en) Voltage regulator
US11442480B2 (en) Power supply circuit alternately switching between normal operation and sleep operation
US7705578B2 (en) Switching regulator
JP2009104452A (en) Constant current circuit
JP4756201B2 (en) Power circuit
JP5422212B2 (en) Current detection circuit
US10715040B1 (en) Voltage compensation circuit and voltage compensation method
JP5666694B2 (en) Load current detection circuit
JP2006235991A (en) Reference voltage generating circuit, and drive circuit
JP2007166096A (en) Bias control circuit
JP2012078169A (en) Current detection circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104