JP2009098650A - Reflective film laminate - Google Patents

Reflective film laminate Download PDF

Info

Publication number
JP2009098650A
JP2009098650A JP2008232418A JP2008232418A JP2009098650A JP 2009098650 A JP2009098650 A JP 2009098650A JP 2008232418 A JP2008232418 A JP 2008232418A JP 2008232418 A JP2008232418 A JP 2008232418A JP 2009098650 A JP2009098650 A JP 2009098650A
Authority
JP
Japan
Prior art keywords
film
layer
reflective film
alloy
film laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008232418A
Other languages
Japanese (ja)
Other versions
JP5280777B2 (en
Inventor
Jun Suzuki
順 鈴木
Toshiki Sato
俊樹 佐藤
Takayuki Tsubota
隆之 坪田
Shinichi Tanifuji
信一 谷藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008232418A priority Critical patent/JP5280777B2/en
Publication of JP2009098650A publication Critical patent/JP2009098650A/en
Application granted granted Critical
Publication of JP5280777B2 publication Critical patent/JP5280777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflective film laminate in which aggregation and sulfurization of Ag hardly occurs. <P>SOLUTION: (1) The reflective film laminate is characterized by that a first layer made of an Ag alloy, which contains Ag as a main component, 0.02 atom% or more of Bi, and totally 0.02 atom% or more of at least one of V, Ge and Zn, and which satisfies following formula (1): 7×[A]+13×[B]≤8, wherein [A] (atom%) is content of at least one of V, Ge and Zn, and [B] (atom%) is content of Bi, is formed on a base body and a second layer made of silicon oxide is formed thereon. (2) In the reflective film laminate, the Ag alloy contains totally 0.1 to 5 atom% of at least one of Au, Pt, Pd and Rh. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、反射膜積層体、及びこの反射膜積層体を用いた車両用灯具、照明器具、光学ミラー、LED,有機ELディスプレイ、有機EL照明器具に関する技術分野に属するものである。   The present invention belongs to a technical field related to a reflective film laminate and a vehicular lamp, a lighting fixture, an optical mirror, an LED, an organic EL display, and an organic EL lighting fixture using the reflective film laminate.

Ag膜は、膜厚が約70nm以上になると、可視光の反射率が非常に高くなるため、従来より、光学ミラーなどの用途に用いられている。   Since the Ag film has a very high reflectance of visible light when the film thickness is about 70 nm or more, it has been conventionally used for applications such as optical mirrors.

しかしながら、Ag膜は凝集しやすく、凝集により反射率が低下するという問題点を有していた。この凝集は、大気中のハロゲンイオンが水分と共にAg膜表面に吸着することにより生じるため、Ag膜の表面に外部環境を遮断するためにUV硬化樹脂やアクリル系樹脂等の樹脂や酸化物や窒化物をコーティングして使用されるが(特開2000−106017号公報、特開2006−98856号公報参照)、ピンホール部分からの水分やハロゲンイオンの侵入や、加えて樹脂の場合は樹脂そのものを水分やハロゲンイオンが拡散浸透することによって凝集が発生するために、Ag膜表面に多数の白点や変色が生じて、意匠性、商品性を低下させる原因となっていた。   However, the Ag film has a problem that it easily aggregates and the reflectivity decreases due to the aggregation. This aggregation occurs when halogen ions in the atmosphere are adsorbed on the surface of the Ag film together with moisture. Therefore, in order to block the external environment on the surface of the Ag film, a resin such as UV curable resin or acrylic resin, oxide, (Refer to JP-A-2000-106017 and JP-A-2006-98856) However, in the case of resin, in addition to the penetration of moisture and halogen ions from the pinhole portion, the resin itself is used. Aggregation occurs due to diffusion and permeation of moisture and halogen ions, so that many white spots and discoloration occur on the surface of the Ag film, causing deterioration in design and commercial properties.

また、上記の凝集の問題に加え、反射膜はランプにより80〜200℃程度の高温にさらされるため、熱によってAg原子が拡散して凝集し、Ag膜の表面が粗くなって反射率が低下するという熱による凝集の問題や、大気中の硫黄が樹脂膜や酸化物膜などの保護膜中を拡散浸透してきて、Ag反射膜と反応して表面が徐徐に硫化されることにより黒く変色し、これにより反射率が低下するという硫化の問題があった。   In addition to the above aggregation problem, the reflective film is exposed to a high temperature of about 80 to 200 ° C. by the lamp, so that Ag atoms diffuse and aggregate due to heat, and the surface of the Ag film becomes rough and the reflectance decreases. The problem of agglomeration due to heat, and sulfur in the atmosphere diffuses and penetrates into protective films such as resin films and oxide films, reacts with the Ag reflection film, and the surface is gradually sulfided to discolor black. As a result, there was a problem of sulfidation in which the reflectance was lowered.

耐硫化性については、Agの合金化による改善も試みられている。例えば、AgにGeやInを添加した合金や(特開2001―192753、特開2006―37169)、耐熱性が高いAg−Bi合金に耐硫化性を向上する元素であるZnを添加した合金(特開2005−48231)が提案されている。   With respect to sulfidation resistance, attempts have also been made to improve by alloying Ag. For example, an alloy in which Ge or In is added to Ag (Japanese Patent Laid-Open No. 2001-192753, Japanese Patent Laid-Open No. 2006-37169), an alloy in which Zn, which is an element that improves sulfidation resistance, is added to an Ag-Bi alloy having high heat resistance ( JP 2005-48231) has been proposed.

これらの合金は、確かに耐硫化性を向上するが、車両用灯具や照明器具などの反射膜では、93%以上の高い反射率を維持することが要求されるため、これらの膜単独の使用では、硫化によって反射率が徐徐に低下してしまう。
特開2000− 106017号公報 特開2006−98856号公報 特開2001−192753号公報 特開2006−37169号公報 特開2005−48231号公報
These alloys certainly improve the sulfidation resistance, but it is required to maintain a high reflectivity of 93% or more in reflective films for vehicle lamps and lighting fixtures. Then, the reflectivity gradually decreases due to sulfurization.
JP 2000-106017 A JP 2006-98856 A JP 2001-192753 A JP 2006-37169 A JP 2005-48231 A

本発明はこのような事情に鑑みてなされたものであって、その目的は、Ag膜の凝集および硫化が生じ難い反射膜積層体を提供しようとするものである。   The present invention has been made in view of such circumstances, and an object thereof is to provide a reflective film laminate in which Ag film aggregation and sulfidation are unlikely to occur.

本発明者らは、ハロゲンイオンと熱による凝集を改善する合金について検討を行い、その結果Ag−Bi合金を見出した(特開2004−139712)。しかしながら、Ag−Bi合金では耐硫化性を十分改善することができない。   The present inventors have studied an alloy that improves aggregation caused by halogen ions and heat, and as a result, found an Ag-Bi alloy (Japanese Patent Laid-Open No. 2004-139712). However, the sulfidation resistance cannot be sufficiently improved with the Ag-Bi alloy.

そこで、Ag−Bi合金に種々の元素を添加したAg合金膜について耐硫化性試験を行ったが、Ag合金膜単独ではAg−Bi合金に比べ耐硫化性が改善されるものもあるが、93%以上の反射率を維持するAg合金は無く、硫化を抑えるには保護膜が必須であるとの結論に至った。また、Ag合金膜への保護膜積層の検討を進める中で、単純に保護膜を積層すればよいのではなく、Ag−Bi合金への添加元素種とその濃度と、保護膜に用いる膜の種類がある組合せとなるときに、保護膜が緻密化するとともに保護膜のピンホールが減少して大気中の硫黄の侵入を抑制するとともに、ハロゲンイオンの侵入も抑制することを見出し、本発明を完成するに至った。   Therefore, a sulfidation resistance test was performed on an Ag alloy film obtained by adding various elements to an Ag—Bi alloy. However, although the Ag alloy film alone has improved sulfidation resistance as compared with the Ag—Bi alloy, 93 There is no Ag alloy that maintains a reflectivity of at least%, and it has been concluded that a protective film is essential to suppress sulfidation. In addition, while proceeding with the study of the protective film stacking on the Ag alloy film, it is not necessary to simply stack the protective film, but the additive element species and the concentration thereof to the Ag-Bi alloy, and the film used for the protective film When a combination of types is found, the protective film is densified and the pinholes of the protective film are reduced to suppress the intrusion of sulfur in the atmosphere, and also to suppress the intrusion of halogen ions. It came to be completed.

このようにして完成された本発明は、反射膜積層体、並びに、この反射膜積層体を用いた車両用灯具、照明器具、光学ミラー、LED、有機ELディスプレイ、有機EL照明に係わり、請求項1〜9記載の反射膜積層体(第1〜9発明に係る反射膜積層体)、請求項10記載の車両用灯具(第10発明)、請求項11記載の照明器具(第11発明)、請求項12記載の光学ミラー(第12発明)、請求項13記載のLED(第13発明)、請求項14記載の有機ELディスプレイ(第14発明)、請求項15記載の有機EL照明(第15発明)であり、それは次のような構成としたものである。   The present invention thus completed relates to a reflective film laminate, and a vehicular lamp, a lighting fixture, an optical mirror, an LED, an organic EL display, and organic EL lighting using the reflective film laminate. Reflective film laminates according to 1 to 9 (reflective film laminates according to the first to ninth inventions), vehicle lamps according to claim 10 (10th invention), lighting fixtures according to claim 11 (11th invention), The optical mirror according to claim 12 (the twelfth invention), the LED according to claim 13 (the thirteenth invention), the organic EL display according to claim 14 (the fourteenth invention), and the organic EL illumination according to claim 15 (the fifteenth invention). Invention), which has the following configuration.

即ち、請求項1記載の反射膜積層体は、基体上に、Agを主成分としBiを0.02原子%以上含有し、更にV、Ge、Znの1種以上を合計で0.02原子%以上含有すると共に、前記V、Ge、Znの1種以上の含有率を[A](原子%)とし、Biの含有率を[Bi](原子%)としたときに、下記(1)式を満足するAg合金からなる第一層が形成され、その上にSiの酸化物からなる第二層が形成されていることを特徴とする反射膜積層体である〔第1発明〕。
7×[A]+13×[Bi]≦8 ---------(1)式
That is, the reflective film laminate according to claim 1 contains Ag as a main component and Bi in an amount of 0.02 atomic% or more on the substrate, and further includes one or more of V, Ge, and Zn in a total amount of 0.02 atoms. When the content of at least one of V, Ge, and Zn is [A] (atomic%) and the Bi content is [Bi] (atomic%), the following (1) A reflective film laminate characterized in that a first layer made of an Ag alloy satisfying the formula is formed, and a second layer made of an Si oxide is formed thereon [first invention].
7 × [A] + 13 × [Bi] ≦ 8 --------- (1)

請求項2記載の反射膜積層体は、前記Ag合金膜とSiの酸化物からなる第二層の界面に、前記Ag合金膜の内部よりもGeの含有量が多い層を有することを特徴とする請求項1記載の反射膜積層体である〔第2発明〕。   The reflective film laminate according to claim 2, further comprising a layer having a higher Ge content than an inside of the Ag alloy film at an interface between the Ag alloy film and the second layer made of an oxide of Si. The reflective film laminate according to claim 1, wherein the second invention is provided.

請求項3記載の反射膜積層体は、前記V、Ge、Znの1種以上の含有量が多い層が、V、Ge、Znの1種以上の酸化物を含むことを特徴とする請求項2記載の反射膜積層体である〔第3発明〕。   The reflective film laminate according to claim 3, wherein the layer having a high content of one or more of V, Ge, and Zn contains one or more oxides of V, Ge, and Zn. 2. A reflection film laminate according to 2, [third invention].

請求項4記載の反射膜積層体は、前記Ag合金が更にAu、Pt、Pd、Rhの1種以上を合計で0.1〜5原子%含有する請求項1〜3記載の反射膜積層体である〔第4発明〕。   The reflective film laminate according to claim 4, wherein the Ag alloy further contains at least one of Au, Pt, Pd, and Rh in an amount of 0.1 to 5 atomic%. [Fourth Invention]

請求項5記載の反射膜積層体は、前記Siの酸化膜からなる第二層をSiO2 とみなして、この層の密度をX線反射率法により測定し、3層に分割したモデルで解析した際に、3層中のうち少なくともAg合金からなる第一層と接する層の密度が2g/cm3 以上である請求項1〜4記載の反射膜積層体である〔第5発明〕。 The reflection film laminate according to claim 5, wherein the second layer made of the Si oxide film is regarded as SiO 2 , the density of this layer is measured by the X-ray reflectivity method, and is analyzed by a model divided into three layers. 5. The reflective film laminate according to claim 1, wherein the density of the layer in contact with at least the first layer made of an Ag alloy among the three layers is 2 g / cm 3 or more.

請求項6記載の反射膜積層体は、前記第二層の厚さが5〜80nmである請求項1〜5のいずれかに記載の反射膜積層体である〔第6発明〕。   The reflective film laminate according to claim 6 is the reflective film laminate according to any one of claims 1 to 5, wherein the second layer has a thickness of 5 to 80 nm [Sixth Invention].

請求項7記載の反射膜積層体は、JIS R3106に準拠してD65光源での波長範囲380〜780nmの光によって測定された可視光反射率が93%以上である請求項1〜6のいずれかに記載の反射膜積層体である〔第7発明〕。請求項8記載の反射膜積層体は、前記第二層の上にプラズマ重合膜が形成されている請求項1〜7のいずれかに記載の反射膜積層体である〔第8発明〕。   The reflective film laminate according to claim 7 has a visible light reflectance of 93% or more measured by light having a wavelength range of 380 to 780 nm with a D65 light source in accordance with JIS R3106. [7th invention]. The reflective film laminate according to claim 8 is the reflective film laminate according to any one of claims 1 to 7, wherein a plasma polymerization film is formed on the second layer [eighth invention].

請求項9記載の反射膜積層体は、基体と第一層との間に、金属膜または金属酸化物膜、または、プラズマ重合膜、もしくは樹脂膜より成る膜が形成されている請求項1〜8のいずれかに記載の反射膜積層体である〔第9発明〕。   The reflective film laminate according to claim 9, wherein a film made of a metal film, a metal oxide film, a plasma polymerized film, or a resin film is formed between the substrate and the first layer. 8. A reflection film laminate according to any one of [8] [9th invention].

請求項10記載の車両用灯具は、請求項1〜9記載の反射膜積層体を備えることを特徴とする車両用灯具である(第10発明)。請求項11記載の照明器具は、請求項1〜9記載の反射膜積層体を備えることを特徴とする照明器具である(第11発明)。請求項12記載の光学ミラーは、請求項1〜9記載の反射膜積層体を備えることを特徴とする光学ミラーである(第12発明)。請求項13記載のLEDは、請求項1〜9記載の反射膜積層体を備えることを特徴とするLEDである(第13発明)。請求項14記載の有機ELディスプレイは、請求項1〜9記載の反射膜積層体を備えることを特徴とする有機ELディスプレイである(第14発明)。請求項15記載の有機EL照明は、請求項1〜9記載の反射膜積層体を備えることを特徴とする有機EL照明である(第15発明)。   A vehicular lamp according to a tenth aspect is a vehicular lamp characterized by including the reflective film laminate according to the first to ninth aspects (the tenth invention). An illuminating device according to claim 11 is the illuminating device comprising the reflective film laminate according to any one of claims 1 to 9 (11th invention). An optical mirror according to a twelfth aspect of the present invention is an optical mirror comprising the reflective film laminate according to any of the first to ninth aspects (a twelfth aspect of the present invention). An LED according to claim 13 is an LED comprising the reflective film laminate according to any one of claims 1 to 9 (13th invention). An organic EL display according to a fourteenth aspect is an organic EL display including the reflective film laminate according to the first to ninth aspects (fourteenth invention). The organic EL illumination according to claim 15 is the organic EL illumination comprising the reflective film laminate according to claims 1 to 9 (15th invention).

本発明に係る反射膜積層体は、Ag合金膜組成と保護膜の組合せの最適化によって保護膜の保護性能を向上させることができ、Ag合金膜の凝集および硫化が生じ難く、このため、その耐久性の向上がはかれる。   The reflective film laminate according to the present invention can improve the protective performance of the protective film by optimizing the combination of the Ag alloy film composition and the protective film, and the Ag alloy film is less likely to aggregate and sulfidize. Durability is improved.

硫黄やハロゲンイオンとの反応を抑えるためにはAg合金膜を外部環境から遮断するための保護膜を形成することが必要であるが、反射膜として使用するため、高反射率を得るために保護膜は無色透明でなければならない。無色透明の保護膜としてはシリカ、アルミナ、チタニア等の酸化膜がある。しかしながら、これらの無色透明保護膜を、単純に純Agまたは通常のAg合金膜上に成膜しても、ピンホールの生成が避けられないと共に、保護膜の密度が低いために、例えば5%の硫化アンモニウム水溶液の上方に暴露して蒸発してきた硫化水素ガスに接触させる硫化試験を行うと、茶色い点状の硫化が多数発生したり、膜全体が黄色く変色してしまう。また、120〜130℃の大気雰囲気中に放置すると、保護膜中を大気中の硫黄が拡散してAgと反応して徐徐に硫化による黄色化が進行する。   In order to suppress the reaction with sulfur and halogen ions, it is necessary to form a protective film for shielding the Ag alloy film from the external environment, but since it is used as a reflective film, it is protected to obtain a high reflectance. The membrane must be clear and colorless. Examples of the colorless and transparent protective film include oxide films such as silica, alumina, and titania. However, even if these colorless and transparent protective films are simply formed on pure Ag or a normal Ag alloy film, the generation of pinholes cannot be avoided, and the density of the protective film is low. When a sulfidation test is carried out by contacting the hydrogen sulfide gas that has been exposed and evaporated above the aqueous solution of ammonium sulfide, a large number of brown dot-like sulfidation occurs or the entire film turns yellow. Further, when left in an air atmosphere at 120 to 130 ° C., sulfur in the air diffuses in the protective film and reacts with Ag, and yellowing due to sulfuration proceeds gradually.

そこで、本発明者らはハロゲンイオンと熱による凝集が改善されるAg−Bi合金に添加する元素を選択することや組成などを制御することで保護膜の緻密性を向上させることに着目して鋭意検討を進めた。その結果、Ag−Bi合金への添加元素種とその濃度と、保護膜に用いる膜の種類がある組合せとなるときに、保護膜のピンホールが低減できると共に、保護膜が緻密化して膜全面からの硫化水素ガスの侵入を阻止することを見出した。このように保護膜の環境遮断性(Ag合金と環境中の各種影響物質との接触を遮断する性能)を高めることができ、その結果、耐硫化性が向上することを見出し、本発明を完成するに至った。   Therefore, the present inventors have focused on improving the denseness of the protective film by selecting elements to be added to the Ag-Bi alloy that improves aggregation due to halogen ions and heat, and controlling the composition. We proceeded with intensive studies. As a result, when there is a combination of the element type added to the Ag-Bi alloy, its concentration, and the type of film used for the protective film, pinholes in the protective film can be reduced, and the protective film becomes dense and the entire film surface It has been found that hydrogen sulfide gas can be prevented from penetrating from. Thus, the environmental barrier property of the protective film (the ability to block contact between the Ag alloy and various influential substances in the environment) can be improved, and as a result, the sulfide resistance is improved, and the present invention is completed. It came to do.

このようにして完成された本発明に係る反射膜積層体は、基体上に、Agを主成分としBiを0.02原子%以上含有し、更にV、Ge、Znの1種以上を合計で0.02原子%以上含有すると共に、前記V、Ge、Znの1種以上の含有率を[A](原子%)とし、Biの含有率を[Bi](原子%)としたときに、下記(1)式を満足するAg合金からなる第一層が形成され、その上にSiの酸化物からなる第二層が形成されていることを特徴とするものである。
7×[A]+13×[Bi]≦8 ---------(1)式
The thus completed reflective film laminate according to the present invention contains Ag as a main component and Bi in an amount of 0.02 atomic% or more, and further includes one or more of V, Ge, and Zn in total. When the content of at least one of V, Ge, and Zn is [A] (atomic%) and the content of Bi is [Bi] (atomic%) A first layer made of an Ag alloy that satisfies the following expression (1) is formed, and a second layer made of an oxide of Si is formed thereon.
7 × [A] + 13 × [Bi] ≦ 8 --------- (1)

本発明に係る反射膜積層体において、第一層を形成するAg合金は、Biを0.02原子%以上含有し、更にV、Ge、Znの1種以上(以下、Aともいう)を合計で0.02原子%以上含有すると共に、前記V、Ge、Znの1種以上の含有率を[A](原子%)とし、Biの含有率を[Bi](原子%)としたときに、下記(1)式を満足するものである。
7×[A]+13×[Bi]≦8 ---------(1)式
In the reflective film laminate according to the present invention, the Ag alloy forming the first layer contains 0.02 atomic% or more of Bi, and further includes one or more of V, Ge, and Zn (hereinafter also referred to as A). When the content of at least one of V, Ge, and Zn is [A] (atomic%) and the Bi content is [Bi] (atomic%) The following expression (1) is satisfied.
7 × [A] + 13 × [Bi] ≦ 8 --------- (1)

Biは、0.02原子%以上の含有率で熱とハロゲンイオンによるAg膜の結晶粒成長や凝集を抑制する効果が発現する。即ち、耐熱性と耐ハロゲン性が向上してAg膜の凝集が生じ難くなる。つまり、耐凝集性が向上する。このため、Bi含有率は0.02原子%以上とする必要がある。また、後で述べるように、元素Aと同時に添加することで、第二層が緻密化し、かつピンホールが減少するが、このように第二層の保護性能を高めるためにも、0.02原子%以上の添加が必要である。好ましくは0.05原子%以上、より好ましくは0.08原子%以上である。以上の点から、本発明に係る第一層のAg合金でのBi含有率は0.02 原子%以上としている。   Bi exhibits an effect of suppressing crystal grain growth and aggregation of the Ag film due to heat and halogen ions at a content of 0.02 atomic% or more. That is, heat resistance and halogen resistance are improved, and Ag film aggregation is less likely to occur. That is, the aggregation resistance is improved. For this reason, Bi content needs to be 0.02 atomic% or more. As will be described later, the addition of the element A at the same time makes the second layer dense and reduces pinholes. In order to improve the protection performance of the second layer in this way, 0.02 It is necessary to add more than atomic%. Preferably it is 0.05 atomic% or more, More preferably, it is 0.08 atomic% or more. From the above points, the Bi content in the Ag alloy of the first layer according to the present invention is set to 0.02 atomic% or more.

上記Biと共にA(V、Ge、Znの1種以上)を合計で0.02原子%以上含有することにより、第二層を緻密化させ、かつピンホールを減少させ、保護性能が高まる。つまり、保護膜としての耐久性が向上する。Aの合計含有率(以下、Aの含有率ともいう)が0.02原子%未満では第二層の保護性能の向上効果が得られない。このため、Aの含有率は0.02原子%以上とする必要がある。好ましくは0.05原子%以上、より好ましくは0.08原子%以上である。以上の点から、本発明に係る第一層のAg合金膜中のAの含有率は0.02原子%以上としている。   By containing 0.02 atomic% or more of A (one or more of V, Ge, and Zn) together with Bi, the second layer is densified, pinholes are reduced, and the protection performance is enhanced. That is, durability as a protective film is improved. When the total content of A (hereinafter also referred to as A content) is less than 0.02 atomic%, the effect of improving the protective performance of the second layer cannot be obtained. For this reason, the content rate of A needs to be 0.02 atomic% or more. Preferably it is 0.05 atomic% or more, More preferably, it is 0.08 atomic% or more. From the above points, the content of A in the Ag alloy film of the first layer according to the present invention is 0.02 atomic% or more.

第一層を形成するAg合金は、上記のようにBiおよびA(V、Ge、Znの1種以上)を含有するだけでなく、前記Aの含有率[A]とBiの含有率[Bi]が(1)式を満足する必要がある。これは、この式を満足しないAとBiの含有率では、Ag合金膜の反射率が低下して93%よりも低くなってしまうからである。より好ましくは、(1)式の右辺の値を6、さらに好ましくは4とした式を満足するAとBiの含有率であれば、反射率が向上してなお良い。   The Ag alloy forming the first layer not only contains Bi and A (one or more of V, Ge, Zn) as described above, but also contains the A content [A] and the Bi content [Bi. ] Must satisfy formula (1). This is because the reflectance of the Ag alloy film is lowered and becomes lower than 93% at the contents of A and Bi that do not satisfy this formula. More preferably, the reflectivity can be improved if the content of A and Bi satisfies the formula where the value of the right side of the formula (1) is 6, more preferably 4.

また、第一層は、Ag合金膜内部よりもSiの酸化物からなる第二層の界面側のGeもしくはZnの含有量が多いことが好ましい。さらに、GeもしくはZnの含有量が多い層にはこれらの酸化物が含まれていることが好ましい。これにより、GeもしくはZnやこれらの酸化物がSiの酸化物からなる第二層の界面側に濃縮することにより、第二層のSi酸化物層が緻密化したりピンホールが減少したりすると考えられる。   The first layer preferably has a higher Ge or Zn content on the interface side of the second layer made of the Si oxide than in the Ag alloy film. Furthermore, it is preferable that these layers contain a high Ge or Zn content. As a result, it is considered that Ge or Zn or these oxides are concentrated on the interface side of the second layer made of Si oxide, so that the second Si oxide layer is densified or pinholes are reduced. It is done.

第一層の好ましい膜厚は70〜500nmで、更に好ましくは100〜400nm、より好ましくは150〜300nmである。全反射を得るには70nm以上必要であり、また、熱やハロゲンイオンによるAgの凝集はAg合金膜の膜厚にも依存し、膜が厚いほど凝集しにくくなるからである。一方、上限についてはコスト的には500nm以下がよい。   The preferred film thickness of the first layer is 70 to 500 nm, more preferably 100 to 400 nm, and more preferably 150 to 300 nm. This is because 70 nm or more is required to obtain total reflection, and Ag aggregation due to heat or halogen ions also depends on the film thickness of the Ag alloy film, and the thicker the film, the more difficult it is to aggregate. On the other hand, the upper limit is preferably 500 nm or less in terms of cost.

第二層は、第一層(Ag合金)を外部環境から遮断するための保護膜として作用するものであるが、無色透明でなければならない。透明酸化膜としては、Siの酸化物からなる酸化膜の他にも、SnO2 、ZnO等の酸化膜があるが、SnO2 、ZnO等からなる酸化膜はいずれも黄色などの色がついているために、光源の光色を再現できない。これらに対して、Si、AlまたはTiの酸化物からなる酸化膜は、いずれも無色透明である。 The second layer acts as a protective film for shielding the first layer (Ag alloy) from the external environment, but must be colorless and transparent. As the transparent oxide film, there is an oxide film such as SnO 2 or ZnO in addition to an oxide film made of Si oxide, but the oxide films made of SnO 2 or ZnO are all colored in yellow or the like. Therefore, the light color of the light source cannot be reproduced. On the other hand, any oxide film made of an oxide of Si, Al or Ti is colorless and transparent.

これらの無色透明の金属酸化物からなる酸化膜の中で、AlやTiの酸化物からなる酸化膜を第二層として用いた場合、第一層のAg合金膜組成が上記組成であれば、耐硫化性および耐熱性の向上効果は得られるが、Siの酸化物よりもその効果は低く、特に耐硫化性は不十分である。これに対し、Siの酸化物からなる酸化膜を第二層として用いた場合、第一層のAg合金膜組成が上記組成のとき、上記のような耐硫化性の顕著な向上効果が得られる。また、AlやTiの酸化物は成膜速度がSiO2 と比べて1/10以下で生産性が著しく劣る。以上の点から、本発明に係る第二層はSiの酸化物からなるものとしている。 Among these oxide films made of colorless and transparent metal oxide, when an oxide film made of an oxide of Al or Ti is used as the second layer, if the Ag alloy film composition of the first layer is the above composition, Although the effect of improving sulfidation resistance and heat resistance can be obtained, the effect is lower than that of Si oxide, and the sulfidation resistance is particularly insufficient. On the other hand, when an oxide film made of an oxide of Si is used as the second layer, when the Ag alloy film composition of the first layer is the above composition, the above-described significant improvement effect in sulfidation resistance can be obtained. . Further, the oxide of Al or Ti has a film formation rate of 1/10 or less as compared with SiO 2 and the productivity is remarkably inferior. From the above points, the second layer according to the present invention is made of an oxide of Si.

本発明に係る反射膜積層体において、第二層がSiの酸化物からなり、この層をSiO2 とみなして、この層の密度をX線反射率法により測定し、3層に分割したモデルで解析した際に、3層中のうち少なくともAg合金からなる第一層と接する層の密度が2g/cm3 以上であるのがよい〔第3発明〕。即ち、SiO2 の理論密度は約2.7g/cm3 (石英の値)であり、硫化水素ガスによる硫化を抑えるためには、SiO2 層がより緻密に、即ち、より理論密度に近い密度で形成されている方が好ましい。一般に、スパッタリング法によりSiO2 膜を形成すると膜内で密度の勾配が生じる。このときのSiO2 膜の密度はX線反射率法により測定することができ、SiO2 膜を多層に分割したモデルで解析するとその密度勾配に関する情報を得ることができる。本発明者らはSiO2 膜密度の解析方法を種々検討した結果、3層以上に分割したモデルで解析すると、実測データとシミュレーションデータとの間に高い相関が得られることを見出し、SiO2 膜を3層構造としたモデルで各層の密度を計算により求めた。本発明者らは鋭意検討し、第一層がAgを主成分としBiを0.02 原子%以上含有し更にA(V、Ge、Znの1種以上)を0.02原子%以上含有する場合に、第二層をX線反射率法で測定し、3層モデルで解析したときのAg合金からなる第一層と接する層の密度が2g/cm3 以上となることを見出し、このときに硫化水素ガスや水分の透過を抑え保護層として非常に高い効果を発揮することが分かった。従って、第二層がSiO2 膜からなる場合、このSiO2 膜の密度をX線反射率法により測定し、3層モデルで解析した際に、3層中のAg合金からなる第一層と接する層の密度が2g/cm3 以上であるのがよい。なお、Ag合金膜と接するSiの酸化物膜が緻密化する原因については明らかではないが、例えば、Ag−Bi−Ge合金膜を膜の表面から深さ方向に組成をXPS(X線光電子分光法)で分析すると、Ag−Bi−Ge合金膜の表面にGeが濃縮しており、この濃縮が第二層の緻密化やピンホールの減少に寄与していると考えられる。すなわち、例えば膜中のGeの平均組成が0.1at%のAg−Bi−Ge合金膜では(膜中のGe組成は膜を硝酸溶液で溶解し、溶液をICP発光分光分析装置で分析して求めた)、XPS分析ではGeの組成は最表面で2.0at%、表面から0.7nmの深さで0.8at%、表面から1.4nm以上の深さでは、検出限界以下の組成となっており、最表面のGe組成は膜中平均組成の20倍も濃縮している。一方、Ag−Geの二元系合金膜でもGeの表面濃縮は認められるが、膜中のGeの平均組成は0.1at%とAg−Bi−Ge合金膜と同じ組成であっても、表面のGe組成は1.0at%とAg−Bi−Ge合金膜よりも濃縮の度合いが低くなっている。このように、GeとBiとを複合添加することにより、Ag合金表面でのGeの濃縮が一層高められ、これが、第二層であるSiの酸化膜の核発生密度を増大して、膜の緻密化やピンホールの低減に寄与していることが考えられる。Geは周期律表中でSiと同族元素であることから、Si−OとGe−Oが整合しやすいため、Ag合金膜表面にGeが多く存在すれば、GeがSiの酸化物の核発生サイトとなって核発生密度が増大し、Siの酸化物の緻密化やピンホールの低減が生じると考えられる。 In the reflective film laminate according to the present invention, the second layer is made of an oxide of Si, this layer is regarded as SiO 2 , the density of this layer is measured by the X-ray reflectivity method, and the model is divided into three layers In the analysis, the density of the layer in contact with at least the first layer made of an Ag alloy among the three layers is preferably 2 g / cm 3 or more [third invention]. That is, the theoretical density of SiO 2 is about 2.7 g / cm 3 (quartz value). In order to suppress sulfidation by hydrogen sulfide gas, the SiO 2 layer is denser, that is, a density closer to the theoretical density. It is preferable to be formed by. In general, when a SiO 2 film is formed by a sputtering method, a density gradient occurs in the film. The density of the SiO 2 film at this time can be measured by the X-ray reflectivity method, and information on the density gradient can be obtained by analyzing with a model in which the SiO 2 film is divided into multiple layers. The present inventors have result of various studies on analysis method of the SiO 2 film density, when analyzed in divided model three or more layers, it found high that the correlation is obtained between the measured and simulated data, SiO 2 film The density of each layer was obtained by calculation using a model having a three-layer structure. The present inventors have intensively studied, and the first layer contains Ag as a main component, contains Bi in an amount of 0.02 atomic% or more, and further contains A (one or more of V, Ge, Zn) in an amount of 0.02 atomic% or more. In this case, the second layer was measured by the X-ray reflectivity method, and the density of the layer in contact with the first layer made of the Ag alloy when analyzed by the three-layer model was found to be 2 g / cm 3 or more. In addition, it was found that hydrogen sulfide gas and moisture permeation were suppressed and a very high effect was exhibited as a protective layer. Therefore, when the second layer is made of an SiO 2 film, the density of the SiO 2 film is measured by the X-ray reflectivity method, and when analyzed by a three-layer model, the first layer made of an Ag alloy in the three layers The density of the contacting layer is preferably 2 g / cm 3 or more. Although the cause of the densification of the Si oxide film in contact with the Ag alloy film is not clear, for example, the composition of the Ag-Bi-Ge alloy film in the depth direction from the film surface is XPS (X-ray photoelectron spectroscopy). Analysis), it is considered that Ge is concentrated on the surface of the Ag—Bi—Ge alloy film, and this concentration contributes to densification of the second layer and reduction of pinholes. That is, for example, in an Ag—Bi—Ge alloy film in which the average composition of Ge in the film is 0.1 at% (the Ge composition in the film is obtained by dissolving the film with a nitric acid solution and analyzing the solution with an ICP emission spectroscopic analyzer. In the XPS analysis, the Ge composition is 2.0 at% at the outermost surface, 0.8 at% from the surface at a depth of 0.8 at%, and at a depth of 1.4 nm or more from the surface, the composition is below the detection limit. The Ge composition on the outermost surface is concentrated 20 times as much as the average composition in the film. On the other hand, although the surface concentration of Ge is observed even in the binary alloy film of Ag—Ge, the surface composition is equal to 0.1 at% and the same composition as that of the Ag—Bi—Ge alloy film. The Ge composition is 1.0 at%, and the degree of concentration is lower than that of the Ag—Bi—Ge alloy film. Thus, the combined addition of Ge and Bi further increases the concentration of Ge on the surface of the Ag alloy, which increases the nucleation density of the second oxide layer of Si, It is thought that it contributes to densification and reduction of pinholes. Since Ge is a homologous element to Si in the periodic table, Si-O and Ge-O are easy to match, so if there is a lot of Ge on the Ag alloy film surface, Ge nucleates Si oxides. It is considered that the nucleation density increases as a site, and the densification of Si oxide and the reduction of pinholes occur.

第一層のAg合金は、更にAu、Pt、Pd、Rhの1種以上を合計で0.1〜5原子%含有することが望ましい〔第4発明〕。Au、Pt、Pd、Rhの1種以上の添加により、第二層に例えばゴミの付着等によりピンホールが形成されたとしても、ハロゲンイオンによる凝集発生を更に抑制することができるからである。これらの元素の含有率が合計で0.1原子%未満であるとハロゲンイオンによる凝集抑制効果が小さく、5原子%を超えるとAg合金膜の材料コストが高くなるばかりか、初期反射率が低下するとともに耐硫化性が低下(第二層のピンホールが増加)する傾向がある。従って、これらの元素の含有量は合計で0.1〜5原子%とすることが好ましい。より好ましくは、0.3〜3原子%である。   It is desirable that the first-layer Ag alloy further contains one or more of Au, Pt, Pd, and Rh in a total amount of 0.1 to 5 atomic% [fourth invention]. This is because the addition of one or more of Au, Pt, Pd, and Rh can further suppress the occurrence of aggregation due to halogen ions even if pinholes are formed in the second layer, for example, due to adhesion of dust. If the total content of these elements is less than 0.1 atomic%, the effect of suppressing aggregation by halogen ions is small. If the content exceeds 5 atomic%, not only the material cost of the Ag alloy film increases, but also the initial reflectance decreases. At the same time, the sulfidation resistance tends to decrease (pinholes in the second layer increase). Therefore, the total content of these elements is preferably 0.1 to 5 atomic%. More preferably, it is 0.3-3 atomic%.

本発明に係る反射膜積層体において、より耐久性を高めるためには、第二層(Siの酸化物)の上にプラズマ重合膜を積層するとよい〔第8発明〕。このプラズマ重合膜の厚さは10〜1000nmとするとよい。このとき、プラズマ重合膜は、有機シリコンを原料として形成されたものが好ましい。この有機シリコンとしては、例えば、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、トリエトキシシラン等がある。この有機シリコンを原料として形成されたプラズマ重合膜は、水との濡れ性が非常に悪いため、水分やハロゲンイオンの侵入を防止することができる。また、プラズマ重合膜は、耐酸性および耐アルカリ性に優れるため、酸性雰囲気下でも、アルカリ性雰囲気下でも、反射膜積層体の特性を維持する効果がある。   In the reflection film laminate according to the present invention, a plasma polymerization film may be laminated on the second layer (Si oxide) in order to further enhance the durability [eighth invention]. The thickness of the plasma polymerized film is preferably 10 to 1000 nm. At this time, the plasma polymerized film is preferably formed using organic silicon as a raw material. Examples of the organic silicon include hexamethyldisiloxane, hexamethyldisilazane, and triethoxysilane. Since the plasma polymerized film formed using organic silicon as a raw material has very poor wettability with water, it is possible to prevent intrusion of moisture and halogen ions. Moreover, since the plasma polymerized film is excellent in acid resistance and alkali resistance, it has an effect of maintaining the characteristics of the reflective film laminate in both an acidic atmosphere and an alkaline atmosphere.

本発明に係る反射膜積層体において、第二層(Siの酸化物)の膜厚は、5〜80nmであることが好ましい〔第6発明〕。この理由を以下説明する。第二層の膜厚が5nm未満の場合、ピンホールが多すぎて硫化を止め難くなる。この点から、第二層の膜厚は5nm以上であることが好ましい。より好ましくは7nm以上、さらに好ましくは10nm以上である。一方、80nmを超えると膜応力が大きくなり、耐熱試験や耐湿試験で割れや剥がれが発生する恐れがある。また、SiO2 は目視上無色透明であるが、わずかながら光を吸収するため、膜厚が80nmを超えると反射率が93%を下回り、Ag合金の高反射率の利点が活かされなくなるため好ましくない。これらの点から、第二層の膜厚は80nm以下であることが好ましい。さらに好ましくは60nm以下であり、より好ましくは50nm以下である。以上の点から、第二層の膜厚は5〜80nmであることが好ましい。 In the reflective film laminate according to the present invention, the thickness of the second layer (Si oxide) is preferably 5 to 80 nm [Sixth Invention]. The reason for this will be described below. When the film thickness of the second layer is less than 5 nm, there are too many pinholes and it is difficult to stop sulfidation. From this point, the thickness of the second layer is preferably 5 nm or more. More preferably, it is 7 nm or more, More preferably, it is 10 nm or more. On the other hand, if it exceeds 80 nm, the film stress increases, and there is a risk of cracking or peeling in the heat resistance test or moisture resistance test. Although SiO 2 is visually colorless and transparent, in order to slightly absorbs light, the thickness is below 93 percent and reflectance greater than 80 nm, preferably for no longer utilized the advantages of high reflectance Ag alloy Absent. From these points, the thickness of the second layer is preferably 80 nm or less. More preferably, it is 60 nm or less, More preferably, it is 50 nm or less. From the above points, the thickness of the second layer is preferably 5 to 80 nm.

反射膜材料として一般的に使用されている材料はAlであり、その反射率はおよそ85%である。これに対し、本発明に係る反射膜積層体の反射率は高く、JIS R3106に準拠してD65光源での波長範囲380〜780nmの光によって測定された可視光反射率が93%以上となるようにすることができるので、このようにすることが望ましい〔第7発明〕。このような反射膜は、光源(ランプ)の消費電力を従来よりも下げても同等の明るさを得ることができ、複数のランプを使用する場合にはランプの個数を減少させることができることから、光源にかかるコストを低減することができる。また、従来の反射膜材料では十分な明るさを確保できなかったLED光源のリフレクタ―にも好適に使用できる。   A material generally used as the reflective film material is Al, and its reflectance is approximately 85%. On the other hand, the reflectance of the reflective film laminate according to the present invention is high, and the visible light reflectance measured with light having a wavelength range of 380 to 780 nm with a D65 light source in accordance with JIS R3106 is 93% or more. Therefore, it is desirable to do this [seventh invention]. Such a reflective film can obtain the same brightness even if the power consumption of the light source (lamp) is lowered than before, and the number of lamps can be reduced when using a plurality of lamps. The cost for the light source can be reduced. Moreover, it can be used suitably also for the reflector of the LED light source which was not able to ensure sufficient brightness with the conventional reflective film material.

本発明に係る反射膜積層体において、基体としては、ガラスや樹脂等よりなるものを用いることができる。これらは光源の発する熱の温度によって選択して用いるとよい。例えば、温度がおよそ180℃以上の場合はガラス、120〜180℃の場合は PET材やPBT材等のポリエステル材、120℃以下の場合はポリカーボネート材よりなるものを用いるとよい。また、Ag合金スパッタリングターゲットを用いたスパッタリング法を用いて本発明に係る反射膜積層体の第一層のAg合金を成膜することが推奨される。特に直流カソードを用いたDCスパッタリング法により成膜することが好ましい。   In the reflective film laminate according to the present invention, a substrate made of glass, resin, or the like can be used. These may be selected and used according to the temperature of heat generated by the light source. For example, when the temperature is approximately 180 ° C. or higher, glass, when it is 120 to 180 ° C., a polyester material such as a PET material or a PBT material, and when it is 120 ° C. or lower, a polycarbonate material may be used. In addition, it is recommended that the Ag alloy of the first layer of the reflective film laminate according to the present invention be formed using a sputtering method using an Ag alloy sputtering target. In particular, it is preferable to form a film by a DC sputtering method using a direct current cathode.

本発明に係る反射膜積層体を形成する場合、基体表面のゴミや汚れによって、使用中にAg合金膜の反射率が低下することがある。例えば、基体表面にハロゲンイオンや硫黄成分を含む汚れや微細なゴミが付着している場合、そのままその基体上にAg合金膜を形成すると、前記ゴミの部分でAgの凝集が発生し、時間の経過とともにその凝集がAg合金膜表面にまで達し、やがては反射率が低下する恐れがある。このような基体表面のゴミ起因のAg凝集を防止するためには、基体とAg反射膜(Ag合金からなる第一層)の界面に下地膜を入れることが好ましい〔第9発明〕。   When the reflective film laminate according to the present invention is formed, the reflectance of the Ag alloy film may be reduced during use due to dust or dirt on the surface of the substrate. For example, when dirt or fine dust containing halogen ions or sulfur components adheres to the substrate surface, if an Ag alloy film is formed on the substrate as it is, Ag agglomeration occurs in the dust, and the time Over time, the agglomeration reaches the surface of the Ag alloy film, and there is a risk that the reflectance will eventually decrease. In order to prevent such Ag agglomeration due to dust on the surface of the substrate, it is preferable to put a base film at the interface between the substrate and the Ag reflecting film (first layer made of Ag alloy) [9th invention].

上記下地膜としては、Cu、Ni、Co、W、Mo、Ta、Cr、Tiなどの金属の単体もしくはこれらのうち1種以上の合金からなる膜、Si、Ti、Al、Sn、Znなどの金属酸化物膜、有機シリコンなどを原料としたプラズマ重合膜、ホウケイ酸ガラスなどのガラス皮膜、塗膜を含む樹脂膜(アクリル樹脂、シリコン樹脂等)などを用いることができる。   Examples of the base film include Cu, Ni, Co, W, Mo, Ta, Cr, Ti and the like, or a film made of one or more of these metals, Si, Ti, Al, Sn, Zn, etc. A metal oxide film, a plasma polymerization film using organic silicon or the like as a raw material, a glass film such as borosilicate glass, a resin film including a coating film (acrylic resin, silicon resin, or the like) can be used.

上記下地膜の膜厚は5nm以上であることが好ましい。5nm未満であると連続膜にならない場合があり、基体上にハロゲンイオンや硫黄成分が付着している場合に、これらとAgを隔離することができなくなる。より好ましくは5nm以上であり、さらに好ましくは7nm以上である。   The film thickness of the base film is preferably 5 nm or more. If the thickness is less than 5 nm, a continuous film may not be formed, and when halogen ions or sulfur components are attached on the substrate, it is impossible to separate them from Ag. More preferably, it is 5 nm or more, More preferably, it is 7 nm or more.

一方、下地膜の膜厚の上限は材料によって異なる。下地膜が金属膜もしくはプラズマ重合膜の場合、500nm以下であることが好ましい。500nmを超えると膜応力が大きくなり、積層成膜した後に耐熱試験や耐湿試験を行ったときに割れや剥がれが発生する恐れがある。より好ましくは400nm以下であり、更に好ましくは300nm以下である。   On the other hand, the upper limit of the film thickness of the base film varies depending on the material. When the base film is a metal film or a plasma polymerized film, it is preferably 500 nm or less. If it exceeds 500 nm, the film stress increases, and there is a risk of cracking or peeling when a heat resistance test or a moisture resistance test is performed after the laminated film is formed. More preferably, it is 400 nm or less, More preferably, it is 300 nm or less.

下地膜が金属酸化物膜の場合、100nm以下であることが好ましい。100nmを超えると膜応力が大きくなり、積層成膜した後に耐熱試験や耐湿試験を行ったときに割れや剥がれが発生する恐れがある。。より好ましくは90nm以下であり、更に好ましくは80nm以下である。   When the base film is a metal oxide film, the thickness is preferably 100 nm or less. When the thickness exceeds 100 nm, the film stress increases, and there is a risk of cracking or peeling when a heat resistance test or a moisture resistance test is performed after the laminated film is formed. . More preferably, it is 90 nm or less, More preferably, it is 80 nm or less.

下地膜が塗膜など樹脂膜の場合、特に上限が定められるものではないが、工程上200μm以下であるのが好ましい。   When the base film is a resin film such as a coating film, the upper limit is not particularly defined, but it is preferably 200 μm or less in the process.

本発明に係る車両用灯具とは、自動車や自動二輪車のヘッドランプやリアランプのことを指し、本発明の反射膜積層体は、これらランプの反射板やエクステンションに用いられる。   The vehicle lamp according to the present invention refers to a head lamp or rear lamp of an automobile or a motorcycle, and the reflective film laminate of the present invention is used for a reflector or extension of these lamps.

本発明に係る照明器具とは、ダウンライトや蛍光灯のことを指し、本発明の積層体は、本発明の積層体は、これらの反射板に用いられる。本発明に係る光学ミラーとは、カメラのフラッシュや、光の反射を利用した分析装置内のミラーなどのことを指し、本発明の積層体はこれらの反射板に用いられる。本発明に係るLEDとは、砲弾型、フラット型、チップ型などのLEDのことを指し、本発明の反射膜積層体はその反射電極に用いられる。本発明に係る有機ELディスプレイとは、有機ELを使用したテレビや携帯電話用ディスプレイのことを指し、本発明の反射膜積層体はその反射板に用いられる。本発明に係る有機EL照明器具とは、有機ELを使用した照明器具のことを指し、本発明の反射膜積層体はその反射板に用いられる。   The luminaire according to the present invention refers to a downlight or a fluorescent lamp. The laminate of the present invention is used for these reflectors. The optical mirror according to the present invention refers to a flash of a camera, a mirror in an analyzer using light reflection, and the like, and the laminate of the present invention is used for these reflectors. The LED according to the present invention refers to a bullet-type, flat-type, chip-type LED or the like, and the reflective film laminate of the present invention is used for the reflective electrode. The organic EL display according to the present invention refers to a television or mobile phone display using organic EL, and the reflective film laminate of the present invention is used for the reflector. The organic EL lighting fixture according to the present invention refers to a lighting fixture using organic EL, and the reflective film laminate of the present invention is used for the reflector.

本発明に係る第一層のAg合金は、成分としては、BiおよびA(V、Ge、Znの1種以上)を含有し(第1発明の場合)、あるいは更にAu、Pt、Pd、Rhの1種以上を含有する(第3発明の場合)。このとき、必要に応じて上記元素以外の元素を含有することができる。従って、上記元素のみを含有する場合と、上記元素と上記元素以外の元素とを含有する場合とがある。   The Ag alloy of the first layer according to the present invention contains Bi and A (one or more of V, Ge, Zn) as components (in the case of the first invention), or further Au, Pt, Pd, Rh. (In the case of 3rd invention). At this time, elements other than the above elements can be contained as necessary. Accordingly, there are cases where only the above elements are contained and cases where the above elements and elements other than the above elements are contained.

上記元素のみを含有する場合、本発明の第1発明に係る反射膜積層体は、「基体上に、Biを0.02原子%以上含有し、更にV、Ge、Znの1種以上を合計で0.02原子%以上含有し、残部が不可避的不純物およびAgからなると共に、前記V、Ge、Znの1種以上の含有率を[A](原子%)とし、Biの含有率を[Bi](原子%)としたときに、
7×[A]+13×[Bi]≦8
を満足するAg合金からなる第一層が形成され、その上にSiの酸化物からなる第二層が形成されていることを特徴とする反射膜積層体」、又は、「基体上に、Biを0.02原子%以上含有し、更にV、Ge、Znの1種以上を合計で0.02原子%以上含有し、残部が不可避的不純物およびAgからなるAg合金であって、前記V、Ge、Znの1種以上の含有率を[A](原子%)とし、Biの含有率を[Bi](原子%)としたときに、 7×[A]+13×[Bi]≦8
を満足するAg合金からなる第一層が形成され、その上にSiの酸化物からなる第二層が形成されていることを特徴とする反射膜積層体」等と表現することができる。このとき、本発明の第3発明に係る反射膜積層体は、「基体上に、Biを0.02 原子%以上含有し更にV、Ge、Znの1種以上を合計で0.02原子%以上含有し、更にAu、Pt、Pd、Rhの1種以上を合計で0.1〜5原子%含有し、残部が不可避的不純物およびAgからなると共に前記V、Ge、Znの1種以上の含有率を[A](原子%)、Biの含有率を[Bi](原子%)としたときに、
7×[A]+13×[Bi]≦8
を満足するAg合金からなる第一層が形成され、その上にSiの酸化物からなる第二層が形成されていることを特徴とする反射膜積層体」、または、「基体上に、Biを0.02原子%以上含有し更にV、Ge、Znの1種以上を合計で0.02原子%以上含有し、更にAu、Pt、Pd、Rhの1種以上を合計で0.1〜5原子%含有し、残部が不可避的不純物およびAgからなるAg合金であって前記V、Ge、Znの1種以上の含有率を[A](原子%)、Biの含有率を[Bi](原子%)としたときに、
7×[A]+13×[Bi]≦8
を満足するAg合金からなる第一層が形成され、その上にSiの酸化物からなる第二層が形成されていることを特徴とする反射膜積層体」等と表現することもできるが、特許請求の範囲の請求項3に記載のとおりの「前記Ag合金が更にAu、Pt、Pd、Rhの1種以上を合計で0.1〜5原子%含有する請求項1または2記載の反射膜積層体」と表現することもできる。
In the case of containing only the above elements, the reflective film laminate according to the first invention of the present invention contains “0.02 atomic% or more of Bi on the substrate, and further includes at least one of V, Ge, and Zn. 0.02 atomic% or more, and the balance consists of inevitable impurities and Ag, and the content of at least one of V, Ge, and Zn is [A] (atomic%), and the Bi content is [ Bi] (atomic%)
7 × [A] + 13 × [Bi] ≦ 8
A reflective film laminate in which a first layer made of an Ag alloy that satisfies the following conditions is formed, and a second layer made of an oxide of Si is formed thereon, or “Bi on a substrate: 0.02 atomic% or more, further containing at least one of V, Ge and Zn in a total of 0.02 atomic% and the balance being an Ag alloy composed of unavoidable impurities and Ag, When the content of one or more of Ge and Zn is [A] (atomic%) and the content of Bi is [Bi] (atomic%), 7 × [A] + 13 × [Bi] ≦ 8
The first layer made of an Ag alloy satisfying the above condition is formed, and the second layer made of an Si oxide is formed on the first layer. At this time, the reflective film laminate according to the third aspect of the present invention is “on the substrate, containing Bi of 0.02 atomic% or more and further containing one or more of V, Ge, and Zn in a total of 0.02 atomic%. In addition, it further contains at least one of Au, Pt, Pd, and Rh in a total amount of 0.1 to 5 atomic%, and the balance is inevitable impurities and Ag, and at least one of V, Ge, and Zn. When the content rate is [A] (atomic%) and the Bi content rate is [Bi] (atomic%),
7 × [A] + 13 × [Bi] ≦ 8
A reflective film laminate in which a first layer made of an Ag alloy that satisfies the following conditions is formed, and a second layer made of an oxide of Si is formed thereon, or “Bi on a substrate: 0.02 atomic% or more, further containing one or more of V, Ge, and Zn in total of 0.02 atomic% or more, and further including one or more of Au, Pt, Pd, and Rh in a total of 0.1 It is an Ag alloy containing 5 atomic%, and the balance is inevitable impurities and Ag. The content of at least one of V, Ge, and Zn is [A] (atomic%), and the content of Bi is [Bi]. (Atomic%)
7 × [A] + 13 × [Bi] ≦ 8
The first layer made of an Ag alloy satisfying the above condition is formed, and the second layer made of an Si oxide is formed thereon, and the like can also be expressed as a “reflecting film laminate”. The reflection according to claim 1 or 2, wherein said Ag alloy further contains at least one of Au, Pt, Pd, and Rh in an amount of 0.1 to 5 atomic%. It can also be expressed as a “film laminate”.

本発明の実施例および比較例を以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.

〔例1〕
図1に示すようなスパッタリング装置のチャンバー内にφ100mm ×t5mmの純AgまたはAg−Bi合金ターゲット(純AgよりなるターゲットまたはAg−Bi合金よりなるターゲット)をセットし、φ50mm×t1mmのPC基板(ポリカーボネートよりなる基板)をターゲットに正対するようにセットし、チャンバー内を1×10-5Torr以下となるように真空に引いた。その後、チャンバー内にArガスを導入し、チャンバー内圧力を2×10-3Torrとなるようにし、ターゲットにDC(直流)を印加してプラズマを発生させ、DCパワー200Wでターゲットをスパッタすることにより、PC基板上に純Ag膜またはAg合金膜(第一層)を成膜した。このとき、ターゲットとしては、純Ag膜の成膜の場合には、純Agターゲットを用いた。Biを含有しないAg合金膜の成膜の場合には、純Agターゲット上に合金元素の金属チップを乗せたものを用いて成膜した。BiおよびBi以外の元素を含有するAg合金膜の場合には、Ag−Bi合金ターゲット上にBi以外の元素の金属チップを乗せたものを用いて成膜した。なお、ターゲットとPC基板間の距離は80mmとし、PC基板を公転させながら成膜を行った。このように成膜したAg合金膜中の各種添加元素の平均含有率はICP(Inductivity Coupled Plasma:誘導結合プラズマ)発光質量分析法によって測定した。即ち、Agおよび添加元素をともに溶解できる酸を用いてAg合金膜を溶解し、得られた溶液中のAgと添加元素との比率をICP発光質量分析法により測定し、それを100%に規格化してAg合金膜の組成とした。なお組成は原子%として求めた。
[Example 1]
A pure Ag or Ag—Bi alloy target (target made of pure Ag or target made of Ag—Bi alloy) of φ100 mm × t5 mm is set in the chamber of the sputtering apparatus as shown in FIG. 1, and a PC substrate (φ50 mm × t1 mm) A substrate made of polycarbonate) was set so as to face the target, and a vacuum was drawn so that the inside of the chamber was 1 × 10 −5 Torr or less. Thereafter, Ar gas is introduced into the chamber, the pressure in the chamber is set to 2 × 10 −3 Torr, DC (direct current) is applied to the target to generate plasma, and the target is sputtered with a DC power of 200 W. Thus, a pure Ag film or an Ag alloy film (first layer) was formed on the PC substrate. At this time, a pure Ag target was used as a target in the case of forming a pure Ag film. In the case of forming an Ag alloy film containing no Bi, the film was formed using a pure Ag target on which a metal chip of an alloy element was placed. In the case of an Ag alloy film containing elements other than Bi and Bi, the film was formed using an Ag—Bi alloy target on which a metal chip of an element other than Bi was placed. The distance between the target and the PC substrate was 80 mm, and the film was formed while revolving the PC substrate. The average content of various additive elements in the Ag alloy film thus formed was measured by ICP (Inductivity Coupled Plasma) emission mass spectrometry. That is, the Ag alloy film is dissolved using an acid capable of dissolving both Ag and the additive element, and the ratio of Ag to the additive element in the obtained solution is measured by ICP emission mass spectrometry, and is standardized to 100%. To obtain a composition of an Ag alloy film. The composition was determined as atomic%.

次に、ターゲットをSiO2 ターゲット(SiO2 よりなるターゲット)に交換し、チャンバー内を1×10-5Torr以下となるように真空に引いた。その後、チャンバー内にArガスを導入し、チャンバー内圧力を2×10-3Torrとなるようにして、ターゲットにRF(高周波)電流を印加してプラズマを発生させ、RFパワー200WでSiO2 ターゲットをスパッタすることにより、前記第一層(純Ag膜またはAg合金膜)上にSiO2 膜(第二層)を成膜して、反射膜積層体を得た。なお、ターゲットとPC基板間の距離は80mmとし、基板を公転させながらSiO2 膜の成膜を行った。 Then, replace the target SiO 2 target (target made of SiO 2), was evacuated to the interior of the chamber becomes less 1 × 10 -5 Torr. Thereafter, Ar gas is introduced into the chamber, the pressure in the chamber is set to 2 × 10 −3 Torr, RF (radio frequency) current is applied to the target to generate plasma, and an SiO 2 target with RF power of 200 W is generated. Was sputtered to form a SiO 2 film (second layer) on the first layer (pure Ag film or Ag alloy film) to obtain a reflective film laminate. The distance between the target and the PC substrate was 80 mm, and the SiO 2 film was formed while revolving the substrate.

このようにして得られた反射膜積層体での第一層の成分組成、7×[A]+13×[Bi]の値、および膜厚、第二層(SiO2 膜)の膜厚を表1に示す。これらの反射膜積層体について、JIS R3106に準拠してD65光源での波長範囲380〜780nmの光によって可視光反射率(初期反射率)を測定し、この後、下記条件下で保持する耐硫化試験、耐熱試験、耐塩水試験、耐湿試験を行った。 The component composition of the first layer, the value of 7 × [A] + 13 × [Bi], the film thickness, and the film thickness of the second layer (SiO 2 film) in the thus obtained reflection film laminate are shown. It is shown in 1. With respect to these reflective film laminates, the visible light reflectance (initial reflectance) was measured with light having a wavelength range of 380 to 780 nm with a D65 light source in accordance with JIS R3106, and thereafter, the sulfuration resistance maintained under the following conditions. A test, a heat resistance test, a salt water resistance test, and a moisture resistance test were performed.

〔耐硫化試験〕
・試験液組成:10質量%硫化アンモニウム水溶液
・暴露位置:試験液の液面から3cmの高さで成膜面が液面に対向するように設置
・暴露時間:20分
[Sulfurization resistance test]
・ Test solution composition: 10% by mass ammonium sulfide aqueous solution ・ Exposure position: Installed so that the film formation surface faces the liquid surface at a height of 3 cm from the test solution surface ・ Exposure time: 20 minutes

〔耐熱試験〕
・試験温度:130 ℃
・試験雰囲気:大気
・試験時間:1000時間
〔耐塩水試験〕
・試験液組成:3重量%NaCl水溶液
・試験方法:上記NaCl水溶液中に10分間浸積
〔耐湿試験〕
・温度50℃、湿度95RH%の恒温恒湿試験装置内に240時間保持
[Heat resistance test]
Test temperature: 130 ° C
・ Test atmosphere: air ・ Test time: 1000 hours [salt water resistance test]
Test solution composition: 3% by weight NaCl aqueous solution Test method: immersion in the above NaCl aqueous solution for 10 minutes [moisture resistance test]
-Hold for 240 hours in a constant temperature and humidity test device with a temperature of 50 ° C and a humidity of 95RH%

上記耐硫化試験後の反射膜積層体について、その表面(耐硫化試験で暴露された側の面)を光学顕微鏡で200倍に拡大して、その面の写真を撮り、同倍率で撮影したマイクロメーターの写真の寸法で0.2mm×0.2mmの領域(即ち、実寸で表面上の0.2mm×0.2mmの領域)に発生した点状の変色箇所、すなわち、Si酸化膜のピンホール箇所に発生したAgの硫化点を数え、この発生点数により耐硫化性(硫化され難さの程度)を評価した。この発生点数が0(ゼロ)を◎、1〜3個を○、4〜6個を△、7個以上を×とした。また、硫化試験後の反射膜積層体について、前記初期反射率の測定の場合と同様の方法により波長範囲380〜780nmの光における可視光反射率を測定し、初期反射率との差〔即ち、試験前後の反射率の差=初期反射率(%)−耐熱試験後反射率(%)〕を求め、この反射率の差によっても耐硫化性(即ち、Si酸化膜の緻密さの程度)を評価した。この反射率の差が0.5%以下を◎、0.5%超1%以下を○、1%超3%以下を△、3%超を×とした。   About the reflection film laminate after the above-mentioned sulfidation resistance test, the surface (surface exposed in the sulfidation resistance test) was magnified 200 times with an optical microscope, a photograph of the surface was taken, and the micro was taken at the same magnification. Spot-like discoloration spot generated in the area of 0.2 mm x 0.2 mm (that is, the actual size of 0.2 mm x 0.2 mm area on the surface) in the photo of the meter, that is, a pinhole in the Si oxide film The sulfidation points of Ag generated at the locations were counted, and the sulfidation resistance (degree of difficulty of sulfidation) was evaluated based on the number of generated points. The number of occurrence points was 0 (zero), 1 to 3 ◯, 4 to 6 △, and 7 or more to ×. Further, for the reflective film laminate after the sulfidation test, the visible light reflectance in light having a wavelength range of 380 to 780 nm is measured by the same method as in the measurement of the initial reflectance, and the difference from the initial reflectance [ie, The difference in reflectivity before and after the test = initial reflectivity (%) − reflectance after the heat test (%)] is obtained, and the difference in reflectivity also provides the resistance to sulfidation (that is, the degree of density of the Si oxide film). evaluated. When the difference in reflectance was 0.5% or less, ◎, more than 0.5%, 1% or less, ◯, more than 1%, 3% or less, Δ, more than 3%, x.

上記耐熱試験後の反射膜積層体について、耐硫化試験の反射率測定の場合と同様の方法により波長範囲380〜780nmの光における可視光反射率を測定し、初期反射率との差〔即ち、試験前後の反射率の差=初期反射率(%)−耐熱試験後反射率(%)〕を求め、この反射率の差により耐熱性(即ち、Si酸化膜の緻密性の程度と熱によるAg凝集の起り難さの程度)を評価した。この反射率の差が0.5%以下を◎、0.5%超1%以下を○、1%超3%以下を△、3%超を×とした。
また、耐塩水試験後の反射膜積層体について、耐硫化試験の反射率測定の場合と同様の方法により波長範囲380〜780nmの光における可視光反射率を測定し、初期反射率との差〔即ち、試験前後の反射率の差=初期反射率(%)−耐熱試験後反射率(%)〕を求め、この反射率の差により耐塩水性(即ち、Si酸化膜のピンホールの程度とハロゲンイオンによるAg凝集の起こり難さの程度)を評価した。この反射率の差が0.5%以下を◎、0.5%超1%以下を○、1%超3%以下を△、3%超を×とした。
耐湿試験については、試験後の反射膜積層体の表面に発生した白点の数を目視で測定した。白点発生点数が0(ゼロ)を◎、1〜4個を○、5〜9個を△、10個以上を×とした。
以上の全ての評価で◎または○のみの評価であった積層体を合格、△または×が一つでもある積層体は不合格とした。
For the reflective film laminate after the heat resistance test, the visible light reflectance in light in the wavelength range of 380 to 780 nm is measured by the same method as in the reflectance measurement of the sulfuration resistance test, and the difference from the initial reflectance [ie, The difference in reflectivity before and after the test = initial reflectivity (%) − reflectance after heat test (%)] was determined, and the heat resistance (that is, the degree of denseness of the Si oxide film and Ag due to heat) was determined by the difference in reflectivity. The degree of difficulty of aggregation) was evaluated. When the difference in reflectance was 0.5% or less, ◎, more than 0.5%, 1% or less, ◯, more than 1%, 3% or less, Δ, more than 3%, x.
Further, for the reflective film laminate after the salt resistance test, the visible light reflectance in the light of the wavelength range of 380 to 780 nm was measured by the same method as in the reflectance measurement of the sulfuration resistance test, and the difference from the initial reflectance [ That is, the difference in reflectivity before and after the test = initial reflectivity (%) − reflectance after heat test (%)] is obtained, and salt water resistance (that is, the pinhole degree of the Si oxide film and The degree of difficulty of Ag aggregation due to ions) was evaluated. When the difference in reflectance was 0.5% or less, ◎, more than 0.5%, 1% or less, ◯, more than 1%, 3% or less, Δ, more than 3%, x.
For the moisture resistance test, the number of white spots generated on the surface of the reflective film laminate after the test was visually measured. The number of white spots generated was 0 (zero), 1 to 4 was ◯, 5 to 9 were Δ, and 10 or more were ×.
In all of the above evaluations, a laminate that was only evaluated as ◎ or ○ was accepted, and a laminate that had at least one Δ or × was rejected.

耐硫化試験結果(耐硫化性の評価結果)、耐熱試験結果(耐熱性の評価結果)、耐塩水試験結果(耐塩水性の評価結果)および耐湿試験結果(耐湿性の評価結果)を表1に示す。   Table 1 shows the sulfidation test results (sulfuration resistance evaluation results), heat resistance test results (heat resistance evaluation results), salt water test results (salt water resistance evaluation results), and moisture resistance test results (moisture resistance evaluation results). Show.

表1からわかるように、No.1(比較例)の場合、第一層はAgからなるため、Si酸化膜の緻密化やピンホールの減少が起こっておらず、かつAg膜そのものの耐久性がないために、全ての試験で不合格であった。No.2、3 (比較例)の場合、第一層はAg合金からなるが、このAg合金はBiのみしか含有していないために、Si酸化膜の緻密化やピンホールの減少が起こっておらず、Ag−Bi合金膜自体の耐久性によって耐塩水性や耐湿性は良好な特性を示すが、耐硫化性や耐熱性は不合格であった。No.14、16(比較例)の場合、第一層はAg合金からなり、そのAg合金はAのみしか含有していないため、これもSi酸化膜の緻密化やピンホールの減少が不十分であり、耐硫化性や耐湿性は不合格であった。No.17,18及び21〜23(比較例)の場合には、Ag−BiにA以外の合金元素が添加されているが、これもSi酸化膜の緻密化やピンホールの減少が不十分であり、耐硫化性や耐熱性は不合格であった。No.15は、7×〔A〕+13×〔Bi〕が8を超えるため、初期反射率が93%未満となっており、また、Biが少ないため、耐塩水性や耐湿性が悪いだけでなく、Si酸化膜の緻密化やピンホールの減少が不十分であり、耐硫化性は不合格であった。No.19は、Si酸化膜が薄すぎたために、ピンホールを無くすことができず、耐硫化性が不合格であった。No.20はAuを添加しすぎたために、かえってSi酸化膜のピンホールが増える結果となり、耐硫化性が不合格であった。   As can be seen from Table 1, no. In the case of 1 (Comparative Example), since the first layer is made of Ag, the densification of the Si oxide film and the reduction of pinholes are not occurring, and the durability of the Ag film itself is not. It was a failure. No. In the case of 2, 3 (Comparative Example), the first layer is made of an Ag alloy. However, since this Ag alloy contains only Bi, no densification of the Si oxide film or reduction of pinholes occurs. Although the salt-water resistance and moisture resistance show good characteristics due to the durability of the Ag-Bi alloy film itself, the sulfide resistance and heat resistance were unacceptable. No. In the case of 14 and 16 (comparative examples), the first layer is made of an Ag alloy, and the Ag alloy contains only A, so that the densification of the Si oxide film and the reduction of pinholes are also insufficient. The sulfidation resistance and moisture resistance were not acceptable. No. In the case of 17, 18 and 21-23 (comparative examples), alloy elements other than A are added to Ag-Bi, but this also is insufficient in densifying the Si oxide film and reducing pinholes. The sulfidation resistance and heat resistance were unacceptable. No. 15 is 7 × [A] + 13 × [Bi] is more than 8, the initial reflectivity is less than 93%, and since Bi is small, not only the salt water resistance and moisture resistance are poor, but also Si Densification of the oxide film and reduction of pinholes were insufficient, and the sulfidation resistance was unacceptable. No. In No. 19, since the Si oxide film was too thin, pinholes could not be eliminated, and the sulfide resistance was unacceptable. No. In No. 20, since Au was added too much, pinholes of the Si oxide film increased, and the sulfide resistance was unacceptable.

No.4〜13(本発明の実施例)の場合は、初期反射率が93%以上と良好であり、全ての評価で◎または○となっており、優れた特性を示した。   No. In the case of 4 to 13 (Examples of the present invention), the initial reflectance was as good as 93% or more, and in all evaluations, it was ◎ or ◯, and excellent characteristics were exhibited.

〔例2〕
表1のNo.2,4および11の試料を用いて、X線反射率法によりSiO2 膜の密度を測定した。下記に示す条件で測定し、SiO2 膜の密度の解析を行った。以下に解析の例を挙げる。No.4の試料を用いた場合、SiO2 膜を1層モデルで解析した結果を図2に示す。この場合、実測データの曲線とシミュレーションによるフィッティング曲線に差異が見られる。特に2θが1〜3°の間で差異が顕著であり、この1層モデルでは正確なSiO2 膜密度の値が得られない。一方、SiO2 膜を3層モデルで解析した結果を図3に示す。この場合、実測データの曲線とシミュレーションによるフィッティング曲線が良く合うことが分かった。また4層以上の多層モデルでも同様に良い相関が得られたが、3層モデルで十分な相関が得られることが分かったため、発明者らは3層モデルで解析を行うこととした。このように、SiO2 膜の密度を3層(最表層、中層、Ag合金からなる第一層と接する層)に分けて解析するモデルで解析した結果、良好な耐硫化性および耐熱性を示す試料No.4とNo.11はAg合金からなる第一層と接する層の密度がそれぞれ2.4と2.7g/cm3 と2g/cm3 以上であるのに対して、性能が劣るNo.2では1.8g/cm3 と低い値であることを確認した。
[Example 2]
No. in Table 1 Using the samples 2, 4 and 11, the density of the SiO 2 film was measured by the X-ray reflectivity method. Measurement was performed under the following conditions, and the density of the SiO 2 film was analyzed. Examples of analysis are given below. No. When the sample No. 4 is used, the result of analyzing the SiO 2 film by the single layer model is shown in FIG. In this case, there is a difference between the curve of the actual measurement data and the fitting curve obtained by simulation. In particular, the difference is remarkable when 2θ is 1 to 3 °, and with this one-layer model, an accurate value of the SiO 2 film density cannot be obtained. On the other hand, the result of analyzing the SiO 2 film with a three-layer model is shown in FIG. In this case, it was found that the curve of the actual measurement data and the fitting curve by simulation matched well. In addition, although a good correlation was obtained in the multilayer model of four layers or more, it was found that sufficient correlation was obtained in the three-layer model, and therefore the inventors decided to perform analysis with the three-layer model. As described above, as a result of analysis by a model in which the density of the SiO 2 film is divided into three layers (the outermost layer, the middle layer, and the layer in contact with the first layer made of an Ag alloy), the result shows good sulfidation resistance and heat resistance. Sample No. 4 and no. No. 11 is inferior in performance while the density of the layer in contact with the first layer made of the Ag alloy is 2.4, 2.7 g / cm 3 and 2 g / cm 3 or more, respectively. 2 confirmed that the value was as low as 1.8 g / cm 3 .

〔X線反射率法測定条件〕
測定装置:X線回折装置
測定条件:管電圧45kV、管電流200mA
測定方法:薄膜X線回折法(平行ビーム・X線反射率測定)
2θスキャン範囲:0〜 8.0°、ステップ間隔:0.01°、
スキャンスピード: 0.2°/min
[X-ray reflectometry measurement conditions]
Measuring device: X-ray diffractometer Measuring conditions: tube voltage 45 kV, tube current 200 mA
Measurement method: Thin-film X-ray diffraction method (parallel beam / X-ray reflectivity measurement)
2θ scan range: 0 to 8.0 °, step interval: 0.01 °,
Scan speed: 0.2 ° / min

〔解析方法〕
X線反射率解析ソフト(CXSS Version 2.1.3.0:リガク製)を使用
〔analysis method〕
Uses X-ray reflectivity analysis software (CXSS Version 2.1.3.0: manufactured by Rigaku)

〔例3〕
前記例1と同様の方法にてPC基板上に表1のNo.6,9,13と同様の組成のAg合金膜(第一層)を膜厚150nmで成膜し、この第一層の上にSiO2 膜(第二層)を膜厚10nmで成膜して、反射膜積層体(2層積層型)を得た。
[Example 3]
In the same manner as in Example 1, No. 1 in Table 1 was formed on the PC board. An Ag alloy film (first layer) having the same composition as 6, 9, 13 was formed with a thickness of 150 nm, and an SiO 2 film (second layer) was formed with a thickness of 10 nm on the first layer. Thus, a reflective film laminate (two-layer laminate type) was obtained.

上記反射膜積層体(2層積層型)の一部のものについて、これを図4に示すようなプラズマCVD装置のチャンバー内にセットし、チャンバー内を1×10-5Torr以下となるように真空に引いた。その後、前記装置中のバブラーとチャンバー間のニードルバルブを開いてバブラー内の有機シリコンの蒸気をチャンバー内に導入し、ニードルバルブの開閉度を調整することにより、チャンバー内圧力を0.1Torrとした。その後、チャンバー内の上部電極にRFを印加し、200Wのパワーでプラズマを発生させ、基板(前記2層積層体)上に厚さ20nmのプラズマ重合膜を形成して反射膜積層体(3層積層型)を得た。なお、上記有機シリコンとしては、ヘキサメチルジシロキサンを用いた。 A part of the reflection film laminate (two-layer laminate type) is set in a chamber of a plasma CVD apparatus as shown in FIG. 4 so that the inside of the chamber becomes 1 × 10 −5 Torr or less. A vacuum was pulled. After that, the needle valve between the bubbler and the chamber in the apparatus is opened, the organic silicon vapor in the bubbler is introduced into the chamber, and the opening / closing degree of the needle valve is adjusted, so that the pressure in the chamber is 0.1 Torr. . Thereafter, RF is applied to the upper electrode in the chamber, plasma is generated with a power of 200 W, a plasma polymerized film having a thickness of 20 nm is formed on the substrate (said two-layer laminate), and a reflection film laminate (three layers). (Stacked type) was obtained. Note that hexamethyldisiloxane was used as the organic silicon.

このようにして得られた3層積層型の反射膜積層体、及び、前記2層積層型の反射膜積層体について、耐酸性試験および耐アルカリ性試験を行った。即ち、耐酸性試験は、反射膜積層体を25℃の1質量%硫酸水溶液中に20分間浸漬する方法により行った。耐アルカリ性試験は、反射膜積層体を25℃の1質量%水酸化カリウム水溶液中に20分間浸漬することにより行った。   An acid resistance test and an alkali resistance test were performed on the thus obtained three-layer laminated reflective film laminate and the two-layer reflective film laminated body. That is, the acid resistance test was performed by immersing the reflective film laminate in a 1% by mass sulfuric acid aqueous solution at 25 ° C. for 20 minutes. The alkali resistance test was performed by immersing the reflective film laminate in a 1% by mass potassium hydroxide aqueous solution at 25 ° C. for 20 minutes.

耐酸性試験後および耐アルカリ性試験後の反射膜積層体の断面について走査型電子顕微鏡による観察を行った。2層積層型の反射膜積層体の場合、硫酸水溶液中でも水酸化カリウム水溶液中でも、SiO2 膜(第二層)が溶解して、Ag合金膜のみの1層構造になっていることが分かった。一方、3層積層型の反射膜積層体の場合、耐酸性試験後も、耐アルカリ性試験後も、3層構造が維持されていることが分かった。従って、プラズマ重合膜の積層によって耐酸性、耐アルカリ性が著しく向上することが確認できた。 The cross section of the reflective film laminate after the acid resistance test and the alkali resistance test was observed with a scanning electron microscope. It was found that in the case of a two-layer laminated type reflective film laminate, the SiO 2 film (second layer) was dissolved in a sulfuric acid aqueous solution or a potassium hydroxide aqueous solution to form a single-layer structure of only an Ag alloy film. . On the other hand, in the case of a three-layered laminated reflective film laminate, it was found that the three-layer structure was maintained both after the acid resistance test and after the alkali resistance test. Therefore, it was confirmed that the acid resistance and alkali resistance were remarkably improved by the lamination of the plasma polymerization film.

〔例4〕
前記〔例1〕の耐湿試験において白点発生が1〜4個の「○」であった試料No.5およびNo.7の積層反射膜それぞれにおいて、基体とAg合金の第一層の間に金属もしくは金属酸化膜の下地膜を加えて3層の積層反射膜を作製した。なお、金属もしくは金属酸化物下地膜の形成方法は〔例1〕に示すスパッタリング法によって行い、その上にAg合金膜、SiO2 膜を連続して成膜した。これらの積層反射膜を前記の耐熱試験および耐湿試験に供した。膜構造と耐熱試験および耐湿性試験の結果を表2に示す。
[Example 4]
In the moisture resistance test of [Example 1], sample No. 1 in which white spot generation was 1 to 4 “◯”. 5 and no. In each of the multilayer reflective films of No. 7, a three-layer multilayer reflective film was prepared by adding a base film of a metal or metal oxide film between the base and the first layer of the Ag alloy. The metal or metal oxide underlayer was formed by the sputtering method shown in [Example 1], and an Ag alloy film and SiO 2 film were successively formed thereon. These laminated reflective films were subjected to the above heat resistance test and moisture resistance test. Table 2 shows the film structure and the results of the heat resistance test and the moisture resistance test.

表2より、No.24〜28については、下地膜により耐熱性は高い耐久性を維持しつつ耐湿性の改善が認められ、下地膜によって耐久性が向上した。また、No.29〜31については耐熱性および耐湿性の改善が見られた。基体表面の僅かな汚れが下地膜によってAgと隔離され、Agの凝集が抑制されたものと考えられる。   From Table 2, no. As for 24-28, improvement in moisture resistance was recognized while maintaining high durability with high heat resistance due to the base film, and the durability was improved by the base film. No. About 29-31, the improvement of heat resistance and moisture resistance was seen. It is considered that slight contamination on the substrate surface was isolated from Ag by the base film, and Ag aggregation was suppressed.

Figure 2009098650
Figure 2009098650

Figure 2009098650
Figure 2009098650

本発明に係る反射膜積層体は、Agの凝集および硫化が生じ難いので、自動車ヘッドランプ等の車両用灯具、照明器具用の反射板、光学ミラー用の反射板、LED用の反射電極、有機ELディスプレイや有機EL照明器具用の反射板として好適に用いることができ、その耐久性の向上が図れて有用である。   In the reflective film laminate according to the present invention, Ag aggregation and sulfidation hardly occur. Therefore, vehicle lamps such as automobile headlamps, reflectors for luminaires, reflectors for optical mirrors, reflectors for LEDs, organic It can be suitably used as a reflector for EL displays and organic EL lighting fixtures, and is useful in improving its durability.

例1に係る反射膜積層体の作製(成膜)に用いたスパッタリング装置を示す模式図である。6 is a schematic diagram showing a sputtering apparatus used for production (film formation) of a reflective film laminate according to Example 1. FIG. 例2に係るSiO2 膜を1層モデルで解析したときの解析結果を示す図である。The SiO 2 film of Example 2 is a diagram showing an analysis result when analyzed by a one-layer model. 例2に係るSiO2 膜を3層モデルで解析したときの解析結果を示す図である。The SiO 2 film of Example 2 is a diagram showing an analysis result when analyzed by a 3-layer model. 例3に係る反射膜積層体の作製(成膜)に用いたプラズマCVD装置を示す模式図である。6 is a schematic diagram showing a plasma CVD apparatus used for production (film formation) of a reflective film laminate according to Example 3. FIG.

Claims (15)

基体上に、Agを主成分としBiを0.02原子%以上含有し、更にV、Ge、Znの1種以上を合計で0.02原子%以上含有すると共に、前記V、Ge、Znの1種以上の含有率を[A](原子%)とし、Biの含有率を[Bi](原子%)としたときに、下記(1)式を満足するAg合金からなる第一層が形成され、その上にSiの酸化物からなる第二層が形成されていることを特徴とする反射膜積層体。
7×[A]+13×[Bi]≦8 ---------(1)式
On the substrate, Ag is the main component, Bi is contained in an amount of 0.02 atomic% or more, and at least one of V, Ge, and Zn is contained in total of 0.02 atomic%, and the V, Ge, and Zn are contained. A first layer made of an Ag alloy satisfying the following formula (1) is formed when the content of one or more is [A] (atomic%) and the content of Bi is [Bi] (atomic%). And a second layer made of an oxide of Si is formed thereon.
7 × [A] + 13 × [Bi] ≦ 8 --------- (1)
前記Ag合金膜とSiの酸化物からなる第二層の界面に、前記Ag合金膜の内部よりもV、Ge、Znの1種以上の含有量が多い層を有することを特徴とする請求項1記載の反射膜積層体。   The interface between the Ag alloy film and the second layer made of an oxide of Si has a layer having a content of one or more of V, Ge, and Zn higher than that in the Ag alloy film. The reflective film laminate according to 1. 前記V、Ge、Znの1種以上の含有量が多い層が、V、Ge、Znの1種以上の酸化物を含むことを特徴とする請求項2記載の反射膜積層体。   The reflective film stack according to claim 2, wherein the layer having a high content of one or more of V, Ge, and Zn contains one or more oxides of V, Ge, and Zn. 前記Ag合金が更にAu、Pt、Pd、Rhの1種以上を合計で0.1〜5原子%含有する請求項1〜3記載の反射膜積層体。   The reflective film laminated body according to claim 1, wherein the Ag alloy further contains one or more of Au, Pt, Pd, and Rh in a total amount of 0.1 to 5 atomic%. 前記Siの酸化膜からなる第二層をSiO2 とみなして、この層の密度をX線反射率法により測定し、3層に分割したモデルで解析した際に、3層中のうち少なくともAg合金からなる第一層と接する層の密度が2g/cm3 以上である請求項1〜4記載の反射膜積層体。 When the second layer made of the Si oxide film is regarded as SiO 2 , the density of this layer is measured by the X-ray reflectivity method and analyzed by a model divided into three layers. The reflective film laminate according to claim 1, wherein the density of the layer in contact with the first layer made of an alloy is 2 g / cm 3 or more. 前記第二層の厚さが5〜80nmである請求項1〜5のいずれかに記載の反射膜積層体。   The thickness of the said 2nd layer is 5-80 nm, The reflection film laminated body in any one of Claims 1-5. JIS R3106に準拠してD65光源での波長範囲380〜780nmの光によって測定された可視光反射率が93%以上である請求項1〜6のいずれかに記載の反射膜積層体。   The reflective film laminate according to any one of claims 1 to 6, wherein the visible light reflectance measured by light having a wavelength range of 380 to 780 nm with a D65 light source in accordance with JIS R3106 is 93% or more. 前記第二層の上にプラズマ重合膜が形成されている請求項1〜7のいずれかに記載の反射膜積層体。   The reflective film laminated body in any one of Claims 1-7 in which the plasma polymerization film | membrane is formed on said 2nd layer. 基体と第一層との間に、金属膜または金属酸化物膜、または、プラズマ重合膜、もしくは樹脂膜より成る膜が形成されている請求項1〜8のいずれかに記載の反射膜積層体。   The reflective film laminate according to any one of claims 1 to 8, wherein a film made of a metal film, a metal oxide film, a plasma polymerized film, or a resin film is formed between the substrate and the first layer. . 請求項1〜9記載の反射膜積層体を備えることを特徴とする車両用灯具。   A vehicle lamp comprising the reflective film laminate according to claim 1. 請求項1〜9記載の反射膜積層体を備えることを特徴とする照明器具。   A lighting apparatus comprising the reflective film laminate according to claim 1. 請求項1〜9記載の反射膜積層体を備えることを特徴とする光学ミラー。   An optical mirror comprising the reflective film laminate according to claim 1. 請求項1〜9記載の反射膜積層体を備えることを特徴とするLED。   An LED comprising the reflective film laminate according to claim 1. 請求項1〜9記載の反射膜積層体を備えることを特徴とする有機ELディスプレイ。   An organic EL display comprising the reflective film laminate according to claim 1. 請求項1〜9記載の反射膜積層体を備えることを特徴とする有機EL照明器具。   An organic EL lighting apparatus comprising the reflective film laminate according to claim 1.
JP2008232418A 2007-09-25 2008-09-10 Reflective film laminate Expired - Fee Related JP5280777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232418A JP5280777B2 (en) 2007-09-25 2008-09-10 Reflective film laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007247356 2007-09-25
JP2007247356 2007-09-25
JP2008232418A JP5280777B2 (en) 2007-09-25 2008-09-10 Reflective film laminate

Publications (2)

Publication Number Publication Date
JP2009098650A true JP2009098650A (en) 2009-05-07
JP5280777B2 JP5280777B2 (en) 2013-09-04

Family

ID=40701656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232418A Expired - Fee Related JP5280777B2 (en) 2007-09-25 2008-09-10 Reflective film laminate

Country Status (1)

Country Link
JP (1) JP5280777B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090207A1 (en) 2010-01-25 2011-07-28 株式会社神戸製鋼所 Reflective film laminate
JP2011252187A (en) * 2010-05-31 2011-12-15 Kobe Steel Ltd Reflector for vehicle lighting fixture
US8525407B2 (en) 2009-06-24 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Light source and device having the same
KR101745290B1 (en) * 2011-12-27 2017-06-08 가부시키가이샤 고베 세이코쇼 Ag ALLOY FILM FOR REFLECTIVE ELECTRODES, AND REFLECTIVE ELECTRODE
US9781783B2 (en) 2011-04-15 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, light-emitting system, and display system
JP2018058274A (en) * 2016-10-05 2018-04-12 旭化成株式会社 Laminated body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329521A (en) * 1995-05-29 1996-12-13 Hitachi Maxell Ltd Optical recording medium
JP2005015893A (en) * 2003-06-27 2005-01-20 Kobe Steel Ltd REFLECTION FILM OF Ag ALLOY FOR REFLECTOR, REFLECTOR USING THE REFLECTION FILM OF Ag ALLOY, AND SPUTTERING TARGET OF Ag ALLOY FOR FORMING THIN FILM OF Ag ALLOY FOR THE REFLECTION FILM
JP2005332557A (en) * 2004-04-21 2005-12-02 Kobe Steel Ltd Translucent reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target
JP2007072190A (en) * 2005-09-07 2007-03-22 Konica Minolta Opto Inc Reflecting mirror
JP2007121461A (en) * 2005-10-25 2007-05-17 Matsushita Electric Works Ltd Reflection member having heat resistance and illuminator provided therewith
JP2007194385A (en) * 2006-01-19 2007-08-02 Stanley Electric Co Ltd Semiconductor light emitting device, and method of manufacturing same
JP2007226920A (en) * 2006-02-27 2007-09-06 Ricoh Co Ltd Two-layer type optical information recording medium and its disassembly method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329521A (en) * 1995-05-29 1996-12-13 Hitachi Maxell Ltd Optical recording medium
JP2005015893A (en) * 2003-06-27 2005-01-20 Kobe Steel Ltd REFLECTION FILM OF Ag ALLOY FOR REFLECTOR, REFLECTOR USING THE REFLECTION FILM OF Ag ALLOY, AND SPUTTERING TARGET OF Ag ALLOY FOR FORMING THIN FILM OF Ag ALLOY FOR THE REFLECTION FILM
JP2005332557A (en) * 2004-04-21 2005-12-02 Kobe Steel Ltd Translucent reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target
JP2007072190A (en) * 2005-09-07 2007-03-22 Konica Minolta Opto Inc Reflecting mirror
JP2007121461A (en) * 2005-10-25 2007-05-17 Matsushita Electric Works Ltd Reflection member having heat resistance and illuminator provided therewith
JP2007194385A (en) * 2006-01-19 2007-08-02 Stanley Electric Co Ltd Semiconductor light emitting device, and method of manufacturing same
JP2007226920A (en) * 2006-02-27 2007-09-06 Ricoh Co Ltd Two-layer type optical information recording medium and its disassembly method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525407B2 (en) 2009-06-24 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Light source and device having the same
WO2011090207A1 (en) 2010-01-25 2011-07-28 株式会社神戸製鋼所 Reflective film laminate
JP2011170326A (en) * 2010-01-25 2011-09-01 Kobe Steel Ltd Reflective film laminate
CN102687044A (en) * 2010-01-25 2012-09-19 株式会社神户制钢所 Reflective film laminate
EP2530495A1 (en) * 2010-01-25 2012-12-05 Kabushiki Kaisha Kobe Seiko Sho Reflective film laminate
EP2530495A4 (en) * 2010-01-25 2013-08-28 Kobe Steel Ltd Reflective film laminate
JP2011252187A (en) * 2010-05-31 2011-12-15 Kobe Steel Ltd Reflector for vehicle lighting fixture
US9781783B2 (en) 2011-04-15 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, light-emitting system, and display system
KR101745290B1 (en) * 2011-12-27 2017-06-08 가부시키가이샤 고베 세이코쇼 Ag ALLOY FILM FOR REFLECTIVE ELECTRODES, AND REFLECTIVE ELECTRODE
JP2018058274A (en) * 2016-10-05 2018-04-12 旭化成株式会社 Laminated body
JP7053137B2 (en) 2016-10-05 2022-04-12 旭化成株式会社 Laminated molded body

Also Published As

Publication number Publication date
JP5280777B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US8399100B2 (en) Reflection film, reflection film laminate, LED, organic EL display, and organic EL illuminating instrument
JP5719179B2 (en) Reflective film laminate
JP4009564B2 (en) Ag alloy reflective film for reflector, reflector using this Ag alloy reflective film, and Ag alloy sputtering target for forming an Ag alloy thin film of this Ag alloy reflective film
JP5280777B2 (en) Reflective film laminate
JP6340608B2 (en) High durability silver mirror
WO2004102231A1 (en) Reflective body, use thereof, and method for producing reflective body
US8603648B2 (en) Reflective film laminate
JP5097031B2 (en) Reflective film, LED, organic EL display, and organic EL lighting fixture
JP5049417B2 (en) Vehicle lamp reflector
US20080171196A1 (en) Reflecting film excellent in cohesion resistance and sulfur resistance
JP5144302B2 (en) Reflective film laminate
JP5364645B2 (en) Reflector for vehicle lighting
JP2010097066A (en) Reflector for lightening, for mirror or for display panel
JP5860335B2 (en) Reflective film laminate and manufacturing method thereof
JP2008015312A (en) Reflector and method for manufacturing the same
JP2010097065A (en) Reflector
JP2011032533A (en) Reflection film laminated body
JP2011134478A (en) Lighting fixture
JP5867343B2 (en) Manufacturing method of reflector for lamp
JP2011228104A (en) Illumination fixture
JP5485043B2 (en) lighting equipment
WO2008018298A1 (en) Ag ALLOY REFLECTIVE FILM FOR REFLECTOR, REFLECTOR, AND Ag ALLOY SPUTTERING TARGET FOR FORMATION OF Ag ALLOY REFLECTIVE FILM FOR REFLECTOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees