JP2009101612A - Resin molding machine - Google Patents

Resin molding machine Download PDF

Info

Publication number
JP2009101612A
JP2009101612A JP2007276001A JP2007276001A JP2009101612A JP 2009101612 A JP2009101612 A JP 2009101612A JP 2007276001 A JP2007276001 A JP 2007276001A JP 2007276001 A JP2007276001 A JP 2007276001A JP 2009101612 A JP2009101612 A JP 2009101612A
Authority
JP
Japan
Prior art keywords
cylinder
resin composition
fiber reinforced
reinforced resin
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007276001A
Other languages
Japanese (ja)
Inventor
Suguru Nishino
卓 西野
Toshiaki Jinno
敏明 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2007276001A priority Critical patent/JP2009101612A/en
Publication of JP2009101612A publication Critical patent/JP2009101612A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/63Screws having sections without mixing elements or threads, i.e. having cylinder shaped sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin molding machine capable of keeping a strength-improving property of a fiber reinforced resin composition by preventing the breakage of a fibrous filler material without generating a backflow of a molten-fiber reinforced resin composition in a cylinder. <P>SOLUTION: The resin molding machine 1 includes a screw 2, a cylinder 3, a hopper outlet 31 and an exhaust port 32 wherein the screw 2 has an axis 21 and a flight 22 installed upright from the outer peripheral surface of the axis 21, and the screw 2 is stored in the cylinder 3, the hopper outlet 31 is set at the base edge 3a of the cylinder 3, and a fiber reinforced resin composition comprising a base resin and a fibrous filler material is supplied from the hopper outlet 31, and the exhaust port 32 is set at the edge 3b of the cylinder 3, and the reinforced resin composition melted and blended in the cylinder 3 is discharged from the exhaust port 32, and a space G between the inner surface 3c of the cylinder 3 and the edge 22a of the flight 22 is larger than 0 but not larger than 0.4% of a diameter D1 of the cylinder 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、スクリュと、スクリュを内部に収容したシリンダと、シリンダの基端部に設けられた第一の開口と、シリンダの先端部に設けられた第二の開口と、を備え、第一の開口から繊維強化樹脂組成物が供給されて、第二の開口からシリンダ内で溶融混練された繊維強化樹脂組成物が吐出される樹脂成形機に関する。   The present invention includes a screw, a cylinder in which the screw is accommodated, a first opening provided at a base end portion of the cylinder, and a second opening provided at a tip end portion of the cylinder, The present invention relates to a resin molding machine in which a fiber reinforced resin composition is supplied from an opening of the fiber and a fiber reinforced resin composition melt-kneaded in a cylinder is discharged from a second opening.

熱可塑性樹脂をベースとした樹脂組成物(以下、単に「樹脂組成物」とよぶ)を所望の形状に成形する際には、例えば、押出成形法や射出成形法が用いられる。押出成形法や射出成形法を用いた樹脂成形機は、例えば、スクリュと、スクリュを内部に収容したシリンダと、シリンダの基端部に設けられたホッパー口と、シリンダの先端部に設けられた吐出口と、シリンダ内に熱を供給するヒータと、を少なくとも備えている(例えば、特許文献1ないし2参照)。スクリュは、軸部と、軸部の外周面から立設されたフライトと、フライトの間に設けられた溝と、を備えている。樹脂組成物は、ホッパー口からシリンダ内に供給され、ヒータによって温められたシリンダ内で溶融混練されて、吐出口からシリンダ外に吐出される。   When a resin composition based on a thermoplastic resin (hereinafter simply referred to as “resin composition”) is molded into a desired shape, for example, an extrusion molding method or an injection molding method is used. A resin molding machine using an extrusion molding method or an injection molding method is provided, for example, at a screw, a cylinder that houses the screw, a hopper port provided at the base end of the cylinder, and a tip of the cylinder. At least a discharge port and a heater for supplying heat into the cylinder are provided (for example, see Patent Documents 1 and 2). The screw includes a shaft portion, a flight erected from the outer peripheral surface of the shaft portion, and a groove provided between the flights. The resin composition is supplied from the hopper port into the cylinder, melted and kneaded in the cylinder heated by the heater, and discharged from the discharge port to the outside of the cylinder.

特許文献1に記載された樹脂成形機のスクリュは、スクリュの先端部(シリンダの先端部に収容された側)の溝の深さがスクリュの外径の1/6以下、即ち、溝の深さが比較的浅く設けられている。このため、ヒータからの熱がスクリュの溝の底を流れる樹脂組成物に十分伝わり、樹脂組成物が均一に溶融混練される。   The screw of the resin molding machine described in Patent Document 1 has a groove depth of 1/6 or less of the outer diameter of the screw, that is, the depth of the groove of the screw tip (side accommodated in the tip of the cylinder). Is relatively shallow. For this reason, the heat from the heater is sufficiently transmitted to the resin composition flowing through the bottom of the screw groove, and the resin composition is uniformly melt-kneaded.

また、特許文献1に記載された樹脂成形機のスクリュの圧縮比は1.2〜5.0とされており、特許文献2に記載された樹脂成形機のスクリュの圧縮比は2.4〜3.2とされており、スクリュの基端部(シリンダの基端部に収容された側)と比較してスクリュの先端部の樹脂流路が狭く形成されている。このため、シリンダ内で樹脂組成物に大きな剪断力が作用して樹脂組成物は十分に溶融混練される。   Moreover, the compression ratio of the screw of the resin molding machine described in Patent Document 1 is set to 1.2 to 5.0, and the compression ratio of the screw of the resin molding machine described in Patent Document 2 is set to 2.4 to The resin flow path at the tip end of the screw is narrower than the base end of the screw (the side accommodated in the base end of the cylinder). For this reason, a large shearing force acts on the resin composition in the cylinder, and the resin composition is sufficiently melt-kneaded.

ところで、樹脂組成物は、ベース樹脂と、ガラス繊維やカーボン繊維等の繊維状充填材と、から構成されることがある(以下、繊維強化樹脂組成物とよぶ)。繊維状充填材によって、硬化後の繊維強化樹脂組成物の強度を向上させることができる。
特開2001−162670号公報 特開2002−234063号公報
By the way, a resin composition may be comprised from base resin and fibrous fillers, such as glass fiber and carbon fiber (henceforth a fiber reinforced resin composition). The strength of the fiber-reinforced resin composition after curing can be improved by the fibrous filler.
JP 2001-162670 A JP 2002-234063 A

前述した特許文献1及び2に記載された樹脂成形機は、図5に示すように、スクリュ102の軸部121の先端部121bに設けられた溝123が浅く形成され、軸部121の基端部121aと比較して軸部121の先端部121bの樹脂流路が狭く形成されている。このため、このような樹脂成形機を用いて樹脂組成物が溶融混練されると、溶融した樹脂組成物はシリンダ103の基端部103aから先端部103bに送り込まれにくくなり、シリンダ103の先端部103bから基端部103aに向かう方向に逆流する虞がある。   In the resin molding machine described in Patent Documents 1 and 2 described above, as shown in FIG. 5, the groove 123 provided in the distal end portion 121 b of the shaft portion 121 of the screw 102 is formed shallow, and the proximal end of the shaft portion 121 is formed. The resin flow path of the front-end | tip part 121b of the axial part 121 is narrowly formed compared with the part 121a. For this reason, when the resin composition is melt-kneaded using such a resin molding machine, the molten resin composition is less likely to be fed from the base end portion 103a of the cylinder 103 to the tip end portion 103b, and the tip end portion of the cylinder 103 There is a risk of backflow in a direction from 103b toward the base end 103a.

溶解した樹脂組成物が逆流すると、樹脂組成物には大きな剪断力がかかる。樹脂組成物がガラス繊維やカーボン線維のような比較的硬質な繊維状充填材から構成された繊維強化樹脂組成物の場合、この剪断力によって繊維状充填材が折損してしまっていた。そして、繊維状充填材が短くなって、繊維状充填材による樹脂組成物の強度向上性が低下してしまっていた。   When the dissolved resin composition flows backward, a large shearing force is applied to the resin composition. In the case where the resin composition is a fiber reinforced resin composition composed of a relatively hard fibrous filler such as glass fiber or carbon fiber, the fibrous filler has been broken by this shearing force. And the fibrous filler became short and the strength improvement property of the resin composition by a fibrous filler had fallen.

したがって、本発明の目的は、溶融された繊維強化樹脂組成物をシリンダ内で逆流させることなく、繊維状充填材の折損を防止して繊維強化樹脂組成物の強度向上性を維持することができる樹脂成形機を提供することにある。   Therefore, the object of the present invention is to prevent the fibrous filler from breaking and maintain the strength improvement of the fiber reinforced resin composition without causing the molten fiber reinforced resin composition to flow back in the cylinder. The object is to provide a resin molding machine.

前記課題を解決し目的を達成するために、請求項1に記載された本発明は、軸部と前記軸部の外周面から立設されたフライトとを有したスクリュと、前記スクリュを内部に収容したシリンダと、前記シリンダの基端部に設けられた第一の開口と、前記シリンダの先端部に設けられた第二の開口と、を備え、前記第一の開口からベース樹脂と繊維状充填材とから構成された繊維強化樹脂組成物が供給されて、前記第二の開口から前記シリンダ内で溶融混練された前記繊維強化樹脂組成物が吐出される樹脂成形機において、前記シリンダの内面と前記フライトの先端との間隙が、0より大きくかつ前記シリンダの内径の0.4%以下とされていることを特徴とした樹脂成形機である。   In order to solve the problems and achieve the object, the present invention described in claim 1 includes a screw having a shaft portion and a flight erected from an outer peripheral surface of the shaft portion, and the screw inside. A cylinder accommodated, a first opening provided at a base end portion of the cylinder, and a second opening provided at a tip end portion of the cylinder, and a base resin and a fiber form from the first opening. In a resin molding machine in which a fiber reinforced resin composition composed of a filler is supplied and the fiber reinforced resin composition melted and kneaded in the cylinder is discharged from the second opening, an inner surface of the cylinder The resin molding machine is characterized in that a gap between the flight and the tip of the flight is greater than 0 and 0.4% or less of the inner diameter of the cylinder.

請求項2に記載された本発明は、請求項1に記載された樹脂成形機において、前記シリンダの前記基端部に収容された前記軸部の基端部の外径と、前記シリンダの前記先端部に収容された前記軸部の先端部の外径と、の比率が、前記軸部の前記基端部の外径を1とすると、前記軸部の前記先端部の外径が0.9以上でかつ1.2以下とされていることを特徴とした樹脂成形機である。   According to a second aspect of the present invention, in the resin molding machine according to the first aspect, the outer diameter of the base end portion of the shaft portion housed in the base end portion of the cylinder, and the cylinder When the ratio of the outer diameter of the distal end portion of the shaft portion accommodated in the distal end portion to the outer diameter of the proximal end portion of the shaft portion is 1, the outer diameter of the distal end portion of the shaft portion is 0. It is a resin molding machine characterized by being 9 or more and 1.2 or less.

請求項1に記載した本発明によれば、シリンダの内面とフライトの先端との間隙が0より大きくかつシリンダの内径の0.4%以下とされているので、溶融された繊維強化樹脂組成物は、該間隙から漏れ出して逆流することなくシリンダの第一の開口から第二の開口へと確実に輸送される。   According to the first aspect of the present invention, since the gap between the inner surface of the cylinder and the tip of the flight is larger than 0 and not more than 0.4% of the inner diameter of the cylinder, the melted fiber reinforced resin composition Is reliably transported from the first opening of the cylinder to the second opening without leaking out of the gap and backflowing.

請求項2に記載した本発明によれば、シリンダの基端部に収容された軸部の基端部の外径と、シリンダの先端部に収容された軸部の先端部の外径と、の比率が、軸部の基端部の外径を1とすると軸部の先端部の外径が0.9以上でかつ1.2以下とされているので、軸部の基端部と軸部の先端部とでフライトの間に形成される溝が浅くなる変化量はごく小さくなり、該溝内を通る溶融された繊維強化樹脂組成物は、シリンダの先端部側に送り込まれにくくなって逆流したりすることなくシリンダの第一の開口から第二の開口へと円滑に輸送される。また、シリンダの第一の開口から第二の開口へと輸送されて溶融される繊維強化樹脂組成物に作用する剪断力も抑えられる。   According to the present invention described in claim 2, the outer diameter of the base end portion of the shaft portion accommodated in the base end portion of the cylinder, the outer diameter of the tip portion of the shaft portion accommodated in the tip end portion of the cylinder, If the outer diameter of the base end portion of the shaft portion is 1, the outer diameter of the tip end portion of the shaft portion is 0.9 or more and 1.2 or less, so the base end portion of the shaft portion and the shaft The amount of change in which the groove formed during the flight becomes shallower with the tip of the part becomes very small, and the molten fiber reinforced resin composition passing through the groove becomes difficult to be fed to the tip of the cylinder. It is smoothly transported from the first opening of the cylinder to the second opening without backflow. Further, the shearing force acting on the fiber reinforced resin composition that is transported from the first opening of the cylinder to the second opening and melted is also suppressed.

以上説明したように、請求項1に記載された本発明は、シリンダの内面とフライトの先端との間隙が0より大きくかつシリンダの内径の0.4%以下とされているので、溶融された繊維強化樹脂組成物は、該間隙から漏れ出して逆流することなくシリンダの第一の開口から第二の開口へと確実に輸送される。したがって、溶融(溶融混練)された繊維強化樹脂組成物をシリンダ内で逆流させることなく、繊維状充填材の折損を防止して繊維強化樹脂組成物の強度向上性を維持することができる。   As described above, the present invention described in claim 1 is melted because the gap between the inner surface of the cylinder and the tip of the flight is larger than 0 and not more than 0.4% of the inner diameter of the cylinder. The fiber reinforced resin composition is reliably transported from the first opening of the cylinder to the second opening without leaking from the gap and flowing backward. Therefore, breakage of the fibrous filler can be prevented and the strength improvement of the fiber reinforced resin composition can be maintained without causing the melted (melt kneaded) fiber reinforced resin composition to flow backward in the cylinder.

請求項2に記載された本発明は、シリンダの基端部に収容された軸部の基端部の外径と、シリンダの先端部に収容された軸部の先端部の外径と、の比率が、軸部の基端部の外径を1とすると軸部の先端部の外径が0.9以上でかつ1.2以下とされているので、軸部の基端部と軸部の先端部とでフライトの間に形成される溝が浅くなる変化量はごく小さくなり、該溝内を通る溶融された繊維強化樹脂組成物は、シリンダの先端部側に送り込まれにくくなって逆流したりすることなくシリンダの第一の開口から第二の開口へと円滑に輸送される。したがって、溶融(溶融混練)された繊維強化樹脂組成物をシリンダ内で逆流させることがさらになく、繊維状充填材の折損をさらに防止して繊維強化樹脂組成物の強度向上性を維持することができる。また、シリンダの第一の開口から第二の開口へと輸送されて溶融される繊維強化樹脂組成物に作用する剪断力も抑えられる。したがって、繊維状充填材の折損をさらに防止して繊維強化樹脂組成物の強度向上性を維持することができる。   According to a second aspect of the present invention, the outer diameter of the base end portion of the shaft portion accommodated in the base end portion of the cylinder and the outer diameter of the distal end portion of the shaft portion accommodated in the tip end portion of the cylinder are If the outer diameter of the base end portion of the shaft portion is 1, the ratio is that the outer diameter of the tip portion of the shaft portion is 0.9 or more and 1.2 or less, so the base end portion of the shaft portion and the shaft portion The amount of change in the depth of the groove formed during the flight with the tip of the cylinder becomes very small, and the melted fiber reinforced resin composition passing through the groove is less likely to be fed into the tip of the cylinder and flows backward. It is smoothly transported from the first opening of the cylinder to the second opening without sagging. Therefore, the melted (melt-kneaded) fiber reinforced resin composition can be prevented from flowing back in the cylinder, and the strength of the fiber reinforced resin composition can be maintained by further preventing breakage of the fibrous filler. it can. Further, the shearing force acting on the fiber reinforced resin composition that is transported from the first opening of the cylinder to the second opening and melted is also suppressed. Therefore, breakage of the fibrous filler can be further prevented and the strength improvement of the fiber reinforced resin composition can be maintained.

以下、本発明の一実施形態にかかる樹脂成形機1を図1ないし図4を参照して説明する。本発明の一実施形態にかかる樹脂成形機1は、例えば、押出成形機であり、繊維強化樹脂組成物を溶融混練して成形する際に用いられる。樹脂成形機1は、図1に示すように、スクリュ2と、シリンダ3と、第一の開口としてのホッパー口31と、第二の開口としての吐出口32と、スクリュ駆動部6と、ヒータ(図示せず)と、を備えている。繊維強化樹脂組成物は、ベース樹脂と、繊維状充填材と、から構成される。   Hereinafter, a resin molding machine 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4. A resin molding machine 1 according to an embodiment of the present invention is, for example, an extrusion molding machine, and is used when a fiber reinforced resin composition is melt-kneaded and molded. As shown in FIG. 1, the resin molding machine 1 includes a screw 2, a cylinder 3, a hopper port 31 as a first opening, a discharge port 32 as a second opening, a screw driving unit 6, and a heater. (Not shown). The fiber reinforced resin composition is composed of a base resin and a fibrous filler.

スクリュ2は、図1に示すように、全体形状が長尺な略円柱状に形成されている。スクリュ2の外径(即ち、スクリュ2の軸心Pと後述するフライト22の先端22aとの間の距離の二倍値)は、略一定に形成されている。スクリュ2は、繊維状充填材による摩耗を低減させるため、耐摩耗性の高い金属部材から形成されている。スクリュ2は、シリンダ3の基端部3aから先端部3bに亘ってシリンダ3内に収容されている。スクリュ2は、スクリュ本体20と、スクリュ本体20の長手方向の一端に連なる混練部24と、スクリュ本体20の長手方向の他端に連なる支持部25と、を備えている。スクリュ本体20は、図2に示すように、軸部21と、フライト22と、溝23と、を備えている。   As shown in FIG. 1, the screw 2 is formed in a substantially cylindrical shape having a long overall shape. The outer diameter of the screw 2 (that is, the double value of the distance between the axis P of the screw 2 and the tip 22a of the flight 22 described later) is formed substantially constant. The screw 2 is formed of a metal member having high wear resistance in order to reduce wear caused by the fibrous filler. The screw 2 is accommodated in the cylinder 3 from the base end portion 3 a to the tip end portion 3 b of the cylinder 3. The screw 2 includes a screw body 20, a kneading portion 24 that is continuous with one end in the longitudinal direction of the screw body 20, and a support portion 25 that is continuous with the other end in the longitudinal direction of the screw body 20. As shown in FIG. 2, the screw main body 20 includes a shaft portion 21, a flight 22, and a groove 23.

軸部21は、長尺な円柱状に形成されている。軸部21の外径は、基端部21aから先端部21bに向かうにしたがってわずかに大きくなるように設けられている。そして、軸部21の基端部21aの外径D2と、軸部21の先端部21bの外径D3と、の比率が、軸部21の基端部21aの外径D2を1とすると、軸部21の先端部21bの外径D3が0.9以上でかつ1.2以下となるように設けられている。即ち、スクリュ2の圧縮比(軸部21の基端部21aの1ピッチあたりの樹脂経路体積、に対する、軸部21の先端部21bの1ピッチあたりの樹脂経路体積)は、一般的な樹脂成形機より小さくなるように設けられている。軸部21の軸心は、スクリュ2の軸心Pと一致するように設けられている。   The shaft portion 21 is formed in a long cylindrical shape. The outer diameter of the shaft portion 21 is provided to be slightly increased from the proximal end portion 21a toward the distal end portion 21b. When the ratio of the outer diameter D2 of the base end portion 21a of the shaft portion 21 and the outer diameter D3 of the distal end portion 21b of the shaft portion 21 is 1, the outer diameter D2 of the base end portion 21a of the shaft portion 21 is 1. The outer diameter D3 of the tip portion 21b of the shaft portion 21 is provided to be 0.9 or more and 1.2 or less. That is, the compression ratio of the screw 2 (the resin path volume per pitch of the tip end portion 21b of the shaft portion 21 with respect to the resin path volume per pitch of the base end portion 21a of the shaft portion 21) is a general resin molding. It is provided to be smaller than the machine. The axis of the shaft portion 21 is provided so as to coincide with the axis P of the screw 2.

なお、本明細書においては、シリンダ3の基端部3aに収容されたスクリュ2の軸部21を「軸部21の基端部21a」とし、シリンダ3の先端部3bに収容されたスクリュ2の軸部21を「軸部21の先端部21b」とする。   In the present specification, the shaft 2 of the screw 2 accommodated in the proximal end portion 3 a of the cylinder 3 is referred to as a “base end portion 21 a of the shaft portion 21”, and the screw 2 accommodated in the distal end portion 3 b of the cylinder 3. The shaft portion 21 is referred to as a “tip portion 21b of the shaft portion 21”.

フライト22は、軸部21の外周面から立設されている。フライト22は、軸部21の長手方向の略全長に亘って設けられ、ピッチが一定な螺旋状に形成されている。軸部21の外周面からのフライト22の突出量は、略一定に設けられている。   The flight 22 is erected from the outer peripheral surface of the shaft portion 21. The flight 22 is provided over substantially the entire length of the shaft portion 21 in the longitudinal direction, and is formed in a spiral shape with a constant pitch. The projecting amount of the flight 22 from the outer peripheral surface of the shaft portion 21 is provided substantially constant.

溝23は、軸部21の外周面と、軸部21の外周面と略直交し且つ互いに間隔をあけて相対するフライト22の側面と、から構成される。溝23の断面形状はコ字状に形成されている。溝23は、螺旋状に形成されたフライト22の間に形成され、フライト22と同様に、軸部21の外周面に螺旋状に形成されている。繊維強化樹脂組成物は、溝23内を通ってホッパー口31から吐出口32に向かって輸送される。   The groove 23 includes an outer peripheral surface of the shaft portion 21 and side surfaces of the flight 22 that are substantially orthogonal to the outer peripheral surface of the shaft portion 21 and face each other with a space therebetween. The cross-sectional shape of the groove 23 is U-shaped. The groove 23 is formed between the spirally formed flights 22, and is formed in a spiral shape on the outer peripheral surface of the shaft portion 21, similarly to the flight 22. The fiber reinforced resin composition is transported from the hopper port 31 toward the discharge port 32 through the groove 23.

混練部24は、図1に示すように、軸部21の先端部21bに連なって設けられている。混練部24は、スクリュ本体20で溶融された繊維強化樹脂組成物を混練する。混練部24は、円柱状に形成されている。混練部24は軸部21と同軸的即ち直列に配置され、混練部24の軸心はスクリュ2の軸心Pと一致するように設けられている。混練部24の外径は、軸部21の先端部21bの外径D3より小さく設けられている。   As shown in FIG. 1, the kneading part 24 is provided continuously to the tip part 21 b of the shaft part 21. The kneading unit 24 kneads the fiber reinforced resin composition melted in the screw body 20. The kneading part 24 is formed in a cylindrical shape. The kneading part 24 is arranged coaxially or in series with the shaft part 21, and the axis of the kneading part 24 is provided so as to coincide with the axis P of the screw 2. The outer diameter of the kneading part 24 is smaller than the outer diameter D3 of the tip part 21b of the shaft part 21.

支持部25は、軸部21の基端部21aに連なって設けられている。支持部25は、円柱状に形成されている。支持部25は軸部21と同軸的即ち直列に配置され、支持部25の軸心はスクリュ2の軸心Pと一致するように設けられている。支持部25の外径は、軸部21の基端部21aの外径D2より大きく設けられている。支持部25がスクリュ駆動部6に回転自在に支持されて、スクリュ2はシリンダ3に対して回転自在に取り付けられる。   The support portion 25 is provided continuously to the base end portion 21 a of the shaft portion 21. The support part 25 is formed in a columnar shape. The support portion 25 is disposed coaxially or in series with the shaft portion 21, and the shaft center of the support portion 25 is provided so as to coincide with the shaft center P of the screw 2. The outer diameter of the support portion 25 is larger than the outer diameter D2 of the base end portion 21a of the shaft portion 21. The support part 25 is rotatably supported by the screw driving part 6, and the screw 2 is attached to the cylinder 3 so as to be freely rotatable.

シリンダ3は、円筒状に設けられ、内部にスクリュ2を収容する。シリンダ3は、繊維状充填材による摩耗を低減させるため、耐摩耗性の高い金属部材から形成されている。シリンダ3の内径D1は、略一定に形成されるとともに、スクリュ2の外径より僅かに大きくなるように設けられている。そして、シリンダ3内にスクリュ2が収容されると、シリンダ3の内面3cとフライト22の先端22aとの間隙Gが、0より大きくかつシリンダ3の内径D1の0.4%以下となる。   The cylinder 3 is provided in a cylindrical shape and accommodates the screw 2 therein. The cylinder 3 is formed of a metal member having high wear resistance in order to reduce wear caused by the fibrous filler. The inner diameter D1 of the cylinder 3 is formed to be substantially constant and is slightly larger than the outer diameter of the screw 2. When the screw 2 is accommodated in the cylinder 3, the gap G between the inner surface 3c of the cylinder 3 and the tip 22a of the flight 22 is larger than 0 and 0.4% or less of the inner diameter D1 of the cylinder 3.

ホッパー口31は、図1に示すように、シリンダ3内に連なった開口である。ホッパー口31は、シリンダ3の基端部3aに設けられ、溶融混練する繊維強化樹脂組成物をシリンダ3内に供給する。ホッパー口31には、鉛直方向に配置されたホッパー31aが取り付けられている。ホッパー31aは、全体形状が略漏斗状に形成されている。ホッパー31a内にはペレット形状の繊維強化樹脂組成物が収納され、ホッパー口31に繊維強化樹脂組成物を供給する。   As shown in FIG. 1, the hopper port 31 is an opening continuous in the cylinder 3. The hopper port 31 is provided at the base end portion 3 a of the cylinder 3 and supplies a fiber reinforced resin composition to be melt kneaded into the cylinder 3. A hopper 31 a arranged in the vertical direction is attached to the hopper port 31. The entire shape of the hopper 31a is formed in a substantially funnel shape. A pellet-shaped fiber reinforced resin composition is accommodated in the hopper 31 a, and the fiber reinforced resin composition is supplied to the hopper port 31.

吐出口32は、図1に示すように、シリンダ3内に連なった開口である。吐出口32は、シリンダ3の先端部3bに設けられ、シリンダ3内で溶融混練された繊維強化樹脂組成物を吐出する。吐出口32には、ダイス(図示せず)が取り付けられている。ダイスは、金属部材等から形成され、例えば筒状に形成されている。吐出口32から吐出された繊維強化樹脂組成物は、ダイス内を通って所望の形状に成形される。   As shown in FIG. 1, the discharge port 32 is an opening continuous in the cylinder 3. The discharge port 32 is provided at the tip 3 b of the cylinder 3 and discharges the fiber reinforced resin composition melt-kneaded in the cylinder 3. A die (not shown) is attached to the discharge port 32. The die is formed of a metal member or the like, and is formed in a cylindrical shape, for example. The fiber reinforced resin composition discharged from the discharge port 32 is molded into a desired shape through the die.

スクリュ駆動部6は、モータ(図示せず)等から構成されている。スクリュ駆動部6は、シリンダ3内に収容されたスクリュ2を回転自在に軸支するとともに、スクリュ2の軸心Pを中心としてスクリュ2を回転駆動する。   The screw drive unit 6 is composed of a motor (not shown) and the like. The screw drive unit 6 rotatably supports the screw 2 accommodated in the cylinder 3 and rotationally drives the screw 2 around the axis P of the screw 2.

ヒータは、シリンダ3の外周面に設けられている。ヒータは、例えば帯板状に形成されている。ヒータはシリンダ3内に熱を供給し、この熱によってシリンダ3内の繊維強化樹脂組成物を溶融(加熱流動化)する。   The heater is provided on the outer peripheral surface of the cylinder 3. The heater is formed in, for example, a strip shape. The heater supplies heat into the cylinder 3 and melts (heats and fluidizes) the fiber reinforced resin composition in the cylinder 3 by this heat.

前述した構成の樹脂成形機1では、軸部21の基端部21aの外径D2と軸部21の先端部21bの外径D3との比率が、外径D2を1とすると外径D3が0.9以上でかつ1.2以下となるように設けられ、また、フライト22の軸部21の外周面からの突出量は略一定に設けられている。このため、一般的な樹脂成形機と比較して、軸部21の基端部21aと先端部21bとで溝23が浅くなる変化量はごく小さくなり、溝23内を通る繊維強化樹脂組成物がシリンダ3の先端部3b側に送り込まれにくくなって逆流したりすることがなく、シリンダ3のホッパー口31から吐出口32へと円滑に輸送される。   In the resin molding machine 1 configured as described above, if the ratio of the outer diameter D2 of the base end portion 21a of the shaft portion 21 to the outer diameter D3 of the distal end portion 21b of the shaft portion 21 is 1, the outer diameter D3 is It is provided so as to be 0.9 or more and 1.2 or less, and the protrusion amount from the outer peripheral surface of the shaft portion 21 of the flight 22 is provided substantially constant. For this reason, compared with a general resin molding machine, the amount of change in which the groove 23 becomes shallow at the proximal end portion 21a and the distal end portion 21b of the shaft portion 21 is very small, and the fiber-reinforced resin composition passing through the groove 23 Is not easily fed into the tip 3b side of the cylinder 3 and does not flow backward, and is smoothly transported from the hopper port 31 of the cylinder 3 to the discharge port 32.

また、前述した構成の樹脂成形機1では、シリンダ3の内面3cとフライト22の先端22aとの間隙Gが0より大きくかつシリンダ3の内径D1の0.4%以下となるように設けられており、間隙Gがごく小さくなる。このため、溝23内を通る溶融された繊維強化樹脂組成物が間隙Gを通って溝23から漏れ出してシリンダ3の先端部3bから基端部3aに向かって逆流することがなく、シリンダ3のホッパー口31から吐出口32へと確実に輸送される。   Further, in the resin molding machine 1 having the above-described configuration, the gap G between the inner surface 3c of the cylinder 3 and the tip 22a of the flight 22 is provided to be larger than 0 and 0.4% or less of the inner diameter D1 of the cylinder 3. Therefore, the gap G becomes very small. For this reason, the molten fiber reinforced resin composition passing through the groove 23 does not leak from the groove 23 through the gap G and flows backward from the distal end portion 3b of the cylinder 3 toward the proximal end portion 3a. It is reliably transported from the hopper port 31 to the discharge port 32.

後述するように、繊維強化樹脂組成物がシリンダ3の先端部3bから基端部3aに向かって逆流してしまうと、繊維強化樹脂組成物に大きな剪断力が作用して繊維強化樹脂組成物に含有された繊維状充填材が折損してしまう。繊維強化樹脂組成物が逆流しなくなることで、繊維状充填材が折損することがなくなり、繊維状充填材による繊維強化樹脂組成物の強度向上性を維持することができる。   As will be described later, when the fiber reinforced resin composition flows backward from the distal end portion 3b of the cylinder 3 toward the proximal end portion 3a, a large shearing force acts on the fiber reinforced resin composition, and thus the fiber reinforced resin composition is formed. The contained fibrous filler breaks. When the fiber reinforced resin composition does not flow backward, the fibrous filler is not broken, and the strength improvement of the fiber reinforced resin composition by the fibrous filler can be maintained.

さらに、軸部21の基端部21aと先端部21bとで溝23の浅くなる変化量がごく小さくなることで、シリンダ3の基端部3aから先端部3bに輸送される繊維強化樹脂組成物に作用する剪断力も小さくなり、繊維状充填材の折損を防止することができる。また、例えば、スクリュ2の回転数を下げることによっても、前述した剪断力を抑えて繊維状充填材の折損を防止することができる。一方、剪断力が低下することによって繊維強化樹脂組成物を十分に溶融できなくなる虞があるが、例えばヒータの温度を高く設定することによって、繊維強化樹脂組成物を十分に溶融することが可能である。   Further, the fiber reinforced resin composition that is transported from the base end portion 3a of the cylinder 3 to the tip end portion 3b because the change amount of the shallower groove 23 between the base end portion 21a and the tip end portion 21b of the shaft portion 21 becomes very small. The shearing force acting on the fiber is also reduced, and breakage of the fibrous filler can be prevented. Also, for example, by reducing the rotational speed of the screw 2, the shearing force described above can be suppressed and the fibrous filler can be prevented from being broken. On the other hand, there is a possibility that the fiber reinforced resin composition cannot be sufficiently melted due to a decrease in the shearing force. However, for example, by setting the heater temperature high, the fiber reinforced resin composition can be sufficiently melted. is there.

繊維強化樹脂組成物は、ベース樹脂と繊維状充填材とから構成される。ベース樹脂は、不飽和ポリエステル樹脂が多く用いられる。不飽和ポリエステル樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリシクロヘキサンテレフタレート(PCT)等が挙げられる。また、ベース樹脂は、エポキシ樹脂、ポリアミド樹脂、フェノール樹脂等を用いてもよい。なお、ベース樹脂は、これらのみに限定されるものではなく、本発明の目的に反しない限りこれら以外のベース樹脂であってもよい。   The fiber reinforced resin composition is composed of a base resin and a fibrous filler. As the base resin, an unsaturated polyester resin is often used. Examples of the unsaturated polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polycyclohexane terephthalate (PCT), and the like. The base resin may be an epoxy resin, a polyamide resin, a phenol resin, or the like. In addition, base resin is not limited only to these, Base resins other than these may be sufficient unless it is contrary to the objective of this invention.

繊維状充填材は、例えば、ガラス繊維(グラスファイバー)、カーボン繊維、アラミド繊維等が挙げられる。繊維状充填材は、ベース樹脂に添加され、ベース樹脂の機械的な強度を向上させる。一般の樹脂成形機を用いて樹脂組成物を溶融混練すると、溶融された樹脂組成物がシリンダ3の先端部3bから基端部3aへ向かって逆流することがある。樹脂組成物がガラス繊維等の比較的硬度が高い繊維状充填材から構成された繊維強化樹脂組成物である場合、溶融された繊維強化樹脂組成物が逆流してしまうと、大きな剪断力を受けて繊維状充填材が折損し繊維状充填材による強度向上性が低下してしまうこととなる。なお、繊維状充填材は、これらのみに限定されるものではなく、本発明の目的に反しない限りこれら以外の繊維状充填材であってもよい。   Examples of the fibrous filler include glass fiber (glass fiber), carbon fiber, and aramid fiber. The fibrous filler is added to the base resin to improve the mechanical strength of the base resin. When the resin composition is melt-kneaded using a general resin molding machine, the melted resin composition may flow backward from the distal end portion 3b of the cylinder 3 toward the proximal end portion 3a. When the resin composition is a fiber reinforced resin composition composed of a fibrous filler having a relatively high hardness such as glass fiber, a large shearing force is applied when the molten fiber reinforced resin composition flows backward. As a result, the fibrous filler is broken and the strength improvement by the fibrous filler is reduced. In addition, a fibrous filler is not limited only to these, As long as it is not contrary to the objective of this invention, fibrous fillers other than these may be sufficient.

前述した構成の繊維強化樹脂組成物としては、例えば、ベース樹脂としてのポリブチレンテレフタレート(PBT)に繊維状充填材としてのガラス繊維を30%含有させた、トレコン 1101−G30(東レ社製)が挙げられる。この繊維強化樹脂組成物は、溶融混練される前の初期形状はペレット形状となっている。なお、繊維強化樹脂組成物は、これのみに限定されるものではなく、本発明の目的に反しない限りこれ以外の繊維強化樹脂組成物であってもよい。   As the fiber reinforced resin composition having the above-described configuration, for example, Toraycon 1101-G30 (manufactured by Toray Industries, Inc.) containing 30% glass fiber as a fibrous filler in polybutylene terephthalate (PBT) as a base resin. Can be mentioned. In this fiber reinforced resin composition, the initial shape before melt-kneading is a pellet shape. In addition, a fiber reinforced resin composition is not limited only to this, Unless it is contrary to the objective of this invention, fiber reinforced resin compositions other than this may be sufficient.

前述した構成の樹脂成形機1を用いて繊維強化樹脂組成物を成形する際には、まず、ホッパー31aに収納されたペレット形状の繊維強化樹脂組成物を、ホッパー口31からシリンダ3内に供給する。シリンダ3内に供給された繊維強化樹脂組成物は、軸部21の基端部21a側の溝23内に収容される。スクリュ2はスクリュ駆動部6によって回転し、スクリュ2が回転することによって、繊維強化樹脂組成物は溝23内を通ってホッパー口31から吐出口32に向かって輸送される。   When the fiber reinforced resin composition is molded using the resin molding machine 1 having the above-described configuration, first, the pellet-shaped fiber reinforced resin composition stored in the hopper 31 a is supplied into the cylinder 3 from the hopper port 31. To do. The fiber reinforced resin composition supplied into the cylinder 3 is accommodated in the groove 23 on the base end 21 a side of the shaft portion 21. The screw 2 is rotated by the screw driving unit 6, and the fiber reinforced resin composition is transported from the hopper port 31 toward the discharge port 32 through the groove 23 by the rotation of the screw 2.

前述のように、軸部21の基端部21aと先端部21bとで溝23が浅くなる変化量はごく小さいので、溝23内を通る溶融された繊維強化樹脂組成物は、シリンダ3の先端部3bに送り込まれにくくなったり逆流したりすることがなく、溝23内を通ってホッパー口31から吐出口32へと円滑に輸送される。また、この時、溶融された繊維強化樹脂組成物に作用する剪断力が抑えられる。   As described above, since the amount of change in which the groove 23 becomes shallow at the proximal end portion 21a and the distal end portion 21b of the shaft portion 21 is very small, the melted fiber reinforced resin composition passing through the groove 23 is It does not become difficult to be fed into the portion 3 b or does not flow backward, and is smoothly transported from the hopper port 31 to the discharge port 32 through the groove 23. At this time, the shearing force acting on the melted fiber reinforced resin composition is suppressed.

また、シリンダ3の内面3cとフライト22の先端22aとの間隙Gがごく小さくなるように設けられているので、溝23内を通る溶融された繊維強化樹脂組成物は、間隙Gを通って溝23から漏れ出して逆流することがなく、溝23内を通ってホッパー口31から吐出口32へと確実に輸送される。   Further, since the gap G between the inner surface 3c of the cylinder 3 and the tip 22a of the flight 22 is provided to be very small, the melted fiber reinforced resin composition passing through the groove 23 passes through the gap G to form the groove. The liquid does not leak out from the flow path 23 and flows backward, and is reliably transported from the hopper port 31 to the discharge port 32 through the groove 23.

そして、シリンダ3内はヒータによって温められており、繊維強化樹脂組成物がホッパー口31から吐出口32に向かって輸送される間に、繊維強化樹脂組成物は十分に溶融される。溶融された繊維強化樹脂組成物は、混練部24で十分に混練される。そして、溶融混練された繊維強化樹脂組成物は、シリンダ3の吐出口32からダイスに向かって吐出され、ダイス内を通り抜けた後に冷却固化されて成形される。   The inside of the cylinder 3 is heated by a heater, and the fiber reinforced resin composition is sufficiently melted while the fiber reinforced resin composition is transported from the hopper port 31 toward the discharge port 32. The melted fiber reinforced resin composition is sufficiently kneaded in the kneading section 24. The melt-kneaded fiber reinforced resin composition is discharged from the discharge port 32 of the cylinder 3 toward the die, and after passing through the die, is cooled and solidified to be molded.

本実施形態によれば、シリンダ3の内面3cとフライト22の先端22aとの間隙Gが0より大きくかつシリンダ3の内径D1の0.4%以下とされているので、溶融された繊維強化樹脂組成物は、間隙Gから漏れ出して逆流することなくシリンダ3のホッパー口31から吐出口32へと確実に輸送される。したがって、溶融(溶融混練)された繊維強化樹脂組成物をシリンダ3内で逆流させることなく、繊維状充填材の折損を防止して繊維強化樹脂組成物の強度向上性を維持することができる。   According to the present embodiment, the gap G between the inner surface 3c of the cylinder 3 and the tip 22a of the flight 22 is larger than 0 and not more than 0.4% of the inner diameter D1 of the cylinder 3, so that the molten fiber reinforced resin The composition is reliably transported from the hopper port 31 of the cylinder 3 to the discharge port 32 without leaking from the gap G and flowing backward. Therefore, without causing the melted (melt-kneaded) fiber reinforced resin composition to flow backward in the cylinder 3, breakage of the fibrous filler can be prevented and strength improvement of the fiber reinforced resin composition can be maintained.

軸部21の基端部21aの外径D2と、軸部21の先端部21bの外径D3と、の比率が、軸部21の基端部21aの外径D2を1とすると軸部21の先端部21bの外径D3が0.9以上でかつ1.2以下とされているので、軸部21の基端部21aと軸部21の先端部21bとで溝23が浅くなる変化量はごく小さくなり、溝23内を通る溶融された繊維強化樹脂組成物は、シリンダ3の先端部3b側に送り込まれにくくなったり逆流したりすることなくシリンダ3のホッパー口31から吐出口32へと円滑に輸送される。したがって、溶融(溶融混練)された繊維強化樹脂組成物をシリンダ3内で逆流させることがさらになく、繊維状充填材の折損をさらに防止して繊維強化樹脂組成物の強度向上性を維持することができる。また、シリンダ3のホッパー口31から吐出口32へと輸送されて溶融される繊維強化樹脂組成物に作用する剪断力も抑えられる。したがって、繊維状充填材の折損をさらに防止して繊維強化樹脂組成物の強度向上性を維持することができる。   If the ratio of the outer diameter D2 of the base end portion 21a of the shaft portion 21 to the outer diameter D3 of the distal end portion 21b of the shaft portion 21 is set to 1, the shaft portion 21 has an outer diameter D2 of the base end portion 21a. Since the outer diameter D3 of the distal end portion 21b is 0.9 or more and 1.2 or less, the amount of change in which the groove 23 becomes shallow between the proximal end portion 21a of the shaft portion 21 and the distal end portion 21b of the shaft portion 21. The melted fiber reinforced resin composition passing through the groove 23 becomes extremely small, so that the molten fiber reinforced resin composition does not easily flow into the tip 3b side of the cylinder 3 and does not flow backward to the discharge port 32 from the hopper port 31 of the cylinder 3. And transported smoothly. Accordingly, the fiber reinforced resin composition that has been melted (melt kneaded) can be prevented from flowing back in the cylinder 3, and the fiber filler can be further prevented from being broken to maintain the strength improvement of the fiber reinforced resin composition. Can do. Further, the shearing force acting on the fiber reinforced resin composition that is transported from the hopper port 31 of the cylinder 3 to the discharge port 32 and melted is also suppressed. Therefore, breakage of the fibrous filler can be further prevented and the strength improvement of the fiber reinforced resin composition can be maintained.

また、本発明の発明者は、前述した実施形態に記載された樹脂成形機1を製造して、本発明の効果を確認した。   Moreover, the inventor of this invention manufactured the resin molding machine 1 described in embodiment mentioned above, and confirmed the effect of this invention.

(実施例1)
シリンダ3の内面3cとフライト22の先端22aとの間隙Gが異なる複数の樹脂成形機1を製造して繊維強化樹脂組成物を成形した。成形後の繊維強化樹脂組成物のベース樹脂を溶剤中で溶解させてガラス繊維のみを取り出し、ガラス繊維の顕微鏡写真からガラス繊維の長さを目視で測定した。結果を図3に示す。なお、スクリュ2のL/D 25、スクリュ2の回転数 10rpm、シリンダ3の内径D1 60mm、シリンダ3内の温度 300℃とした。また、繊維強化樹脂組成物としては、トレコン 1101−G30(東レ社製)を用いた。また、軸部21の基端部21aの外径D2と、軸部21の先端部21bの外径D3と、の比率は、1:1.15とした。
Example 1
A plurality of resin molding machines 1 having different gaps G between the inner surface 3c of the cylinder 3 and the tip 22a of the flight 22 were manufactured to mold a fiber reinforced resin composition. The base resin of the fiber reinforced resin composition after molding was dissolved in a solvent to take out only the glass fiber, and the length of the glass fiber was visually measured from a micrograph of the glass fiber. The results are shown in FIG. The screw 2 was L / D 25, the screw 2 was rotated at 10 rpm, the inner diameter D1 of the cylinder 3 was 60 mm, and the temperature in the cylinder 3 was 300 ° C. Moreover, as a fiber reinforced resin composition, Toraycon 1101-G30 (made by Toray Industries, Inc.) was used. Further, the ratio of the outer diameter D2 of the base end portion 21a of the shaft portion 21 to the outer diameter D3 of the distal end portion 21b of the shaft portion 21 was 1: 1.15.

図3において、横軸は、シリンダ3の内面3cとフライト22の先端22aとの間隙Gのシリンダの内径D1に対する割合(G/D1)(%)を示している。また、縦軸は、成形後の繊維強化樹脂組成物中の平均のガラス繊維の長さ(平均GF長)(μm)を示している。なお、樹脂成形機1に投入前の繊維強化樹脂組成物中のガラス繊維の長さは約460μmであった。   In FIG. 3, the horizontal axis indicates the ratio (G / D1) (%) of the gap G between the inner surface 3c of the cylinder 3 and the tip 22a of the flight 22 to the inner diameter D1 of the cylinder. Moreover, the vertical axis | shaft has shown the length (average GF length) (micrometer) of the average glass fiber in the fiber reinforced resin composition after shaping | molding. In addition, the length of the glass fiber in the fiber reinforced resin composition before throwing into the resin molding machine 1 was about 460 micrometers.

間隙Gのシリンダの内径D1に対する割合が0.4%であるとガラス繊維の長さは約420μmとなり、樹脂成形機1に投入前の繊維強化樹脂組成物中のガラス繊維の長さの90%以上であった。このように、間隙Gが0より大きくかつシリンダの内径D1に対する割合が0.4%以下であるとガラス繊維が折損することはほとんどなかった。これは繊維強化樹脂組成物の逆流が抑制されたためであり、これによってガラス繊維を折損させることなく繊維強化樹脂組成物の強度向上性を維持することができる。一方、間隙Gのシリンダの内径D1に対する割合が0.4%より大きいと、ガラス繊維の長さは樹脂成形機1に投入前の繊維強化樹脂組成物中の長さと比較してかなり短くなっていた。これは繊維強化樹脂組成物が逆流したためであり、このようにガラス繊維が折損すると繊維強化樹脂組成物の強度低下が起こってしまう。   When the ratio of the gap G to the inner diameter D1 of the cylinder is 0.4%, the length of the glass fiber is about 420 μm, and 90% of the length of the glass fiber in the fiber reinforced resin composition before being charged into the resin molding machine 1. That was all. As described above, when the gap G was larger than 0 and the ratio to the inner diameter D1 of the cylinder was 0.4% or less, the glass fiber was hardly broken. This is because the back flow of the fiber reinforced resin composition is suppressed, and thereby the strength improvement property of the fiber reinforced resin composition can be maintained without breaking the glass fiber. On the other hand, when the ratio of the gap G to the inner diameter D1 of the cylinder is larger than 0.4%, the length of the glass fiber is considerably shorter than the length in the fiber reinforced resin composition before being charged into the resin molding machine 1. It was. This is because the fiber reinforced resin composition flows backward, and when the glass fiber breaks in this way, the strength of the fiber reinforced resin composition is reduced.

(実施例2)
軸部21の基端部21aの外径D2と、軸部21の先端部21bの外径D3と、の比率が異なる複数の樹脂成形機1を製造して繊維強化樹脂組成物を成形した。成形後の繊維強化樹脂組成物のベース樹脂を溶剤中で溶解させてガラス繊維のみを取り出し、ガラス繊維の顕微鏡写真からガラス繊維の長さを目視で測定した。結果を図4に示す。なお、スクリュ2のL/D 25、スクリュ2の回転数 10rpm、シリンダ3の内径D1 60mm、シリンダ3内の温度 300℃とした。また、繊維強化樹脂組成物としては、トレコン 1101−G30(東レ社製)を用いた。また、シリンダ3の内面3cとフライト22の先端22aとの間隙Gは、シリンダ3の内径D1の0.33%とした。
(Example 2)
A plurality of resin molding machines 1 having different ratios of the outer diameter D2 of the base end portion 21a of the shaft portion 21 and the outer diameter D3 of the distal end portion 21b of the shaft portion 21 were manufactured to mold the fiber reinforced resin composition. The base resin of the fiber reinforced resin composition after molding was dissolved in a solvent to take out only the glass fiber, and the length of the glass fiber was visually measured from a micrograph of the glass fiber. The results are shown in FIG. The screw 2 was L / D 25, the screw 2 was rotated at 10 rpm, the inner diameter D1 of the cylinder 3 was 60 mm, and the temperature in the cylinder 3 was 300 ° C. Moreover, as a fiber reinforced resin composition, Toraycon 1101-G30 (made by Toray Industries, Inc.) was used. Further, the gap G between the inner surface 3c of the cylinder 3 and the tip 22a of the flight 22 was 0.33% of the inner diameter D1 of the cylinder 3.

図4において、横軸は、軸部21の基端部21aの外径D2を1とした場合の外径D2に対する軸部21の先端部21bの外径D3の比率(D3/D2)を示している。また、縦軸は、成形後の繊維強化樹脂組成物中の平均のガラス繊維の長さ(平均GF長)(μm)を示している。なお、樹脂成形機1に投入前の繊維強化樹脂組成物中のガラス繊維の長さは約520μmであった。   4, the horizontal axis indicates the ratio (D3 / D2) of the outer diameter D3 of the distal end portion 21b of the shaft portion 21 to the outer diameter D2 when the outer diameter D2 of the base end portion 21a of the shaft portion 21 is 1. ing. Moreover, the vertical axis | shaft has shown the length (average GF length) (micrometer) of the average glass fiber in the fiber reinforced resin composition after shaping | molding. In addition, the length of the glass fiber in the fiber reinforced resin composition before throwing into the resin molding machine 1 was about 520 micrometers.

外径D2を1とした場合の外径D2に対する外径D3の比率が0.9〜1.2であるとガラス繊維の長さは500μm以上となり、樹脂成形機1に投入前の繊維強化樹脂組成物中のガラス繊維の長さの95%以上であった。このように、外径D2を1とした場合の外径D2に対する外径D3の比率が0.9〜1.2であるとガラス繊維が折損することはほとんどなかった。これは繊維強化樹脂組成物の逆流が抑制されたためであり、これによってガラス繊維を折損させることなく繊維強化樹脂組成物の強度向上性を維持することができる。一方、外径D2を1とした場合の外径D2に対する外径D3の比率が0.9より小さいまたは1.2より大きいと、ガラス繊維の長さは樹脂成形機1に投入前の繊維強化樹脂組成物中の長さと比較してかなり短くなっていた。これは繊維強化樹脂組成物が逆流したためであり、このようにガラス繊維が折損すると繊維強化樹脂組成物の強度低下が起こってしまう。   When the ratio of the outer diameter D3 to the outer diameter D2 is 0.9 to 1.2 when the outer diameter D2 is 1, the length of the glass fiber is 500 μm or more, and the fiber reinforced resin before being introduced into the resin molding machine 1 It was 95% or more of the length of the glass fiber in the composition. As described above, when the ratio of the outer diameter D3 to the outer diameter D2 is 0.9 to 1.2 when the outer diameter D2 is 1, the glass fiber was hardly broken. This is because the back flow of the fiber reinforced resin composition is suppressed, and thereby the strength improvement property of the fiber reinforced resin composition can be maintained without breaking the glass fiber. On the other hand, if the ratio of the outer diameter D3 to the outer diameter D2 is less than 0.9 or greater than 1.2 when the outer diameter D2 is 1, the length of the glass fiber is fiber reinforced before being introduced into the resin molding machine 1 It was considerably shorter than the length in the resin composition. This is because the fiber reinforced resin composition flows backward, and when the glass fiber breaks in this way, the strength of the fiber reinforced resin composition is reduced.

前述した実施形態においては、樹脂成形機1は一つのスクリュ2を備えていた。しかしながら、本発明では、複数のスクリュ2を備えた樹脂成形機1であってもよい。また複数のスクリュ2の軸心Pは平行であってもよく、斜交であってもよい。   In the above-described embodiment, the resin molding machine 1 includes one screw 2. However, in this invention, the resin molding machine 1 provided with the some screw 2 may be sufficient. Moreover, the axial centers P of the plurality of screws 2 may be parallel or oblique.

また、前述した実施形態においては、樹脂成形機1は押出成形機であった。しかしながら、本発明では、射出成形機としてもよい。   Moreover, in embodiment mentioned above, the resin molding machine 1 was an extrusion molding machine. However, in the present invention, an injection molding machine may be used.

また、前述した実施形態においては、スクリュ2は混練部24を備えていた。しかしながら、本発明では、スクリュ2に混練部24が設けられていなくてもよい。   In the above-described embodiment, the screw 2 includes the kneading unit 24. However, in the present invention, the kneading part 24 may not be provided in the screw 2.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態にかかる樹脂成形機の構成図である。It is a lineblock diagram of a resin molding machine concerning one embodiment of the present invention. 図1に示されたシリンダの基端部及び先端部近傍を示す断面図である。It is sectional drawing which shows the base end part and front-end | tip part vicinity of the cylinder shown by FIG. シリンダの内面とフライトの先端との間隙と、繊維強化樹脂組成物の強度との関係を示すグラフである。It is a graph which shows the relationship between the clearance gap between the inner surface of a cylinder and the front-end | tip of a flight, and the intensity | strength of a fiber reinforced resin composition. 軸部の基端部の外径と軸部の先端部の外径との比率と、繊維強化樹脂組成物の強度との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the outer diameter of the base end part of an axial part, and the outer diameter of the front-end | tip part of an axial part, and the intensity | strength of a fiber reinforced resin composition. 従来の樹脂成形機を示す断面図である。It is sectional drawing which shows the conventional resin molding machine.

符号の説明Explanation of symbols

1 樹脂成形機
2 スクリュ
3 シリンダ
3a 基端部
3b 先端部
3c 内面
21 軸部
22 フライト
22a 先端
31 ホッパー口(第一の開口)
32 吐出口(第二の開口)
D1 シリンダの内径
D2 軸部の基端部の外径
D3 軸部の先端部の外径
G 間隙
DESCRIPTION OF SYMBOLS 1 Resin molding machine 2 Screw 3 Cylinder 3a Base end part 3b Tip end part 3c Inner surface 21 Shaft part 22 Flight 22a Tip 31 Hopper opening (first opening)
32 Discharge port (second opening)
D1 Inner diameter of cylinder D2 Outer diameter of shaft end D3 Outer diameter of shaft end G Gap

Claims (2)

軸部と前記軸部の外周面から立設されたフライトとを有したスクリュと、前記スクリュを内部に収容したシリンダと、前記シリンダの基端部に設けられた第一の開口と、前記シリンダの先端部に設けられた第二の開口と、を備え、前記第一の開口からベース樹脂と繊維状充填材とから構成された繊維強化樹脂組成物が供給されて、前記第二の開口から前記シリンダ内で溶融混練された前記繊維強化樹脂組成物が吐出される樹脂成形機において、
前記シリンダの内面と前記フライトの先端との間隙が、0より大きくかつ前記シリンダの内径の0.4%以下とされていることを特徴とする樹脂成形機。
A screw having a shaft portion and a flight erected from an outer peripheral surface of the shaft portion; a cylinder housing the screw therein; a first opening provided at a base end portion of the cylinder; and the cylinder A fiber-reinforced resin composition comprising a base resin and a fibrous filler is provided from the first opening, and the second opening is provided at the tip of the second opening. In the resin molding machine from which the fiber-reinforced resin composition melt-kneaded in the cylinder is discharged,
A resin molding machine, wherein a gap between an inner surface of the cylinder and a front end of the flight is greater than 0 and not more than 0.4% of an inner diameter of the cylinder.
前記シリンダの前記基端部に収容された前記軸部の基端部の外径と、前記シリンダの前記先端部に収容された前記軸部の先端部の外径と、の比率が、
前記軸部の前記基端部の外径を1とすると、前記軸部の前記先端部の外径が0.9以上でかつ1.2以下とされていることを特徴とする請求項1記載の樹脂成形機。
The ratio of the outer diameter of the base end portion of the shaft portion accommodated in the base end portion of the cylinder and the outer diameter of the tip end portion of the shaft portion accommodated in the tip end portion of the cylinder,
The outer diameter of the tip end portion of the shaft portion is 0.9 or more and 1.2 or less, where the outer diameter of the base end portion of the shaft portion is 1. Resin molding machine.
JP2007276001A 2007-10-24 2007-10-24 Resin molding machine Abandoned JP2009101612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007276001A JP2009101612A (en) 2007-10-24 2007-10-24 Resin molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007276001A JP2009101612A (en) 2007-10-24 2007-10-24 Resin molding machine

Publications (1)

Publication Number Publication Date
JP2009101612A true JP2009101612A (en) 2009-05-14

Family

ID=40703895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276001A Abandoned JP2009101612A (en) 2007-10-24 2007-10-24 Resin molding machine

Country Status (1)

Country Link
JP (1) JP2009101612A (en)

Similar Documents

Publication Publication Date Title
US20170291364A1 (en) Single screw micro-extruder for 3d printing
JP5074167B2 (en) Injection molding machine, resin material plasticizing delivery device and rotor thereof
JP5659288B1 (en) Method for producing transparent resin composition containing polycarbonate resin and acrylic resin
JP4260875B2 (en) Scroll, barrel and injection molding machine
JP2023001253A (en) Method for producing conductive composite material
JP2009285879A (en) Plasticizing feed-out device and injection molding machine including the same
JP2010000752A (en) Plasticizing feeder and injection molding machine equipped with the same
JP5541563B2 (en) High shear device
JP2016203576A (en) Extruder screw, extruder and extrusion method
JP2009269182A (en) Plasticization and delivery device for molding material and injection molding machine using it
TW201707929A (en) Extruder screw, extruder, and extrusion method
JP2008183721A (en) Extruder screw, bearing segment used for this screw, and biaxial extruder equipped with this screw
JP2005119277A (en) Plasticizing screw for resin material and plasticizing mechanism
JP2009113360A (en) Plunger type injection cylinder for injection molding machine
JP2019084587A (en) Screw for extrusion and injection molding machine
JP2009101612A (en) Resin molding machine
JP2019206160A (en) Delivery device, plasticizing device and injection molding machine
JP2005169764A (en) Kneader for plastic material
JP4272502B2 (en) Injection molding method
JP5432477B2 (en) Resin molding machine
US20060099299A1 (en) Plasticizing unit for micro injection molding machine
JP2013086455A (en) Injection molding machine and method of manufacturing resin molded article
JP2007223274A (en) Extrusion device and method of polymer composition
JP7238533B2 (en) Material supply device, injection molding device and three-dimensional modeling device
JP2010162817A (en) Plasticizing device and plasticizing method for plastic raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20111226