JP2009102460A - Manufacturing process for hydrocarbons by fischer-tropsch synthesis process - Google Patents

Manufacturing process for hydrocarbons by fischer-tropsch synthesis process Download PDF

Info

Publication number
JP2009102460A
JP2009102460A JP2007273142A JP2007273142A JP2009102460A JP 2009102460 A JP2009102460 A JP 2009102460A JP 2007273142 A JP2007273142 A JP 2007273142A JP 2007273142 A JP2007273142 A JP 2007273142A JP 2009102460 A JP2009102460 A JP 2009102460A
Authority
JP
Japan
Prior art keywords
catalyst
carbon monoxide
hydrogen
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007273142A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
崇 鈴木
So Tajima
創 田島
Hidekazu Komatsu
秀和 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUNMA INDUSTRY SUPPORT ORGANIZ
GUNMA INDUSTRY SUPPORT ORGANIZATION
Original Assignee
GUNMA INDUSTRY SUPPORT ORGANIZ
GUNMA INDUSTRY SUPPORT ORGANIZATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUNMA INDUSTRY SUPPORT ORGANIZ, GUNMA INDUSTRY SUPPORT ORGANIZATION filed Critical GUNMA INDUSTRY SUPPORT ORGANIZ
Priority to JP2007273142A priority Critical patent/JP2009102460A/en
Publication of JP2009102460A publication Critical patent/JP2009102460A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process for hydrocarbons for efficiently converting a synthesis gas composed mainly of hydrogen and carbon monoxide generated in a biomass gasifying process or the like into gaseous or liquid hydrocarbons usable easily at production site. <P>SOLUTION: In this manufacturing process, the mixed gas prepared by adding olefin to the synthesis gas composed of carbon monoxide and hydrogen is brought into contact with a catalyst containing cobalt of 5 mass% or more and 25 mass% or less in terms of cobalt metal and based on the catalyst mass in a carrier containing single porous silica or a carrier containing at least one kind of metal oxide selected from the group III in the periodic table or lanthanoids in the porous silica at pressure of normal pressure or more and less than 5 kg/cm<SP>2</SP>, G, at space velocity of 300 or more and 30,000 or less, and at reaction temperature of 220°C or more and 260°C or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭化水素類の製造方法に関するものである。   The present invention relates to a method for producing hydrocarbons.

近年、炭酸ガス削減が急務とされ、バイオマスの有効利用が注目されている。例えば森林バイオマスでは、ガス化、炭化が有力な利用法とされている。   In recent years, there is an urgent need to reduce carbon dioxide, and the effective use of biomass has attracted attention. For example, in the case of forest biomass, gasification and carbonization are considered to be effective uses.

バイオマスから得られたガス中には水素、一酸化炭素の他、二酸化炭素が含まれる場合がある。これらはシーワン(C1)ケミストリーと呼ばれる炭素数1の無機ガスからアルコール類、炭化水素類、炭酸ジメチル、ジメチルエーテル(DME)など次世代を担う燃料への転換可能性が高い原料ガスになり得る可能性を持っているが、バイオマスを扱う地域は工業地帯から遠隔地にあるため、輸送等が足かせとなり単に燃焼させて熱源として利用される場合が多く、潜在価値を充分に生かし切れていないのが現状である。 The gas obtained from biomass may contain carbon dioxide in addition to hydrogen and carbon monoxide. These alcohols from Shiwan (C 1) Chemistry and inorganic gas 1 carbon atoms called, hydrocarbons, be convertible of dimethyl carbonate, the fuel for the next generation such as dimethyl ether (DME) can become higher raw material gas However, because the area where biomass is handled is remote from the industrial area, it is often used as a heat source because it is transported and used as a heat source, and the potential value is not fully utilized. Currently.

ところで炭化水素類の合成方法としては、1920年から1940年代にかけて鉄系、コバルト系、ルテニウム系の触媒を用いるフィッシャー・トロプシュ合成が見いだされている(非特許文献1)。   By the way, as a method for synthesizing hydrocarbons, Fischer-Tropsch synthesis using iron-based, cobalt-based, and ruthenium-based catalysts has been found from 1920 to 1940s (Non-patent Document 1).

フィッシャー・トロプシュ合成とは合成ガス(一酸化炭素と水素の混合気体)を出発原料とし一酸化炭素の水素化反応により炭化水素を得ようとするものである。古くは石炭乾留により得られた乾留ガス(コールガス)から燃料合成する技術として開発され、南アフリカ共和国では豊富に産出する石炭を用いSynthol法やARGE法などにより大がかりなプラントが稼動している。   Fischer-Tropsch synthesis is intended to obtain hydrocarbons by hydrogenation of carbon monoxide using synthesis gas (mixed gas of carbon monoxide and hydrogen) as a starting material. In the old days, it was developed as a technology for synthesizing fuel from dry distillation gas (coal gas) obtained by coal dry distillation. In South Africa, a large-scale plant is operating by the Synthol method or the ARGE method using abundantly produced coal.

近年、石油資源の有効活用や、硫黄分、窒素分を含まない低環境負荷燃料に対する関心が高まり、石油価格の高騰と相俟って天然ガスから液体燃料を合成するプロセス(GTL:gas to liquid)が注目されている。これらGTLプロセスは天然ガス田の規模が大きいためプロセス開発も比較的大きな物が多く、パイロットプラントでも数BPD(barrel per day)から数十BPDに至る物が稼動もしくは計画中である(非特許文献1)。   In recent years, there has been increased interest in the effective use of petroleum resources and low environmental impact fuels that do not contain sulfur and nitrogen, and the process of synthesizing liquid fuel from natural gas (GTL: gas to liquid) ) Is attracting attention. Many of these GTL processes have relatively large process developments due to the large scale of natural gas fields, and pilot plants are operating or planning to operate from several BPDs (barrel per day) to several tens of BPDs (non-patent literature). 1).

しかしながら、バイオマスガスを考えた場合、バイオマス資源量はある地域またはある営農家集合体規模にとどまる可能性が高く、前述の石炭ベースや天然ガスベースの液体燃料化技術をそのままダウンサイジングして適用するには困難な面が少なくない。近年のフィッシャー・トロプシュ合成技術はスラリー床反応器に適した物が多く(特許文献1)、生産性に優れる面はあるが中〜小の営農規模に適応し難いことが考えられる。   However, when considering biomass gas, it is highly possible that the amount of biomass resources will be limited to a certain region or scale of a farmer's farm, and the above-mentioned coal-based and natural gas-based liquid fuel conversion technologies are applied by downsizing them as they are. There are many difficult aspects. Many Fischer-Tropsch synthesis technologies in recent years are suitable for slurry bed reactors (Patent Document 1), and although it is excellent in productivity, it is considered difficult to adapt to medium to small farming scales.

オレフィン類の炭素数変換に関しては、担持酸化モリブデン触媒、担持コバルト触媒などの試みがあるが、これらは随伴ガスや、FT合成で得られる低級オレフィンの選択的なオリゴメリゼーション(oligomerization)を狙ったもの(非特許文献2)であり、FT反応の根本的な促進効果につながる技術ではない。
鈴木、平山 エコインダストリー 第5巻、第10号、24〜31ページ(2000) 鈴木、機能材料、第27巻、第6号、48〜54ページ(2007) 特開2004−322085号公報
Regarding conversion of carbon number of olefins, there are attempts to use supported molybdenum oxide catalyst, supported cobalt catalyst, etc., but these aimed at the selective oligomerization of lower olefins obtained by the accompanying gas and FT synthesis. This is a technology (Non-patent Document 2) and is not a technology that leads to a fundamental promotion effect of the FT reaction.
Suzuki, Hirayama Ecoindustry Vol. 5, No. 10, pp. 24-31 (2000) Suzuki, Functional Materials, Vol. 27, No. 6, pp. 48-54 (2007) Japanese Patent Laid-Open No. 2004-322085

これまで開示されている炭化水素類の合成方法としてのフィッシャー・トロプシュ反応では合成ガスを原料として操業されており、反応速度の一層の向上には限界があった。   The Fischer-Tropsch reaction as a method for synthesizing hydrocarbons disclosed so far is operated using synthesis gas as a raw material, and there is a limit to further improving the reaction rate.

本発明は、バイオマスのガス化工程等で発生する水素および一酸化炭素を主成分とするガス(合成ガス)を生産現場で利用しやすい気体もしくは液状の炭化水素類に効率的に変換することができる炭化水素類の製造方法を提供することを課題としている。   The present invention is capable of efficiently converting hydrogen and carbon monoxide gas (synthetic gas) generated in a biomass gasification step into gas or liquid hydrocarbons that are easy to use at the production site. An object of the present invention is to provide a method for producing a hydrocarbon that can be produced.

本発明は、上記の課題を解決するものとして、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1:一酸化炭素および水素からなる合成ガスにオレフィンを添加した混合気体を、常圧以上5kg/cm2,G未満、空間速度300以上30,000以下、反応温度210℃以上260℃以下で、多孔質シリカ単独の担体または多孔質シリカに周期表第III族またはランタノイド系列から選ばれる少なくとも1種の金属酸化物を含有する担体にコバルト金属換算、触媒質量基準で5質量%以上25質量%以下のコバルトを含有する触媒に接触させることを特徴とする炭化水素類の製造方法。 1: A mixed gas obtained by adding an olefin to a synthesis gas composed of carbon monoxide and hydrogen is porous at an atmospheric pressure of 5 kg / cm 2 and less than G, a space velocity of 300 to 30,000, a reaction temperature of 210 ° C. to 260 ° C. In the form of cobalt metal, a support containing at least one metal oxide selected from Group III of the periodic table or a lanthanoid series in porous silica alone or in a porous metal content of 5% by mass to 25% by mass based on the catalyst mass A method for producing hydrocarbons, comprising contacting with a catalyst containing cobalt.

第2:触媒は、周期表第III族またはランタノイド系列から選ばれる少なくとも1種の金属酸化物のモル数と担持コバルト金属原子数の比(mol/atom比)が0.09以上1.00以下であることを特徴とする上記第1の炭化水素類の製造方法。   2: The catalyst has a ratio (mol / atom ratio) between the number of moles of at least one metal oxide selected from Group III of the periodic table or the lanthanoid series and the number of supported cobalt metal atoms (0.09 to 1.00). The manufacturing method of said 1st hydrocarbon characterized by the above-mentioned.

第3:触媒は、水素流通下500℃で1時間以上水素還元したときの35℃での触媒重量当たりの一酸化炭素吸着量が標準状態換算で0.60mL/g以上であることを特徴とする上記第1または第2の炭化水素類の製造方法。   Third: The catalyst is characterized in that the amount of carbon monoxide adsorbed per catalyst weight at 35 ° C when hydrogen reduced at 500 ° C for 1 hour or more under hydrogen flow is 0.60 mL / g or more in terms of standard conditions. The manufacturing method of the said 1st or 2nd hydrocarbons.

第4:触媒は、500℃、常圧で1時間以上水素還元後50℃に降温し、一酸化炭素8容量%以上12容量%以下を含有するヘリウムガスを同温度で平衡吸着させ、毎分5℃で50℃から400℃まで昇温する工程において、200℃以上260℃以下の温度範囲で脱離する一酸化炭素量が触媒質量あたり標準状態換算で0.06mL/g以上であることを特徴とする上記第1から第3のいずれかの炭化水素類の製造方法。   Fourth: The catalyst is reduced to 50 ° C after hydrogen reduction at 500 ° C and atmospheric pressure for 1 hour or more, and helium gas containing 8% to 12% by volume of carbon monoxide is equilibrated and adsorbed at the same temperature every minute. In the process of increasing the temperature from 50 ° C to 400 ° C at 5 ° C, the amount of carbon monoxide desorbed in the temperature range from 200 ° C to 260 ° C is 0.06 mL / g or more in terms of standard state per catalyst mass The method for producing any one of the first to third hydrocarbons.

本発明によれば、バイオマスなどの工業地帯から遠隔地にある産地において、輸送等が足かせとなり単に燃焼させて熱源として利用するなど低付加価値の利用方法しかないバイオマス由来の水素や一酸化炭素を主成分とする発熱量の低いガスを生産現場で利用しやすい気体もしくは液状の炭化水素類に比較的穏和な圧力下で効率的に変換することができる。バイオマス源としては、畜産廃棄物(糞・尿を含む)、木質、食品残渣などの利用が考えられる。   According to the present invention, biomass-derived hydrogen or carbon monoxide, which has only a low added-value utilization method, such as being used as a heat source by being transported and used as a heat source in a production area that is remote from an industrial area such as biomass, is provided. A gas having a low calorific value as a main component can be efficiently converted into a gas or liquid hydrocarbon that is easy to use at the production site under a relatively moderate pressure. As biomass sources, use of livestock waste (including feces and urine), wood, and food residues can be considered.

また本発明によれば、国内外に存在する小規模な油田やガス田から随伴ガス、天然ガスを始め炭層ガス等の改質等の処理によって得られる水素や一酸化炭素を主成分とするガスも好ましく利用できるため、LPG〜ナフサ留分などの輸送性が優れ、高カロリーな付加価値の高いエネルギー源に変換することができる。   In addition, according to the present invention, gas mainly composed of hydrogen and carbon monoxide obtained from a small oil field or gas field existing at home and abroad by processing such as associated gas, natural gas, and coal bed gas. Can also be preferably used, so that it can be converted into an energy source with excellent transportability such as LPG to naphtha fraction and high calorie value added.

以下に本発明の詳細を開示するが、本発明の技術内容をより具体的に説明するためのものであり、本発明の範囲を限定するものではない。本明細書において、「常圧」とは大気圧(760mmHg=1013hPa)を指し、ゲージ圧(kg/cm2,G)では0に相当する。
(炭化水素類の製造方法)
本発明の方法では、一酸化炭素、水素、オレフィンを主成分とする気体を固定床(fixed bed)の触媒層へ通気することによって炭化水素類を合成する。
(オレフィン)
オレフィンにはエチレン、プロピレン、ブテン、ペンテン等の直鎖のアルケン類を好ましく用いることができる。特に、末端に二重結合を有するα−オレフィンが好ましく、ブテン、ペンテン等に関しては1−ブテン、1−ペンテン等が好適である。随伴ガスやバイオガスなどに含有されるエチレンを最も好ましく使用することができる。また用いるオレフィンには該オレフィン成分が主として含まれていればよい。なお、オレフィンの含有量は約60%以上が望ましい。これ未満の場合、炭化水素類の合成効率が低くなる可能性が考えられる。
(水素)
水素ガスを含む気体としては、水素単独、水素と水蒸気、水素と窒素、水素と希ガス類、水素と水蒸気と窒素、水素と水蒸気と希ガス類などを好ましく使用することができる。水素ガスを含む気体中の水素含有量は30vol.%以上が好ましい。水素含有量がこれ未満になると還元時間が長くなり生産性の観点から技術的な意義が希薄となる。
(一酸化炭素)
一酸化炭素を主成分としていれば好ましく使用することができ、一酸化炭素の含有量は約60%以上が好ましい。これ未満では分圧が低下するためなどの理由により炭化水素類の合成効率が低くなる可能性が考えられる。
(原料ガス)
原料ガスには水素、一酸化炭素およびオレフィンの混合ガスを用いる。原料ガス中の水素と一酸化炭素の比(H2/CO比)は0.4以上2.5以下が好ましく、0.5以上2.3以下がより好ましく1.8以上2.2以下が最も好ましい。この範囲未満では水素不足となり充分な生産性が確保し難くなり、この範囲を超過するとフィードガス中のオレフィンが水素添加され技術的な優位性が希薄となる。原料ガス中のオレフィン含有量は5vol.%以上50vol.%以下が好ましい。これ未満では合成ガスのみを使用する一般的なフィッシャー・トロプシュ反応との優位性が希薄となり技術的な意味を失う。これを超過した場合、合成ガス(水素と一酸化炭素の混合気体)の分圧が相対的に低下するため、主反応であるフィッシャー・トロプシュ反応速度が低下する傾向が見られ生産性が低下し技術的な意義が希薄になる傾向が予想される。
(反応促進の理由)
炭化水素合成の中心的な反応であるフィッシャー・トロプシュ反応の機構は下記式に示すように一酸化炭素と水素から生ずるアルキリデン種が逐次増炭すると考えられている。
Details of the present invention will be disclosed below, but this is intended to explain the technical contents of the present invention more specifically, and does not limit the scope of the present invention. In this specification, “normal pressure” refers to atmospheric pressure (760 mmHg = 1013 hPa), and corresponds to 0 in gauge pressure (kg / cm 2 , G).
(Method for producing hydrocarbons)
In the method of the present invention, hydrocarbons are synthesized by passing a gas mainly composed of carbon monoxide, hydrogen, and olefin through a fixed bed catalyst layer.
(Olefin)
As the olefin, linear alkenes such as ethylene, propylene, butene and pentene can be preferably used. In particular, α-olefins having a double bond at the terminal are preferable, and 1-butene, 1-pentene, and the like are preferable for butene, pentene, and the like. Ethylene contained in the accompanying gas or biogas can be most preferably used. Further, the olefin to be used only needs to mainly contain the olefin component. The olefin content is preferably about 60% or more. If it is less than this, the synthesis efficiency of hydrocarbons may be lowered.
(hydrogen)
As the gas containing hydrogen gas, hydrogen alone, hydrogen and water vapor, hydrogen and nitrogen, hydrogen and rare gases, hydrogen and water vapor and nitrogen, hydrogen, water vapor and rare gases can be preferably used. The hydrogen content in the gas containing hydrogen gas is preferably 30 vol.% Or more. If the hydrogen content is less than this, the reduction time becomes longer, and the technical significance is diminished from the viewpoint of productivity.
(Carbon monoxide)
If carbon monoxide is a main component, it can be preferably used, and the content of carbon monoxide is preferably about 60% or more. If it is less than this, there is a possibility that the synthesis efficiency of hydrocarbons is lowered due to the reason that the partial pressure decreases.
(Raw material gas)
A mixed gas of hydrogen, carbon monoxide and olefin is used as the raw material gas. The ratio of hydrogen to carbon monoxide (H 2 / CO ratio) in the raw material gas is preferably 0.4 or more and 2.5 or less, more preferably 0.5 or more and 2.3 or less, and most preferably 1.8 or more and 2.2 or less. If it is less than this range, it becomes difficult to ensure sufficient productivity because hydrogen is insufficient, and if it exceeds this range, the olefin in the feed gas is hydrogenated and the technical advantage becomes dilute. The olefin content in the raw material gas is preferably 5 vol.% Or more and 50 vol.% Or less. Below this, the advantage over the general Fischer-Tropsch reaction using only synthesis gas is diminished, and the technical meaning is lost. If this value is exceeded, the partial pressure of the synthesis gas (mixed gas of hydrogen and carbon monoxide) will decrease relatively, and the reaction rate of the Fischer-Tropsch reaction, which is the main reaction, will tend to decrease and productivity will decrease. The trend of technical significance is expected to be sparse.
(Reason for reaction promotion)
The mechanism of the Fischer-Tropsch reaction, which is the central reaction of hydrocarbon synthesis, is thought to be the sequential increase of alkylidene species generated from carbon monoxide and hydrogen, as shown in the following formula.

Figure 2009102460
Figure 2009102460

このようにアルキリデン種(M=CH等)が一酸化炭素と水素から供給され、触媒表面の活性点近傍で逐次炭素数を増やし、LPG分、ライトナフサ分、ヘビーナフサ分などが生産されてくる。 In this way, alkylidene species (M = CH 2 etc.) are supplied from carbon monoxide and hydrogen, and the number of carbons is successively increased in the vicinity of the active point on the catalyst surface to produce LPG, light naphtha, heavy naphtha and the like. .

本発明では活性を向上させるためには触媒表面上の活性点近傍のアルキリデン種生成を円滑に進め炭化水素類の合成を容易に引き起こすことに着目している。アルキリデン種の生成を促進させるために一酸化炭素と水素の混合気体(合成ガス)にオレフィンを添加し、オレフィンからのアルキリデン種生成を促し、フィッシャー・トロプシュ反応による炭化水素合成を促進させる狙いがある(下記式参照)。   In the present invention, in order to improve the activity, attention is paid to the smooth generation of alkylidene species in the vicinity of the active site on the catalyst surface, which easily causes the synthesis of hydrocarbons. In order to promote the production of alkylidene species, olefin is added to a mixed gas of carbon monoxide and hydrogen (synthesis gas) to promote the production of alkylidene species from olefins and to promote hydrocarbon synthesis by the Fischer-Tropsch reaction. (See formula below).

Figure 2009102460
Figure 2009102460

すなわち、エチレン、プロピレン、1−ブテン等、末端メチレン基を有するオレフィンを後述の触媒に接触させることにより、オレフィンからアルキリデン種を触媒表面上の活性点近傍に供給し、一酸化炭素と水素から供給されるアルキリデン種とともにFT反応に組み込んでいくところが特徴である。従って、上記のようにオレフィンが水素添加されパラフィンに添加してしまうと、オレフィンから供給されるアルキリデン種濃度が減少し、通常の合成ガスのみを利用するフィッシャー・トロプシュ反応との優位性が希薄になる。
(反応温度)
反応温度は210℃以上260℃以下が好ましく、210℃以上250℃以下がより好ましく、225℃以上245℃以下が最も好適である。これ未満では充分な反応速度が得られない可能性が高くなり、これを超過すると連鎖成長が抑制され易くなって低級炭化水素の生成が著しくなる。その結果として輸送性に優れる炭化水素留分の収量が減少する虞があるため好ましくない。
(系内圧力)
圧力は常圧であっても反応は進行し特に制限はされない。よって常圧以上5kg/cm2,G未満が好ましい。得られる炭化水素をユーザーに供給する際や、電力交換する際のガスエンジンに供給する際などを考えた場合、多少の圧力を保有していることが望ましく、その観点から0.2kg/cm2,G以上5kg/cm2,G以下がより好ましい。この範囲未満では、生産性の低下が起こりやすく技術的な意義が希薄となる。この範囲を超過するとオレフィンの水素添加反応が活発になり、オレフィンを供給することによる高効率な炭化水素類の合成技術を提供する本発明の優位性は希薄になる。
(原料ガスの通気量)
原料ガスの通気量はGHSV(1時間フィードが通過する標準状態換算の体積を触媒の体積で割った数字;gas hourly space velocity)で300(vol/vol)h-1以上30,000(vol/vol)h-1以下が好ましく、1,000(vol/vol)h-1以上27,000(vol/vol)h-1以下がより好ましく、1,500(vol/vol)h-1以上12,000(vol/vol)h-1以下が最も好ましい。通気量がこれ未満では空時収量が少なくなり不経済となり、通気量がこれを超過すると転化率が頭打ちになり、分離工程が難しくなる可能性がある。なお、標準状態(STP)に換算するのは、反応圧、反応温度によってガスの体積が変化するので、ある一定基準での体積に換算し触媒上を通過する反応分子数を定量評価するためである。
(触媒担体の成分)
触媒担体は、多孔質シリカ単独または、多孔質シリカに周期表第III族またはランタノイド系列から選ばれる少なくとも1種の金属酸化物を含有するものである。中でも、後者を触媒担体として用いた場合には触媒性能が改善する。当該金属また金属酸化物に用いられる周期表第III族の金属元素の具体例としては、イットリウム、スカンジウムを挙げることができる。中でもイットリウムが好ましい。当該金属または金属酸化物に用いられるランタノイド系列の金属元素の具体例としては、ランタン、セリウム、プラセオジム、ネオジムを挙げることができる。その中でもランタン、セリウムが最も好ましい。
(触媒担体の物性)
担体の成分として使用するシリカの比表面積は250m2/g以上が好ましく、300m2/g以上がさらに好ましく、320m2/g以上が最も好ましい。比表面積の上限は特に限定されないが、工業的な用途を考えた場合の実質的な上限は500m2/g程度と考えられる。
That is, by contacting an olefin having a terminal methylene group such as ethylene, propylene, and 1-butene with a catalyst described later, an alkylidene species is supplied from the olefin to the vicinity of the active point on the catalyst surface, and supplied from carbon monoxide and hydrogen. It is characterized by being incorporated into the FT reaction together with the alkylidene species. Therefore, if the olefin is hydrogenated and added to paraffin as described above, the concentration of the alkylidene species supplied from the olefin decreases, and the advantage over the Fischer-Tropsch reaction using only ordinary synthesis gas becomes dilute. Become.
(Reaction temperature)
The reaction temperature is preferably 210 ° C or higher and 260 ° C or lower, more preferably 210 ° C or higher and 250 ° C or lower, and most preferably 225 ° C or higher and 245 ° C or lower. If it is less than this, there is a high possibility that a sufficient reaction rate will not be obtained, and if this is exceeded, chain growth is likely to be suppressed, and the production of lower hydrocarbons becomes remarkable. As a result, the yield of a hydrocarbon fraction having excellent transportability may be reduced, which is not preferable.
(Internal pressure)
Even if the pressure is normal pressure, the reaction proceeds and is not particularly limited. Therefore, it is preferably at least normal pressure and less than 5 kg / cm 2 and G. Considering when supplying the obtained hydrocarbons to the user or when supplying to the gas engine when exchanging power, it is desirable to have some pressure, from that viewpoint 0.2 kg / cm 2 , G to 5 kg / cm 2 , G is more preferable. If it is less than this range, the productivity tends to decrease, and the technical significance is diminished. When this range is exceeded, the hydrogenation reaction of olefins becomes active, and the superiority of the present invention that provides highly efficient synthesis techniques for hydrocarbons by supplying olefins becomes dilute.
(Rubber flow rate of raw material gas)
Aeration rate of raw material gas is GHSV (number obtained by dividing the volume converted to the standard state through which the one-hour feed passes by the volume of the catalyst; gas hourly space velocity), 300 (vol / vol) h -1 to 30,000 (vol / vol) h -1 or less is preferable, 1,000 (vol / vol) h -1 to 27,000 (vol / vol) h -1 or less is more preferable, 1,500 (vol / vol) h -1 to 12,000 (vol / vol) h -1 The following are most preferred. If the aeration rate is less than this, the space time yield is reduced, which is uneconomical. If the aeration rate is exceeded, the conversion rate reaches a peak and the separation process may become difficult. Note that the standard state (STP) is converted to the gas volume depending on the reaction pressure and reaction temperature, so that the number of reaction molecules passing over the catalyst can be quantitatively evaluated by converting the volume to a certain standard. is there.
(Catalyst carrier components)
The catalyst carrier is porous silica alone or contains at least one metal oxide selected from Group III of the periodic table or a lanthanoid series in the porous silica. Among these, when the latter is used as a catalyst carrier, the catalyst performance is improved. Specific examples of Group III metal elements used in the metal or metal oxide include yttrium and scandium. Of these, yttrium is preferable. Specific examples of the lanthanoid series metal elements used for the metal or metal oxide include lanthanum, cerium, praseodymium, and neodymium. Of these, lanthanum and cerium are most preferred.
(Physical properties of catalyst carrier)
The specific surface area of silica used as a component of the carrier is preferably not less than 250m 2 / g, more preferably more than 300m 2 / g, 320m 2 / g or more is most preferred. The upper limit of the specific surface area is not particularly limited, but the substantial upper limit when considering industrial use is considered to be about 500 m 2 / g.

シリカの細孔容積は0.6mL/g以上が好ましく、0.8mL/g以上がより好ましく、1.0mL/g以上が最も好ましい。上記範囲未満の細孔容積を持った担体を選択した場合、製品ロット間の性能の変動が大きくなる虞があり、安定した触媒を充填する意味で重要になる。細孔容積の上限に関しての制限はないが、実質的には約1.5mL/gが上限と考えられる。   The pore volume of silica is preferably 0.6 mL / g or more, more preferably 0.8 mL / g or more, and most preferably 1.0 mL / g or more. When a carrier having a pore volume less than the above range is selected, there is a risk that performance fluctuations between product lots may increase, which is important in terms of filling a stable catalyst. There is no limit on the upper limit of the pore volume, but it is considered that the upper limit is substantially about 1.5 mL / g.

シリカの平均細孔径は5nm以上60nm以下が好ましく、6nm以上15nm以下がより好ましく、9nm以上12nm以下が最も好ましい。平均細孔径が該範囲未満であると活性金属の担持量が多い触媒の場合、細孔径の閉塞などによる性能低下が起こる可能性がある。また、上限は特に限定されるものではないが実質的な上限は50nm〜60nm程度と考えられる。
(炭化水素類合成用触媒)
本発明に用いられる炭化水素類合成用触媒は、上述のシリカ単独の担体またはIII族金属またはランタノイド系列金属を添加したシリカ担体に活性金属としてコバルトを含有している。
(コバルトの含有量)
コバルト含有量はCo換算、触媒質量基準で5質量%以上25質量%以下が好ましく、8質量%以上25質量%以下がより好ましく9.5質量%以上15質量%以下が最も好ましい。コバルト含有量がこの範囲外であると充分な活性、選択性が得にくくなる場合がある。なお、助触媒としてコバルト以外の金属類を添加することや、離型剤などの成分を添加することを妨げない。
(周期表第III族またはランタノイド系列の金属酸化物の含有量)
周期表第III族またはランタノイド系列から選ばれる少なくとも1種の金属酸化物を触媒成分として添加する場合にあっては、該金属酸化物のモル数と担持コバルト金属原子数の比が0.09(mol/atom比)以上1.00(mol/atom比)以下であることが好ましい。
(触媒の調製方法)
触媒の調製方法は公知の方法を好ましく使用することが出来る。例えば、混練法、含浸法、ゾル−ゲル法(アルコキシド法)など公知方法により調製すればよい。触媒の形状は錠剤状、球状、円柱状、角柱状、四つ葉型、三つ葉型、ラシヒリング状、中空状、繊維状、紡錘型、粉末状、顆粒状、ハニカム状など様々な形状を好ましく使用することが出来る。
(触媒の備えるべき物理化学的な特性)
(触媒の物理化学的特性1:一酸化炭素の吸着量)
本反応に好適な触媒の作用状態(working state)は低酸化状態のコバルト種である。一酸化炭素は低酸化状態のコバルト種に化学吸着しやすい性質を有しており、一酸化炭素の吸着量は触媒活性の指標となる。好ましくは、水素流通下500℃で1時間以上水素還元したときの35℃での触媒重量当たりの一酸化炭素吸着量が標準状態換算(stp; standard temperature and pressure)で0.60mL/g以上である。一酸化炭素の吸着量がこれ未満であると充分な触媒活性が得られにくくなる可能性がある。
(触媒の物理化学的特性2:一酸化炭素の脱離量)
一酸化炭素の脱離量は活性点数を反映するものと考えられ、本発明で取り扱う反応に好適な触媒が示す一酸化炭素の脱離量は次のとおりである。すなわち、触媒を500℃、常圧で1時間水素還元後50℃に降温し、一酸化炭素8容量%以上12容量%以下を含有するヘリウムガスを同温度で平衡吸着させ、毎分5℃で50℃から400℃まで昇温する工程において、200℃以上260℃以下の温度範囲で脱離する一酸化炭素量が触媒重量あたり標準状態換算で0.06mL/g以上であることが好ましい。一酸化炭素脱離量がこれ未満であると充分な活性点数が得られにくくなる可能性がある。
(触媒の前処理)
本発明の炭化水素類の合成方法は、一酸化炭素、水素およびオレフィンを主成分とする混合気体を通気するため、前処理を省略しても原料ガスが還元性を示すためフィッシャー・トロプシュ反応は進行するが触媒の前処理は担持されたコバルト種の多くを好適な作用状態に近づけるために行うものであり、反応初期から安定した生産性を確保するためには前処理を行うことが望ましい。
(前処理の内容)
炭素鎖延長反応に先立ち触媒を以下に述べる前処理により活性化する。触媒の前処理は真空排気または不活性ガス雰囲気で350℃以上600℃以下で1時間以上行った後、水素ガスまたは水素ガスを主として含む気体で350℃以上600℃以下で1時間以上還元処理し、この後、真空排気または不活性ガス雰囲気で350℃以上600℃以下で1時間以上処理する。この後反応温度に保持してフィッシャー・トロプシュ反応に供すれば良い。生産現場などにおいて不活性ガスの入手が難しい場合には真空排気による加熱排気が適し、その際の系内圧力は×10-3mmHg以下が良い。
(前処理における通気量)
前処理における通気量はGHSV(1時間フィードガスが通過する標準状態換算の体積を触媒の体積で割った数字;gas hourly space velocity)で300(vol/vol)h-1以上30,000(vol/vol)h-1以下が好ましく、1,000(vol/vol)h-1以上27,000(vol/vol)h-1以下がより好ましく、1,500(vol/vol)h-1以上6,000(vol/vol)h-1以下が最も好ましい。これ未満では還元時間が延長し、これを超過した場合には使用されない水素が増加しコストが嵩むなど生産技術としての優位性が希薄になる。
(前処理の不活性ガス通気時の圧力)
不活性ガス雰囲気での加熱処理を行う場合の系内圧力は特に制限は無いが常圧以上10kg/cm2,G未満で行うのが現実的である。不活性ガスとしてはヘリウム、ネオン、アルゴン、窒素などを好ましく使用でき、アルゴン、ヘリウム、窒素がより好ましく、ヘリウムおよび窒素が最も好ましい。
(還元工程の圧力)
前処理を行う際の還元工程における系内圧力は、100mmHg以上10kg/cm2,G未満が好ましく、200mmHg以上7kg/cm2,G 以下がより好ましく、300mmHg以上5kg/cm2,G以下が最も好ましい。この範囲未満では前処理時間が延長し技術的な優位性は希薄となり、この範囲の圧力を超過しても還元に要する時間等の短縮効果が飽和する傾向が強まる。
The average pore diameter of silica is preferably 5 nm to 60 nm, more preferably 6 nm to 15 nm, and most preferably 9 nm to 12 nm. When the average pore size is less than the above range, in the case of a catalyst having a large amount of active metal supported, there is a possibility that the performance may be deteriorated due to pore size blockage or the like. The upper limit is not particularly limited, but the substantial upper limit is considered to be about 50 to 60 nm.
(Catalyst for hydrocarbon synthesis)
The catalyst for synthesizing hydrocarbons used in the present invention contains cobalt as an active metal in the above-described silica alone support or a silica support to which a group III metal or a lanthanoid series metal is added.
(Cobalt content)
The cobalt content is preferably 5% by mass or more and 25% by mass or less, more preferably 8% by mass or more and 25% by mass or less, and most preferably 9.5% by mass or more and 15% by mass or less based on the mass of the catalyst in terms of Co. If the cobalt content is outside this range, it may be difficult to obtain sufficient activity and selectivity. In addition, it does not prevent adding metals other than cobalt as a co-catalyst, and adding components, such as a mold release agent.
(Content of periodic table group III or lanthanoid series metal oxide)
In the case where at least one metal oxide selected from Group III of the periodic table or lanthanoid series is added as a catalyst component, the ratio of the number of moles of the metal oxide to the number of supported cobalt metal atoms is 0.09 mol / mol. The atom ratio is preferably not less than 1.00 (mol / atom ratio).
(Method for preparing catalyst)
As a method for preparing the catalyst, a known method can be preferably used. For example, it may be prepared by a known method such as a kneading method, an impregnation method, a sol-gel method (alkoxide method). Various shapes such as tablets, spheres, cylinders, prisms, four-leaf, three-leaf, Raschig ring, hollow, fiber, spindle, powder, granule, and honeycomb are preferably used as the catalyst shape. I can do it.
(Physical and chemical characteristics of the catalyst)
(Physical and chemical properties of catalyst 1: Adsorption amount of carbon monoxide)
The preferred catalyst working state for this reaction is a low oxidation state cobalt species. Carbon monoxide has the property of being easily chemisorbed to cobalt species in a low oxidation state, and the amount of carbon monoxide adsorbed is an indicator of catalytic activity. Preferably, the adsorption amount of carbon monoxide per catalyst weight at 35 ° C when hydrogen reduction is performed at 500 ° C for 1 hour or more under hydrogen flow is 0.60 mL / g or more in terms of standard state (stp) . If the adsorption amount of carbon monoxide is less than this, it may be difficult to obtain sufficient catalytic activity.
(Physical and chemical properties of catalyst 2: amount of carbon monoxide desorption)
The amount of carbon monoxide desorbed is considered to reflect the number of active sites, and the amount of carbon monoxide desorbed by the catalyst suitable for the reaction handled in the present invention is as follows. That is, the catalyst is reduced to 50 ° C. after hydrogen reduction at 500 ° C. and normal pressure for 1 hour, and helium gas containing 8% to 12% by volume of carbon monoxide is equilibrated and adsorbed at the same temperature at 5 ° C. per minute. In the step of raising the temperature from 50 ° C. to 400 ° C., the amount of carbon monoxide desorbed in the temperature range of 200 ° C. or more and 260 ° C. or less is preferably 0.06 mL / g or more in terms of standard state per catalyst weight. If the carbon monoxide desorption amount is less than this, it may be difficult to obtain a sufficient number of active points.
(Catalyst pretreatment)
In the method for synthesizing hydrocarbons according to the present invention, since the mixed gas mainly composed of carbon monoxide, hydrogen and olefin is vented, the Fischer-Tropsch reaction is performed even if the pretreatment is omitted. Although progressing, the pretreatment of the catalyst is carried out in order to bring most of the supported cobalt species close to a suitable working state, and it is desirable to carry out the pretreatment in order to ensure stable productivity from the beginning of the reaction.
(Content of pre-processing)
Prior to the carbon chain extension reaction, the catalyst is activated by the pretreatment described below. The catalyst is pretreated at 350 ° C or higher and 600 ° C or lower for 1 hour or longer in vacuum exhaust or in an inert gas atmosphere, and then reduced at 350 ° C or higher and 600 ° C or lower for 1 hour or longer with hydrogen gas or a gas mainly containing hydrogen gas. Thereafter, the substrate is treated at 350 ° C. or higher and 600 ° C. or lower for 1 hour or longer in a vacuum exhaust or inert gas atmosphere. Thereafter, the reaction temperature may be maintained and the Fischer-Tropsch reaction may be performed. When it is difficult to obtain an inert gas at the production site, heating and exhausting by vacuum exhaust is suitable, and the internal pressure at that time is preferably less than × 10 -3 mmHg.
(Air flow rate during pretreatment)
The pre-treatment aeration volume is GHSV (a value obtained by dividing the volume converted to the standard state through which the feed gas passes for 1 hour by the volume of the catalyst; gas hourly space velocity), 300 (vol / vol) h -1 or more and 30,000 (vol / vol ) h -1 or less are preferred, 1,000 (vol / vol) h -1 or 27,000 (vol / vol) h -1, more preferably less, 1,500 (vol / vol) h -1 or 6,000 (vol / vol) h - Most preferred is 1 or less. If it is less than this, the reduction time will be extended, and if it exceeds this, hydrogen that is not used will increase and the cost will increase, and the superiority as a production technique will become dilute.
(Pressure during pretreatment inert gas ventilation)
There is no particular limitation on the pressure in the system when performing the heat treatment in an inert gas atmosphere, but it is realistic to carry out at a normal pressure or more and less than 10 kg / cm 2 and G. As the inert gas, helium, neon, argon, nitrogen and the like can be preferably used, argon, helium and nitrogen are more preferable, and helium and nitrogen are most preferable.
(Reduction process pressure)
Pretreatment system pressure in the reduction step in performing is preferably less than 10kg / cm 2, G 100mmHg, more 7 kg / cm 2, more preferably at most G 200 mmHg, 300 mmHg or more 5 kg / cm 2, G or less and most preferable. If it is less than this range, the pretreatment time will be extended and the technical advantage will be dilute, and even if the pressure in this range is exceeded, the tendency to saturate the shortening effect such as the time required for reduction will increase.

以下に実施例により本発明をより詳細に開示する。しかしながら実施例等は本発明の本質を説明するためのものであり、これらによって本発明の範囲を限定的に解釈してはならない。   Hereinafter, the present invention will be disclosed in more detail by way of examples. However, the examples and the like are for explaining the essence of the present invention, and the scope of the present invention should not be construed as being limited thereto.

(触媒調製)
予め520℃で3時間焼成した平均粒子径3mm、比表面積380m2/g、細孔容積1.0mL/gのシリカ(SiO2)に硝酸コバルト(Co(NO3)2・6H2O)水溶液を含浸後、ロータリーエバポレータ内で40〜60℃で加温しながらアスピレーターで減圧し水分除去後、マッフル炉で500℃、3時間焼成しシリカ担持コバルト触媒(Co/SiO2触媒と略記する)を得た。このときの組成はCoが金属換算触媒重量基準で5質量%および残部シリカであった。
(反応装置)
反応には流通系反応装置を用いガス状生成物は気液分離器を経た後ガス捕集袋に捕集し熱伝導度型(TCD)および水素炎イオン化検出型(FID)ガスクロマトグラフ(島津製作所製 GC-14B)で分析した。
(反応成績)
該触媒2mL(1.8g)を温度調節器(富士電気製 PXR3型)により制御された電気炉内で500℃を維持しながらで常圧でアルゴンをGHSV3,000(v/v)h-1で1時間通気後、水素に切り替えGHSV3,000(v/v)h-1で2時間通気しながら還元した。水素還元終了後、500℃、常圧でアルゴンに切り替えて1時間通気し前処理を完了した。引き続きアルゴンを常圧でGHSV3,000(v/v)h-1で通気しながら触媒床温度を245℃とし、水素と一酸化炭素の割合がH2:CO=2:1の合成ガス90vol.%、オレフィン(エチレン)10vol.%の混合気体をマスフローコントローラ(Emerson社製、モデル5850E)を介し圧力0.5kg/cm2,G、GHSV10,300(v/v)h-1で通気しフィッシャー・トロプシュ反応を行った。このときの液状炭化水素の目安となる炭素数5以上炭化水素(C5+と略記)の空時収量は17.0mmol/hを示した。
(物理化学特性の測定結果)
(CO吸着量)この触媒の物理化学的な特性は、CO吸着量に関しては該触媒1gを精秤し500℃で1時間還元後、COパルスを吸着が飽和するまで35℃で吸着させたときの触媒重量あたり標準状態換算でのCO吸着量は0.60mL/gを示した。
(CO脱離量)
該触媒1gを精秤し500℃で1時間還元後、COパルスを吸着が飽和するまで50℃で吸着平衡に至らしめ、毎分5℃で50℃から400℃まで昇温する工程において、200℃以上260℃以下の温度範囲で脱離してきたCO量は触媒重量当たり標準状態換算で0.08mL/gを示した。
(Catalyst preparation)
Cobalt nitrate (Co (NO 3 ) 2 · 6H 2 O) aqueous solution in silica (SiO 2 ) with an average particle size of 3 mm, specific surface area of 380 m 2 / g, pore volume of 1.0 mL / g, pre-fired at 520 ° C. for 3 hours After impregnation, the water is removed from the aspirator while heating in a rotary evaporator at 40-60 ° C to remove water, and then calcined in a muffle furnace at 500 ° C for 3 hours to obtain a silica-supported cobalt catalyst (abbreviated as Co / SiO 2 catalyst). It was. The composition at this time was 5% by mass of Co based on the weight of the metal-converted catalyst and the remaining silica.
(Reactor)
For the reaction, a gaseous reaction product was used for the reaction, and the gaseous product passed through a gas-liquid separator and was collected in a gas collection bag. Thermal conductivity type (TCD) and flame ionization detection type (FID) gas chromatograph (Shimadzu Corporation) GC-14B).
(Response results)
2 mL (1.8 g) of the catalyst was maintained at 500 ° C. in an electric furnace controlled by a temperature controller (FUJI ELECTRIC PXR3 type), and argon was GHSV3,000 (v / v) h −1 at normal pressure. After aeration for 1 hour, it switched to hydrogen and reduced with aeration at GHSV 3,000 (v / v) h -1 for 2 hours. After the hydrogen reduction was completed, the pretreatment was completed by switching to argon at 500 ° C. and normal pressure and venting for 1 hour. Subsequently, while bubbling argon at normal pressure and GHSV 3,000 (v / v) h -1 , the catalyst bed temperature was changed to 245 ° C, and the ratio of hydrogen to carbon monoxide was 90 vol. Of synthesis gas with H 2 : CO = 2: 1. %, Olefin (ethylene) 10vol.% Mixed gas through a mass flow controller (Emerson, model 5850E) at a pressure of 0.5kg / cm 2 , G, GHSV10,300 (v / v) h -1 A Tropsch reaction was performed. The space-time yield of hydrocarbons having 5 or more carbon atoms (abbreviated as C 5+ ), which is a standard for liquid hydrocarbons at this time, was 17.0 mmol / h.
(Measurement results of physicochemical properties)
(CO adsorption amount) The physicochemical characteristics of this catalyst are as follows. Regarding the CO adsorption amount, 1 g of the catalyst is precisely weighed and reduced at 500 ° C for 1 hour, and then the CO pulse is adsorbed at 35 ° C until the adsorption is saturated. The amount of CO adsorbed in terms of the standard state per catalyst weight was 0.60 mL / g.
(CO desorption amount)
In the step of precisely weighing 1 g of the catalyst and reducing it at 500 ° C. for 1 hour, bringing the CO pulse to adsorption equilibrium at 50 ° C. until the adsorption is saturated, and raising the temperature from 50 ° C. to 400 ° C. at 5 ° C. per minute, The amount of CO desorbed in the temperature range from ℃ to 260 ℃ was 0.08 mL / g in terms of standard state per catalyst weight.

実施例1と同様に調製したCoを金属換算触媒重量基準で10質量%および残部シリカのCo/SiO2触媒を用い反応温度を240℃とした他は実施例1と同様な条件でフィッシャー・トロプシュ反応を行った結果、C5+収率は34.2mmol/hに至り良好な結果を示した。また実施例1と同様にCO吸着量および脱離量を求めた結果、それぞれ触媒重量あたり標準状態換算で0.60mL/gおよび0.11mL/gを示した。総合判定は適であった。 Fischer-Tropsch was prepared under the same conditions as in Example 1 except that Co prepared in the same manner as in Example 1 was 10% by mass based on the weight of the metal-converted catalyst and the reaction temperature was 240 ° C. using a Co / SiO 2 catalyst of the remaining silica. As a result of the reaction, the C 5+ yield reached 34.2 mmol / h, indicating a good result. Further, as a result of obtaining the CO adsorption amount and the desorption amount in the same manner as in Example 1, they showed 0.60 mL / g and 0.11 mL / g in terms of the standard state per catalyst weight, respectively. Comprehensive judgment was appropriate.

実施例1と同様に調製したCoを金属換算触媒重量基準で15質量%および残部シリカのCo/SiO2触媒を用い反応温度を210℃とし、水素と一酸化炭素比を2の合成ガスを80vol.%、エチレン20%の原料ガスを用いた他は実施例1と同様な条件でフィッシャー・トロプシュ反応を行った結果、C5+収率は65.3mmol/hに至り良好な結果を示した。また実施例1と同様にCO吸着量および脱離量を求めた結果、それぞれ触媒重量あたり標準状態換算で0.77mL/gおよび0.17mL/gを示した。総合判定は適であった。 Co prepared in the same manner as in Example 1 was prepared using a Co / SiO 2 catalyst of 15% by mass based on the weight of the metal-converted catalyst and the remaining silica, the reaction temperature was 210 ° C., and the synthesis gas having a hydrogen to carbon monoxide ratio of 2 As a result of performing the Fischer-Tropsch reaction under the same conditions as in Example 1 except that raw material gases of.% And 20% ethylene were used, the C 5+ yield reached 65.3 mmol / h, indicating a good result. Further, as a result of obtaining the CO adsorption amount and the desorption amount in the same manner as in Example 1, they showed 0.77 mL / g and 0.17 mL / g in terms of standard state per catalyst weight, respectively. Comprehensive judgment was appropriate.

実施例1と同様に調製したCoを金属換算触媒重量基準で20質量%および残部シリカのCo/SiO2触媒を用い反応温度を225℃とし水素と一酸化炭素比を2の合成ガスを80vol.%、エチレン20%の原料ガスを用いた他は実施例1と同様な条件でフィッシャー・トロプシュ反応を行った結果、C5+収率は71.0mmol/hに至り良好な結果を示した。また実施例1と同様にCO吸着量および脱離量を求めた結果、それぞれ触媒重量あたり標準状態換算で0.83mL/gおよび0.20mL/gを示した。総合判定は適であった。 Co prepared in the same manner as in Example 1 was 20% by mass based on the weight of the metal-converted catalyst and the remaining silica was a Co / SiO 2 catalyst, the reaction temperature was 225 ° C., and the synthesis gas having a hydrogen to carbon monoxide ratio of 2 was 80 vol. As a result of performing the Fischer-Tropsch reaction under the same conditions as in Example 1 except that raw material gases of 20% and 20% ethylene were used, the C 5+ yield reached 71.0 mmol / h, indicating good results. In addition, as a result of obtaining the CO adsorption amount and the desorption amount in the same manner as in Example 1, they showed 0.83 mL / g and 0.20 mL / g in terms of the standard state per catalyst weight, respectively. Comprehensive judgment was appropriate.

予め520℃で3時間焼成した平均粒子径3mm、比表面積380m2/g、細孔容積1.0mL/gのシリカ(SiO2)に硝酸イットリウム(Y(NO3)2)水溶液を含浸後、ロータリーエバポレータ内で40〜60℃で加温しながらアスピレーターで減圧し水分除去後、マッフル炉で500℃、3時間焼成しイットリア含有シリカ担体得た。これに硝酸コバルト(Co(NO3)2・6H2O)水溶液を含浸後、同様に減圧による水分除去とマッフル炉を用いた焼成を行いイットリア含有シリカ担持コバルト触媒(Co/Y2O3-SiO2触媒と略記する)を得た。このときの触媒の組成はCoが金属換算触媒重量基準で10質量%、イットリア(Y2O3)と担持されたコバルトとの分子/原子(mol/atom)比は0.1であり、その他残部はシリカであった。Co/Y2O3-SiO2触媒を用い反応温度を260℃とし、水素と一酸化炭素比を2の合成ガスを60vol.%、エチレン40vol.%の原料ガスを用いた以外の条件は実施例1と同様としフィッシャー・トロプシュ反応を行った結果、C5+収率は50.3mmol/hに至り良好な結果を示した。また実施例1と同様にCO吸着量および脱離量を求めた結果、それぞれ触媒重量あたり標準状態換算で0.75mL/gおよび0.15mL/gを示した。総合判定は適であった。 After impregnating yttrium nitrate (Y (NO 3 ) 2 ) aqueous solution into silica (SiO 2 ) with an average particle diameter of 3 mm, specific surface area of 380 m 2 / g, and pore volume of 1.0 mL / g, which was calcined at 520 ° C. for 3 hours in advance, rotary While heating at 40 to 60 ° C. in an evaporator, the pressure was reduced with an aspirator to remove moisture, and then the mixture was baked in a muffle furnace at 500 ° C. for 3 hours to obtain an yttria-containing silica support. This was impregnated with an aqueous solution of cobalt nitrate (Co (NO 3 ) 2 · 6H 2 O), followed by water removal under reduced pressure and calcination using a muffle furnace, and a yttria-containing silica-supported cobalt catalyst (Co / Y 2 O 3- (Abbreviated as SiO 2 catalyst). The composition of the catalyst at this time is 10% by mass of Co based on the weight of the metal-converted catalyst, the molecule / atom (mol / atom) ratio between yttria (Y 2 O 3 ) and supported cobalt is 0.1, and the rest is Silica. Except for using Co / Y 2 O 3 -SiO 2 catalyst with a reaction temperature of 260 ° C, hydrogen and carbon monoxide ratio of 2 synthesis gas 60vol.%, Ethylene 40vol.% Source gas As a result of carrying out a Fischer-Tropsch reaction in the same manner as in Example 1, the C 5+ yield reached 50.3 mmol / h, indicating a good result. Further, as a result of obtaining the CO adsorption amount and the desorption amount in the same manner as in Example 1, they showed 0.75 mL / g and 0.15 mL / g in terms of the standard state per catalyst weight, respectively. Comprehensive judgment was appropriate.

実施例5と同様な方法で調製したCoを金属換算触媒重量基準で10質量%、セリア(CeO2)と担持されたとコバルトの分子/原子(mol/atom)比は0.1であり、その他残部はシリカのイットリア含有シリカ担持コバルト触媒(Co/CeO2-SiO2触媒と略記する)を調製した。Co/CeO2-SiO2触媒を用い反応温度を250℃とし、水素と一酸化炭素比を2の合成ガスを60vol.%、エチレン40vol.%の原料ガスを用いた以外の条件は実施例1と同様としフィッシャー・トロプシュ反応を行った結果、C5+収率は51.4mmol/hに至り良好な結果を示した。また実施例1と同様にCO吸着量および脱離量を求めた結果、それぞれ触媒重量あたり標準状態換算で0.64mL/gおよび0.11mL/gを示した。総合判定は適であった。 Co prepared by the same method as in Example 5 was 10% by mass based on the weight of the metal-converted catalyst, and when supported with ceria (CeO 2 ), the cobalt molecule / atom (mol / atom) ratio was 0.1. A silica-supported silica-supported cobalt catalyst (abbreviated as Co / CeO 2 —SiO 2 catalyst) was prepared. Example 1 was performed except that a Co / CeO 2 —SiO 2 catalyst was used, the reaction temperature was 250 ° C., a synthesis gas having a hydrogen to carbon monoxide ratio of 2 was used as a raw material gas of 60 vol.% And ethylene 40 vol.%. As a result of carrying out the Fischer-Tropsch reaction in the same manner as above, the C 5+ yield reached 51.4 mmol / h, indicating a good result. Further, as a result of obtaining the CO adsorption amount and the desorption amount in the same manner as in Example 1, 0.64 mL / g and 0.11 mL / g in terms of the standard state per catalyst weight were shown, respectively. Comprehensive judgment was appropriate.

実施例5と同様な方法で調製したCoを金属換算触媒重量基準で10質量%、ランタニア
(La2O)と担持されたコバルトとの分子/原子(mol/atom)比は0.1であり、その他残部はシリカのランタニア含有シリカ担持コバルト触媒(Co/ La2O-SiO2触媒と略記する)を調製した。Co/ La2O-SiO2触媒を用い反応温度を240℃とした以外の条件は実施例1と同様としフィッシャー・トロプシュ反応を行った結果、C5+収率は40.1mmol/hに至り良好な結果を示した。また実施例1と同様にCO吸着量および脱離量を求めた結果、それぞれ触媒重量あたり標準状態換算で0.75mL/gおよび0.14mL/gを示した。総合判定は適であった。
<比較例1>
10% by mass of Co prepared by the same method as in Example 5 based on the weight of the metal-converted catalyst, lanthania
The molecule / atom (mol / atom) ratio of (La 2 O 3 ) to the supported cobalt is 0.1, and the rest is silica-containing lanthanum-containing silica-supported cobalt catalyst (Co / La 2 O 3 —SiO 2 catalyst). (Abbreviated) was prepared. The Fischer-Tropsch reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 240 ° C. using a Co / La 2 O 3 —SiO 2 catalyst. As a result, the C 5+ yield reached 40.1 mmol / h. Good results were shown. In addition, as a result of obtaining the CO adsorption amount and the desorption amount in the same manner as in Example 1, they showed 0.75 mL / g and 0.14 mL / g in terms of standard state per catalyst weight, respectively. Comprehensive judgment was appropriate.
<Comparative Example 1>

実施例1と同様な方法で調製したCoを金属換算触媒重量基準で2質量%および残部シリカのCo/SiO2触媒を用い反応温度を240℃とした他は実施例1と同様な条件でフィッシャー・トロプシュ反応を行った結果、しかしながらC5+収率は4.1mmol/hにとどまった。また実施例1と同様にCO吸着量および脱離量を求めた結果、それぞれ触媒重量あたり標準状態換算で0.30mL/gおよび0.04mL/gと低い結果となった。これは、コバルトの担持量および触媒の備えるべき物理化学的な特性値が所望値を満たさないため充分な性能が発揮できなかった例であり、総合判定は不適であった。
<比較例2>
Fisher prepared under the same conditions as in Example 1 except that Co prepared by the same method as in Example 1 was 2 mass% based on the weight of the metal-converted catalyst and the reaction temperature was 240 ° C. using a Co / SiO 2 catalyst of the remaining silica. -As a result of carrying out the Tropsch reaction, however, the C5 + yield was only 4.1 mmol / h. Moreover, as a result of obtaining the CO adsorption amount and the desorption amount in the same manner as in Example 1, the results were as low as 0.30 mL / g and 0.04 mL / g in terms of standard state per catalyst weight, respectively. This is an example in which sufficient performance could not be exhibited because the supported amount of cobalt and the physicochemical characteristic values of the catalyst do not satisfy the desired values, and the comprehensive judgment was inappropriate.
<Comparative example 2>

実施例1と同様な方法で調製したCoを金属換算触媒重量基準で35質量%および残部シリカのCo/SiO2触媒を用い反応温度を240℃とした他は実施例1と同様な条件でフィッシャー・トロプシュ反応を行った結果、しかしながらC5+収率は6.5mmol/hにとどまった。また実施例1と同様にCO吸着量および脱離量を求めた結果、それぞれ触媒重量あたり標準状態換算で0.50mL/gおよび0.05mL/gと低い結果となった。これは、コバルトの担持量が過多かつ触媒の備えるべき物理化学的な特性値が所望値を満たさないため充分な性能が発揮できなかった例であり、総合判定は不適であった。
<比較例3>
Fisher prepared under the same conditions as in Example 1 except that Co prepared in the same manner as in Example 1 was 35% by mass based on the weight of the metal-converted catalyst and the reaction temperature was 240 ° C. using a Co / SiO 2 catalyst of the remaining silica. -As a result of the Tropsch reaction, however, the C5 + yield was only 6.5 mmol / h. Moreover, as a result of obtaining the CO adsorption amount and the desorption amount in the same manner as in Example 1, the results were as low as 0.50 mL / g and 0.05 mL / g in terms of the standard state per catalyst weight, respectively. This is an example in which the supported amount of cobalt is excessive and the physicochemical characteristic value that the catalyst should have does not satisfy the desired value, so that sufficient performance could not be exhibited, and the comprehensive judgment was unsuitable.
<Comparative Example 3>

実施例7と同様な方法で調製したCoを金属換算触媒重量基準で10質量%、ランタニア
(La2O)と担持されたコバルトとの分子/原子(mol/atom)比は1.2であり、その他残部はシリカのランタニア含有シリカ担持コバルト触媒(Co/ La2O-SiO2触媒と略記する)を調製した。Co/ La2O-SiO2触媒を用い反応温度を240℃とした以外の条件は実施例1と同様としフィッシャー・トロプシュ反応を行った結果、C5+収率は6.7mmol/hにとどまった。また実施例1と同様にCO吸着量および脱離量を求めた結果、それぞれ触媒重量あたり標準状態換算で0.43mL/gおよび0.05mL/gを示した。これは第3成分であるランタニア量が過大であり触媒上に露出する活性点(低酸化状態のCo)の数が不足し充分な性能が発揮できなかった例であり、総合判定は不適であった。
<比較例4>
10% by mass of Co prepared by the same method as in Example 7 based on the weight of the metal-converted catalyst, lanthania
The molecular / atom (mol / atom) ratio between (La 2 O 3 ) and supported cobalt is 1.2, and the remainder is silica-containing lanthanum-containing silica-supported cobalt catalyst (Co / La 2 O 3 —SiO 2 catalyst). (Abbreviated) was prepared. As a result of performing the Fischer-Tropsch reaction under the same conditions as in Example 1 except that the reaction temperature was 240 ° C. using a Co / La 2 O 3 —SiO 2 catalyst, the C 5+ yield was only 6.7 mmol / h. It was. In addition, as a result of obtaining the CO adsorption amount and the desorption amount in the same manner as in Example 1, it was 0.43 mL / g and 0.05 mL / g in terms of standard state per catalyst weight, respectively. This is an example in which the amount of lanthania, the third component, was excessive, and the number of active sites (Co in a low oxidation state) exposed on the catalyst was insufficient, so that sufficient performance could not be demonstrated. It was.
<Comparative example 4>

反応圧力を9kg/cm2,Gに設定した以外の条件は実施例7と同様としフィッシャー・トロプシュ反応を行った結果、C5+収率は6.1mmol/hにとどまった。これは反応系圧力が高いためにオレフィン(エチレン)の水素添加反応が促進し、本発明の特徴が発現されなかった例であり、総合判定は不適であった。
<比較例5>
The Fischer-Tropsch reaction was carried out under the same conditions as in Example 7 except that the reaction pressure was set to 9 kg / cm 2 and G. As a result, the C 5+ yield was only 6.1 mmol / h. This is an example in which the hydrogenation reaction of olefin (ethylene) was promoted because the reaction system pressure was high, and the characteristics of the present invention were not expressed, and the comprehensive judgment was inappropriate.
<Comparative Example 5>

原料ガス中のエチレンの代わりにアルゴンを加えた他は実施例7と同様にフィッシャー・トロプシュ反応を行った結果である。C5+収率は5.6mmol/hにとどまった。本発明の特徴は合成ガスにエチレンを添加することによりフィッシャー・トロプシュ反応速度を高めることであり、エチレンが共存しない場合には、充分な反応促進効果が得られないことを示す例である。よって総合判定は不適であった。
<比較例6>
The results are the same as in Example 7 except that argon was added instead of ethylene in the raw material gas. The C 5+ yield remained at 5.6 mmol / h. The feature of the present invention is to increase the Fischer-Tropsch reaction rate by adding ethylene to the synthesis gas, which is an example showing that a sufficient reaction promoting effect cannot be obtained when ethylene does not coexist. Therefore, the comprehensive judgment was inappropriate.
<Comparative Example 6>

反応温度を200℃とした以外は実施例2と同様にフィッシャー・トロプシュ反応を行った結果である。C5+収率は2.2mmol/hにとどまった。これは好適な反応温度よりも低温で反応を行ったため充分に反応が進行しないことを示す例である。よって総合判定は不適であった。
<比較例7>
The results are the results of the Fischer-Tropsch reaction as in Example 2 except that the reaction temperature was set to 200 ° C. The C 5+ yield remained at 2.2 mmol / h. This is an example showing that the reaction does not proceed sufficiently because the reaction was conducted at a temperature lower than the preferred reaction temperature. Therefore, the comprehensive judgment was inappropriate.
<Comparative Example 7>

反応温度を290℃とした以外は実施例2と同様にフィッシャー・トロプシュ反応を行った結果である。C5+収率は2.7mmol/hにとどまった。これは好適な反応温度よりも高温で反応を行ったため転化率は高かったが、低級炭化水素の生成が著しくLPGないし液状炭化水素留分が不充分であった例である。よって総合判定は不適であった。
これらの実施例および比較例について表1に纏めて示す。
The results are the results of the Fischer-Tropsch reaction as in Example 2 except that the reaction temperature was 290 ° C. The C 5+ yield remained at 2.7 mmol / h. This is an example in which the conversion was high because the reaction was carried out at a temperature higher than the preferred reaction temperature, but the formation of lower hydrocarbons was remarkably insufficient and the LPG or liquid hydrocarbon fraction was insufficient. Therefore, the comprehensive judgment was inappropriate.
These Examples and Comparative Examples are summarized in Table 1.

Figure 2009102460
Figure 2009102460

Claims (4)

一酸化炭素および水素からなる合成ガスにオレフィンを添加した混合気体を、常圧以上5kg/cm2,G未満、空間速度300以上30,000以下、反応温度210℃以上260℃以下で、多孔質シリカ単独の担体または多孔質シリカに周期表第III族またはランタノイド系列から選ばれる少なくとも1種の金属酸化物を含有する担体にコバルト金属換算、触媒質量基準で5質量%以上25質量%以下のコバルトを含有する触媒に接触させることを特徴とする炭化水素類の製造方法。 A mixed gas obtained by adding olefin to synthesis gas consisting of carbon monoxide and hydrogen is porous silica alone at atmospheric pressure and below 5kg / cm 2 , G, space velocity of 300 to 30,000, reaction temperature of 210 ° C to 260 ° C Cobalt or porous silica containing at least one metal oxide selected from Group III of the periodic table or a lanthanoid series contains cobalt in an amount of 5% by mass to 25% by mass in terms of cobalt metal, based on the catalyst mass A method for producing hydrocarbons, which comprises contacting with a catalyst to be used. 触媒は、周期表第III族またはランタノイド系列から選ばれる少なくとも1種の金属酸化物のモル数と担持コバルト金属原子数の比(mol/atom比)が0.09以上1.00以下であることを特徴とする請求項1記載の炭化水素類の製造方法。   The catalyst is characterized in that the ratio (mol / atom ratio) between the number of moles of at least one metal oxide selected from Group III of the periodic table or the lanthanoid series and the number of supported cobalt metal atoms is 0.09 or more and 1.00 or less. The method for producing a hydrocarbon according to claim 1. 触媒は、水素流通下500℃で1時間以上水素還元したときの35℃での触媒重量当たりの一酸化炭素吸着量が標準状態換算で0.60mL/g以上であることを特徴とする請求項1または2記載の炭化水素類の製造方法。   The catalyst has an adsorption amount of carbon monoxide per catalyst weight at 35 ° C of at least 0.60 mL / g in terms of standard condition when hydrogen reduction is performed at 500 ° C for 1 hour or more under hydrogen flow. Or the manufacturing method of hydrocarbons of 2. 触媒は、500℃、常圧で1時間以上水素還元後50℃に降温し、一酸化炭素8容量%以上12容量%以下を含有するヘリウムガスを同温度で平衡吸着させ、毎分5℃で50℃から400℃まで昇温する工程において、200℃以上260℃以下の温度範囲で脱離する一酸化炭素量が触媒質量あたり標準状態換算で0.06mL/g以上であることを特徴とする請求項1から3のいずれかに記載の炭化水素類の製造方法。   The catalyst is reduced to 50 ° C after hydrogen reduction for 1 hour or more at 500 ° C and normal pressure, and helium gas containing 8% to 12% by volume of carbon monoxide is equilibrated and adsorbed at the same temperature at 5 ° C per minute. In the step of raising the temperature from 50 ° C to 400 ° C, the amount of carbon monoxide desorbed in the temperature range of 200 ° C or more and 260 ° C or less is 0.06 mL / g or more in terms of standard state per mass of the catalyst. Item 4. A method for producing a hydrocarbon according to any one of Items 1 to 3.
JP2007273142A 2007-10-19 2007-10-19 Manufacturing process for hydrocarbons by fischer-tropsch synthesis process Pending JP2009102460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273142A JP2009102460A (en) 2007-10-19 2007-10-19 Manufacturing process for hydrocarbons by fischer-tropsch synthesis process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273142A JP2009102460A (en) 2007-10-19 2007-10-19 Manufacturing process for hydrocarbons by fischer-tropsch synthesis process

Publications (1)

Publication Number Publication Date
JP2009102460A true JP2009102460A (en) 2009-05-14

Family

ID=40704486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273142A Pending JP2009102460A (en) 2007-10-19 2007-10-19 Manufacturing process for hydrocarbons by fischer-tropsch synthesis process

Country Status (1)

Country Link
JP (1) JP2009102460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170100445A (en) * 2016-02-25 2017-09-04 제니스 아게 Angle sensor and method of measuring an angle of a magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170100445A (en) * 2016-02-25 2017-09-04 제니스 아게 Angle sensor and method of measuring an angle of a magnetic field
KR102636168B1 (en) 2016-02-25 2024-02-13 제니스 아게 Angle sensor and method of measuring an angle of a magnetic field

Similar Documents

Publication Publication Date Title
Chen et al. Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust
Tran et al. Conversion of glycerol to hydrogen rich gas
CN108620089B (en) Catalyst for preparing low-carbon olefin by carbon dioxide hydrogenation and preparation method and application thereof
CN102452878A (en) Method for preparing low-carbon olefin by synthetic gas one-step technology
RU2009123534A (en) METHOD FOR PRODUCING ALKENES FROM OXYGENATES USING HETEROPOLIC ACID CATALYSTS SUPPLIED ON CARRIER
KR101437072B1 (en) Catalyst for efficient co2 conversion and method for preparing thereof
CN103864556A (en) Method for production of low carbon olefins from synthetic gas via low carbon alkanes
EP3196181B1 (en) Method for producing butadiene and device for producing butadiene
KR101816787B1 (en) Storage method of activated catalysts for Fischer-Tropsch synthesis
JP5378148B2 (en) Reforming catalyst, reformer, and hydrogen production device
CN103772087B (en) The method of the direct preparing low-carbon olefins of synthesis gas
CN101947451A (en) Cobalt-based catalyst and preparation method and application thereof
LIU et al. Structure and performance of Cu-Fe bimodal support for higher alcohol syntheses
Kumar et al. Tuning of active nickel species in MOF-derived nickel catalysts for the control on acetic acid steam reforming and hydrogen production
JP2009034659A (en) Catalyst for synthesizing hydrocarbons, method for manufacturing the same and method for producing hydrocarbons by using the same
CN108607551A (en) One kind is for dehydrogenating low-carbon alkane metallic catalyst and its preparation method and application
JP2009102460A (en) Manufacturing process for hydrocarbons by fischer-tropsch synthesis process
Zhang et al. Effect of coal ash on the steam reforming of simulated bio-oil for hydrogen production over Ni/γ-Al2O3
Jo et al. Zr-Modified Ni/CaO Dual Function Materials (DFMs) for Direct Methanation in an Integrated CO2 Capture and Utilization Process
CN103521241A (en) Catalyst for direct conversion from synthesis gas to low-carbon olefine and preparation method thereof
US20220331784A1 (en) Catalyst composition for the production of hydrogen
JP5517681B2 (en) Method for producing aromatic compound
KR101392996B1 (en) Mesoporous nickel-alumina-zirconia xerogel catalyst and production method of hydrogen by steam reforming of ethanol using said catalyst
KR101988370B1 (en) Catalysts for methanation of carbon dioxide and the manufacturing method of the same
JP4860226B2 (en) Partial oxidation reforming catalyst and partial oxidation reforming method