JP2009098433A - Display and its driving method - Google Patents

Display and its driving method Download PDF

Info

Publication number
JP2009098433A
JP2009098433A JP2007270143A JP2007270143A JP2009098433A JP 2009098433 A JP2009098433 A JP 2009098433A JP 2007270143 A JP2007270143 A JP 2007270143A JP 2007270143 A JP2007270143 A JP 2007270143A JP 2009098433 A JP2009098433 A JP 2009098433A
Authority
JP
Japan
Prior art keywords
organic electroluminescent
electroluminescent element
display device
driving
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007270143A
Other languages
Japanese (ja)
Inventor
Naoto Okada
直人 岡田
Yoshinori Uno
喜徳 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007270143A priority Critical patent/JP2009098433A/en
Publication of JP2009098433A publication Critical patent/JP2009098433A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving method and device of a display which uses an organic electroluminescent device without causing burning, by appropriately correcting luminance by correctly detecting luminance degradation of the organic electroluminescent device. <P>SOLUTION: The driving method of a display using the organic electroluminescent device is for a display including the plurality of organic electroluminescent devices, a voltage for a predetermined current value is measured for each of the plurality of the organic electroluminescent device after an initial period and a predetermined period, and a driving current value is corrected according to change of the voltage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、透明電極と反射電極に少なくとも有機発光層を有する有機化合物層を備える有機電界発光素子(有機EL素子)を用いた表示装置及びその駆動方法に関し、特に長時間駆動した際の耐久を考慮した有機電界発光素子の駆動方法に関する。また、本発明は、電極間に形成され、電流印加により発光する有機電界発光素子を少なくとも1つ以上備えた表示装置の駆動方法に関する。   The present invention relates to a display device using an organic electroluminescent element (organic EL element) provided with an organic compound layer having at least an organic light emitting layer on a transparent electrode and a reflective electrode, and a driving method thereof, and particularly to durability when driven for a long time. The present invention relates to a driving method of an organic electroluminescent element in consideration. The present invention also relates to a method for driving a display device including at least one organic electroluminescent element that is formed between electrodes and emits light when a current is applied.

有機電界発光素子は、陰極と陽極から電子と正孔を注入して有機発光層内でキャリアを再結合させて発光を起こさせて光を外部に取り出す自発型の発光素子である。有機電界発光素子は、自発光ゆえの高速応答性、広視野角等の優れた特性を持ちフルカラーディスプレイ等への応用開発が活発化している。しかしながら、有機電界発光素子は長時間駆動した場合の耐久性は未だ不十分なものとなっている。   The organic electroluminescent element is a spontaneous light emitting element that injects electrons and holes from a cathode and an anode, recombines carriers in the organic light emitting layer, causes light emission, and extracts light to the outside. Organic electroluminescence devices have excellent characteristics such as high-speed response due to self-emission and a wide viewing angle, and application development for full-color displays and the like has been activated. However, the durability of the organic electroluminescent device when it is driven for a long time is still insufficient.

特に有機電界発光素子ディスプレイは、自発光素子であるために固定画像を表示し続けると劣化により当該部分の画素のみが輝度劣化し、その度合いに応じて色の再現性が周囲と違ってしまい、いわゆる「焼き付き」を生じてしまう。そのため、上記焼き付きを防止するための対策が必要となる。   In particular, since the organic electroluminescent element display is a self-luminous element, if it continues to display a fixed image, only the pixel of the part deteriorates in luminance due to deterioration, and the color reproducibility differs from the surroundings depending on the degree, So-called “burn-in” occurs. Therefore, it is necessary to take measures for preventing the burn-in.

特許文献1では、有機電界発光素子の劣化によるインピーダンス変化からくる駆動電流変化を避ける為に電流駆動を行う方法が開示されている。しかしながら、有機電界発光素子の劣化は輝度電流効率の低下も同時におこるために、例え駆動電流を一定にしても一定輝度を保つことはできない。   Patent Document 1 discloses a method of performing current driving in order to avoid a driving current change resulting from an impedance change due to deterioration of an organic electroluminescent element. However, since the deterioration of the organic electroluminescent element also causes a decrease in the luminance current efficiency, a constant luminance cannot be maintained even if the driving current is constant.

また特許文献2には、投入する電流密度で寿命特性が概略推定できるとして、点灯時間に応じ既知の寿命特性曲線に対応させて輝度の補正を行う方法が開示されている。しかしながら、寿命特性曲線は投入する電流密度により変化するために、駆動する電流値が色々変化した場合に時間−輝度の関係である寿命特性曲線から輝度の低下を正確に推測することはできない。   Further, Patent Document 2 discloses a method of correcting the luminance in accordance with a known life characteristic curve according to the lighting time, assuming that the life characteristic can be roughly estimated by the current density to be input. However, since the life characteristic curve changes depending on the input current density, a decrease in luminance cannot be accurately estimated from the life characteristic curve, which is a time-luminance relationship, when the driving current value varies.

さらに発光部の発光を直接モニターして発光輝度にフィードバックして補正する方法が特許文献3で開示されている。しかしながら、画素ごとに補正しようとすると全ての画素ごとに光センサーを設けなくてはならないため、実用化にはコスト的にかなり不利な構成となってしまう。   Further, Patent Document 3 discloses a method of directly monitoring the light emission of the light emitting unit and feeding back to the light emission luminance for correction. However, if correction is to be made for each pixel, a photosensor must be provided for every pixel, which is a disadvantageous configuration for practical use.

これらの問題を解決するために、有機電界発光素子の輝度劣化に伴い駆動電圧が上昇することに着目し、駆動電圧上昇分だけ駆動電流を増やすことにより各画素の輝度劣化の補正を可能とする方法が特許文献4に開示されている。   In order to solve these problems, focusing on the fact that the drive voltage increases with the deterioration of the luminance of the organic electroluminescent element, it is possible to correct the luminance deterioration of each pixel by increasing the drive current by the increase of the drive voltage. A method is disclosed in US Pat.

また特許文献5には、有機電界発光素子の少なくとも1つの駆動電圧を検出する検出部を有し、制御部は検出部の検出電圧の大きさに応じて複数の有機電界発光素子への駆動電力を制御するものが開示されている。   Further, Patent Document 5 includes a detection unit that detects at least one drive voltage of the organic electroluminescence element, and the control unit drives drive power to the plurality of organic electroluminescence elements according to the magnitude of the detection voltage of the detection unit. What controls is disclosed.

さらに特許文献6によると、有機電界発光素子に印加した電圧値と電流値と温度の類推値と、同構成の有機電界発光素子について予め求めた電圧−電流特性の経時変化と電流−輝度特性の経時変化と特性測定時の温度とを比較する。そして、有機電界発光素子の電流−輝度特性を類推するものが開示されている。そのために予め、有機電界発光素子に所定の電圧を印加して流れる電流を測定し、温度測定回路により有機電界発光素子の温度を類推する。
特開平10−319910号公報 特開平11−109918号公報 特開2002−278506号公報 特開2004−287046号公報 特開2001−236040号公報 特開2002−278514号公報
Further, according to Patent Document 6, the analog value of the voltage value, current value, and temperature applied to the organic electroluminescent element, the time-dependent change of the voltage-current characteristic and the current-luminance characteristic obtained in advance for the organic electroluminescent element of the same configuration. The change with time and the temperature at the time of characteristic measurement are compared. And what analogizes the electric current-luminance characteristic of an organic electroluminescent element is disclosed. For this purpose, the current flowing by applying a predetermined voltage to the organic electroluminescent element is measured in advance, and the temperature of the organic electroluminescent element is estimated by a temperature measuring circuit.
JP-A-10-319910 JP-A-11-109918 JP 2002-278506 A JP 2004-287046 A JP 2001-236040 A JP 2002-278514 A

先に述べたように有機電界発光ディスプレイの表示焼き付きは、各画素の投入電流や点灯時間の違いに起因するものであることから、画素ごとに適切な補正量を設定しなければ防止することができない。すなわち、以下に挙げる課題を同時に満たせなければ焼き付きは防止できない。   As mentioned above, display burn-in of organic electroluminescence displays is caused by differences in the input current and lighting time of each pixel, so it can be prevented unless an appropriate correction amount is set for each pixel. Can not. In other words, seizure cannot be prevented unless the following problems can be satisfied at the same time.

(電流効率の低下)
有機電界発光素子の劣化は素子のインピーダンスが上昇するだけでなく一定電流値に対する輝度、すなわち電流効率自体が低下する。このため、一定電流が流れるように駆動電圧を増加させるいわゆる単純な電流制御では焼き付きは防止できない。特許文献3の方法の様に直接素子の光量を検知しない限りは、何らかの方法で電流効率の低下量を検知する必要がある。
(Decrease in current efficiency)
Deterioration of the organic electroluminescent element not only increases the impedance of the element but also decreases the luminance for a constant current value, that is, the current efficiency itself. For this reason, burn-in cannot be prevented by so-called simple current control in which the drive voltage is increased so that a constant current flows. Unless the light amount of the element is directly detected as in the method of Patent Document 3, it is necessary to detect the amount of decrease in current efficiency by some method.

(画素ごとの補正)
また画素ごとの補正が必要なことから、劣化を補正するフィードバック動作は各画素で容易に行える必要がある。この様に全ての画素で補正する場合には、光センサーを必要とする光量検知するよりも、特許文献1、2、4の様に電流値や電圧値をモニターする方が遥かに容易である。
(Correction for each pixel)
Further, since correction for each pixel is necessary, the feedback operation for correcting the deterioration needs to be easily performed for each pixel. In this way, when correcting for all pixels, it is much easier to monitor the current value and voltage value as in Patent Documents 1, 2, and 4, rather than detecting the amount of light that requires a photosensor. .

(補正精度の高さ)
また特許文献4にある様に駆動電圧上昇分だけ概略輝度が増す方向に駆動電流を増やすといったような補正でも、半減時間をなるべく長くすることは可能である。しかしながら、焼き付き防止の場合においては、画素の輝度ばらつきが数パーセントでも視認できてしまうので正確な補正が必要となる。このため、大まかに駆動電流を増やすといった制御方法では、焼き付きを防止することはできない。
(High correction accuracy)
In addition, as described in Patent Document 4, it is possible to make the half time as long as possible by correction such that the drive current is increased in the direction in which the approximate brightness increases by the increase in drive voltage. However, in the case of preventing burn-in, the luminance variation of the pixels can be visually recognized even at a few percent, so that an accurate correction is necessary. For this reason, burn-in cannot be prevented by a control method of roughly increasing the drive current.

このように従来の技術では劣化による輝度低下を遅らせることはできても、上記の条件を全て同時に満たすことができないために焼き付きを防止するという点で不十分な技術であった。   As described above, even though the conventional technique can delay the decrease in luminance due to deterioration, it cannot satisfy all of the above conditions at the same time, so that it is insufficient in terms of preventing burn-in.

(駆動による劣化)
また、駆動により電気的特性が変化する有機電界発光素子では、個々の有機電界発光素子の電気的特性は、発光強度および発光時間の履歴に依存して変化する。
(Deterioration due to driving)
Further, in an organic electroluminescent element whose electrical characteristics change by driving, the electrical characteristics of each organic electroluminescent element vary depending on the emission intensity and the history of the emission time.

例えば、個々の有機電界発光素子に任意の電流を任意の期間印加した場合、その発光輝度の変化の割合は異なる場合がある。また、同様に任意の電圧値にて個々の有機電界発光素子を駆動した場合、その発光輝度の変化の割合は異なる場合がある。多くの場合、有機電界発光素子の発光輝度は駆動の継続によって低下する傾向をもっている。このため、有機電界発光素子を備えた表示装置の輝度は、使用時間に応じて、個々の有機電界発光素子の輝度が異なる割合で低下する場合がある。つまり、複数の有機電界発光素子を備えた表示装置では、個々の有機電界発光素子の駆動履歴に応じて発光輝度が異なり、部分的に輝度が異なる有機電界発光素子が発生したり、表示する映像に斑・焼き付きが発生したりする場合がある。   For example, when an arbitrary current is applied to each organic electroluminescent element for an arbitrary period, the rate of change in emission luminance may be different. Similarly, when each organic electroluminescent element is driven at an arbitrary voltage value, the rate of change in the emission luminance may be different. In many cases, the light emission luminance of the organic electroluminescent element tends to decrease with continued driving. For this reason, the brightness of the display device provided with the organic electroluminescent element may decrease at a different rate depending on the usage time. In other words, in a display device having a plurality of organic electroluminescent elements, organic electroluminescent elements having different luminances depending on the driving history of the individual organic electroluminescent elements and partially different in luminance are generated or displayed. Spots or burn-in may occur.

本発明は、上記の課題に鑑みて創案されたものであり、その目的は有機電界発光素子の輝度劣化を正確に検知し適切な輝度補正をして、焼き付きを起こさない有機電界発光素子駆動方法及び駆動装置を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its object is to accurately detect luminance deterioration of an organic electroluminescent device, perform appropriate luminance correction, and prevent the occurrence of burn-in. And providing a driving device.

上記目的を達成するため、本発明に係る表示装置の駆動方法は、複数の有機電界発光素子を含む表示装置の駆動方法であって、初期および所定時間経過後に、前記複数の有機電界発光素子の各々について所定電流値に対する電圧を測定し、前記電圧の変化に従い駆動電流値を補正する各工程を有することを特徴とする。   In order to achieve the above object, a driving method of a display device according to the present invention is a driving method of a display device including a plurality of organic electroluminescent elements. Each step includes measuring each voltage with respect to a predetermined current value and correcting each drive current value according to the change in the voltage.

本発明において、前記駆動電流値を補正する工程は、測定された前記電圧の変化から所定の計算式に従い輝度電流効率を算出し、算出された該輝度電流効率を用いて前記駆動電流値の補正量を決定してもよい。また、前記駆動電流値を補正する工程は、測定された前記電圧の変化から予め測定された対応関係情報に従い輝度電流効率を選択し、選択された該輝度電流効率を用いて前記駆動電流値の補正量を決定してもよい。   In the present invention, the step of correcting the driving current value calculates a luminance current efficiency from the measured change in voltage according to a predetermined calculation formula, and corrects the driving current value using the calculated luminance current efficiency. The amount may be determined. Further, the step of correcting the driving current value selects a luminance current efficiency from the measured change in the voltage according to correspondence information measured in advance, and uses the selected luminance current efficiency to calculate the driving current value. The correction amount may be determined.

本発明に係る表示装置は、複数の有機電界発光素子と、前記複数の有機電界発光素子を駆動させる駆動装置とを有し、前記駆動装置は、初期および所定時間経過後に、前記複数の有機電界発光素子の各々について所定電流値に対する電圧を測定する測定手段と、測定された前記電圧の変化に従い駆動電流値を補正する補正手段と、を有することを特徴とする。   The display device according to the present invention includes a plurality of organic electroluminescent elements and a driving device that drives the plurality of organic electroluminescent elements, and the driving device includes the plurality of organic electric fields. Each of the light emitting elements includes a measuring unit that measures a voltage with respect to a predetermined current value, and a correcting unit that corrects the driving current value according to the measured change in the voltage.

本発明において、前記補正手段は、測定された前記電圧の変化から所定の計算式に従い輝度電流効率を算出し、算出された該輝度電流効率を用いて前記駆動電流値の補正量を決定してもよい。前記補正手段は、測定された前記電圧の変化から予め測定された対応関係情報に従い輝度電流効率を選択し、選択された該輝度電流効率を用いて前記駆動電流値の補正量を決定してもよい。   In the present invention, the correction means calculates a luminance current efficiency from a measured change in the voltage according to a predetermined calculation formula, and determines a correction amount of the drive current value using the calculated luminance current efficiency. Also good. The correction unit may select a luminance current efficiency from the measured change in voltage according to correspondence information measured in advance, and determine the correction amount of the drive current value using the selected luminance current efficiency. Good.

また本発明に係る第2の表示装置の駆動方法は、電流印加により発光する有機電界発光素子と、前記有機電界発光素子に給電を行う給電回路と、前記給電回路に電力供給を指示する駆動回路部と、を備え、前記有機電界発光素子の電気的特性値の変化に基づいて前記有機電界発光素子への給電量を変化させて制御する表示装置の駆動方法であって、前記電気的特性値として前記有機電界発光素子の電気抵抗を取得し、取得された電気抵抗に基づいて前記給電量を制御する工程を有することを特徴とする。   The second display device driving method according to the present invention includes an organic electroluminescent element that emits light by applying a current, a power supply circuit that supplies power to the organic electroluminescent element, and a drive circuit that instructs the power supply circuit to supply power. And a display device driving method for controlling by changing a power supply amount to the organic electroluminescent element based on a change in an electrical characteristic value of the organic electroluminescent element, the electrical characteristic value And obtaining the electrical resistance of the organic electroluminescent element and controlling the amount of power supply based on the obtained electrical resistance.

本発明において、前記有機電界発光素子は、複数の有機電界発光素子で構成され、前記表示装置は、前記複数の有機電界発光素子の各々の電気抵抗値を取得する電気抵抗値取得部を備え、前記給電量を制御する工程は、前記電気抵抗値取得部の出力に基づいて前記有機電界発光素子への給電量を制御してもよい。前記給電量を制御する工程は、前記有機電界発光素子の電気抵抗値を所定の値に維持する駆動制御により、前記有機電界発光素子の最大発光輝度とする制御を行ってもよい。前記給電量を制御する工程は、前記有機電界発光素子の電気抵抗値を前記有機電界発光素子の電気的特性の変化に応じて低下させる駆動制御により前記有機電界発光素子の最大発光輝度とする制御を行ってもよい。   In the present invention, the organic electroluminescent element is composed of a plurality of organic electroluminescent elements, and the display device includes an electric resistance value acquisition unit that acquires electric resistance values of the plurality of organic electroluminescent elements, The step of controlling the power supply amount may control the power supply amount to the organic electroluminescent element based on the output of the electrical resistance value acquisition unit. The step of controlling the amount of power supply may be controlled to achieve the maximum light emission luminance of the organic electroluminescent element by drive control that maintains the electric resistance value of the organic electroluminescent element at a predetermined value. The step of controlling the amount of power supply is a control for setting the maximum light emission luminance of the organic electroluminescent element by drive control for reducing the electric resistance value of the organic electroluminescent element in accordance with a change in electrical characteristics of the organic electroluminescent element. May be performed.

本発明に係る第2の表示装置は、電流印加により発光する有機電界発光素子と、前記有機電界発光素子に給電を行う給電回路と、前記給電回路に電力供給を指示する駆動回路部と、を備え、前記有機電界発光素子の電気的特性値の変化に基づいて前記有機電界発光素子への給電量を変化させて制御する表示装置であって、前記電気的特性値として前記有機電界発光素子の電気抵抗を取得し、取得された電気抵抗に基づいて前記給電量を制御する制御手段を有することを特徴とする。   A second display device according to the present invention includes an organic electroluminescent element that emits light by applying a current, a power supply circuit that supplies power to the organic electroluminescent element, and a drive circuit unit that instructs the power supply circuit to supply power. A display device that controls the amount of electric power supplied to the organic electroluminescent element by changing the electric characteristic value of the organic electroluminescent element, the electric characteristic value of the organic electroluminescent element being It has a control means which acquires an electrical resistance and controls the amount of power supply based on the acquired electrical resistance.

本発明において、前記有機電界発光素子は、複数の有機電界発光素子で構成され、前記制御手段は、前記複数の有機電界発光素子の各々の電気抵抗値を取得する電気抵抗値取得部を備え、前記電気抵抗値取得部の出力に基づいて前記有機電界発光素子への給電量を制御してもよい。前記制御手段は、前記有機電界発光素子の電気抵抗値を所定の値に維持する駆動制御により、前記有機電界発光素子の最大発光輝度とする制御を行ってもよい。前記制御手段は、前記有機電界発光素子の電気抵抗値を前記有機電界発光素子の電気的特性の変化に応じて低下させる駆動制御により前記有機電界発光素子の最大発光輝度とする制御を行ってもよい。   In the present invention, the organic electroluminescent element is composed of a plurality of organic electroluminescent elements, and the control means includes an electrical resistance value acquisition unit that acquires electrical resistance values of the plurality of organic electroluminescent elements, You may control the electric power feeding amount to the said organic electroluminescent element based on the output of the said electrical resistance value acquisition part. The control means may perform control to achieve the maximum light emission luminance of the organic electroluminescent element by drive control that maintains the electric resistance value of the organic electroluminescent element at a predetermined value. The control unit may perform control to obtain a maximum light emission luminance of the organic electroluminescent element by driving control to reduce an electric resistance value of the organic electroluminescent element in accordance with a change in electrical characteristics of the organic electroluminescent element. Good.

本発明によれば、容易かつ低コストで画素ごとの輝度劣化を補正することができる。さらに輝度劣化を精度良く補正することができるために焼き付きを防止することができる。   According to the present invention, it is possible to correct luminance deterioration for each pixel easily and at low cost. Furthermore, since the luminance deterioration can be corrected with high accuracy, burn-in can be prevented.

以下、本発明に係る有機電界発光素子を用いた表示装置及びその駆動方法の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of a display device using an organic electroluminescent element and a driving method thereof according to the present invention will be described in detail with reference to the drawings.

(第1の実施の形態)
まず、図1を参照して、本発明の第1の実施の形態について説明する。
(First embodiment)
First, a first embodiment of the present invention will be described with reference to FIG.

本実施の形態に係る表示装置の駆動方法は、有機電界発光素子を点灯しているある間隔ごとに所定電流を流し、この時の必要電圧値(駆動電圧)を測定する。この時流す所定電流値は、特に限定されないが、例えばもっとも長い時間点灯されるような標準的な輝度に必要な電流値を用いればよい。   In the driving method of the display device according to the present embodiment, a predetermined current is supplied at certain intervals during which the organic electroluminescence element is lit, and a necessary voltage value (driving voltage) at this time is measured. The predetermined current value to be passed at this time is not particularly limited, but for example, a current value necessary for standard luminance that is lit for the longest time may be used.

図1は、一定電流値で駆動したときの有機電界発光素子の電圧Vと輝度Lの時間変動を示す。図1に示すように一定電流値で駆動した場合、有機電界発光素子は、駆動時間tが増えるに従い輝度L(輝度電流効率η=輝度L/電流I)が低下すると共に、素子のインピーダンスが大きくなるために必要駆動電圧Vが増えていく。電流を変えると、変動の仕方は図1から変化するが、電圧Vと輝度Lの関係は電流によって大きくは変わらない。電流を2倍にすると、電圧Vと輝度Lの変動も速まるが、その場合は、図1において時間の進み方が速まったのと同等であると考えることができる。   FIG. 1 shows temporal variations in voltage V and luminance L of an organic electroluminescent element when driven at a constant current value. As shown in FIG. 1, when driven at a constant current value, the organic electroluminescent element has a reduced luminance L (luminance current efficiency η = luminance L / current I) as the drive time t increases, and the impedance of the element increases. Therefore, the necessary drive voltage V increases. When the current is changed, the way of variation changes from FIG. 1, but the relationship between the voltage V and the luminance L does not change greatly depending on the current. When the current is doubled, the fluctuations in the voltage V and the luminance L are also accelerated. In this case, it can be considered that the time progress in FIG. 1 is equivalent.

画素ごとに電流の履歴は異なっている場合でも、電圧変化から劣化の進行度を一義的に決めることができる。本実施の形態においては、このことを利用して、一定の電流に対する電圧の変化量を画素ごとに求めて劣化の進行度つまり輝度の低下を推定する。   Even when current histories differ from pixel to pixel, the degree of deterioration can be uniquely determined from the voltage change. In the present embodiment, by utilizing this fact, the amount of change in voltage with respect to a constant current is obtained for each pixel to estimate the degree of deterioration, that is, the decrease in luminance.

具体的には、まず所定時間経過後に上昇した必要駆動電圧値と初期の必要駆動電圧値との差である上昇駆動電圧値を求める。次に、この上昇駆動電圧値からあらかじめ決められた関係に従って輝度電流効率(=輝度/電流)を求める。さらに、この輝度電流効率から所望の輝度に必要な電流値を求め、この電流値を駆動電流値とする電流を有機電界発光素子に流す。   Specifically, first, an increased drive voltage value that is the difference between the required drive voltage value that has increased after a predetermined time has elapsed and the initial required drive voltage value is obtained. Next, the luminance current efficiency (= luminance / current) is obtained from the increased drive voltage value according to a predetermined relationship. Further, a current value necessary for a desired luminance is obtained from the luminance current efficiency, and a current having this current value as a driving current value is passed through the organic electroluminescent element.

この様に本実施の形態においては、画素に配置された個々の有機電界発光素子の輝度電流効率を求めて駆動電流を補正するため、正確に輝度劣化を補償することができる。また補正に必要な測定が電圧であるために、回路の一部に電圧検出部を設けるだけで個々の素子について容易に補正を個別に行うことができる。   As described above, in the present embodiment, the luminance current efficiency of each organic electroluminescent element arranged in the pixel is obtained and the drive current is corrected, so that the luminance deterioration can be compensated accurately. Further, since the measurement necessary for the correction is a voltage, the correction can be easily made individually for each element only by providing a voltage detection part in a part of the circuit.

本実施の形態において、上昇駆動電圧値から輝度電流効率を決めるのには、あらかじめ決めた計算式として、例えば以下の式1を用いて、マイクロコンピュータ等の計算装置により算出することができる。   In the present embodiment, the luminance current efficiency can be determined from the increased drive voltage value by using a calculation device such as a microcomputer using the following equation 1 as a predetermined calculation equation.

Figure 2009098433
Figure 2009098433

ここで、Vは上昇駆動電圧値、ηは輝度電流効率(η=輝度L/電流I)を表す。また、εとdはそれぞれ有機電界発光素子の有機層の誘電率と層厚であり、qは素電荷を表す。nは、有機電界発光素子の発光層中の発光子初期密度で、この式は発光子が劣化に伴い分解して消光子となり、その消光子密度によって上昇駆動電圧が決まるという現象に基づいている。このnは、予め輝度劣化曲線と電圧上昇曲線からフィッティングして求めておくが、これは初期劣化を排除する工程であるエージング工程で点灯している間の輝度、電圧データを記録しておくことにより計算することもできる。 Here, V represents the rising drive voltage value, and η represents the luminance current efficiency (η = luminance L / current I). Further, ε and d are the dielectric constant and the layer thickness of the organic layer of the organic electroluminescent element, respectively, and q represents the elementary charge. n 0 is the initial density of the light emitter in the light emitting layer of the organic electroluminescent device, and this equation is based on the phenomenon that the light emitting element decomposes as it deteriorates to become a quencher, and the rising drive voltage is determined by the quencher density. Yes. This n 0 is obtained in advance by fitting from a luminance degradation curve and a voltage rise curve, and this records luminance and voltage data during lighting in an aging process which is a process of eliminating initial degradation. Can also be calculated.

ここで用いる計算式は、式1に限らず補正の精度が保証されれば特に限定されない。その素子で適用できる理論式でも経験則からくる経験式を用いてもよい。   The calculation formula used here is not limited to Formula 1 as long as the correction accuracy is guaranteed. An empirical formula derived from an empirical rule may be used as a theoretical formula applicable to the element.

劣化後の輝度を推定するには、次のようにすればよい。   In order to estimate the luminance after deterioration, the following may be performed.

一例として、駆動電圧Vの劣化進行度t(例えば点灯時間等)に対する依存性をV(t)、輝度の劣化進行度t(例えば点灯時間等)に対する依存性をL(t)とする。そして、劣化進行度t時の駆動電圧がVのときの輝度Lは、L=L(V−1(V))とすればよい。 As an example, the dependency of the drive voltage V on the deterioration progress t (for example, lighting time) is V (t), and the dependency on the luminance deterioration progress t (for example, lighting time) is L (t). Then, the luminance L 1 when the drive voltage at the deterioration progress t 1 is V 1 may be L 1 = L (V −1 (V 1 )).

他の例として、あらかじめ上昇駆動電圧Vと輝度電流効率ηとの対応関係を測定し、測定された対応関係情報をデータベースとして記憶装置に記憶させておく。そして、そのデータベースに従い上昇駆動電圧値Vに対応する輝度電流効率ηを選択し、選択された輝度電流効率ηから駆動電流値の補正量を決定してもよい。   As another example, the correspondence relationship between the rising drive voltage V and the luminance current efficiency η is measured in advance, and the measured correspondence information is stored in a storage device as a database. Then, the luminance current efficiency η corresponding to the increased drive voltage value V may be selected according to the database, and the correction amount of the drive current value may be determined from the selected luminance current efficiency η.

補正を行う間隔も特に限定されないが、有機電界発光素子の駆動劣化は極端に早く進行するわけではないので、発光素子を搭載している装置の起動時毎に行う形にすればよい。   The interval for performing the correction is not particularly limited, but the drive deterioration of the organic electroluminescent element does not proceed extremely quickly, and therefore, it may be performed every time the device equipped with the light emitting element is started.

上記駆動方法を実現するため、本実施の形態に係る表示装置では、次のような構成であればよい。すなわち、駆動装置が、初期および所定時間経過後に、複数の有機電界発光素子の各々について所定電流値に対する電圧を測定する測定手段と、測定された電圧の変化に従い駆動電流値を補正する補正手段とを有していればよい。補正手段は、測定された電圧の変化から所定の計算式(例えば、上記式1)に従い輝度電流効率ηを算出し、その輝度電流効率ηから駆動電流値の補正量を決定してもよい。または、補正手段は、測定された電圧の変化から予め測定された対応関係情報に従い輝度電流効率ηを選択し、その輝度電流効率ηから駆動電流値の補正量を決定してもよい。   In order to realize the above driving method, the display device according to the present embodiment may have the following configuration. That is, the driving device measures the voltage with respect to the predetermined current value for each of the plurality of organic electroluminescent elements after the initial period and the predetermined time has elapsed, and the correcting unit corrects the driving current value according to the change in the measured voltage. As long as it has. The correcting means may calculate the luminance current efficiency η from the measured voltage change according to a predetermined calculation formula (for example, the above formula 1), and determine the correction amount of the drive current value from the luminance current efficiency η. Alternatively, the correction unit may select the luminance current efficiency η according to the correspondence information measured in advance from the measured voltage change, and determine the correction amount of the drive current value from the luminance current efficiency η.

従って、本実施の形態に係る表示装置及びその駆動方法によれば、容易かつ低コストで画素ごとの輝度劣化を補正することができる。さらに輝度劣化を精度良く補正することができるために焼き付きを防止することができる。   Therefore, according to the display device and the driving method thereof according to the present embodiment, it is possible to correct luminance deterioration for each pixel easily and at low cost. Furthermore, since the luminance deterioration can be corrected with high accuracy, burn-in can be prevented.

(第2の実施の形態)
次に、図3及び図4を参照して、本発明の第2の実施の形態について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS.

本実施の形態は、電流印加により発光する少なくとも一つ以上の有機電界発光素子と、有機電界発光素子に給電を行う給電回路と給電回路に所望の電力供給を指示する駆動回路部とを備えた表示装置の駆動方法である。この構成において、有機電界発光素子の電気的特性値として電気抵抗を取得し、取得された電気抵抗に基づいて給電量を制御する。また、有機電界発光素子の電気抵抗を取得する手段として、電気抵抗値取得部を備え、その電気抵抗値取得部の出力に基づいて有機電界発光素子への給電量を制御する。さらに、有機電界発光素子の電気抵抗を所定の値に保つように給電量を制御する。   The present embodiment includes at least one organic electroluminescent element that emits light by applying current, a power supply circuit that supplies power to the organic electroluminescent element, and a drive circuit unit that instructs the power supply circuit to supply desired power. It is a drive method of a display apparatus. In this configuration, the electrical resistance is acquired as the electrical characteristic value of the organic electroluminescent element, and the power supply amount is controlled based on the acquired electrical resistance. Moreover, an electrical resistance value acquisition unit is provided as means for acquiring the electrical resistance of the organic electroluminescence element, and the amount of power supplied to the organic electroluminescence element is controlled based on the output of the electrical resistance value acquisition unit. Further, the power supply amount is controlled so as to keep the electric resistance of the organic electroluminescent element at a predetermined value.

図3に示す本実施の形態に係る表示装置は、駆動信号を給電回路22に指示する駆動回路部21と、その駆動信号に基づいて有機電界発光素子23に電力を供給する給電回路22と、有機電界発光素子23と、その電気抵抗を取得する電気抵抗取得部24とから成る。駆動回路部21と給電回路22と有機電界発光素子23と電気抵抗取得部24とは、それぞれ信号線により電気的に接続される。このうち、電気抵抗取得部24が本発明の制御手段に対応している。   The display device according to the present embodiment shown in FIG. 3 includes a drive circuit unit 21 that instructs the power supply circuit 22 to supply a drive signal, a power supply circuit 22 that supplies power to the organic electroluminescent element 23 based on the drive signal, It comprises an organic electroluminescent element 23 and an electrical resistance acquisition unit 24 that acquires the electrical resistance. The drive circuit unit 21, the power feeding circuit 22, the organic electroluminescent element 23, and the electrical resistance acquisition unit 24 are electrically connected by signal lines, respectively. Among these, the electrical resistance acquisition unit 24 corresponds to the control means of the present invention.

駆動回路部21は、給電回路22が有機電界発光素子23に所定の電力を印加するための信号を出力する構成であれば、その構成は特に限定しない。給電回路22が有機電界発光素子23に所定の電力を印加するための信号とは、有機電界発光素子23の輝度の諧調を規定する信号でもよいし、有機電界発光素子23に印加する所定の電流値もしくは電圧値を規定するものでもよい。   The drive circuit unit 21 is not particularly limited as long as the power supply circuit 22 outputs a signal for applying predetermined power to the organic electroluminescent element 23. The signal for the feeder circuit 22 to apply a predetermined power to the organic electroluminescent element 23 may be a signal that regulates the gradation of the luminance of the organic electroluminescent element 23, or a predetermined current applied to the organic electroluminescent element 23. A value or a voltage value may be specified.

給電回路22は、駆動回路部21から出力された制御信号に基づき有機電界発光素子23に電力を印加する機能を有すれば、その構成は特に限定しない。有機電界発光素子23に印加する電流値を規定する回路でもよいし、電圧値を規定する回路でもよい。   The configuration of the power feeding circuit 22 is not particularly limited as long as it has a function of applying power to the organic electroluminescent element 23 based on a control signal output from the drive circuit unit 21. A circuit that defines a current value applied to the organic electroluminescent element 23 or a circuit that defines a voltage value may be used.

有機電界発光素子23は、少なくとも一方が透明な2つの電極間に、少なくとも電流印加によって発光する有機発光層を1層以上含む有機電界発光素子23であれば、その構成、材料および製造方法は特に限定しない。公知の材料、素子構成、製造方法を用いればよい。有機電界発光素子23が作成される基板は、有機電界発光素子23を構成する2つの電極のうち基板側に配置された電極が透明電極である場合、その基板も透明であることが好ましい。基板の機械的強度などの物性は、有機電界発光素子23が作製可能であれば特に限定しない。   If the organic electroluminescent element 23 is an organic electroluminescent element 23 including at least one organic light emitting layer that emits light by applying current between two electrodes, at least one of which is transparent, the configuration, material, and manufacturing method thereof are particularly Not limited. Known materials, element configurations, and manufacturing methods may be used. The substrate on which the organic electroluminescent element 23 is formed is preferably transparent when the electrode disposed on the substrate side among the two electrodes constituting the organic electroluminescent element 23 is a transparent electrode. The physical properties such as mechanical strength of the substrate are not particularly limited as long as the organic electroluminescent element 23 can be produced.

電気抵抗取得部24は、有機電界発光素子23の電気抵抗値が取得可能であり、駆動回路部21もしくは給電回路22にその信号を出力可能であれば、その構成は特に限定しない。有機電界発光素子23の電気抵抗を取得する方法も、特に限定しない。有機電界発光素子23の抵抗値が取得可能であり、駆動回路部21もしくは給電回路22にその信号を出力可能であれば、特に限定しない。   The configuration of the electrical resistance acquisition unit 24 is not particularly limited as long as the electrical resistance value of the organic electroluminescence element 23 can be acquired and the signal can be output to the drive circuit unit 21 or the power feeding circuit 22. A method for obtaining the electric resistance of the organic electroluminescent element 23 is not particularly limited. There is no particular limitation as long as the resistance value of the organic electroluminescent element 23 can be acquired and the signal can be output to the drive circuit unit 21 or the power feeding circuit 22.

有機電界発光素子23の電気抵抗の取得方法として、有機電界発光素子23にかかる電圧と有機電界発光素子23に直列に配置された既知の抵抗値を持つ抵抗器にかかる電圧とを計測し、2つの電圧値と抵抗器の抵抗値から求めてもよい。または、給電回路22が有機電界発光素子23に印加する電流値と有機電界発光素子23にかかる電圧とから抵抗値から求めてもよい。または、給電回路22が有機電界発光素子23に印加する電圧値と有機電界発光素子23に直列に配置された既知の抵抗値を持つ抵抗器にかかる電圧とを計測し、2つの電圧値と抵抗器の抵抗値から求めてもよい。   As a method for obtaining the electrical resistance of the organic electroluminescent element 23, a voltage applied to the organic electroluminescent element 23 and a voltage applied to a resistor having a known resistance value arranged in series with the organic electroluminescent element 23 are measured. You may obtain | require from one voltage value and the resistance value of a resistor. Alternatively, the resistance value may be obtained from the current value applied to the organic electroluminescent element 23 by the power feeding circuit 22 and the voltage applied to the organic electroluminescent element 23. Alternatively, the voltage value applied to the organic electroluminescent element 23 by the power feeding circuit 22 and the voltage applied to the resistor having a known resistance value arranged in series with the organic electroluminescent element 23 are measured, and the two voltage values and the resistance are measured. You may obtain | require from the resistance value of a vessel.

本表示装置は、1つの有機電界発光素子23を備えた表示装置の例であるが、有機電界発光素子23の数は特に限定しない。1つでもよいし、複数の有機電界発光素子23を備えた表示装置であってもよい。駆動回路部21、給電回路22および電気抵抗取得部24の数も特に限定しない。複数の有機電界発光素子23の1つ1つに対応する有機電界発光素子23と同数の駆動回路部21、給電回路22および電気抵抗取得部24とを備えてもよい。または、複数の有機電界発光素子23に対して1つの駆動回路部21と1つの電気抵抗取得部24を備え、スイッチ回路を備えた給電回路22および同様にスイッチ回路を備えた有機電界発光素子23と電気抵抗取得部24を接続する回路を備えてもよい。   The present display device is an example of a display device including one organic electroluminescent element 23, but the number of organic electroluminescent elements 23 is not particularly limited. One or a display device including a plurality of organic electroluminescent elements 23 may be used. The numbers of the drive circuit unit 21, the power feeding circuit 22, and the electrical resistance acquisition unit 24 are not particularly limited. You may provide the drive circuit part 21, the electric power feeding circuit 22, and the electrical resistance acquisition part 24 of the same number as the organic electroluminescent element 23 corresponding to each one of the some organic electroluminescent element 23. FIG. Alternatively, one drive circuit unit 21 and one electrical resistance acquisition unit 24 are provided for a plurality of organic electroluminescent elements 23, and a power feeding circuit 22 including a switch circuit and similarly an organic electroluminescent element 23 including a switch circuit. And a circuit for connecting the electrical resistance acquisition unit 24 may be provided.

次に、本実施の形態の表示装置による有機電界発光素子の駆動方法の原理を説明する。   Next, the principle of the driving method of the organic electroluminescent element by the display device of this embodiment will be described.

有機電界発光素子23の電気抵抗に基づいて印加電力を制御する駆動方法は、有用な駆動方法である。その理由として、有機電界発光素子23の抵抗−輝度特性(図4(b)参照)は、電気抵抗の上昇に伴い輝度が低下し、高電気抵抗域で輝度は0に漸近する特徴をもつためである。   A driving method for controlling the applied power based on the electric resistance of the organic electroluminescent element 23 is a useful driving method. The reason is that the resistance-luminance characteristic (see FIG. 4B) of the organic electroluminescent element 23 has a characteristic that the luminance decreases as the electric resistance increases, and the luminance gradually approaches 0 in the high electric resistance region. It is.

図4(b)では、横軸に電気抵抗を、縦軸に輝度をとり、有機電界発光素子23の抵抗−輝度特性の線を太い実線で示す。   In FIG. 4B, the horizontal axis represents electric resistance, the vertical axis represents luminance, and the resistance-luminance characteristic line of the organic electroluminescent element 23 is indicated by a thick solid line.

有機電界発光素子23は、特定の抵抗値を維持する駆動法により、その抵抗値に対応した所望の輝度での駆動が可能となる。すなわち、有機電界発光素子23は、以下に示す有機電界発光素子23の電圧−電流特性が持つ特徴により、所望の電気抵抗値での駆動が可能となる。有機電界発光素子23の電圧−電流特性は、特定の閾値電圧以上で急速に電流が上昇する特徴をもつ(図4(a)参照)。   The organic electroluminescent element 23 can be driven at a desired luminance corresponding to the resistance value by a driving method that maintains a specific resistance value. That is, the organic electroluminescent element 23 can be driven with a desired electric resistance value due to the characteristics of the voltage-current characteristics of the organic electroluminescent element 23 described below. The voltage-current characteristic of the organic electroluminescent element 23 has a characteristic that current rapidly rises above a specific threshold voltage (see FIG. 4A).

図4(a)は、横軸に電圧、縦軸に電流をとり、有機電界発光素子23の電圧−電流特性を太い実線で、電気抵抗一定の線を破線で示す。有機電界発光素子23に流れる電流値およびその際の電圧値に依存にして有機電界発光素子23の電気抵抗値は変化し、電流および電圧が高くなるに従って電気抵抗が低下する特性を持ち、電流および電圧が低くなるに従って電気抵抗が上昇する特性を持つ。そのため、有機電界発光素子23の抵抗値を上昇させる場合に電圧または電流を低下させ、有機電界発光素子23の抵抗値を低下させる場合に電圧または電流を上昇させればよい。   In FIG. 4A, the horizontal axis represents voltage, the vertical axis represents current, and the voltage-current characteristics of the organic electroluminescent element 23 are indicated by a thick solid line and the constant electric resistance line is indicated by a broken line. The electric resistance value of the organic electroluminescent element 23 changes depending on the value of the current flowing through the organic electroluminescent element 23 and the voltage value at that time, and the electric resistance decreases as the current and voltage increase. The electric resistance increases as the voltage decreases. Therefore, the voltage or current may be decreased when the resistance value of the organic electroluminescent element 23 is increased, and the voltage or current may be increased when the resistance value of the organic electroluminescent element 23 is decreased.

有機電界発光素子23の抵抗−輝度特性は、駆動の継続により、図4(b)に示す抵抗−輝度特性RLから抵抗−輝度特性RLの方向へ変化する。つまり、輝度を一定にする条件にて駆動を継続すれば、有機電界発光素子23の電気抵抗は低下する傾向にあり、抵抗を一定にする条件にて駆動を継続すれば、輝度は低下する傾向にある。そのため、有機電界発光素子23の輝度を一定にして駆動を継続するためには、有機電界発光素子23の電気抵抗を変化させる駆動方法はよい駆動方法となる。例えば、有機電界発光素子23の電気抵抗値を時間に応じて低下させる駆動方法はよい駆動方法である。 Resistance of the organic electroluminescent element 23 - luminance characteristics, the continuation of the drive, the resistance shown in FIG. 4 (b) - resistance from the luminance characteristic RL 1 - changes the direction of the luminance characteristics RL 2. That is, the electric resistance of the organic electroluminescent element 23 tends to decrease if the driving is continued under the condition where the luminance is constant, and the luminance tends to decrease if the driving is continued under the condition where the resistance is constant. It is in. Therefore, in order to continue driving with the luminance of the organic electroluminescent element 23 kept constant, a driving method that changes the electric resistance of the organic electroluminescent element 23 is a good driving method. For example, a driving method for reducing the electric resistance value of the organic electroluminescent element 23 according to time is a good driving method.

ところで、有機電界発光素子23の電圧−電流特性は、駆動の継続により、図4(a)に示す電圧−電流特性VIから電圧−電流特性VIの方向へ変化する。つまり、所定の電流印加を継続すれば電圧が上昇し電気抵抗が上昇する傾向を、また特定の電圧印加を継続すれば電流が低下し電気抵抗が上昇する傾向をそれぞれ持つ。そのため、有機電界発光素子23を所定の電流もしくは所定の電圧で駆動した場合、有機電界発光素子23の輝度は、抵抗−輝度特性(図4(b)参照)の変化と同時に、有機電界発光素子23の電気抵抗の上昇により輝度が低下する場合がある。 By the way, the voltage-current characteristic of the organic electroluminescent element 23 changes from the voltage-current characteristic VI 1 shown in FIG. 4A toward the voltage-current characteristic VI 2 as driving is continued. That is, if the predetermined current application is continued, the voltage increases and the electric resistance tends to increase, and if the specific voltage application is continued, the current decreases and the electric resistance tends to increase. Therefore, when the organic electroluminescent element 23 is driven with a predetermined current or a predetermined voltage, the luminance of the organic electroluminescent element 23 is changed simultaneously with the change of the resistance-luminance characteristic (see FIG. 4B). The luminance may decrease due to the increase in the electrical resistance of 23.

その一例として、図4(a)中のa点の電圧・電流にて駆動を継続した場合を考える。駆動の継続の条件として電流一定の条件で駆動を継続した場合、電圧−電流特性の変化に伴って有機電界発光素子23の駆動電圧・電流は図4(a)中のc点となる。電圧一定の条件で駆動を継続した場合には、電圧−電流特性の変化に伴って有機電界発光素子23の駆動電圧・電流は、図4(a)中のd点となる。抵抗一定の条件で駆動を継続した場合、電圧−電流特性の変化に伴って有機電界発光素子の駆動電圧・電流は、図4(a)中のb点となる。これに伴って、有機電界発光素子の電気抵抗は、電圧一定条件と電流一定条件では電気抵抗は高くなる。   As an example, let us consider a case where driving is continued with the voltage and current at point a in FIG. When driving is continued under the condition that the current is constant as the driving continuation condition, the driving voltage / current of the organic electroluminescent element 23 becomes point c in FIG. When driving is continued under a constant voltage condition, the driving voltage / current of the organic electroluminescent element 23 becomes point d in FIG. 4A along with the change in voltage-current characteristics. When driving is continued under the condition that the resistance is constant, the driving voltage / current of the organic electroluminescent element becomes point b in FIG. 4A along with the change of the voltage-current characteristics. Accordingly, the electrical resistance of the organic electroluminescence element increases under the constant voltage condition and the constant current condition.

この変化は、次のように有機電界発光素子23の抵抗−輝度特性に現れる。図4(a)中のa点の条件にて有機電界発光素子23を駆動した場合の抵抗・輝度を図4(b)中のa点とする。この図4(b)中のa点より抵抗一定の条件で駆動を継続した場合には、抵抗−輝度特性の変化に伴って有機電界発光素子23の抵抗・輝度は、図4(b)中のb点となる。また、電流一定の条件で駆動を継続した場合、抵抗−輝度特性の変化に伴って有機電界発光素子23の抵抗・輝度は、図4(b)中のc点となる。電圧一定の条件で駆動を継続した場合、抵抗−輝度特性の変化に伴って有機電界発光素子23の抵抗・輝度は、図4(b)中のd点となる。そのため、有機電界発光素子23を所定の電流もしくは所定の電圧で駆動した場合の輝度の低下は、有機電界発光素子23を所定の抵抗で駆動した場合の輝度の低下よりも大きくなる。   This change appears in the resistance-luminance characteristics of the organic electroluminescent element 23 as follows. Resistance / luminance when the organic electroluminescent element 23 is driven under the condition of point a in FIG. 4A is point a in FIG. 4B. When driving is continued under the condition that the resistance is constant from the point a in FIG. 4B, the resistance / luminance of the organic electroluminescent element 23 is changed in FIG. B point. Further, when the driving is continued under a constant current condition, the resistance / luminance of the organic electroluminescent element 23 becomes a point c in FIG. 4B with the change of the resistance-luminance characteristics. When driving is continued under a constant voltage condition, the resistance / luminance of the organic electroluminescent element 23 becomes point d in FIG. Therefore, the decrease in luminance when the organic electroluminescent element 23 is driven with a predetermined current or predetermined voltage is greater than the decrease in luminance when the organic electroluminescent element 23 is driven with a predetermined resistance.

このため、有機電界発光素子23の電気抵抗を一定とする駆動方法は、よい駆動方法である。電圧もしくは電流を所定の値で駆動する場合と比較して、有機電界発光素子23の電気抵抗の上昇に伴う輝度の低下が防止され、輝度の変動が抑えられる傾向となる。   For this reason, a driving method in which the electric resistance of the organic electroluminescent element 23 is constant is a good driving method. Compared with the case where the voltage or current is driven at a predetermined value, a decrease in luminance due to an increase in the electrical resistance of the organic electroluminescent element 23 is prevented, and a variation in luminance tends to be suppressed.

有機電界発光素子23の電気抵抗を一定とする駆動方法を採用した場合、駆動電圧及び駆動電流は、図4(a)中の破線と有機電界発光素子23の電流−電圧特性曲線との交点となる。上述の通り、有機電界発光素子23の電圧−電流特性は、駆動の継続により電圧−電流特性VIから電圧−電流特性VIの方向へ変化するため、電気抵抗を一定とする駆動方法により、有機電界発光素子23を駆動する電流及び電圧は上昇する傾向となる。 When the driving method in which the electric resistance of the organic electroluminescent element 23 is made constant is adopted, the driving voltage and the driving current are determined by the intersection of the broken line in FIG. 4A and the current-voltage characteristic curve of the organic electroluminescent element 23. Become. As described above, the voltage of the organic electroluminescent device 23 - current characteristic, the continuation of the drive voltage - from current characteristic VI 1 voltage - for changing the direction of current characteristics VI 2, by the driving method of the electric resistance is constant, The current and voltage for driving the organic electroluminescent element 23 tend to increase.

有機電界発光素子23の電気抵抗値を一定に維持する方法として、有機電界発光素子23に印加する電圧もしくは電流を、電気抵抗取得部24にて取得した電気抵抗値に基づいて随時変更し、有機電界発光素子23に印加する方法がある。   As a method for maintaining the electric resistance value of the organic electroluminescent element 23 constant, the voltage or current applied to the organic electroluminescent element 23 is changed as needed based on the electric resistance value acquired by the electric resistance acquiring unit 24, and There is a method of applying to the electroluminescent element 23.

その一例として、次の方法がある。ここでは、有機電界発光素子23を所定の電気抵抗値に維持する電気抵抗値をR、ステップnで有機電界発光素子23に印加する電流値をI、Iの電流印加により有機電界発光素子23にかかる電圧をVとする。また、ステップn+1で有機電界発光素子23に印加する電流値をIn+1とする。そして、In+1として、次式で求めた電流値を用いることができる(nは整数)。 One example is the following method. Here, the electric resistance value to maintain the organic electroluminescent device 23 to a predetermined electric resistance value R 0, the organic light emitting current value applied to the organic light emitting element 23 in step n I n, the current application of I n the voltage applied to the element 23 and V n. Further, the current value applied to the organic electroluminescent element 23 in step n + 1 is set to In + 1 . The current value obtained by the following equation can be used as In + 1 (n is an integer).

n+1=I×R/R=I×V/(I×R
この印加電流の更新を随時繰り返すことで、有機電界発光素子23の電気抵抗値を一定に維持する駆動が可能となる。
I n + 1 = I n × R n / R 0 = I n × V n / (I n × R 0 )
By repeating this update of the applied current as needed, it is possible to drive the organic electroluminescent element 23 to keep the electric resistance value constant.

その他の方法として、ステップnでの電流値Iを印加した際の電気抵抗値Rと所定の抵抗値に維持する有機電界発光素子23の抵抗値Rの差から、PID(比例積分微分)制御によりステップn+1での電流値In+1を決定する方法がある。PID制御の各パラメータは、有機電界発光素子23の電気的特性に応じて決定すればよい。 Other methods, from the difference between the resistance value R 0 of the organic electroluminescent device 23 to maintain the electric resistance value R n and predetermined resistance value in applying the current value I n in step n, PID (proportional-integral-derivative There is a method of determining the current value I n + 1 at step n + 1 by control. Each parameter of PID control may be determined according to the electrical characteristics of the organic electroluminescent element 23.

所定の抵抗値に維持する有機電界発光素子23の抵抗値Rは、予め所定の電気抵抗値を決めておいてもよい。また、初期に印加する電流Iを決定しておいてIを印加した際に有機電界発光素子23に印加される電圧Vを元にR(=V/I)を決定してもよい。もしくは、初期に印加する電圧Vを決定しておいてVを印加した際に有機電界発光素子23に印加される電流Iを元にR(=V/I)を決定してもよい。 The resistance value R 0 of the organic electroluminescent element 23 maintained at a predetermined resistance value may be determined in advance as a predetermined electric resistance value. Also, R 0 (= V 0 / I 0 ) is determined based on the voltage V 0 applied to the organic electroluminescent element 23 when the current I 0 applied in the initial stage is determined and I 0 is applied. May be. Alternatively, R 0 (= V 0 / I 0 ) is determined based on the current I 0 applied to the organic electroluminescent element 23 when the voltage V 0 applied at the initial stage is determined and V 0 is applied. May be.

有機電界発光素子23の輝度の制御を、全ての輝度の範囲で有機電界発光素子23の抵抗値に基づいて制御してもよいが、最大発光輝度のみを抵抗値に基づいて制御する方法はよい駆動方法の1つである。全ての輝度の範囲で有機電界発光素子23の抵抗値に基づいて制御する場合、抵抗−輝度特性を元に所望の発光輝度に対応する抵抗値で駆動すればよい。一方、最大発光輝度のみを抵抗値に基づいて制御する場合、最大発光輝度未満の輝度を最大発光輝度を実現する電流値もしくは電圧値を元にして、有機電界発光素子23に印加する電流値もしくは電圧値を制御してもよい。   The luminance of the organic electroluminescent element 23 may be controlled based on the resistance value of the organic electroluminescent element 23 in the entire luminance range, but a method of controlling only the maximum luminous luminance based on the resistance value is good. This is one of the driving methods. When control is performed based on the resistance value of the organic electroluminescent element 23 in the entire luminance range, driving may be performed with a resistance value corresponding to desired light emission luminance based on the resistance-luminance characteristics. On the other hand, when only the maximum light emission luminance is controlled based on the resistance value, the current value applied to the organic electroluminescent element 23 based on the current value or voltage value that realizes the maximum light emission luminance for the luminance less than the maximum light emission luminance or The voltage value may be controlled.

以上説明したように、本実施の形態に係る表示装置の駆動方法は、有機電界発光素子の駆動に伴う電流−輝度特性の変化を補償する駆動方法として、有機電界発光素子の電気抵抗の変化に基づいて給電量を制御することを特徴とする。   As described above, the driving method of the display device according to the present embodiment is a driving method that compensates for the change in the current-luminance characteristics accompanying the driving of the organic electroluminescent element. The power supply amount is controlled based on this.

特に、有機電界発光素子の電気抵抗が一定になるように印加電力を制御することを特徴としている。有機電界発光素子の電気抵抗を一定に保つ駆動を行うにあたって、所定の電気抵抗値をR、ステップnでの電流値をI、Iの電流印加により有機電界発光素子にかかる電圧をV、ステップn+1での電流値をIn+1とする。そうすると、In+1として、次式で求めることができる。 In particular, the applied electric power is controlled so that the electric resistance of the organic electroluminescent element becomes constant. In performing driving to keep the electric resistance of the organic electroluminescence device constant predetermined electrical resistance value R 0, the current value I n in step n, the voltage applied to the organic electroluminescent device by application of current I n V n , and the current value at step n + 1 is I n + 1 . Then, it can obtain | require by following Formula as In + 1 .

n+1=I×R/R=I×V/(I×R
この操作を随時繰り返して有機電界発光素子の電気抵抗値を一定とし、輝度変化を長時間にわたって最小とすることが可能となる。
I n + 1 = I n × R n / R 0 = I n × V n / (I n × R 0 )
This operation can be repeated as necessary to keep the electric resistance value of the organic electroluminescent element constant and minimize the change in luminance over a long period of time.

上記によれば、複数の有機電界発光素子が配置された表示装置の個々の有機電界発光素子の電気的特性の変化に対応して、参照用素子及び/もしくは予め求めた経時変化データを利用することなく、有機電界発光素子の輝度の変動が抑えられる駆動が可能となる。   According to the above, the reference element and / or pre-determined temporal change data is used in response to the change in the electrical characteristics of the individual organic electroluminescent elements of the display device in which the plurality of organic electroluminescent elements are arranged. Without this, it is possible to drive the organic electroluminescence device with less variation in luminance.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.

まず、図2を参照して、本発明の第1の実施例を説明する。本実施例は、前述した第1の実施の形態に対応するものである。   First, the first embodiment of the present invention will be described with reference to FIG. This example corresponds to the first embodiment described above.

図2は、本実施例に係る表示装置のブロック図である。同図において、11は複数の有機電界発光素子(図中では1つのみ例示)、11〜16は各有機電界発光素子11を駆動させる駆動装置である。駆動装置は、電圧検出手段12、計算装置13、記憶装置14、及び電流供給装置15を有する。このうち、電圧検出手段12は、本発明の測定手段に対応し、計算装置13、記憶装置14、及び電流供給装置15は本発明の補正手段に対応する。電流供給装置15には、補正部16が含まれている。この構成において、電流供給装置15により、各有機電界発光素子11にたいして輝度信号に対応する電流(駆動電流値)が供給され発光が制御される。   FIG. 2 is a block diagram of the display device according to the present embodiment. In the figure, reference numeral 11 denotes a plurality of organic electroluminescent elements (only one is illustrated in the figure), and 11 to 16 denote driving devices for driving the organic electroluminescent elements 11. The drive device includes a voltage detection means 12, a calculation device 13, a storage device 14, and a current supply device 15. Among these, the voltage detection means 12 corresponds to the measurement means of the present invention, and the calculation device 13, the storage device 14, and the current supply device 15 correspond to the correction means of the present invention. The current supply device 15 includes a correction unit 16. In this configuration, the current supply device 15 supplies a current (drive current value) corresponding to the luminance signal to each organic electroluminescent element 11 to control light emission.

次に、本実施例に係る表示装置の駆動方法として、その制御手順(制御方法)を説明する。ここでは、有機電界素子11は、輝度電流効率=2.0cd/Aの初期特性を持っているとする。   Next, a control procedure (control method) will be described as a method for driving the display device according to the present embodiment. Here, it is assumed that the organic electric field element 11 has an initial characteristic of luminance current efficiency = 2.0 cd / A.

(1)最初に有機電界発光素子11に10mA/cmのモニター電流を電流供給装置15から流し、電圧検出手段12により有機電界発光素子11の駆動電圧値vを測定する。そして、測定された駆動電圧値vを初期駆動電圧値vとして、有機電界発光素子11のデータとして記憶装置14に記憶させる。 (1) First, a monitor current of 10 mA / cm 2 is supplied to the organic electroluminescent element 11 from the current supply device 15, and the drive voltage value v of the organic electroluminescent element 11 is measured by the voltage detection means 12. Then, the measured drive voltage value v is stored in the storage device 14 as data of the organic electroluminescent element 11 as the initial drive voltage value v 0 .

(2)次に有機電界発光素子11を劣化させる工程として、全画素に駆動電流5mA/cmを有機電界発光素子11に流し、1時間(所定時間)点灯させる。 (2) Next, as a step of degrading the organic electroluminescent element 11, a drive current of 5 mA / cm 2 is passed through the organic electroluminescent element 11 in all the pixels and lighted for 1 hour (predetermined time).

(3)1時間点灯後に、劣化量をモニターするために(1)と同様に10mA/cmのモニター電流を有機電界発光素子11に流し、電圧検出手段12により各有機電界発光素子の駆動電圧値vを測定する。 (3) After lighting for 1 hour, in order to monitor the deterioration amount, a monitor current of 10 mA / cm 2 is supplied to the organic electroluminescent element 11 as in (1), and the driving voltage of each organic electroluminescent element is detected by the voltage detecting means 12. The value v is measured.

(4)次に、測定された駆動電圧値vを計算装置13に転送し、記憶装置14に記憶装置された初期駆動電圧値vとの差分v−vを計算し、上昇駆動電圧値Vとする。 (4) Next, transfer the measured drive voltage value v to the computing device 13 calculates a difference v 0 -v the initial driving voltage value v 0, which is the storage device in the storage device 14, increase the driving voltage V.

(5)次に、前述した式1に従い、先の上昇駆動電圧値Vを用いて輝度電流効率ηを計算装置13で計算する。   (5) Next, the luminance current efficiency η is calculated by the calculation device 13 using the above-described increased drive voltage value V according to the above-described equation 1.

(6)次に、この輝度電流効率ηを電流供給装置15内に設けられた補正部16に送り、1/η倍して駆動電流値を補正する。   (6) Next, the luminance current efficiency η is sent to the correction unit 16 provided in the current supply device 15 and multiplied by 1 / η to correct the drive current value.

(7)そして、電流供給装置15から、この1/η倍された駆動電流値を有機電界発光素子21に供給して点灯させる。以後同様の工程を繰り返しながら点灯を継続する。   (7) Then, the drive current value multiplied by 1 / η is supplied from the current supply device 15 to the organic electroluminescent element 21 to be lit. Thereafter, the lighting is continued while repeating the same steps.

この様な駆動制御を行うことにより有機電界発光素子11は、劣化量に見合う駆動電流が供給されるために初期輝度を保つことができ、結果焼き付きを防止することができる。   By performing such drive control, the organic electroluminescent element 11 can maintain the initial luminance because the drive current corresponding to the deterioration amount is supplied, and can prevent burn-in as a result.

次に、本発明の第2の実施例を説明する。本実施例も、第1の実施例と同様に前述した第1の実施の形態に対応するものである。   Next, a second embodiment of the present invention will be described. This example also corresponds to the first embodiment described above in the same manner as the first example.

本実施例では、第1の実施例で示したブロック図の記憶装置14に予め測定した上昇駆動電圧値Vと輝度電流効率低下率ηの組合せデータを記憶させておく。そして、第1の実施例と同様に有機電界発光素子11の上昇駆動電圧値Vをもとめ、計算装置13において先の組合せデータと照合し輝度電流効率低下率ηを決定する。この後は第1の実施例と同じ様に駆動電流値の補正をした駆動を行う。   In the present embodiment, combination data of the rising drive voltage value V and the luminance current efficiency decrease rate η measured in advance is stored in the storage device 14 of the block diagram shown in the first embodiment. Then, similarly to the first embodiment, the increased drive voltage value V of the organic electroluminescent element 11 is obtained, and the calculation device 13 collates with the previous combination data to determine the luminance current efficiency decrease rate η. Thereafter, the drive with the drive current value corrected is performed as in the first embodiment.

本実施例においても、この様な駆動制御を行うことにより、有機電界発光素子は劣化量に見合う駆動電流が供給されるために初期輝度を保つことができ、結果焼き付きを防止することができる。   Also in this embodiment, by performing such drive control, the organic electroluminescent element can be supplied with a drive current commensurate with the amount of deterioration, so that the initial luminance can be maintained, and as a result, burn-in can be prevented.

次に、本発明の第3の実施例を説明する。本実施例は、前述した第2の実施の形態に対応するものである。   Next, a third embodiment of the present invention will be described. This example corresponds to the second embodiment described above.

図3に示す本実施例に係る有機電界発光素子を用いた表示装置は、1つの有機電界発光素子23に駆動回路部21、給電回路22、電気抵抗取得部24を配置し、電気抵抗取得部24により取得した情報を駆動回路部21に反映させる表示装置である。   The display device using the organic electroluminescent element according to the present embodiment shown in FIG. 3 includes a drive circuit unit 21, a power feeding circuit 22, and an electrical resistance acquisition unit 24 in one organic electroluminescent element 23, and an electrical resistance acquisition unit. 24 is a display device that reflects the information acquired by 24 on the drive circuit unit 21.

有機電界発光素子23として、基板上に公知の材料、素子構成及び製造方法により作製する。基板として厚さ1mmのガラス基板を用いる。電極には、基板側に銀電極を蒸着により形成し、その上に電流印加によって発光する層を含む有機層を蒸着により形成し、その上にITO電極をスパッタによって形成し、その上に保護膜を形成して有機電界発光素子23とする。有機電界発光素子23の面積は、1mmとする。 The organic electroluminescent element 23 is manufactured on a substrate by a known material, element configuration, and manufacturing method. A glass substrate having a thickness of 1 mm is used as the substrate. As the electrode, a silver electrode is formed on the substrate side by vapor deposition, an organic layer including a layer that emits light by applying current is formed thereon by vapor deposition, an ITO electrode is formed thereon by sputtering, and a protective film is formed thereon. To form an organic electroluminescent element 23. The area of the organic electroluminescent element 23 is 1 mm 2 .

駆動回路部21として給電回路22、電気抵抗取得部24と通信可能なインターフェイスを備えたコンピュータを用いる。給電回路22として電流源を用い、駆動回路部21の指示に基づき電流を発生する構成とする。電気抵抗取得部24として電圧計を用い、有機電界発光素子23に印加される電圧を計測する構成とする。電気抵抗取得部24によって取得される有機電界発光素子23に印加される電圧は、駆動回路部21とのインターフェイスを通して駆動回路部21に伝達される。駆動回路部21は、電気抵抗取得部24からの情報に基づき有機電界発光素子23に印加する電流値を決定する。   A computer having an interface capable of communicating with the power supply circuit 22 and the electrical resistance acquisition unit 24 is used as the drive circuit unit 21. A current source is used as the power feeding circuit 22 and a current is generated based on an instruction from the drive circuit unit 21. A voltmeter is used as the electrical resistance acquisition unit 24 to measure the voltage applied to the organic electroluminescent element 23. The voltage applied to the organic electroluminescent element 23 acquired by the electrical resistance acquisition unit 24 is transmitted to the drive circuit unit 21 through the interface with the drive circuit unit 21. The drive circuit unit 21 determines a current value to be applied to the organic electroluminescent element 23 based on information from the electrical resistance acquisition unit 24.

印加電流量の制御の方法は、以下とする。   The method of controlling the applied current amount is as follows.

有機電界発光素子23の電気抵抗値を維持する所定の値をR、ステップnで有機電界発光素子23に印加する電流値をI、Iの電流印加により有機電界発光素子23にかかる電圧をVとする。また、ステップn+1で有機電界発光素子23に印加する電流値をIn+1とする。そして、In+1として次式で求めた電流値を用いる。 Voltage across a predetermined value to maintain the electric resistance value of the organic electroluminescent element 23 in R 0, the organic electroluminescent device 23 by application of current I n, I n the current value applied to the organic light emitting element 23 in step n It is referred to as V n. Further, the current value applied to the organic electroluminescent element 23 in step n + 1 is set to In + 1 . Then, the current value obtained by the following equation is used as In + 1 .

n+1=I×R/R=I×V/(I×R
この操作を随時繰り返して有機電界発光素子23の電気抵抗値を一定に維持する駆動を行う。
I n + 1 = I n × R n / R 0 = I n × V n / (I n × R 0 )
This operation is repeated as needed to drive the organic electroluminescent element 23 so as to keep the electric resistance value constant.

本実施例にてR=5kΩとして駆動を行うと、長時間にわたって有機電界発光素子23の発光輝度が維持される。 When driving is performed with R 0 = 5 kΩ in this embodiment, the light emission luminance of the organic electroluminescent element 23 is maintained for a long time.

次に、図5を参照して、本発明の第4の実施例を説明する。本実施例も、第3の実施例と同様に前述した第2の実施の形態に対応するものである。   Next, a fourth embodiment of the present invention will be described with reference to FIG. This example also corresponds to the above-described second embodiment as in the third example.

図5に示す本実施例に係る有機電界発光素子を用いた表示装置は、有機電界発光素子23を表示装置上にマトリクス状に配置したものである。   The display device using the organic electroluminescent element according to the present embodiment shown in FIG. 5 has organic electroluminescent elements 23 arranged in a matrix on the display device.

本実施例では、基板上に3×3の有機電界発光素子23を配置し、駆動回路部21、給電回路22、電気抵抗取得部24をさらに配置し、配線する。基板は、厚さ1mmのガラスを用いる。有機電界発光素子23は、公知の材料を用い、蒸着により作製する。電極は、基板側の電極を銀にて、それに対向する電極をITOにて作製する。有機電界発光素子23の面積は、1mmとする。 In this embodiment, a 3 × 3 organic electroluminescent element 23 is arranged on a substrate, and a drive circuit unit 21, a power feeding circuit 22, and an electric resistance acquisition unit 24 are further arranged and wired. As the substrate, glass having a thickness of 1 mm is used. The organic electroluminescent element 23 is produced by vapor deposition using a known material. As for the electrodes, the electrode on the substrate side is made of silver and the opposite electrode is made of ITO. The area of the organic electroluminescent element 23 is 1 mm 2 .

駆動回路部21は、表示装置の相対向しない2辺に配置し、駆動回路部21から表示装置のx軸方向およびy軸方向にそれぞれ配線を配置し、その交点にスイッチ回路25を配置する。スイッチ回路25として、TFTを公知の方法により作製する。   The drive circuit unit 21 is arranged on two opposite sides of the display device, wirings are arranged from the drive circuit unit 21 in the x-axis direction and the y-axis direction of the display device, and a switch circuit 25 is arranged at the intersection. As the switch circuit 25, a TFT is manufactured by a known method.

それぞれのスイッチ回路25には、個々の有機電界発光素子23に接続された給電回路22が接続され、駆動回路部21の駆動信号をスイッチ回路25を通じて給電回路22に伝達する構造とする。それぞれの有機電界発光素子23毎に配置された給電回路22は駆動信号に基づき有機電界発光素子23に電力印加を行う。これと合わせて給電回路22が有機電界発光素子23に電力印加を行っている間に、電気抵抗取得部24は有機電界発光素子23の電気抵抗を取得する。   Each switch circuit 25 is connected to a power supply circuit 22 connected to each organic electroluminescence element 23, and has a structure for transmitting a drive signal of the drive circuit unit 21 to the power supply circuit 22 through the switch circuit 25. The power feeding circuit 22 arranged for each organic electroluminescent element 23 applies power to the organic electroluminescent element 23 based on the drive signal. At the same time, the electric resistance acquisition unit 24 acquires the electric resistance of the organic electroluminescent element 23 while the power feeding circuit 22 applies power to the organic electroluminescent element 23.

電気抵抗の取得方法として、既知の電気抵抗値の抵抗器を有機電界発光素子23に直列に配置し、その抵抗器と有機電界発光素子23にかかる電圧を読み取り、その比から有機電界発光素子23の電気抵抗値を求めるものとする。抵抗器の抵抗値は、1kΩとする。   As a method for obtaining the electrical resistance, a resistor having a known electrical resistance value is arranged in series with the organic electroluminescent element 23, the voltage applied to the resistor and the organic electroluminescent element 23 is read, and the organic electroluminescent element 23 is read from the ratio. The electrical resistance value of is to be obtained. The resistance value of the resistor is 1 kΩ.

電気抵抗取得部24は、それぞれの有機電界発光素子23毎に配置する。電気抵抗取得部24で取得した電気抵抗値の情報は、同じ有機電界発光素子23に接続された給電回路22に伝達される。   The electrical resistance acquisition unit 24 is disposed for each organic electroluminescent element 23. Information on the electrical resistance value acquired by the electrical resistance acquisition unit 24 is transmitted to the power feeding circuit 22 connected to the same organic electroluminescent element 23.

給電回路22は、電気抵抗値の情報に基づき有機電界発光素子23に印加する電力量を制御する構造とする。印加電力量の制御の方法は、以下とする。   The power feeding circuit 22 is configured to control the amount of power applied to the organic electroluminescent element 23 based on the information on the electrical resistance value. The method for controlling the amount of applied power is as follows.

有機電界発光素子23の電気抵抗値を維持する所定の値をR、ステップnで有機電界発光素子23に印加する電流値をI、Iの電流印加により有機電界発光素子23にかかる電圧をVとする。また、ステップn+1で有機電界発光素子23に印加する電流値をIn+1とする。そして、In+1として、次式で求めた電流値を用いる。 Voltage across a predetermined value to maintain the electric resistance value of the organic electroluminescent element 23 in R 0, the organic electroluminescent device 23 by application of current I n, I n the current value applied to the organic light emitting element 23 in step n It is referred to as V n. Further, the current value applied to the organic electroluminescent element 23 in step n + 1 is set to In + 1 . Then, the current value obtained by the following equation is used as In + 1 .

n+1=I×R/R=I×V/(I×R
この操作を随時繰り返して有機電界発光素子23の電気抵抗値を一定に維持する駆動を行う。
I n + 1 = I n × R n / R 0 = I n × V n / (I n × R 0 )
This operation is repeated as needed to drive the organic electroluminescent element 23 so as to keep the electric resistance value constant.

本実施例にてR=5kΩとして駆動を行うと、長時間にわたって有機電界発光素子23の発光輝度が維持される。 When driving is performed with R 0 = 5 kΩ in this embodiment, the light emission luminance of the organic electroluminescent element 23 is maintained for a long time.

本発明に係る有機電界発光素子を用いた表示装置の駆動方法及び駆動装置は、長時間点灯しても焼き付きを防止することができので、フラットパネルディスプレイ、プロジェクションディスプレイ等に広く適用することができる。また、本発明による有機電界発光素子を用いた表示装置は、テレビ、携帯情報端末、携帯電話、デジタルカメラ・デジタルビデオカメラのモニタ等に利用される可能性がある。   The display device driving method and driving device using the organic electroluminescent element according to the present invention can prevent burn-in even when lit for a long time, and thus can be widely applied to flat panel displays, projection displays, and the like. . In addition, the display device using the organic electroluminescence device according to the present invention may be used for a television, a personal digital assistant, a mobile phone, a monitor of a digital camera / digital video camera, and the like.

本発明の第1の実施の形態に係る表示装置の駆動方法において、有機電界発光素子の一定電流駆動時の発光輝度と駆動電圧の変化を示すグラフである。5 is a graph showing changes in light emission luminance and drive voltage when the organic electroluminescent element is driven at a constant current in the method for driving a display device according to the first exemplary embodiment of the present invention. 本発明の第1の実施の形態に対応する第1の実施例に係る表示装置の構成及びその有機電界発光素子駆動方法の一例を説明するブロック図である。It is a block diagram explaining an example of the structure of the display apparatus which concerns on the 1st Example corresponding to the 1st Embodiment of this invention, and its organic electroluminescent element drive method. 本発明の第2の実施の形態に対応する第3の実施例に係る表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the display apparatus which concerns on the 3rd Example corresponding to the 2nd Embodiment of this invention. (a)は、本発明に関わる有機電界発光素子の電圧−電流特性の例を示すグラフ、(b)は、本発明に関わる有機電界発光素子の抵抗−輝度特性の例を示すグラフである。(A) is a graph which shows the example of the voltage-current characteristic of the organic electroluminescent element concerning this invention, (b) is a graph which shows the example of the resistance-luminance characteristic of the organic electroluminescent element concerning this invention. 本発明の第2の実施の形態に対応する第4の実施例に係る表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the display apparatus which concerns on the 4th Example corresponding to the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

11 有機電界発光素子
12 電圧検出手段
13 計算装置
14 記憶装置
15 電流供給装置
16 補正部
21 駆動回路部
22 給電回路
23 有機電界発光素子
24 電気抵抗取得部
25 スイッチ回路
DESCRIPTION OF SYMBOLS 11 Organic electroluminescent element 12 Voltage detection means 13 Calculation apparatus 14 Memory | storage device 15 Current supply apparatus 16 Correction | amendment part 21 Drive circuit part 22 Feeding circuit 23 Organic electroluminescent element 24 Electrical resistance acquisition part 25 Switch circuit

Claims (14)

複数の有機電界発光素子を含む表示装置の駆動方法であって、
初期および所定時間経過後に、前記複数の有機電界発光素子の各々について所定電流値に対する電圧を測定し、前記電圧の変化に従い駆動電流値を補正する各工程を有することを特徴とする表示装置の駆動方法。
A driving method of a display device including a plurality of organic electroluminescent elements,
Driving a display device, characterized by comprising steps of measuring a voltage with respect to a predetermined current value for each of the plurality of organic electroluminescent elements and correcting a driving current value according to a change in the voltage after an initial period of time and a predetermined time elapse. Method.
前記駆動電流値を補正する工程は、測定された前記電圧の変化から所定の計算式に従い輝度電流効率を算出し、算出された該輝度電流効率を用いて前記駆動電流値の補正量を決定することを特徴とする請求項1に記載の表示装置の駆動方法。   The step of correcting the drive current value calculates a luminance current efficiency from the measured change in the voltage according to a predetermined calculation formula, and determines a correction amount of the drive current value using the calculated luminance current efficiency. The display device driving method according to claim 1. 前記駆動電流値を補正する工程は、測定された前記電圧の変化から予め測定された対応関係情報に従い輝度電流効率を選択し、選択された該輝度電流効率を用いて前記駆動電流値の補正量を決定することを特徴とする請求項1に記載の表示装置の駆動方法。   The step of correcting the drive current value selects a luminance current efficiency in accordance with correspondence information measured in advance from the measured change in the voltage, and uses the selected luminance current efficiency to correct the drive current value The method of driving a display device according to claim 1, wherein: 複数の有機電界発光素子と、前記複数の有機電界発光素子を駆動させる駆動装置とを有する表示装置であって、
前記駆動装置は、初期および所定時間経過後に、前記複数の有機電界発光素子の各々について所定電流値に対する電圧を測定する測定手段と、測定された前記電圧の変化に従い駆動電流値を補正する補正手段と、を有することを特徴とする表示装置。
A display device having a plurality of organic electroluminescent elements and a driving device for driving the plurality of organic electroluminescent elements,
The driving device includes a measuring unit that measures a voltage with respect to a predetermined current value for each of the plurality of organic electroluminescent elements after an initial period and a predetermined time, and a correcting unit that corrects the driving current value according to the change in the measured voltage. And a display device.
前記補正手段は、測定された前記電圧の変化から所定の計算式に従い輝度電流効率を算出し、算出された該輝度電流効率を用いて前記駆動電流値の補正量を決定することを特徴とする請求項4に記載の表示装置。   The correction means calculates a luminance current efficiency from the measured change in voltage according to a predetermined calculation formula, and determines the correction amount of the drive current value using the calculated luminance current efficiency. The display device according to claim 4. 前記補正手段は、測定された前記電圧の変化から予め測定された対応関係情報に従い輝度電流効率を選択し、選択された該輝度電流効率を用いて前記駆動電流値の補正量を決定することを特徴とする請求項4に記載の表示装置。   The correction means selects a luminance current efficiency from the measured change in the voltage according to correspondence information measured in advance, and determines a correction amount of the drive current value using the selected luminance current efficiency. The display device according to claim 4, characterized in that: 電流印加により発光する有機電界発光素子と、
前記有機電界発光素子に給電を行う給電回路と、
前記給電回路に電力供給を指示する駆動回路部と、を備え、
前記有機電界発光素子の電気的特性値の変化に基づいて前記有機電界発光素子への給電量を変化させて制御する表示装置の駆動方法であって、
前記電気的特性値として前記有機電界発光素子の電気抵抗を取得し、取得された電気抵抗に基づいて前記給電量を制御する工程を有することを特徴とする表示装置の駆動方法。
An organic electroluminescent element that emits light when a current is applied;
A power feeding circuit for feeding power to the organic electroluminescent element;
A drive circuit unit that instructs the power supply circuit to supply power;
A driving method of a display device that controls by changing a power supply amount to the organic electroluminescent element based on a change in an electrical characteristic value of the organic electroluminescent element,
A method for driving a display device, comprising: obtaining an electrical resistance of the organic electroluminescent element as the electrical characteristic value, and controlling the power supply amount based on the obtained electrical resistance.
前記有機電界発光素子は、複数の有機電界発光素子で構成され、
前記表示装置は、前記複数の有機電界発光素子の各々の電気抵抗値を取得する電気抵抗値取得部を備え、
前記給電量を制御する工程は、前記電気抵抗値取得部の出力に基づいて前記有機電界発光素子への給電量を制御することを特徴とする請求項7に記載の表示装置の駆動方法。
The organic electroluminescent element is composed of a plurality of organic electroluminescent elements,
The display device includes an electrical resistance value acquisition unit that acquires electrical resistance values of the plurality of organic electroluminescent elements,
The method for driving a display device according to claim 7, wherein the step of controlling the amount of power supply controls the amount of power supplied to the organic electroluminescent element based on an output of the electrical resistance value acquisition unit.
前記給電量を制御する工程は、前記有機電界発光素子の電気抵抗値を所定の値に維持する駆動制御により、前記有機電界発光素子の最大発光輝度とする制御を行うことを特徴とする請求項7に記載の表示装置の駆動方法。   The step of controlling the amount of power supply is controlled so as to obtain a maximum light emission luminance of the organic electroluminescent element by driving control for maintaining an electric resistance value of the organic electroluminescent element at a predetermined value. 8. A method for driving the display device according to 7. 前記給電量を制御する工程は、前記有機電界発光素子の電気抵抗値を前記有機電界発光素子の電気的特性の変化に応じて低下させる駆動制御により前記有機電界発光素子の最大発光輝度とする制御を行うことを特徴とする請求項7に記載の表示装置の駆動方法。   The step of controlling the amount of power supply is a control for setting the maximum light emission luminance of the organic electroluminescent element by drive control for reducing the electric resistance value of the organic electroluminescent element in accordance with a change in electrical characteristics of the organic electroluminescent element. The method for driving a display device according to claim 7, wherein: 電流印加により発光する有機電界発光素子と、
前記有機電界発光素子に給電を行う給電回路と、
前記給電回路に電力供給を指示する駆動回路部と、を備え、
前記有機電界発光素子の電気的特性値の変化に基づいて前記有機電界発光素子への給電量を変化させて制御する表示装置であって、
前記電気的特性値として前記有機電界発光素子の電気抵抗を取得し、取得された電気抵抗に基づいて前記給電量を制御する制御手段を有することを特徴とする表示装置。
An organic electroluminescent element that emits light when a current is applied;
A power feeding circuit for feeding power to the organic electroluminescent element;
A drive circuit unit that instructs the power supply circuit to supply power;
A display device that controls the amount of power supplied to the organic electroluminescent element by changing the electrical characteristic value of the organic electroluminescent element.
A display device comprising: a control unit that acquires an electrical resistance of the organic electroluminescent element as the electrical characteristic value and controls the amount of power supply based on the acquired electrical resistance.
前記有機電界発光素子は、複数の有機電界発光素子で構成され、
前記制御手段は、前記複数の有機電界発光素子の各々の電気抵抗値を取得する電気抵抗値取得部を備え、前記電気抵抗値取得部の出力に基づいて前記有機電界発光素子への給電量を制御することを特徴とする請求項11に記載の表示装置。
The organic electroluminescent element is composed of a plurality of organic electroluminescent elements,
The control means includes an electrical resistance value acquisition unit that acquires an electrical resistance value of each of the plurality of organic electroluminescence elements, and controls an amount of power supplied to the organic electroluminescence element based on an output of the electrical resistance value acquisition unit. The display device according to claim 11, wherein the display device is controlled.
前記制御手段は、前記有機電界発光素子の電気抵抗値を所定の値に維持する駆動制御により、前記有機電界発光素子の最大発光輝度とする制御を行うことを特徴とする請求項11に記載の表示装置。   The control unit according to claim 11, wherein the control unit performs control to obtain a maximum light emission luminance of the organic electroluminescent element by driving control that maintains an electric resistance value of the organic electroluminescent element at a predetermined value. Display device. 前記制御手段は、前記有機電界発光素子の電気抵抗値を前記有機電界発光素子の電気的特性の変化に応じて低下させる駆動制御により前記有機電界発光素子の最大発光輝度とする制御を行うことを特徴とする請求項11に記載の表示装置。   The control means performs control to achieve the maximum light emission luminance of the organic electroluminescent element by driving control to reduce the electric resistance value of the organic electroluminescent element in accordance with a change in electrical characteristics of the organic electroluminescent element. The display device according to claim 11, wherein the display device is characterized.
JP2007270143A 2007-10-17 2007-10-17 Display and its driving method Pending JP2009098433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270143A JP2009098433A (en) 2007-10-17 2007-10-17 Display and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270143A JP2009098433A (en) 2007-10-17 2007-10-17 Display and its driving method

Publications (1)

Publication Number Publication Date
JP2009098433A true JP2009098433A (en) 2009-05-07

Family

ID=40701490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270143A Pending JP2009098433A (en) 2007-10-17 2007-10-17 Display and its driving method

Country Status (1)

Country Link
JP (1) JP2009098433A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063732A (en) * 2010-09-14 2012-03-29 Samsung Mobile Display Co Ltd Organic electroluminescent display device and its driving method
JP2013508916A (en) * 2009-10-21 2013-03-07 ゼネラル・エレクトリック・カンパニイ Knowledge-based driver device with high lumen maintenance and end-of-life adjustment
JP2015023083A (en) * 2013-07-17 2015-02-02 パイオニア株式会社 Light source device, projection device, control method, and program
US9384696B2 (en) 2013-11-29 2016-07-05 Samsung Display Co., Ltd. Display device, method of calculating compensation data thereof, and driving method thereof
JP2016225109A (en) * 2015-05-29 2016-12-28 京セラディスプレイ株式会社 Light-emitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508916A (en) * 2009-10-21 2013-03-07 ゼネラル・エレクトリック・カンパニイ Knowledge-based driver device with high lumen maintenance and end-of-life adjustment
KR101747471B1 (en) * 2009-10-21 2017-06-14 제너럴 일렉트릭 캄파니 Knowledge-based driver apparatus for high lumen maintenance and end-of-life adaptation
JP2012063732A (en) * 2010-09-14 2012-03-29 Samsung Mobile Display Co Ltd Organic electroluminescent display device and its driving method
JP2015023083A (en) * 2013-07-17 2015-02-02 パイオニア株式会社 Light source device, projection device, control method, and program
US9384696B2 (en) 2013-11-29 2016-07-05 Samsung Display Co., Ltd. Display device, method of calculating compensation data thereof, and driving method thereof
JP2016225109A (en) * 2015-05-29 2016-12-28 京セラディスプレイ株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
EP2123129B1 (en) Led device compensation method
JP5535627B2 (en) Method and display for compensating for pixel luminance degradation
KR101509823B1 (en) Display drive systems
US7619598B2 (en) Driver for an OLED passive-matrix display
EP1687795B1 (en) Ageing compensation in an oled display
TWI449017B (en) Electroluminescent display with initial nonuniformity compensation
JP5449641B2 (en) Display device
TW201216246A (en) Compensated drive signal for electroluminescent display
JP2005539252A (en) Display device
JP2008268914A (en) Organic electroluminescence display and driving method thereof
JP2009025735A (en) Image display device
KR20050085039A (en) Method of improving the output uniformity of a display device
US20170018224A1 (en) Apparatus and method for compensating for luminance difference of organic light-emitting display device
JP2018054915A (en) Display device
JP2004205704A (en) Organic el display
JP2022026269A (en) Display device and method for driving display device
JP2009098433A (en) Display and its driving method
US11043164B2 (en) Display panel compensation methods
JP5680814B2 (en) Image display device
KR100820719B1 (en) Method of Driving Organic Electroluminescent Display To Compensate Brightness of Bad Pixel thereof and Organic Electroluminescent Display used in the same
JP2007293330A (en) Channel interference compensation method for display device, and data signal driving control apparatus
JP5129656B2 (en) Image display device
JP2008058446A (en) Active matrix display device
KR100797750B1 (en) Organic Light Emitting Display Device and Driving Circuit with Temperature Compensation Part
KR20170136028A (en) Organic light-emitting diode display and method for compensating degradation of luminous element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630