JP2009101926A - Vehicular lighting system, and lighting control method - Google Patents

Vehicular lighting system, and lighting control method Download PDF

Info

Publication number
JP2009101926A
JP2009101926A JP2007276684A JP2007276684A JP2009101926A JP 2009101926 A JP2009101926 A JP 2009101926A JP 2007276684 A JP2007276684 A JP 2007276684A JP 2007276684 A JP2007276684 A JP 2007276684A JP 2009101926 A JP2009101926 A JP 2009101926A
Authority
JP
Japan
Prior art keywords
emission intensity
rain
vehicle
light
headlamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007276684A
Other languages
Japanese (ja)
Inventor
Takehiro Kanazawa
健浩 金澤
Bunji Atsumi
文治 渥美
Satoshi Kitahara
聡 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007276684A priority Critical patent/JP2009101926A/en
Publication of JP2009101926A publication Critical patent/JP2009101926A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/085Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to special conditions, e.g. adverse weather, type of road, badly illuminated road signs or potential dangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/125Coloured light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/162Incandescent light sources, e.g. filament or halogen lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/63Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates
    • F21S41/635Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on refractors, filters or transparent cover plates by moving refractors, filters or transparent cover plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/30Indexing codes relating to the vehicle environment
    • B60Q2300/31Atmospheric conditions
    • B60Q2300/312Adverse weather

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicular lighting system for preventing a driver in an opposite vehicle from being dazzled while securing a sufficient quantity of light when a road surface is in a wet condition, and to provide a lighting control method. <P>SOLUTION: The vehicle lighting system 100 is provided for controlling the mode of light to be emitted from a head lamp 14. It comprises a rainfall detecting means 12 for detecting rainfall, and a light emitting intensity control means 21 for making the light emitting intensity of the head lamp 14 with its wavelength shorter than a predetermined wavelength A, lower when the rainfall detecting mean 12 detects rainfall than when it does not detect rainfall. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両用照明装置等に関し、特に、照射する光の態様が可変なヘッドランプを有する車両用照明装置及び照明制御方法に関する。   The present invention relates to a vehicular illumination device and the like, and more particularly, to a vehicular illumination device and a lighting control method having a headlamp in which the aspect of light to be irradiated is variable.

夜間走行時や霧発生時には前照灯等を点灯するが、路面に対する前照灯の反射特性は路面の湿潤の程度に応じて大きく変わり、湿潤していると路面反射が減少したり対向車の運転者を眩惑するおそれがあることが知られている。そこで、気象状況や路面状況を検出してその検出情報に基づいて前照灯の配光分布、光量又は光色を変化させる車両用灯具装置が提案されている(例えば、特許文献1参照。)。特許文献1記載の車両用灯具装置は、路面が湿潤している場合、路面反射が減少することを考慮して自車両の手前側に光が入射するよう配光することで照明効果を向上させ、また、路面が湿潤している場合、路肩方向に配光することで対向車の運転者の眩惑を防止する配光制御について記載されている。   When driving at night or when fog is generated, the headlamps are turned on, but the reflection characteristics of the headlamps on the road surface change greatly depending on the degree of wetness of the road surface. It is known that the driver may be dazzled. Therefore, a vehicle lamp device has been proposed that detects weather conditions and road surface conditions and changes the light distribution, light quantity, or light color of the headlamps based on the detected information (see, for example, Patent Document 1). . The vehicular lamp device described in Patent Document 1 improves the lighting effect by distributing light so that light is incident on the front side of the host vehicle in consideration of a decrease in road surface reflection when the road surface is wet. In addition, there is described light distribution control for preventing dazzling of an oncoming vehicle driver by distributing light in the direction of the road shoulder when the road surface is wet.

また、雨天時の道路標識や路面標示体の視認性を向上させるため、近紫外領域の紫外線を配色して照明する照明装置が提案されている(例えば、特許文献2参照。)。特許文献2記載の照明装置は照明された部分の視認性が向上すると共に、対向車の運転者には知覚されにくいので、眩惑するおそれが少ない。
特開平11−321440号公報 特開2000−16163号公報
In addition, in order to improve the visibility of road signs and road markings during rainy weather, an illuminating device that illuminates by arranging ultraviolet rays in the near ultraviolet region has been proposed (for example, see Patent Document 2). The illumination device described in Patent Document 2 improves the visibility of the illuminated part and is less perceived by the driver of the oncoming vehicle, so there is less risk of dazzling.
Japanese Patent Laid-Open No. 11-32440 JP 2000-16163 A

しかしながら、路面が湿潤状態の場合、対向車に向けて反射する路面反射に着目すると必ずしも路面反射は減少せず、湿潤状態の方が却って多く路面反射が生じ、対向車の運転者を眩惑する一因となる場合があることが実験的に明らかとなってきた。   However, when the road surface is wet, paying attention to the road surface reflection reflected toward the oncoming vehicle, the road surface reflection does not necessarily decrease, but in the wet state, more road surface reflection occurs and the driver of the oncoming vehicle is dazzled. It has become experimentally clear that it may be a cause.

図1(a)は、光の波長域と路面反射率の関係を雨量毎に示した図を示す。なお、この波長域は主に可視光であり、短波長域は青、中波長域は緑に、長波長域は赤にそれぞれ対応する。また、図1(a)では雨量を多、小、ゼロの三段階に分けて路面反射率を表示している。図1(a)から、
・雨量が多いと路面反射率が全波長域に渡り高くなる。
・雨量が多いほど短波長域の路面反射率が高くなる。
ことがわかる。
Fig.1 (a) shows the figure which showed the relationship between the wavelength range of light, and a road surface reflectance for every rainfall. This wavelength range is mainly visible light, the short wavelength range corresponds to blue, the middle wavelength range corresponds to green, and the long wavelength range corresponds to red. Further, in FIG. 1A, the road surface reflectance is displayed by dividing the rainfall into three levels of large, small and zero. From FIG.
・ If there is a lot of rainfall, the road surface reflectance will increase over the entire wavelength range.
・ The higher the rainfall, the higher the road surface reflectance in the short wavelength region.
I understand that.

図1(b)は光の波長域とグレア感の傾向の関係を示す図である。なお、グレア感とは対向車の運転者が眩しさを感じる程度である。図1(b)から、
・短波長域ほどグレア感が強い。
ことがわかる。
FIG. 1B is a diagram showing the relationship between the wavelength range of light and the tendency of glare. Note that the glare is the degree to which the driver of the oncoming vehicle feels dazzling. From FIG.
-The shorter the wavelength, the stronger the glare.
I understand that.

したがって、以上の知見から、特許文献1記載の車両用灯具装置では対向車をさらに眩惑するおそれがあるという問題がある。すなわち、自車両の視認性の確保のために光量を増大させると対向車へのグレア光が強くなるため、仮に路肩方向だけに照射しても対向車の運転者に不快感を与え場合によっては良好な視界を確保できない状況に陥らせる可能性がある。   Therefore, from the above knowledge, there exists a problem that the oncoming vehicle may be further dazzled in the vehicle lamp device described in Patent Document 1. In other words, if the amount of light is increased to ensure the visibility of the host vehicle, the glare light on the oncoming vehicle will become stronger. There is a possibility of falling into a situation where good visibility cannot be secured.

また、特許文献2記載の照明装置のように近紫外線を配色して照明すると自車両及び他車両の運転者の視覚に負担をかけるおそれがある。   Moreover, if near-ultraviolet light is colored and illuminated as in the illumination device described in Patent Document 2, there is a risk of placing a burden on the vision of the driver of the host vehicle and other vehicles.

本発明は、上記課題に鑑み、路面が湿潤状態の場合に十分な光量を確保しながら、対向車の運転者の眩惑を防止する車両用照明装置及び照明制御方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a vehicular lighting device and a lighting control method that prevent a driver of an oncoming vehicle from being dazzled while securing a sufficient amount of light when the road surface is wet. .

上記課題に鑑み、本発明は、ヘッドランプから照射される光の態様を制御する車両用照明装置において、降雨を検出する降雨検出手段と、降雨検出手段が降雨を検出した場合、ヘッドランプの、所定の波長Aよりも短波長側の発光強度を、降雨が検出されない場合よりも低下させる発光強度制御手段と、を有することを特徴とする。   In view of the above problems, the present invention provides a vehicle lighting device that controls the mode of light emitted from a headlamp, and a rain detection unit that detects rain, and when the rain detection unit detects rain, Emission intensity control means for reducing the emission intensity on the shorter wavelength side than the predetermined wavelength A than when no rain is detected is provided.

本発明によれば、グレア感を感じさせやすい短波長側の発光強度を降雨が検出されない場合よりも低下させるので、降雨時に対向車の運転者にグレア感を感じさせることを低減できる。   According to the present invention, since the light emission intensity on the short wavelength side where glare is easily felt is lowered as compared with the case where no rain is detected, it is possible to reduce the feeling of glare to the driver of the oncoming vehicle during rain.

また、本発明の一形態において、発光強度制御手段は、降雨検出手段が降雨を検出した場合、ヘッドランプの、波長A以上の波長Bよりも長波長側の発光強度を、降雨が検出されない場合よりも増加させる、ことを特徴とする。   In one embodiment of the present invention, the light emission intensity control means may detect the light emission intensity of the headlamp on the longer wavelength side than the wavelength B of the wavelength A or more when the rain detection means detects rain, when the rain is not detected. It is characterized by increasing.

本発明によれば、長波長側の発光強度を増加させるので短波長側を低下させても、ヘッドランプの光量が減少することを防止できる。   According to the present invention, since the emission intensity on the long wavelength side is increased, it is possible to prevent the light quantity of the headlamp from decreasing even if the short wavelength side is decreased.

また、本発明の一形態において、対向車を検出する対向車検出手段を有し、発光強度制御手段は、対向車検出手段が対向車を検出した場合にのみ、ヘッドランプの、波長Aよりも短波長側の発光強度を、降雨が検出されない場合よりも低下させる、ことを特徴とする。   Further, in one aspect of the present invention, there is an oncoming vehicle detection unit that detects an oncoming vehicle, and the light emission intensity control unit is more than the wavelength A of the headlamp only when the oncoming vehicle detection unit detects the oncoming vehicle. The light emission intensity on the short wavelength side is lowered as compared with the case where no rain is detected.

本発明によれば、対向車を検出した場合に短波長側の発光強度を低下させるので、対応車とすれ違うことが少ない走行環境では、雨天時でも雨量(ゼロ)の場合と同じように自然な視界となる照明が可能となる。   According to the present invention, when the oncoming vehicle is detected, the light emission intensity on the short wavelength side is reduced. Therefore, in a driving environment that rarely passes the corresponding vehicle, it is as natural as it is in the case of rain (zero) even in rainy weather. Illumination as a field of view becomes possible.

また、本発明の一形態において、発光強度制御手段は、対向車検出手段が測定した対向車との相対距離に応じて、ヘッドランプの発光強度を制御する、ことを特徴とする。   In one embodiment of the present invention, the light emission intensity control means controls the light emission intensity of the headlamp according to the relative distance from the oncoming vehicle measured by the oncoming vehicle detection means.

本発明によれば、対向車との距離に応じて徐々に発光強度が変化するので、自車両又は対向車の運転者に違和感を感じさせることを防止できる。   According to the present invention, since the light emission intensity gradually changes according to the distance from the oncoming vehicle, it is possible to prevent the driver of the own vehicle or the oncoming vehicle from feeling uncomfortable.

また、本発明の一形態において、発光強度制御手段は、降雨検出手段が降雨を検出した場合、ヘッドランプの、所定の波長Aよりも短波長側の発光強度を、降雨が検出されない場合よりも低下させ、かつ、波長A以上の波長Bよりも長波長側の発光強度を、短波長側の発光強度を低下させた発光強度分、降雨が検出されない場合よりも増加させる、ことを特徴とする。   In one embodiment of the present invention, the light emission intensity control means is configured such that when the rain detection means detects rain, the light emission intensity of the headlamp on the shorter wavelength side than the predetermined wavelength A is greater than when no rain is detected. And lowering the emission intensity on the longer wavelength side than the wavelength B equal to or greater than the wavelength A by an amount corresponding to the reduced emission intensity on the shorter wavelength side than when no rain is detected. .

本発明によれば、短波長側の発光強度を低下させても、ヘッドランプの全光量を一定に保つことができる。   According to the present invention, the total light quantity of the headlamp can be kept constant even when the emission intensity on the short wavelength side is lowered.

また、本発明の一形態において、発光強度制御手段は、降雨検出手段が測定した降雨量に応じて、ヘッドランプの発光強度を制御する、ことを特徴とする。   In one embodiment of the present invention, the light emission intensity control means controls the light emission intensity of the headlamp according to the amount of rainfall measured by the rain detection means.

本発明によれば、雨量に応じて発光強度を調整できる。   According to the present invention, the light emission intensity can be adjusted according to the rainfall.

また、本発明の一形態において、発光強度制御手段は、降雨量が多くなるほど、ヘッドランプの、波長Aよりも短波長側の発光強度を低下させる、ことを特徴とする。   In one embodiment of the present invention, the emission intensity control means reduces the emission intensity of the headlamp on the shorter wavelength side than the wavelength A as the amount of rainfall increases.

本発明によれば、雨量に応じて発光強度を低下させるので、雨量が少ない場合に運転者に違和感を感じさせることを防止できる。   According to the present invention, since the light emission intensity is reduced according to the rainfall, it is possible to prevent the driver from feeling uncomfortable when the rainfall is low.

路面が湿潤状態の場合に十分な光量を確保しながら、対向車の運転者の眩惑を防止する車両用照明装置及び照明制御方法を提供することができる。   It is possible to provide a vehicular lighting device and a lighting control method that prevent a driver of an oncoming vehicle from being dazzled while securing a sufficient amount of light when the road surface is wet.

以下、本発明を実施するための最良の形態について、図面を参照しながら実施例を挙げて説明する。本実施形態の車両用照明装置100は、雨量に応じて短波長域の発光強度(例えば、ルーメンやカンデラで表される光度)を低下させることで、雨天時に対向車の運転者がグレア感を感じることを防止する。なお、発光強度とは光源の明るさであるが、本実施形態では可視光(約380nm〜780nm)を対象に制御するので人間が視覚に基づき検知する心理的な明るさであってもよい(例えば、ルーメンで表される照らされる路面面の明るさ)。また、以下では車両用照明装置100の全体の明るさを光量という場合がある。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the accompanying drawings. The vehicle lighting device 100 according to the present embodiment reduces the light emission intensity in a short wavelength region (for example, luminous intensity represented by lumens or candela) according to the amount of rain, so that the driver of the oncoming vehicle can feel a glare when it rains. Prevent feeling. The light emission intensity is the brightness of the light source, but in the present embodiment, visible light (about 380 nm to 780 nm) is controlled, and may be psychological brightness detected by humans based on vision ( For example, the brightness of the illuminated road surface expressed in lumens). Hereinafter, the overall brightness of the vehicular lighting device 100 may be referred to as a light amount.

また、本実施形態では、車両用照明装置100が照射する光の態様(以下、照射特性という)を制御するが、照射特性とは波長域毎の発光強度をいい、光色(スペクトル分布)及び光量(明るさ)の双方を独立に制御することができる。   Further, in the present embodiment, the aspect of light (hereinafter referred to as irradiation characteristics) irradiated by the vehicular lighting device 100 is controlled. The irradiation characteristics refer to the emission intensity for each wavelength region, and the light color (spectral distribution) and Both the amount of light (brightness) can be controlled independently.

また、図1において説明したように路面反射率は路面が湿潤状態の場合に高くなり対向車の運転者へのグレア感が増大するが、路面が湿潤状態でなくても短波長域の光は路面に反射して対向車の運転者が視覚により知覚する。また、実験から路面が湿潤状態でなくても対向車の運転者がグレア感を感じうることが明らかになっている。したがって、以下では路面が湿潤状態の場合を例に説明するが、路面が湿潤状態でなくても本実施形態の車両用照明装置100を好適に適用できる。   In addition, as described in FIG. 1, the road surface reflectance increases when the road surface is wet, and glare to the driver of the oncoming vehicle increases. However, even if the road surface is not wet, light in the short wavelength region is Reflected on the road surface, the driver of the oncoming vehicle perceives it visually. Experiments have also shown that oncoming drivers can feel glare even when the road surface is not wet. Therefore, although the case where the road surface is wet will be described below as an example, the vehicular illumination device 100 of the present embodiment can be suitably applied even when the road surface is not wet.

図2は、本実施例の車両用照明装置100のブロック図の一例を示す。車両用照明装置100は、制御ECU(Electronic Control Unit)13に、ヘッドランプスイッチ11、雨滴センサ12及び可変色ヘッドランプ14が接続して構成される。車両用照明装置100を制御する制御ECU13は、プログラムを実行するCPU、プログラム実行の作業領域となりまた一時的にデータを記憶するRAM、イグニションオフしてもデータを保持するフラッシュメモリ、データのインターフェイスとなる入出力インターフェイス、他のECUと通信する通信コントローラ、及び、プログラムを記憶するROMを有する。CPUがプログラムを実行することで、可変色ヘッドランプ14の照射特性を制御する発光強度制御手段21が実現される。また、制御ECU13はフラッシュメモリ又はROM等の不揮発メモリに発光強度マップ22を記憶している。   FIG. 2 shows an example of a block diagram of the vehicular lighting device 100 of the present embodiment. The vehicular lighting device 100 is configured by connecting a head lamp switch 11, a raindrop sensor 12, and a variable color headlamp 14 to a control ECU (Electronic Control Unit) 13. The control ECU 13 that controls the vehicle lighting device 100 includes a CPU that executes a program, a RAM that serves as a program execution work area and that temporarily stores data, a flash memory that retains data even when the ignition is turned off, and a data interface An input / output interface, a communication controller that communicates with other ECUs, and a ROM that stores a program. When the CPU executes the program, the light emission intensity control means 21 for controlling the irradiation characteristics of the variable color headlamp 14 is realized. Further, the control ECU 13 stores a light emission intensity map 22 in a nonvolatile memory such as a flash memory or a ROM.

ヘッドランプスイッチ11は、運転者がヘッドランプのオン又はオフ、及び、ハイビーム又はロービームの切り替え等を入力するスイッチであり、ヘッドランプスイッチ11がオンに操作されると制御ECU13は可変色ヘッドランプ14を点灯する。雨滴センサ12は、例えば、フロントガラスに向けて赤外線を出射する出射部とフロントガラスにより反射された赤外線を受光する受光部とを有し、検出領域に雨滴が付着した場合に受光部が受ける赤外線の受光量が変化(減少)することで雨滴量を検出する。したがって、受光量の減少量が大きいほど雨量が多い状態であることが検出される。なお、雨滴センサ12は、水滴の付着による静電容量の変化や温度低下を検出し雨滴量に応じた電圧を出力するセンサ等、により構成してもよい。また、センサにより雨量を直接検出するのでなく、ワイパ装置の作動速度(Hi,Low若しくはINTの設定、又は、Auto設定時の実際の作動速度)から間接的に検出してもよい。また、白線などの路面標示をカメラで撮影し、撮影された画像から白線部のコントラストを求め、雨量を間接的に検出してもよい(雨量が多いほどコントラストが低下する)。   The headlamp switch 11 is a switch for the driver to input on / off of the headlamp and switching of the high beam or the low beam. When the headlamp switch 11 is turned on, the control ECU 13 controls the variable color headlamp 14. Lights up. The raindrop sensor 12 includes, for example, an emitting portion that emits infrared rays toward the windshield and a light receiving portion that receives infrared rays reflected by the windshield, and the infrared rays received by the light receiving portion when raindrops adhere to the detection region. The amount of raindrops is detected when the amount of received light changes (decreases). Therefore, it is detected that the amount of rain increases as the amount of decrease in the amount of received light increases. The raindrop sensor 12 may be configured by a sensor that detects a change in capacitance or a temperature drop due to the attachment of waterdrops and outputs a voltage corresponding to the amount of raindrops. Further, instead of directly detecting the rain amount by the sensor, it may be detected indirectly from the operation speed of the wiper device (setting of Hi, Low or INT, or actual operation speed at the time of setting Auto). Alternatively, a road marking such as a white line may be photographed with a camera, the contrast of the white line portion may be obtained from the photographed image, and the rain amount may be detected indirectly (the contrast decreases as the rain amount increases).

可変色ヘッドランプ14について説明する。可変色ヘッドランプ14は波長域毎に発光強度を制御できるヘッドランプである。図3(a)は、可変色ヘッドランプ14の概略断面図の一例を示す。可変色ヘッドランプ14は、投光面と背面にそれぞれ開口部を有するランプボディ33と、投光面を覆う透光カバー36と、ランプボディ33に内設されるレンズ32及びLED光源31と、LED光源31のコントローラ37とを有する。   The variable color headlamp 14 will be described. The variable color headlamp 14 is a headlamp capable of controlling the emission intensity for each wavelength region. FIG. 3A shows an example of a schematic sectional view of the variable color headlamp 14. The variable color headlamp 14 includes a lamp body 33 having openings on the light projecting surface and the back surface, a translucent cover 36 covering the light projecting surface, a lens 32 and an LED light source 31 provided in the lamp body 33, And a controller 37 of the LED light source 31.

ランプボディ33は、例えば樹脂で成形され、車両正面から見てレンズ32がLED光源31の略中央に配置されるよう、ランプボディ33の投光面の内周に接続されたブラケット34によりレンズ32を固定する。LED光源31は、青、赤、黄、白色等の波長に発光強度のピークを示す発光素子が正面視、格子状又は同心円状に配置されている。   The lamp body 33 is formed of, for example, resin, and the lens 32 is provided by a bracket 34 connected to the inner periphery of the light projecting surface of the lamp body 33 so that the lens 32 is disposed at the approximate center of the LED light source 31 when viewed from the front of the vehicle. To fix. In the LED light source 31, light emitting elements having emission intensity peaks at wavelengths such as blue, red, yellow, and white are arranged in a front view, a lattice shape, or a concentric shape.

レンズ32は、LED光源31の光を集光してさらに配光する。レンズ32に導かれたLED光源31の光は、ランプボディ33の投光面の内側から延長して斜めに折れ曲がるすり鉢形状のエクステンションリフレクタ35に反射され車両前方の照射方向に導かれる。エクステンションリフレクタ35は外側表面が鏡面となっており、レンズ32から照射された光を反射して照射方向に導く。   The lens 32 collects the light from the LED light source 31 and further distributes the light. The light from the LED light source 31 guided to the lens 32 is reflected from a mortar-shaped extension reflector 35 that extends from the inside of the light projecting surface of the lamp body 33 and bends obliquely, and is guided in the irradiation direction in front of the vehicle. The extension reflector 35 has a mirror surface on the outer surface, and reflects the light emitted from the lens 32 to guide it in the irradiation direction.

コントローラ37は制御ECU13からの信号に基づき、LED光源31の発光素子の輝度を個別又は同じ波長にピークを備える発光素子毎に制御することで、各波長域の発光強度を制御して光を照射することを可能としている。これにより、可変色ヘッドランプ14の光量及び光色が個別に制御される。本実施形態の可変色ヘッドランプ14は、図3(a)のLED光源31を用いた形態とする。   Based on the signal from the control ECU 13, the controller 37 controls the luminance of the light emitting elements of the LED light source 31 individually or for each light emitting element having a peak at the same wavelength, thereby controlling the light emission intensity in each wavelength region and irradiating light. It is possible to do. Thereby, the light quantity and light color of the variable color headlamp 14 are individually controlled. The variable color headlamp 14 of this embodiment is configured to use the LED light source 31 of FIG.

図3(b)は、可変色ヘッドランプ14の概略断面図の別の一例を示す。図3(b)の可変色ヘッドランプ14は、光源にハロゲンランプ39を有し固定された波長域の光を照射する。ハロゲンランプ39が照射した光はリフレクタ40により反射してハロゲンランプ39の光軸よりもやや路面方向に直進する光を照射する。また、ランプボディ33には円盤状の短波長カットフィルタ38が車幅方向をピン支持されており、短波長カットフィルタ38をピンの軸に0〜90度の範囲で回転することでハロゲンランプ39が照射する光の遮蔽面積を可変とすることができる。   FIG. 3B shows another example of a schematic sectional view of the variable color headlamp 14. The variable color headlamp 14 in FIG. 3B has a halogen lamp 39 as a light source and emits light in a fixed wavelength range. The light irradiated by the halogen lamp 39 is reflected by the reflector 40 and irradiates light traveling straight in the road surface direction slightly from the optical axis of the halogen lamp 39. A disc-shaped short wavelength cut filter 38 is pin-supported in the vehicle width direction on the lamp body 33, and the halogen lamp 39 is rotated by rotating the short wavelength cut filter 38 within a range of 0 to 90 degrees about the pin axis. The shielding area of the light irradiated by can be made variable.

短波長カットフィルタ38は、短波長域の光の透過をカット又は低減する光学フィルタで、短波長カットフィルタ38の回転角度が90度に近くなるほど路面に到達する短波長域の光を低減することができる。制御ECU13は所定のアクチュエータを制御して短波長カットフィルタ38の角度を制御して波長分布を調整する。なお、可変色ヘッドランプ14が図3(b)の形態の場合、可変色ヘッドランプ14全体の光量の低下を防ぐため、主に長波長光を照射する光源を別に備えていることが好ましい。   The short wavelength cut filter 38 is an optical filter that cuts or reduces the transmission of light in the short wavelength region, and reduces the light in the short wavelength region that reaches the road surface as the rotation angle of the short wavelength cut filter 38 approaches 90 degrees. Can do. The control ECU 13 controls a predetermined actuator to control the angle of the short wavelength cut filter 38 and adjust the wavelength distribution. In the case where the variable color headlamp 14 is in the form shown in FIG. 3B, it is preferable that a separate light source that mainly emits long wavelength light is provided in order to prevent a decrease in the amount of light of the entire variable color headlamp 14.

照射特性の制御について説明する。図1(a)にて説明したように、雨量が多いほど路面が湿潤するので対向車の運転者が感じるグレア感が増す。このため、発光強度制御手段21は雨滴センサ12が検出した雨量が多いほど短波長域の発光強度を低下させた光を照射することが好適となる。雨量に応じた波長域と発光強度の関係は発光強度マップ22に登録されている。   The control of irradiation characteristics will be described. As described with reference to FIG. 1 (a), the greater the amount of rain, the wetter the road surface, so that the glare feeling felt by the driver of the oncoming vehicle increases. For this reason, it is preferable that the light emission intensity control means 21 irradiates light having a reduced light emission intensity in the short wavelength region as the amount of rain detected by the raindrop sensor 12 increases. The relationship between the wavelength range corresponding to the rainfall and the emission intensity is registered in the emission intensity map 22.

図4は発光強度マップ22の一例を示す。発光強度マップ22は雨量毎に波長域と可変色ヘッドランプ14の発光強度を対応づけている。雨量(ゼロ)の場合、発光強度は波長にかかわらず略一定となっているが、雨量(少)の場合、雨量(ゼロ)よりも短波長域の発光強度が低下しており、雨量(多)の場合、雨量(少)よりも短波長域の発光強度が低下している。発光強度制御手段21は、発光強度マップ22から雨量に応じて波長域毎の発光強度を抽出し、LED光源31を制御する。   FIG. 4 shows an example of the emission intensity map 22. The emission intensity map 22 associates the wavelength range with the emission intensity of the variable color headlamp 14 for each rainfall. In the case of rainfall (zero), the emission intensity is almost constant regardless of the wavelength, but in the case of rain (low), the emission intensity in the short wavelength region is lower than the rainfall (zero), and the ), The emission intensity in the short wavelength region is lower than the rainfall (low). The light emission intensity control means 21 extracts the light emission intensity for each wavelength region from the light emission intensity map 22 according to the rainfall, and controls the LED light source 31.

なお、図4の発光強度マップ22は、例として500nmを境に急激にそれよりも短波長域の発光強度が低下しているが、この500nmは対向車の運転者がグレア感を感じる短波長の波長域として実験的に求めることができる。したがって、例えば600nmを境に急激に短波長域の発光強度を低下していてもよいし、例えば450nmを境に急激に短波長域の発光強度を低下していてもよいし、また、雨量に応じて可変としてもよい。また、図4では、500nmを境に急激に短波長域の発光強度を低下させているが、長波長域から短波長域にかけてより緩やかに発光強度を低下させてもよい。   In the emission intensity map 22 of FIG. 4, for example, the emission intensity in a short wavelength region suddenly decreases from 500 nm as a boundary, but this 500 nm is a short wavelength at which the driver of the oncoming vehicle feels a glare. It can be experimentally obtained as the wavelength range of. Therefore, for example, the emission intensity in the short wavelength region may be drastically decreased at the boundary of 600 nm, for example, the emission intensity in the short wavelength region may be rapidly decreased at the boundary of 450 nm, or the amount of rain may be reduced. It may be variable accordingly. In FIG. 4, the emission intensity in the short wavelength region is suddenly reduced with 500 nm as a boundary. However, the emission intensity may be gradually decreased from the long wavelength region to the short wavelength region.

ところで、図4のように雨天時に短波長域の発光強度を低下させると、可変色ヘッドランプ14から照射される光量が低下してしまう。雨天時は路面標示などのコントラストが低下することを考慮すると、光量は低下しない方が好ましい。そこで、短波長域の発光強度を低下させると共に、長波長域の発光強度を増加させることが考えられる。   By the way, if the emission intensity in the short wavelength region is lowered during rainy weather as shown in FIG. 4, the amount of light emitted from the variable color headlamp 14 is reduced. In consideration of a decrease in contrast such as road markings when it rains, it is preferable that the amount of light does not decrease. Therefore, it is conceivable to reduce the emission intensity in the short wavelength region and increase the emission intensity in the long wavelength region.

図5(a)は短波長域の発光強度を低下させると共に、長波長域の発光強度を増加させる発光強度マップ22の一例を示す。図5(a)では、500nmよりも長波長域の発光強度が、雨量(ゼロ)より大きくかつ略一定となっている。そして、短波長域の発光強度を低下させために減少した光量を補うため、雨量(ゼロ)の場合の発光強度と500nm以下の雨量(多)の発光強度で囲まれる面積Aと、雨量(ゼロ)の場合の発光強度と500nmより大の雨量(多)の発光強度で囲まれる面積Bとが同程度となっている。   FIG. 5A shows an example of a light emission intensity map 22 for reducing the light emission intensity in the short wavelength region and increasing the light emission intensity in the long wavelength region. In FIG. 5A, the emission intensity in the wavelength region longer than 500 nm is larger than the rainfall (zero) and substantially constant. Then, in order to compensate for the reduced light intensity in order to reduce the light emission intensity in the short wavelength region, the area A surrounded by the light emission intensity in the case of rain (zero) and the light intensity of rain of 500 nm or less (many) and the rain (zero) ) And the area B surrounded by the light emission intensity of rain (many) greater than 500 nm are approximately the same.

図5(a)のような発光強度マップ22を採用することで、雨天時に対向車の運転者に感じさせるグレア感を低減すると共に、自車両の運転者に光量の低下を感じさせることを防止できる。   By adopting the light emission intensity map 22 as shown in FIG. 5A, the glare feeling felt by the driver of the oncoming vehicle in the rainy weather is reduced and the driver of the own vehicle is prevented from feeling a decrease in the light amount. it can.

また、光量の低下を補うための長波長域の発光強度を増加させる場合、運転者の違和感が最小になるよう長波長域の増加された発光強度を決定することが好適となる。図5(b)は短波長域の発光強度を低下させると共に、長波長域の発光強度を増加させる発光強度マップ22の別の一例を示す。   In addition, when increasing the light emission intensity in the long wavelength region to compensate for the decrease in the amount of light, it is preferable to determine the light emission intensity increased in the long wavelength region so that the driver feels uncomfortable. FIG. 5B shows another example of a light emission intensity map 22 that decreases the light emission intensity in the short wavelength region and increases the light emission intensity in the long wavelength region.

図5(b)の発光強度マップ22は、短波長域の発光強度を補うため、長波長域でも短波長側の発光強度を増加させ、長波長側ほど発光強度を徐々に低下させている。したがって、照射光が赤色に偏ることを低減して、運転者が感じる違和感を最小にすることができる。   The light emission intensity map 22 in FIG. 5B increases the light emission intensity on the short wavelength side even in the long wavelength range, and gradually decreases the light emission intensity on the long wavelength side in order to supplement the light emission intensity in the short wavelength range. Therefore, it is possible to reduce unevenness of the irradiation light in red and to minimize the uncomfortable feeling felt by the driver.

すなわち、短波長域の発光強度を低下させた場合の長波長域の発光強度は、短波長域の発光強度を低下させても自車両や対向車の運転者が感じる違和感をなるべく低減できるよう決定すればよい。また、光に対する人間の眼の感度は波長に応じて異なるため、面積Aと面積C、面積AとBとは必ずしも一致しなくてもよい。   In other words, the emission intensity in the long wavelength region when the emission intensity in the short wavelength region is reduced is determined so that the driver feels that the driver of the own vehicle or the oncoming vehicle can reduce the discomfort as much as possible even if the emission intensity in the short wavelength region is reduced. do it. Moreover, since the sensitivity of the human eye with respect to light varies depending on the wavelength, the areas A and C and the areas A and B do not necessarily match.

なお、発光強度マップ22から波長域毎の発光強度を抽出するのでなく、波長域毎の発光強度を算出してもよい。例えば、発光強度制御手段21は、例えば次のように波長域毎の発光強度を算出する。
500nmより大の波長域に対し、
発光強度=雨量(ゼロ)の発光強度 + α
500nm以下の波長域に対し、
発光強度=雨量(ゼロ)の発光強度−(500−波長)×β/(500−380)
α及びβはゼロ以上の値で、雨量に応じて予め定められている。これにより図4(a)と同様の発光強度が得られる。
Instead of extracting the emission intensity for each wavelength region from the emission intensity map 22, the emission intensity for each wavelength region may be calculated. For example, the light emission intensity control means 21 calculates the light emission intensity for each wavelength region as follows, for example.
For a wavelength range larger than 500 nm,
Light emission intensity = Light emission intensity of rain (zero) + α
For a wavelength range of 500 nm or less,
Emission intensity = Emission intensity of rainfall (zero) − (500−wavelength) × β / (500-380)
α and β are values greater than or equal to zero, and are predetermined according to the rainfall. As a result, the emission intensity similar to that shown in FIG.

図6は、制御ECU13が波長域毎に可変色ヘッドランプ14の発光強度を制御する手順を示すフローチャート図である。   FIG. 6 is a flowchart illustrating a procedure in which the control ECU 13 controls the light emission intensity of the variable color headlamp 14 for each wavelength range.

制御ECU13はイグニッションがオンになると起動し(S10)、ヘッドランプスイッチ11がオンになるまで待機する(S20)。   The control ECU 13 is activated when the ignition is turned on (S10), and waits until the headlamp switch 11 is turned on (S20).

ヘッドランプスイッチ11がオンになると(S20のYes)、制御ECU13は雨滴センサ12が検出した雨量情報を取得する(S30)。   When the headlamp switch 11 is turned on (Yes in S20), the control ECU 13 acquires the rainfall information detected by the raindrop sensor 12 (S30).

そして、雨量がゼロでない場合、発光強度制御手段21は雨量に応じて発光強度マップ22から波長域毎に発光強度を抽出し(S40)、抽出した発光強度に基づき可変色ヘッドランプ14の発光強度を波長域毎に制御する(S50)。   If the rainfall is not zero, the emission intensity control means 21 extracts the emission intensity for each wavelength region from the emission intensity map 22 according to the rainfall (S40), and the emission intensity of the variable color headlamp 14 based on the extracted emission intensity. Is controlled for each wavelength region (S50).

制御ECU13は以上の処理をヘッドランプスイッチ11がオフになるまで所定のサイクル時間毎に繰り返す(S60)。   The control ECU 13 repeats the above processing every predetermined cycle time until the headlamp switch 11 is turned off (S60).

以上説明したように、本実施例の車両用照明装置100によれば、雨天時に対向車の運転者に感じさせるグレア感を低減することができる。また、短波長域の発光強度を低下させると共に、長波長域の発光強度を増加させることで、自車両の運転者に光量の低下を感じさせることを防止できる。   As described above, according to the vehicle lighting device 100 of the present embodiment, it is possible to reduce the glare that is felt by the driver of the oncoming vehicle when it rains. Further, by reducing the light emission intensity in the short wavelength region and increasing the light emission intensity in the long wavelength region, it is possible to prevent the driver of the host vehicle from feeling a decrease in the light amount.

グレア感を感じるのは対向車の運転者である場合が多いので、対向車が接近していなければ可変色ヘッドランプ14の照射特性を制御しなくてもよい。本実施例では、対向車の有無、及び、対向車との相対距離に応じて可変色ヘッドランプ14の照射特性を制御する車両用照明装置100について説明する。   Since it is often the driver of the oncoming vehicle that feels a glare, it is not necessary to control the irradiation characteristics of the variable color headlamp 14 if the oncoming vehicle is not approaching. In the present embodiment, a vehicle lighting device 100 that controls the irradiation characteristics of the variable color headlamp 14 in accordance with the presence or absence of an oncoming vehicle and the relative distance from the oncoming vehicle will be described.

図7は、本実施例の車両用照明装置100のブロック図の一例を示す。なお、図7において図2と同一構成部分には同一の符号を付しその説明は省略する。図7の車両用照明装置100は、対向車検出手段15を有する点で図2と異なる。対向車検出手段15は、自車両の走行車線と反対方向の走行車線に対向車がいること検出する。より好ましくは、対向車の有無だけでなく対向車との距離を検出しうることが好ましい。   FIG. 7 shows an example of a block diagram of the vehicular lighting device 100 of the present embodiment. In FIG. 7, the same components as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. The vehicle lighting device 100 of FIG. 7 is different from that of FIG. The oncoming vehicle detection means 15 detects that there is an oncoming vehicle in a traveling lane in the direction opposite to the traveling lane of the host vehicle. More preferably, it is possible to detect not only the presence of an oncoming vehicle but also the distance to the oncoming vehicle.

対向車検出手段15は、例えばミリ波レーダ装置として構成され、車両前方のフロントグリル内や車両後部のバンパ内に配設され、ミリ波が自車両の前方の対向車に反射して帰ってくるまでの時間により対向車までの距離を、反射波の周波数変化により対向車との相対速度を検出する。   The oncoming vehicle detection means 15 is configured as a millimeter wave radar device, for example, and is disposed in the front grille in the front of the vehicle or in the bumper at the rear of the vehicle, and the millimeter waves are reflected back to the oncoming vehicle in front of the host vehicle. The distance to the oncoming vehicle is detected based on the time until and the relative speed with respect to the oncoming vehicle is detected based on the frequency change of the reflected wave.

また、対向車検出手段15は、車両進行方向を中心に左右所定の検知角度及び所定の距離内の対向車を検出する。ミリ波レーダ装置は複数の受信アンテナを有するため、それぞれのアンテナの受信強度から他車両の方向を割り出し自車線以外の車線に他車両が走行しているか否かを検知する。自車線が対向車線に隣接した車線を走行していない場合、同一進行方向の他車線の他車両を検出するおそれがあるが、この場合、他車両との相対速度と自車両の車速を比較することで同一進行方向の他車両か対向車線の他車両かを判別できる(自車両の車速よりも大きい相対速度の車両は対向車線の他車両となる)。   Further, the oncoming vehicle detection means 15 detects an oncoming vehicle within a predetermined detection angle and a predetermined distance on the left and right with respect to the vehicle traveling direction. Since the millimeter wave radar apparatus has a plurality of receiving antennas, the direction of the other vehicle is determined from the reception intensity of each antenna, and it is detected whether or not the other vehicle is traveling in a lane other than the own lane. When the own lane is not traveling in the lane adjacent to the opposite lane, there is a risk of detecting another vehicle in the other lane in the same traveling direction. In this case, the relative speed with the other vehicle is compared with the vehicle speed of the own vehicle. Thus, it is possible to determine whether the vehicle is in the same traveling direction or another vehicle in the opposite lane (a vehicle having a relative speed higher than the vehicle speed of the host vehicle becomes another vehicle in the opposite lane).

また、対向車検出手段15をカメラにより構成してもよい。ステレオカメラであれば、車両前方の一対の画像データの視差に基づき対向車までの相対距離、方向を検出することができ、単眼カメラでは距離情報を取得することは困難だが、対向車の有無を検出することができる。また、ミリ波レーダ装置の検出結果にステレオカメラ又は単眼カメラの検出結果を組み合わせて対向車の有無及び相対距離を検出してもよい。   Further, the oncoming vehicle detection means 15 may be constituted by a camera. With a stereo camera, it is possible to detect the relative distance and direction to the oncoming vehicle based on the parallax of a pair of image data in front of the vehicle, and it is difficult to obtain distance information with a monocular camera. Can be detected. Further, the presence / absence of an oncoming vehicle and the relative distance may be detected by combining the detection result of the millimeter wave radar device with the detection result of the stereo camera or the monocular camera.

〔対向車が検出された場合の発光強度の制御〕
図8は、対向車が存在する場合に、制御ECU13が波長域毎に可変色ヘッドランプ14の発光強度を制御する手順を示すフローチャート図である。なお、図8において、図6と同一ステップには同一の符号を付した。
[Control of light emission intensity when an oncoming vehicle is detected]
FIG. 8 is a flowchart showing a procedure by which the control ECU 13 controls the light emission intensity of the variable color headlamp 14 for each wavelength region when there is an oncoming vehicle. In FIG. 8, the same steps as those in FIG.

制御ECU13はイグニッションオンになると起動し(S10)、ヘッドランプスイッチ11がオンになるまで待機する(S20)。   The control ECU 13 is activated when the ignition is turned on (S10), and waits until the headlamp switch 11 is turned on (S20).

ヘッドランプスイッチ11がオンになると(S20のYes)、制御ECU13は対向車が検出されるか否かを判定する(S25)。対向車が検出されない場合(S25のNo)、対向車の運転者がグレア感を感じることはないので、可変色ヘッドランプ14の発光強度を制御しない。   When the headlamp switch 11 is turned on (Yes in S20), the control ECU 13 determines whether an oncoming vehicle is detected (S25). When the oncoming vehicle is not detected (No in S25), the driver of the oncoming vehicle does not feel a glare, so the emission intensity of the variable color headlamp 14 is not controlled.

対向車が検出された場合(S25のYes)、発光強度制御手段21は雨滴センサ12が検出した雨量情報を取得する(S30)。   When the oncoming vehicle is detected (Yes in S25), the light emission intensity control means 21 acquires the rainfall information detected by the raindrop sensor 12 (S30).

そして、雨量がゼロでない場合、発光強度制御手段21は雨量に応じて発光強度マップ22から波長域毎に発光強度を抽出し(S40)、抽出した発光強度に基づき可変色ヘッドランプ14の発光強度を波長域毎に制御する(S50)。   If the rainfall is not zero, the emission intensity control means 21 extracts the emission intensity for each wavelength region from the emission intensity map 22 according to the rainfall (S40), and the emission intensity of the variable color headlamp 14 based on the extracted emission intensity. Is controlled for each wavelength region (S50).

制御ECU13は以上の処理をヘッドランプスイッチ11がオフになるまで所定のサイクル時間毎に繰り返す(S60)。   The control ECU 13 repeats the above processing every predetermined cycle time until the headlamp switch 11 is turned off (S60).

比較的通行量の多い道路では頻繁に対応車とすれ違うため、図8の如き制御は照射特性の変化が運転者に違和感を感じさせるおそれがあり実施例1のように対向車の有無に関わらず、波長域毎に発光強度を制御することが好ましい。しかし、比較的通行量の少ない道路では対応車とすれ違うことが少ないため、対向車とすれ違う場合にのみ波長域毎の発光強度を制御することで、雨天時でも雨量(ゼロ)の場合と同じように自然な視界を形成する発光強度で前方を照明することができる。   The road shown in FIG. 8 is frequently passed on a road with a relatively large amount of traffic. Therefore, the control as shown in FIG. 8 may cause the driver to feel uncomfortable, regardless of whether there is an oncoming vehicle as in the first embodiment. It is preferable to control the emission intensity for each wavelength region. However, on roads with relatively little traffic, it is unlikely to pass by a corresponding vehicle, so by controlling the emission intensity for each wavelength range only when passing by an oncoming vehicle, it is the same as in the case of rain (zero) even in rainy weather It is possible to illuminate the front with a light emission intensity that forms a natural field of view.

〔対向車との距離に応じた発光強度の制御〕
本実施例では対向車がある場合、実施例1と同様に波長域毎に発光強度を制御したが、対向車が検出された場合であっても、対向車が遠方を走行している場合は対向車の運転者がグレア感を感じることが少ないため、対向車との相対距離に応じて発光強度を制御してもよい。この場合、発光強度マップ22は雨量と相対距離に応じて、波長域毎に発光強度を規定するマップとなる。
[Control of light emission intensity according to the distance to the oncoming vehicle]
In the present embodiment, when there is an oncoming vehicle, the emission intensity is controlled for each wavelength region in the same manner as in the first embodiment. However, even when the oncoming vehicle is detected, the oncoming vehicle is traveling far away. Since the driver of the oncoming vehicle rarely feels glare, the emission intensity may be controlled according to the relative distance from the oncoming vehicle. In this case, the emission intensity map 22 is a map that defines the emission intensity for each wavelength region according to the rainfall and relative distance.

図9は、雨量と相対距離に応じて波長域毎に発光強度を規定する発光強度マップ22の一例を示す。図9の発光強度マップ22は、雨量(多)の場合の発光強度マップ22であるが、雨量(多)の場合の発光強度をさらに相対距離に応じて規定している。同じ雨量(多)でも、対向車との相対距離が大きい場合は、雨量(ゼロ)の発光強度に近くなり、対向車との相対距離が小さい場合は、雨量(多)の発光強度と同程度になる。このような発光強度マップ22を雨量毎に記憶しておくことで、雨量と相対距離に応じて、波長域毎に発光強度を制御することができる。   FIG. 9 shows an example of a light emission intensity map 22 that defines the light emission intensity for each wavelength region according to the rainfall and relative distance. The light emission intensity map 22 of FIG. 9 is the light emission intensity map 22 in the case of heavy rainfall, but further defines the light emission intensity in the case of heavy rain according to the relative distance. If the relative distance to the oncoming vehicle is large even with the same amount of rainfall (high), it will be close to the emission intensity of rain (zero). become. By storing such a light emission intensity map 22 for each rainfall, the light emission intensity can be controlled for each wavelength region in accordance with the rainfall and the relative distance.

図10は、対向車が存在する場合に相対距離に応じて、制御ECU13が波長域毎に可変色ヘッドランプ14の発光強度を制御する手順を示すフローチャート図である。なお、図10において、図8と同一ステップには同一の符号を付した。   FIG. 10 is a flowchart illustrating a procedure in which the control ECU 13 controls the light emission intensity of the variable color headlamp 14 for each wavelength range according to the relative distance when there is an oncoming vehicle. In FIG. 10, the same steps as those in FIG.

制御ECU13はイグニッションオンになると起動し(S10)、ヘッドランプスイッチ11がオンになるまで待機する(S20)。   The control ECU 13 is activated when the ignition is turned on (S10), and waits until the headlamp switch 11 is turned on (S20).

ヘッドランプスイッチ11がオンになると(S20のYes)、制御ECU13は対向車が検出されるか否かを判定する(S25)。対向車が検出されない場合(S25のNo)、対向車の運転者がグレア感を感じることはないので、可変色ヘッドランプ14の発光強度を制御しない。   When the headlamp switch 11 is turned on (Yes in S20), the control ECU 13 determines whether or not an oncoming vehicle is detected (S25). When the oncoming vehicle is not detected (No in S25), the driver of the oncoming vehicle does not feel a glare, so the emission intensity of the variable color headlamp 14 is not controlled.

対向車が検出された場合(S25のYes)、発光強度制御手段21は対向車検出手段15が検出した対向車の相対距離情報を取得する(S26)。ついで、発光強度制御手段21は雨滴センサ12が検出した雨量情報を取得する(S30)。   When the oncoming vehicle is detected (Yes in S25), the light emission intensity control unit 21 acquires the relative distance information of the oncoming vehicle detected by the oncoming vehicle detection unit 15 (S26). Next, the light emission intensity control means 21 acquires the rainfall information detected by the raindrop sensor 12 (S30).

そして、雨量がゼロでない場合、発光強度制御手段21は雨量及び相対距離に応じて発光強度マップ22から波長域毎に発光強度を抽出し(S45)、抽出した発光強度に基づき可変色ヘッドランプ14の発光強度を波長域毎に制御する(S50)。   If the rainfall is not zero, the emission intensity control means 21 extracts the emission intensity for each wavelength region from the emission intensity map 22 according to the rainfall and relative distance (S45), and the variable color headlamp 14 is based on the extracted emission intensity. Is controlled for each wavelength region (S50).

制御ECU13は以上の処理をヘッドランプスイッチ11がオフになるまで所定のサイクル時間毎に繰り返す(S60)。   The control ECU 13 repeats the above processing every predetermined cycle time until the headlamp switch 11 is turned off (S60).

図10のフローチャート図のように相対距離に応じて発光強度を制御することで、発光強度は対向車との相対距離により徐々に変化するので、照射特性の変化が運転者に感じさせる違和感を低減することができる。   As shown in the flowchart of FIG. 10, by controlling the light emission intensity according to the relative distance, the light emission intensity gradually changes depending on the relative distance from the oncoming vehicle, thereby reducing the uncomfortable feeling that the driver feels when the irradiation characteristics change. can do.

ところで、グレア感を低減するために短波長域の発光強度を低下させることが好ましいのであれば、短波長域の発光強度を増加させることで、逆に、自車両の存在を目立たせることができる。例えば、自車両がスリップした場合、自車両が所定以上の車速の場合、車載装置に何らかの異常が生じている場合など(以下、要注意喚起状態という)は、自車両の存在を目立たせることで、他車両の運転者に注意喚起することができる。グレア感はハイビームほどは対向車の運転者を眩惑しないので、不快感を与えずに注意喚起できることになる。自車両がスリップしたことはブレーキECUが各輪の車輪速を比較して検出でき、自車両車速は車速センサから取得でき、異常が生じていることは各ECUが検出する。   By the way, if it is preferable to reduce the light emission intensity in the short wavelength region in order to reduce the glare, the presence of the vehicle can be made conspicuous by increasing the light emission intensity in the short wavelength region. . For example, when the host vehicle slips, when the host vehicle is at a vehicle speed higher than a predetermined level, or when some abnormality has occurred in the in-vehicle device (hereinafter referred to as an alert state requiring attention), the presence of the host vehicle is made conspicuous. It is possible to alert the driver of other vehicles. The glare sensation is not as dazzling to the driver of the oncoming vehicle as the high beam, so it can be alerted without causing discomfort. The brake ECU can detect that the host vehicle has slipped by comparing the wheel speed of each wheel, the host vehicle speed can be acquired from the vehicle speed sensor, and each ECU detects that an abnormality has occurred.

グレア感を感じさせる短波長域の光は、雨量が多いほど路面反射率が大きくなるが、注意喚起する場合は雨量にかかわらず短波長域の発光強度を増加させることが好ましい。したがって、要注意喚起状態の場合、雨量、対向車の有無又は対向車との相対距離にかかわらず、発光強度制御手段21は短波長域の発光強度を最大に増加させる。   For light in the short wavelength range that gives a feeling of glare, the road surface reflectivity increases as the amount of rain increases. However, when calling attention, it is preferable to increase the emission intensity in the short wavelength range regardless of the amount of rain. Therefore, in the state requiring attention, the light emission intensity control means 21 maximizes the light emission intensity in the short wavelength region regardless of the rainfall, the presence or absence of an oncoming vehicle, or the relative distance from the oncoming vehicle.

図11は、自車両が要注意喚起状態の場合に、制御ECU13が可変色ヘッドランプ14の短波長域の発光強度を増加させる手順を示すフローチャート図である。なお、図11において、図10と同一ステップには同一の符号を付した。   FIG. 11 is a flowchart illustrating a procedure in which the control ECU 13 increases the light emission intensity of the variable color headlamp 14 in the short wavelength region when the host vehicle is in a state requiring attention. In FIG. 11, the same steps as those in FIG.

制御ECU13はイグニッションオンになると起動し(S10)、ヘッドランプスイッチ11がオンになるまで待機する(S20)。   The control ECU 13 is activated when the ignition is turned on (S10), and waits until the headlamp switch 11 is turned on (S20).

ヘッドランプスイッチ11がオンになると(S20のYes)、発光強度制御手段21は対向車が検出されるか否かを判定する(S25)。対向車が検出されない場合(S25のNo)、対向車の運転者がグレア感を感じることはないので、可変色ヘッドランプ14の発光強度を制御しない。   When the headlamp switch 11 is turned on (Yes in S20), the light emission intensity control means 21 determines whether an oncoming vehicle is detected (S25). When the oncoming vehicle is not detected (No in S25), the driver of the oncoming vehicle does not feel a glare, so the emission intensity of the variable color headlamp 14 is not controlled.

対向車が検出された場合(S25のYes)、発光強度制御手段21は対向車検出手段15が検出した対向車の相対距離情報を取得する(S26)。ついで、発光強度制御手段21は雨滴センサ12が検出した雨量情報を取得する(S30)。   When the oncoming vehicle is detected (Yes in S25), the light emission intensity control unit 21 acquires the relative distance information of the oncoming vehicle detected by the oncoming vehicle detection unit 15 (S26). Next, the light emission intensity control means 21 acquires the rainfall information detected by the raindrop sensor 12 (S30).

そして、発光強度制御手段21は、自車両が要注意喚起状態か否かを判定する(S35)。要注意喚起状態の場合(S35のYes)、グレア感を増すため発光強度制御手段21は短波長域の発光強度を最大に制御する(S70)。これにより、雨天かつ対向車が検出された場合でも自車量が要注意喚起状態の場合は、グレア感を増すことで対向車の運転者に注意喚起することができる。   Then, the light emission intensity control means 21 determines whether or not the host vehicle is in a state requiring attention (S35). In the state requiring attention (Yes in S35), the light emission intensity control means 21 controls the light emission intensity in the short wavelength region to the maximum in order to increase the glare feeling (S70). As a result, even when a rainy weather and an oncoming vehicle are detected, if the amount of the vehicle is in a state that requires attention, the driver of the oncoming vehicle can be alerted by increasing the glare.

要注意喚起状態でない場合(S35のNo)、発光強度制御手段21は雨量及び相対距離に応じて発光強度マップ22から波長域毎に発光強度を抽出し(S45)、抽出した発光強度に基づき可変色ヘッドランプ14の発光強度を波長域毎に制御する(S50)。   When it is not in a state requiring attention (No in S35), the light emission intensity control means 21 extracts the light emission intensity for each wavelength region from the light emission intensity map 22 according to the rainfall and relative distance (S45), and varies based on the extracted light emission intensity. The emission intensity of the color headlamp 14 is controlled for each wavelength region (S50).

制御ECU13は以上の処理をヘッドランプスイッチ11がオフになるまで所定のサイクル時間毎に繰り返す(S60)。   The control ECU 13 repeats the above processing every predetermined cycle time until the headlamp switch 11 is turned off (S60).

本実施例によれば、自車両が要注意喚起状態の場合は存在を目立たせることができ、要注意喚起状態でない場合は、光量を低下させることなく運転者にグレア感を感じさせることを低減できる。   According to the present embodiment, the presence of the vehicle can be noticeable when it is in a state requiring attention, and if it is not in the state requiring attention, the driver can be prevented from feeling glare without reducing the amount of light. it can.

以上説明したように、本実施形態の車両用照明装置100は、夜間照明時に対向車の運転者が感じるグレア感を、光量の低下を感じさせることなく低減できる。また、対向車の運転者に注意喚起すべき状態の場合は存在を目立たせることができる。   As described above, the vehicular illumination device 100 according to the present embodiment can reduce the glare feeling felt by the driver of the oncoming vehicle during night illumination without causing a decrease in the amount of light. Moreover, the presence can be made conspicuous in a state where attention should be paid to the driver of the oncoming vehicle.

光の波長域と路面反射率の関係を雨量毎に示した図の一例である。It is an example of the figure which showed the relationship between the wavelength range of light, and a road surface reflectance for every rainfall. 両用照明装置のブロック図の一例を示す図である。It is a figure which shows an example of the block diagram of a dual use illuminating device. 可変色ヘッドランプの概略断面図の一例を示す図である。It is a figure which shows an example of schematic sectional drawing of a variable color headlamp. 発光強度マップの一例を示す図である。It is a figure which shows an example of the light emission intensity map. 短波長域の発光強度を低下させると共に、長波長域の発光強度を増加させた発光強度マップ一例を示す図である。It is a figure which shows an example of the light emission intensity map which increased the light emission intensity of a long wavelength range while reducing the light emission intensity of a short wavelength area. 制御ECUが波長域毎に可変色ヘッドランプの発光強度を制御する手順を示すフローチャート図である。It is a flowchart figure which shows the procedure in which control ECU controls the emitted light intensity of a variable color headlamp for every wavelength range. 車両用照明装置のブロック図の一例を示す図である。It is a figure which shows an example of the block diagram of the illuminating device for vehicles. 対向車が存在する場合に、制御ECUが波長域毎に可変色ヘッドランプの発光強度を制御する手順を示すフローチャート図である。It is a flowchart figure which shows the procedure in which control ECU controls the emitted light intensity of a variable color headlamp for every wavelength range, when an oncoming vehicle exists. 相対距離に応じて波長域毎に発光強度を規定する発光強度マップの一例を示す図である。It is a figure which shows an example of the light emission intensity map which prescribes | regulates light emission intensity for every wavelength range according to a relative distance. 対向車が存在する場合に相対距離に応じて、制御ECUが波長域毎に可変色ヘッドランプの発光強度を制御する手順を示すフローチャート図である。It is a flowchart figure which shows the procedure in which control ECU controls the light emission intensity | strength of a variable color headlamp for every wavelength range according to relative distance, when an oncoming vehicle exists. 自車両が要注意喚起状態の場合に、制御ECUが可変色ヘッドランプの短波長域の発光強度を増加させる手順を示すフローチャート図である。It is a flowchart figure which shows the procedure in which control ECU increases the light emission intensity | strength of the short wavelength range of a variable color headlamp, when the own vehicle is a state requiring attention.

符号の説明Explanation of symbols

11 ヘッドランプスイッチ
12 雨滴センサ
13 制御ECU
14 可変色ヘッドランプ
15 対向車検出手段
21 発光強度制御手段
22 発光強度マップ
31 LED光源
100 車両用照明装置



11 Head lamp switch 12 Raindrop sensor 13 Control ECU
DESCRIPTION OF SYMBOLS 14 Variable color head lamp 15 Oncoming vehicle detection means 21 Light emission intensity control means 22 Light emission intensity map 31 LED light source 100 Vehicle illumination device



Claims (9)

ヘッドランプから照射される光の態様を制御する車両用照明装置であって、
降雨を検出する降雨検出手段と、
前記降雨検出手段が降雨を検出した場合、前記ヘッドランプの、所定の波長Aよりも短波長側の発光強度を、降雨が検出されない場合よりも低下させる発光強度制御手段と、
を有することを特徴とする車両用照明装置。
A vehicle lighting device that controls the mode of light emitted from a headlamp,
Rain detection means for detecting rainfall;
A light emission intensity control means for lowering the light emission intensity of the headlamp on a shorter wavelength side than the predetermined wavelength A when the rain detection means detects rain;
A vehicular lighting device comprising:
前記発光強度制御手段は、前記降雨検出手段が降雨を検出した場合、
前記ヘッドランプの、前記波長A以上の波長Bよりも長波長側の発光強度を、降雨が検出されない場合よりも増加させる、
ことを特徴とする請求項1記載の車両用照明装置。
The light emission intensity control means, when the rain detection means detects rain,
Increasing the emission intensity of the headlamp on the longer wavelength side than the wavelength B equal to or greater than the wavelength A than when no rain is detected,
The vehicular illumination device according to claim 1.
前記発光強度制御手段は、前記降雨検出手段が降雨を検出した場合、
前記ヘッドランプの、所定の波長Aよりも短波長側の発光強度を、降雨が検出されない場合よりも低下させ、かつ、
前記波長A以上の波長Bよりも長波長側の発光強度を、短波長側の発光強度を低下させた発光強度分、降雨が検出されない場合よりも増加させる、
ことを特徴とする請求項1又は2記載の車両用照明装置。
The light emission intensity control means, when the rain detection means detects rain,
Reducing the emission intensity of the headlamp on the shorter wavelength side than the predetermined wavelength A than when no rain is detected, and
Increasing the emission intensity on the longer wavelength side than the wavelength B equal to or greater than the wavelength A by an amount corresponding to the reduced emission intensity on the shorter wavelength side than when no rain is detected,
The vehicular illumination device according to claim 1 or 2.
前記発光強度制御手段は、前記降雨検出手段が測定した降雨量に応じて、前記ヘッドランプの発光強度を制御する、
ことを特徴とする請求項1〜3いずれか1項記載の車両用照明装置。
The emission intensity control means controls the emission intensity of the headlamp according to the amount of rainfall measured by the rainfall detection means.
The vehicular illumination device according to any one of claims 1 to 3.
前記発光強度制御手段は、降雨量が多くなるほど、前記ヘッドランプの、前記波長Aよりも短波長側の発光強度を低下させる、
ことを特徴とする請求項4記載の車両用照明装置。
The emission intensity control means decreases the emission intensity of the headlamp on the shorter wavelength side than the wavelength A, as the amount of rainfall increases.
The vehicular illumination device according to claim 4.
対向車を検出する対向車検出手段を有し、
前記発光強度制御手段は、
前記対向車検出手段が対向車を検出した場合にのみ、前記ヘッドランプの、前記波長Aよりも短波長側の発光強度を、降雨が検出されない場合よりも低下させる、
ことを特徴とする請求項1〜5いずれか1項記載の車両用照明装置。
Having oncoming vehicle detection means for detecting an oncoming vehicle,
The emission intensity control means includes
Only when the oncoming vehicle detection means detects an oncoming vehicle, the emission intensity of the headlamp on the shorter wavelength side than the wavelength A is reduced as compared with the case where no rain is detected.
The vehicle illumination device according to claim 1, wherein
前記発光強度制御手段は、前記対向車検出手段が測定した対向車との相対距離に応じて、前記ヘッドランプの発光強度を制御する、
ことを特徴とする請求項6項記載の車両用照明装置。
The emission intensity control means controls the emission intensity of the headlamp according to the relative distance from the oncoming vehicle measured by the oncoming vehicle detection means;
The vehicular illumination device according to claim 6.
自車両の存在を他車両に注意喚起すべき車両状況を検出する車両状況検出手段、を有し、
前記車両状況検出手段が前記車両状況を検出した場合、前記発光強度制御手段は、前記降雨検出手段が降雨を検出しても、所定の波長Aよりも短波長側の発光強度を増加させる、
ことを特徴とする請求項1記載の車両用照明装置。
Vehicle status detection means for detecting a vehicle status to alert other vehicles of the presence of the host vehicle,
When the vehicle situation detection means detects the vehicle situation, the emission intensity control means increases the emission intensity on the shorter wavelength side than the predetermined wavelength A even if the rain detection means detects rain,
The vehicular illumination device according to claim 1.
ヘッドランプから照射される光の態様を制御する照射制御方法であって、
降雨検出手段が降雨を検出するステップと、
降雨が検出された場合、発光強度制御手段が、前記ヘッドランプの、所定の波長Aよりも短波長側の発光強度を、降雨が検出されない場合よりも低下させるステップと、
を有することを特徴とする照明制御方法。
An irradiation control method for controlling the mode of light emitted from a headlamp,
A step in which the rain detection means detects the rain;
If rain is detected, the emission intensity control means lowers the emission intensity of the headlamp on the shorter wavelength side than the predetermined wavelength A than when no rain is detected;
A lighting control method comprising:
JP2007276684A 2007-10-24 2007-10-24 Vehicular lighting system, and lighting control method Pending JP2009101926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007276684A JP2009101926A (en) 2007-10-24 2007-10-24 Vehicular lighting system, and lighting control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007276684A JP2009101926A (en) 2007-10-24 2007-10-24 Vehicular lighting system, and lighting control method

Publications (1)

Publication Number Publication Date
JP2009101926A true JP2009101926A (en) 2009-05-14

Family

ID=40704148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276684A Pending JP2009101926A (en) 2007-10-24 2007-10-24 Vehicular lighting system, and lighting control method

Country Status (1)

Country Link
JP (1) JP2009101926A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060340A1 (en) * 2010-11-01 2012-05-10 エイディシーテクノロジー株式会社 Headlight control device
CN103727486A (en) * 2013-12-26 2014-04-16 华南师范大学 LED lamp and LED illuminating system on basis of Zigbee network
JP2015058747A (en) * 2013-09-17 2015-03-30 本田技研工業株式会社 Vehicle lamp body control device
CN112305839A (en) * 2020-10-21 2021-02-02 华域视觉科技(上海)有限公司 Laser projection anti-dazzling system and method and vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060340A1 (en) * 2010-11-01 2012-05-10 エイディシーテクノロジー株式会社 Headlight control device
JPWO2012060340A1 (en) * 2010-11-01 2014-05-12 エイディシーテクノロジー株式会社 Headlight control device
JP2015058747A (en) * 2013-09-17 2015-03-30 本田技研工業株式会社 Vehicle lamp body control device
CN103727486A (en) * 2013-12-26 2014-04-16 华南师范大学 LED lamp and LED illuminating system on basis of Zigbee network
CN103727486B (en) * 2013-12-26 2016-01-06 华南师范大学 Based on LED lamp and the LED illumination System thereof of Zigbee network
CN112305839A (en) * 2020-10-21 2021-02-02 华域视觉科技(上海)有限公司 Laser projection anti-dazzling system and method and vehicle
CN112305839B (en) * 2020-10-21 2022-02-15 华域视觉科技(上海)有限公司 Laser projection anti-dazzling system and method and vehicle

Similar Documents

Publication Publication Date Title
JP5348100B2 (en) Headlamp device, brightness control method
JP5023296B2 (en) Headlamp control to prevent glare
US9013058B2 (en) Vehicle lighting device and lighting method
KR101195110B1 (en) Head lamp assembly and method for controlling the same
US20060139937A1 (en) Automatic headlamp control
US10137823B2 (en) Exterior rearview device with illumination functions
EP3342643A1 (en) Exterior rearview device with illumination functions
JP2004185105A (en) Obstacle informing device
WO2018123429A1 (en) Illumination apparatus
JP2009101926A (en) Vehicular lighting system, and lighting control method
JP2008204727A (en) Headlight device for vehicle
US20180345848A1 (en) Active headlight system and method
JP6700904B2 (en) Vehicle light distribution control device
KR20160112429A (en) Lamp for vehicle
US20110157705A1 (en) Self-dimming mirror in a motor vehicle
KR100579980B1 (en) System for preventing glaring for vehicle
WO2022153754A1 (en) Headlight control device, headlight control method, and headlight system
JP2009286198A (en) Lighting system for irradiating pedestrian and vehicular headlamp device
JP2023172710A (en) Vehicular lamp system, control method of the same, lamp control program, and vehicle
JP2023553740A (en) How to adjust vehicle lighting and vehicles when passing through construction sites
CN112140983A (en) Method for controlling cut-off line, vehicle lamp and vehicle
JP2023125942A (en) Vehicle lighting fixture
KR20170027394A (en) Lamp for vehicle and controlling method applied to the same