JP2009098237A - Nonreflective structure, optical element, metallic mold and their manufacturing method - Google Patents

Nonreflective structure, optical element, metallic mold and their manufacturing method Download PDF

Info

Publication number
JP2009098237A
JP2009098237A JP2007267455A JP2007267455A JP2009098237A JP 2009098237 A JP2009098237 A JP 2009098237A JP 2007267455 A JP2007267455 A JP 2007267455A JP 2007267455 A JP2007267455 A JP 2007267455A JP 2009098237 A JP2009098237 A JP 2009098237A
Authority
JP
Japan
Prior art keywords
mold
cone
reflective structure
substrate
nonreflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007267455A
Other languages
Japanese (ja)
Inventor
Hisayoshi Fujikawa
久喜 藤川
Takeshi Nomura
壮史 野村
Atsushi Miura
篤志 三浦
Kazuo Sato
和夫 佐藤
Chiharu Totani
千春 戸谷
Tetsuya Fujii
哲也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyoda Gosei Co Ltd
Priority to JP2007267455A priority Critical patent/JP2009098237A/en
Publication of JP2009098237A publication Critical patent/JP2009098237A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonreflective structure which has a simple and easily producible structure and has the reflection suppressing effect that is equal to or higher than that of conventional structure. <P>SOLUTION: The nonreflective structure 1 constituted of innumerable cones 9 arranged at a pitch not exceeding a wavelength of the light, is formed on the surface where light not to be reflected is made incident. The height of the cone 9 is lower than the pitch and an aspect ratio is 1 or less. The flank of the cone 9 is concave toward a line connecting a point on a bottom surface periphery of the cone 9 and the apex of the cone 9. The nonreflective structure 1 is manufactured by patterning with lithography or transfer of a shape by a metallic mold. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、反射を抑制すべき光の波長以下のピッチで錐体を配列した、反射防止効果を持つ無反射構造体等に関するものである。   The present invention relates to a non-reflective structure having an antireflection effect, in which cones are arranged at a pitch equal to or less than the wavelength of light whose reflection should be suppressed.

さまざまな光学機器において、光学素子への入射光の反射を抑制することが行われ、ロスの少ない光ファイバーの接続部、明るいレンズ、映りこみの少ないディスプレイなどが実現可能である。そのため、ガラスなどからなる光学素子においては、表面反射による戻り光を減少させ、かつ透過光を増加させるために表面処理が行われている(例えば、特許文献1参照)。   In various optical devices, reflection of incident light to an optical element is suppressed, and a connection portion of an optical fiber with a small loss, a bright lens, a display with little reflection, and the like can be realized. For this reason, in an optical element made of glass or the like, surface treatment is performed in order to reduce return light due to surface reflection and increase transmitted light (see, for example, Patent Document 1).

従来の表面処理方法のひとつに、光学素子表面に、光学素子を構成する材料と屈折率の異なる物質の薄膜を、単層もしくは複数層成膜する方法がある。一般的には真空蒸着などの成膜方法によって、このような反射防止膜を形成する(例えば、特許文献1参照)。   As one of the conventional surface treatment methods, there is a method of forming a single layer or a plurality of layers of a thin film of a substance having a refractive index different from that of the material constituting the optical element on the surface of the optical element. In general, such an antireflection film is formed by a film formation method such as vacuum deposition (see, for example, Patent Document 1).

別の表面処理方法として、光学素子表面に微細かつ緻密な凹凸形状を形成する方法がある(例えば、非特許文献1参照)。より広い波長域を有する光に対して反射防止効果を持ち、かつ入射角度依存性の小さい反射防止構造とするために、アスペクト比が1以上の錐形状を光学素子上に形成することが行われる(例えば、特許文献1参照)。   As another surface treatment method, there is a method of forming a fine and dense uneven shape on the surface of the optical element (see, for example, Non-Patent Document 1). In order to obtain an antireflection structure having an antireflection effect for light having a wider wavelength range and having a small incident angle dependency, a cone shape having an aspect ratio of 1 or more is formed on the optical element. (For example, refer to Patent Document 1).

また、アスペクト比が1以上の突起をできるだけ密に並べ、更に反射抑制効果を高めるために、形成する錐体を六角錐形状にし、各底面の六角形の外接円が2次元の最密構造をなし、かつ隣接する六角形の頂点同士が接するように配置した無反射構造体が開示されている(例えば、特許文献2参照)。   In addition, in order to arrange protrusions with an aspect ratio of 1 or more as closely as possible, and to further enhance the reflection suppression effect, the cones to be formed are hexagonal pyramid shapes, and the hexagonal circumscribed circle on each bottom has a two-dimensional close-packed structure. None, and a non-reflective structure disposed so that adjacent hexagonal apexes are in contact with each other is disclosed (for example, see Patent Document 2).

特開2001−272505号公報(第2頁、第4頁)JP 2001-272505 A (2nd and 4th pages) 特開2006−171229号公報JP 2006-171229 A 菊田久雄、岩田耕一、「波長より細かな格子構造による光制御」、光学、日本光学会、1998年、第27巻、第1号、p.12―17Hisao Kikuta and Koichi Iwata, “Optical Control by a Finer Grating Structure than Wavelength”, Optics, The Optical Society of Japan, 1998, Vol. 27, No. 1, p.12-17

しかしながら、アスペクト比が大きくなると、微細加工が難しくなるといった問題がある。また、金型などに加工し、その形状を転写して大面積化やコスト削減を進めようとしてもアスペクト比が大きいと、金型と表面加工物との離れが悪く、正確に型が形成できないといった問題があった。   However, when the aspect ratio increases, there is a problem that microfabrication becomes difficult. Also, if the aspect ratio is large even if it is processed into a mold and the shape is transferred to increase the area and reduce costs, the mold and the surface processed product are not well separated and the mold cannot be formed accurately. There was a problem.

本発明は、前述した問題点にかんがみてなされたもので、その目的とするところは、低いアスペクトで高い反射防止性能を実現する無反射構造体等を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a non-reflective structure or the like that realizes high antireflection performance with a low aspect.

前述した目的を達成するために、第1の発明は、錐体が、反射を抑制すべき光の波長以下のピッチで配列され、前記錐体の側面が、錐体の底面周上の点と頂点とを結ぶ線に対して凹であることを特徴とする無反射構造体である。
また、前記錐体のアスペクト比が1以下であることが望ましい。
また、光学素子の表面に形成することが好ましい。
In order to achieve the above-described object, according to a first aspect of the present invention, cones are arranged at a pitch equal to or less than a wavelength of light to suppress reflection, and a side surface of the cone is a point on a circumference of a bottom surface of the cone. It is a nonreflective structure characterized by being concave with respect to a line connecting the apex.
Moreover, it is desirable that the aspect ratio of the cone is 1 or less.
Further, it is preferably formed on the surface of the optical element.

第2の発明は、錐形状の孔が、反射を抑制すべき光の波長以下のピッチで配列され、前記孔の側面が、孔入り口の周上の点と、孔の頂点とを結ぶ線に対して凸であることを特徴とする金型である。   In the second invention, the conical holes are arranged at a pitch equal to or less than the wavelength of the light whose reflection should be suppressed, and the side surface of the hole is a line connecting a point on the circumference of the hole entrance and a vertex of the hole. The mold is characterized by being convex.

第3の発明は、基板の表面に金属膜を形成する工程と、前記金属膜の上に、感光性レジストを形成する工程と、前記感光性レジストに微細構造を形成する工程と、前記感光性レジストをマスクとして、前記金属膜に微細構造を形成する工程と、前記感光性レジストを除去する工程と、前記微細加工した金属膜をエッチングマスクとして、ウェットエッチング法により、前記基板表面に微細構造を形成する工程と、を具備することを特徴とする無反射構造体の製造方法である。   A third invention includes a step of forming a metal film on a surface of a substrate, a step of forming a photosensitive resist on the metal film, a step of forming a microstructure on the photosensitive resist, and the photosensitive property Using the resist as a mask, forming a fine structure on the metal film, removing the photosensitive resist, and using the finely processed metal film as an etching mask, the fine structure is formed on the substrate surface by a wet etching method. And a step of forming the non-reflective structure.

第4の発明は、無反射構造体の表面に、金属層を形成する工程と、前記無反射構造体を前記金属層より分離する工程と、を備える事を特徴とする金型の製造方法である。   4th invention is a manufacturing method of the metal mold | die characterized by including the process of forming a metal layer in the surface of a non-reflective structure, and the process of isolate | separating the said non-reflective structure from the said metal layer. is there.

第5の発明は、金型を、成形型の内側に設ける工程と、前記成形型の内部に流動状態の材料を充填する工程と、前記材料より前記金型を離型する工程と、を具備することを特徴とする、無反射構造体の製造方法である。   The fifth invention comprises a step of providing a mold inside the mold, a step of filling the mold with a fluid material, and a step of releasing the mold from the material. This is a method of manufacturing a non-reflective structure.

第6の発明は、金型を、軟化した材料に押しあてる工程と、前記金型を離型する工程と、を備えることを特徴とする、無反射構造体の製造方法である。   6th invention is a manufacturing method of the non-reflective structure characterized by including the process of pressing a metal mold | die with the softened material, and the process of releasing the said metal mold | die.

光の波長以下のピッチに錐体を配置することにより、錐体の底面から頂点に至る領域に、錐体の屈折率から錐体外部の屈折率に、屈折率が傾斜する屈折率傾斜膜を有する効果と等しい効果を生じさせることができる。そのため、無反射構造体の内部と外部の界面において、屈折率差に起因する反射を抑制することができる。   By arranging the cones at a pitch equal to or less than the wavelength of the light, an index gradient film in which the refractive index is inclined from the refractive index of the cone to the refractive index outside the cone is formed in the region from the bottom surface to the apex of the cone. An effect equal to the effect it has can be produced. Therefore, reflection caused by a difference in refractive index can be suppressed at the interface between the inside and the outside of the non-reflective structure.

錐体の側面形状を最適化し、錐体の底面周上の点と頂点とを結ぶ線に対して凹構造をとることで、アスペクト比が1以下の錐体でも、十分な反射率低減の効果を発現させることができる。   By optimizing the shape of the side surface of the cone and taking a concave structure with respect to the line connecting the point on the bottom circumference of the cone and the apex, the effect of sufficient reflectance reduction is achieved even for cones with an aspect ratio of 1 or less. Can be expressed.

電子線による直接描画などによる微細加工や金型による形状の転写などで無反射構造体が作製されるが、錐体のアスペクト比が1以下であるので、従来開示されているアスペクト比が1以上の構造に比べて、作製が容易である。   A non-reflective structure is produced by fine processing such as direct drawing with an electron beam or shape transfer using a mold. However, since the aspect ratio of the cone is 1 or less, the conventionally disclosed aspect ratio is 1 or more. Compared to this structure, it is easy to manufacture.

本発明によれば、低いアスペクトで高い反射防止性能を実現する無反射構造体等を提供可能である。   According to the present invention, it is possible to provide a non-reflective structure or the like that achieves high antireflection performance with a low aspect.

以下図面に基づいて、本発明の実施形態を詳細に説明する。
図1は、第1の実施形態に係る無反射構造体1を示す図であり、図1(a)、(b)、(c)は、それぞれ無反射構造体1の斜視図、平面図、正面図である。図1(a)に示すように、無反射構造体1は、基板7と、その上に配列する多数の錐体9からなる。錐体9は図1(b)に示すように300nmのピッチで単純格子状に配列している。また、錐体9は、図1(c)に示すように、直径300nm高さ280nmの円錐であって、錐体9の側面は、円錐の底面の周上の一点と頂点を結んだ母線10から見て、凹形状となっている。そのアスペクト比は約0.93であり、1以下である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a non-reflective structure 1 according to the first embodiment, and FIGS. 1A, 1B, and 1C are a perspective view, a plan view, and a plan view of the non-reflective structure 1, respectively. It is a front view. As shown to Fig.1 (a), the non-reflective structure 1 consists of the board | substrate 7 and many cones 9 arranged on it. The cones 9 are arranged in a simple lattice pattern with a pitch of 300 nm as shown in FIG. As shown in FIG. 1C, the cone 9 is a cone having a diameter of 300 nm and a height of 280 nm, and the side surface of the cone 9 has a generatrix 10 connecting a vertex with a point on the circumference of the bottom of the cone. From the perspective, it has a concave shape. Its aspect ratio is about 0.93, which is 1 or less.

錐体9の底面は、円形または六角形などの多角形であることが好ましい。   The bottom surface of the cone 9 is preferably a polygon such as a circle or a hexagon.

錐体9のピッチは、可視光の反射を抑制するため、300nmとしているが、抑制すべき波長が変化すればそれに伴ってピッチを変化させてもよい。例えば、赤外線の反射を抑制したければ、ピッチをより大きくすればよく、紫外線の反射を抑制したければ、ピッチはより小さくすればよい。   The pitch of the cones 9 is set to 300 nm in order to suppress reflection of visible light. However, if the wavelength to be suppressed changes, the pitch may be changed accordingly. For example, if the reflection of infrared rays is to be suppressed, the pitch may be made larger, and if the reflection of ultraviolet rays is to be suppressed, the pitch may be made smaller.

錐体9の高さは、アスペクト比に直接影響する。アスペクト比が高いと、反射防止効果はより高くなり、アスペクト比が低いと、容易に製作でき、金型などへの加工や、金型を用いた形状の転写が行いやすくなる。   The height of the cone 9 directly affects the aspect ratio. When the aspect ratio is high, the antireflection effect is higher, and when the aspect ratio is low, it can be easily manufactured, and it becomes easy to process the mold or transfer the shape using the mold.

錐体9の配列は、単純格子に限らず、最密格子としてもよい。   The arrangement of the cones 9 is not limited to a simple lattice, and may be a close-packed lattice.

基板7および錐体9の材質は、さまざまな光学材料が利用可能である。好ましくは石英ガラスをはじめとするガラス、光学素子に用いられる結晶、アクリル樹脂やポリカーボネート樹脂、ポリメタクリル酸メチル樹脂、エポキシ樹脂などの樹脂である。   As the material of the substrate 7 and the cone 9, various optical materials can be used. Preferred are glass such as quartz glass, crystals used for optical elements, resins such as acrylic resin, polycarbonate resin, polymethyl methacrylate resin, and epoxy resin.

第1の実施の形態によれば、錐体9の側面形状が平坦な場合よりも高い反射防止性能が得られる。そのため、アスペクト比を1以下にしても、十分な反射防止効果が得られる。   According to the first embodiment, higher antireflection performance can be obtained than when the side surface of the cone 9 is flat. Therefore, even if the aspect ratio is 1 or less, a sufficient antireflection effect can be obtained.

次に、無反射構造体1の製造方法について説明する。
図2は、無反射構造体1の製造工程を示す図である。図2(a)に示すように、基板7の表面を平滑にする。その後、図2(b)に示すように、基板7の上に金属層11を形成する。その後、図2(c)に示すように、金属層11の上にレジスト層13を形成する。
Next, the manufacturing method of the nonreflective structure 1 is demonstrated.
FIG. 2 is a diagram illustrating a manufacturing process of the non-reflective structure 1. As shown in FIG. 2A, the surface of the substrate 7 is smoothed. Thereafter, a metal layer 11 is formed on the substrate 7 as shown in FIG. Thereafter, a resist layer 13 is formed on the metal layer 11 as shown in FIG.

図2(d)に示すように、レジスト層13にパターニングを行い、現像し、円柱形状のレジストマスク15を形成する。その後、ウェットエッチングにより金属層11をパターニングし、レジストマスク15を除去し、図2(e)に示すように金属マスク17を形成する。その後、希フッ酸によるウェットエッチングを行い、図2(f)に示すような基板7の上に錐体9を有する無反射構造体1を得る。   As shown in FIG. 2D, the resist layer 13 is patterned and developed to form a cylindrical resist mask 15. Thereafter, the metal layer 11 is patterned by wet etching, the resist mask 15 is removed, and a metal mask 17 is formed as shown in FIG. Thereafter, wet etching with dilute hydrofluoric acid is performed to obtain a non-reflective structure 1 having a cone 9 on a substrate 7 as shown in FIG.

パターニングは、電子線による直接描写、X線リソグラフィー、フォトリソグラフィーにより行われることが好ましい。   The patterning is preferably performed by direct drawing with an electron beam, X-ray lithography, or photolithography.

金属層11および金属マスク17の材料として、クロム、ニッケル、アルミニウム、カーボン、タンタル、モリブデン、鉄、プラチナ、金などが挙げられる。   Examples of the material for the metal layer 11 and the metal mask 17 include chromium, nickel, aluminum, carbon, tantalum, molybdenum, iron, platinum, and gold.

レジスト層13およびレジストマスク15の材料として、一般的なレジスト材料を用いることができるが、好ましくはポリメタクリル酸メチル(PMMA)である。   As a material of the resist layer 13 and the resist mask 15, a general resist material can be used, and polymethyl methacrylate (PMMA) is preferable.

ウェットエッチングにより等方的にエッチングされるため、錐体9の側壁が母線10に対して凹形状を有する無反射構造が形成される(図1(a)、図2(f))。   Since isotropic etching is performed by wet etching, a non-reflective structure in which the side wall of the cone 9 has a concave shape with respect to the bus bar 10 is formed (FIGS. 1A and 2F).

図3は、本発明の第2の実施形態に係る無反射構造体2の製造方法を示す図である。無反射構造体2は、図3(f)に示すように基板25上に、錐体27を有し、無反射構造体1と同様の構造を有している。無反射構造体2は、無反射構造体1から作られた複製金型23を用いて大量生産が可能である。   FIG. 3 is a diagram illustrating a method for manufacturing the nonreflective structure 2 according to the second embodiment of the present invention. The nonreflective structure 2 has a cone 27 on the substrate 25 as shown in FIG. 3 (f), and has the same structure as the nonreflective structure 1. The non-reflective structure 2 can be mass-produced using the replica mold 23 made from the non-reflective structure 1.

図3を用いて、無反射構造体2の製造工程を説明する。まず、図3(a)に示すように、無反射構造体1を用意する。無反射構造体1は、基板7の上に錐体9を有しており、錐体9の側面は、円錐の底面の周上の一点と頂点を結んだ母線10から見て、凹形状となっている。   The manufacturing process of the nonreflective structure 2 is demonstrated using FIG. First, as shown to Fig.3 (a), the non-reflective structure 1 is prepared. The non-reflective structure 1 has a cone 9 on a substrate 7, and the side surface of the cone 9 has a concave shape when viewed from a generatrix 10 connecting a vertex and a vertex on the circumference of the bottom of the cone. It has become.

図3(b)に示すように、錐体9の表面に無電解めっきを行い、無電解めっき層19を形成する。その後、図3(c)に示すように、無電解めっき層19を利用して、電解めっきを行い、めっき層21を形成する。図3(d)に示すように、基板7を取り外し、複製金型23を得る。   As shown in FIG. 3B, electroless plating is performed on the surface of the cone 9 to form an electroless plating layer 19. Thereafter, as shown in FIG. 3C, electrolytic plating is performed using the electroless plating layer 19 to form a plating layer 21. As shown in FIG. 3D, the substrate 7 is removed to obtain a duplicate mold 23.

複製金型23は、無反射構造体1の構造を転写したものである。その後、図3(e)に示すように、複製金型23を用いて、基板25に構造を転写し、錐体27を形成し、図3(f)に示すように、無反射構造体2を得る。   The duplicate mold 23 is obtained by transferring the structure of the non-reflective structure 1. Thereafter, as shown in FIG. 3 (e), the structure is transferred to the substrate 25 using the replication mold 23 to form a cone 27. As shown in FIG. 3 (f), the non-reflective structure 2 Get.

無電解めっきは、無電解Ni/B溶液を用いて、ニッケルの無電解めっき層19を形成するのがよい。   In the electroless plating, it is preferable to form the nickel electroless plating layer 19 using an electroless Ni / B solution.

電解めっきは、無電解めっき層19を有する無反射構造体1を、スルファミン酸ニッケル電解液に浸漬し、ニッケルのめっき層21を形成するのがよい。   In the electroplating, it is preferable to immerse the antireflective structure 1 having the electroless plating layer 19 in a nickel sulfamate electrolytic solution to form a nickel plating layer 21.

無反射構造体1は石英ガラスでできているので、導電性を有さない。そのため、無電解めっきを行った後、電解めっきを行うことが好ましい。   Since the non-reflective structure 1 is made of quartz glass, it does not have conductivity. Therefore, it is preferable to perform electroplating after performing electroless plating.

基板25がアクリル樹脂、フッ素樹脂、エポキシ樹脂、ポリエチレン、ポリオレフィンなどの樹脂材料により形成されている場合には、複製金型23を用いた基板25への構造の転写には、射出成形や、キャスト成形を用いることができる。   When the substrate 25 is formed of a resin material such as acrylic resin, fluororesin, epoxy resin, polyethylene, or polyolefin, the transfer of the structure to the substrate 25 using the replica mold 23 is performed by injection molding or casting. Molding can be used.

ここで、射出成形とは、軟化させた樹脂材料を、圧力をかけて金型に充填して、樹脂の成型を行う方法をいう。   Here, injection molding refers to a method in which a softened resin material is filled in a mold by applying pressure to perform resin molding.

また、キャスト成形とは、溶液に溶解させた樹脂材料を、型に流し込み固化させ樹脂を成型する方法をいう。   Cast molding refers to a method in which a resin material dissolved in a solution is poured into a mold and solidified to mold the resin.

基板25がホウケイ酸ガラスなどのガラス材料により形成されている場合には、基板25が軟化する温度にて複製金型23を用いてプレス成型することで、基板25に複製金型23の構造を転写することができる。   When the substrate 25 is formed of a glass material such as borosilicate glass, the structure of the replication mold 23 is formed on the substrate 25 by press molding using the replication mold 23 at a temperature at which the substrate 25 is softened. Can be transferred.

このような第2の実施の形態では、複製金型23を、樹脂やガラスなどを直接成形する金型として用いることができ、電子ビーム描画などの高コストで生産性の低い方法によらずに、無反射構造体2を製造することが可能になる。   In such a second embodiment, the replica mold 23 can be used as a mold for directly molding a resin, glass or the like, without using a high-cost and low-productivity method such as electron beam drawing. The non-reflective structure 2 can be manufactured.

また、第2の実施の形態においては、無反射構造体1の錐体9のアスペクト比が1以下であるため、基板7と複製金型23は容易に分離される。また、複製金型23は、無反射構造体1の構造を精密に転写する。   In the second embodiment, since the aspect ratio of the cone 9 of the non-reflective structure 1 is 1 or less, the substrate 7 and the replication mold 23 are easily separated. Further, the replication mold 23 accurately transfers the structure of the non-reflective structure 1.

次に本発明の実施例を説明する。
<実施例1>
石英ガラスを20mm×20mm×1.0mmの大きさに切り出し、表面を光学研磨し、基板を得た。この基板の表面に、スパッタリング法を用いてクロムの薄膜を形成した。次に、このクロム薄膜の表面に、スピンコート法を用いて、PMMA(ポリメタクリル酸メチル)レジスト膜を0.3μmの厚みで形成した。さらに、このPMMAレジスト膜に直接、電子ビームにて、図1(b)で示す配置を持つ円形状を描画した。この結果、PMMAレジスト膜を、円形状を単位とするピッチ300nmの微細構造に加工した。
Next, examples of the present invention will be described.
<Example 1>
Quartz glass was cut into a size of 20 mm × 20 mm × 1.0 mm, and the surface was optically polished to obtain a substrate. A chromium thin film was formed on the surface of the substrate by sputtering. Next, a PMMA (polymethyl methacrylate) resist film having a thickness of 0.3 μm was formed on the surface of the chromium thin film by spin coating. Further, a circular shape having the arrangement shown in FIG. 1B was drawn directly on the PMMA resist film with an electron beam. As a result, the PMMA resist film was processed into a fine structure having a pitch of 300 nm with a circular unit.

続いて、クロム薄膜にウェットエッチングを行い、円形状を単位とする微細構造を持つエッチングマスクに加工した。エッチング液として、フッ化水素酸(50wt%)とフッ化アンモニウム水溶液(40wt%)を1:10に混合したバッファードフッ酸(BHF)を用いてエッチングした。このとき、室温(25℃)で、約100nm/minのエッチングレートで石英ガラスを等方的にエッチングすることができた。エッチングマスクは、基板がエッチングされ、錐体が形成されると、基板から剥離し、自動的になくなった。これらの処理により、基板の表面に、ピッチ300nm、アスペクト比が1以下である高さ280nmの錐形状を単位とする構造が形成された。また、ウェットエッチングによる等方的なエッチングであるので、錐形状の側面が、母線より凹の錐体を有する無反射構造体1が形成された。   Subsequently, wet etching was performed on the chrome thin film to form an etching mask having a fine structure with a circular shape as a unit. Etching was performed using buffered hydrofluoric acid (BHF) in which hydrofluoric acid (50 wt%) and ammonium fluoride aqueous solution (40 wt%) were mixed 1:10 as an etching solution. At this time, quartz glass could be isotropically etched at room temperature (25 ° C.) at an etching rate of about 100 nm / min. The etching mask peeled off the substrate and disappeared automatically when the substrate was etched and cones were formed. By these treatments, a structure having a unit of a cone shape having a height of 280 nm and a pitch of 300 nm and an aspect ratio of 1 or less was formed on the surface of the substrate. Moreover, since it is isotropic etching by wet etching, the non-reflective structure 1 in which the cone-shaped side surface has a cone that is concave from the generatrix is formed.

形成された無反射構造体1の表面を検査したところ、エッチング後の表面荒れは少なく、エッチング前の研磨面とほぼ等しい表面粗さを保っていた。また、無反射構造体1が形成された基板7表面の垂直入射の場合の反射率を測定したところ、波長が600nmの光について0.86%の値を示した。   When the surface of the formed non-reflective structure 1 was inspected, the surface roughness after etching was small, and the surface roughness was almost equal to the polished surface before etching. Further, when the reflectance in the case of normal incidence on the surface of the substrate 7 on which the nonreflective structure 1 was formed was measured, a value of 0.86% was shown for light having a wavelength of 600 nm.

(比較例1)
別の石英ガラス基板30に、上記と同様にエッチングマスクを形成し、CHFとOの混合ガスによる異方性のドライエッチングにより、基板30とエッチングマスクを同時にエッチングすることで、図4(a)に示すようなアスペクト比が1の錐体29を有する無反射構造体3を作製した。錐体29の側面は母線31と同じであり、錐体29は円錐形状である。無反射構造体3を用いて波長600nmの光について反射率を測定したところ、1.11%であった。
(Comparative Example 1)
An etching mask is formed on another quartz glass substrate 30 in the same manner as described above, and the substrate 30 and the etching mask are simultaneously etched by anisotropic dry etching using a mixed gas of CHF 3 and O 2 . A non-reflective structure 3 having a cone 29 having an aspect ratio of 1 as shown in a) was produced. The side surface of the cone 29 is the same as the bus bar 31, and the cone 29 has a conical shape. When the reflectance of the light with a wavelength of 600 nm was measured using the nonreflective structure 3, it was 1.11%.

(比較例2)
別の石英ガラス基板34に、上記と同様にエッチングマスクを形成し、CHFとOの混合ガスによる異方性のドライエッチングにより、基板34とエッチングマスクも同時にエッチングすることで、図4(b)に示すようなアスペクト比が1.5程度の錐体33を有する無反射構造体4を作製した。比較例1とは、CHFとOの混合比を変え、Crマスクのエッチング速度が遅くなる条件においてエッチングを行った。錐体33の側面は母線35と同じであり、錐体33は円錐形状である。無反射構造体4を用いて波長600nmの光について反射率を測定したところ、0.84%であった。
(Comparative Example 2)
An etching mask is formed on another quartz glass substrate 34 in the same manner as described above, and the substrate 34 and the etching mask are simultaneously etched by anisotropic dry etching using a mixed gas of CHF 3 and O 2 . A non-reflective structure 4 having a cone 33 having an aspect ratio of about 1.5 as shown in b) was produced. In Comparative Example 1, etching was performed under the condition that the mixing ratio of CHF 3 and O 2 was changed and the etching rate of the Cr mask was slow. The side surface of the cone 33 is the same as the bus bar 35, and the cone 33 has a conical shape. When the reflectance of the light with a wavelength of 600 nm was measured using the non-reflective structure 4, it was 0.84%.

(比較例3)
別の石英ガラス基板を、無反射構造を形成せずに、平滑に研磨した平面のみの基板5を得た。基板5を用いて波長600nmの光について反射率を測定したところ、4.65%であった。
(Comparative Example 3)
A substrate 5 having only a flat surface obtained by polishing another quartz glass substrate smoothly without forming a non-reflective structure was obtained. When the reflectance of light having a wavelength of 600 nm was measured using the substrate 5, it was 4.65%.

さらに、無反射構造体1、3、4、および基板5を用いて、波長600nmの光を、角度を変えて入射した場合の反射率も測定した。その結果を表1に示す。実施例1の反射率は、入射角度が大きくなっても、他の比較例に比べて反射率が非常に低く、正面からの入射光の反射率の低減のみならず、斜めからの入射光に対する反射率も抑制できている。   Furthermore, using the non-reflective structures 1, 3, 4, and the substrate 5, the reflectance when light with a wavelength of 600 nm was incident at different angles was also measured. The results are shown in Table 1. The reflectivity of Example 1 is very low as compared with the other comparative examples even when the incident angle is increased. Not only the reflectivity of the incident light from the front is reduced, but also the incident light from an oblique direction. The reflectance can also be suppressed.

Figure 2009098237
Figure 2009098237

<実施例2>
実施例1で作製された無反射構造体1には導電性がないので、無電解のNiめっき用溶液に浸漬し、無反射構造体1の表面にニッケルの無電解めっき層を形成した。次に、無電解めっき層を形成したマスタ金型をスルファミン酸ニッケル電解液に浸漬し、電気めっきを行ってマスタ金型の表面にニッケルめっき層を形成した。その後、ニッケルめっきしたマスタ金型を塩基溶液に浸漬し、無反射構造体1を引き離し、複製金型23を得た。
この複製金型23を用いて、エポキシ樹脂表面に無反射構造体2を形成した。600nmの波長の反射率は0.92%であった。比較として、表面加工していないエポキシ樹脂の反射率が5.97%であったので、複製金型23を用いても性能に優れた無反射構造体が形成できた。
<Example 2>
Since the electroreflective structure 1 produced in Example 1 is not conductive, it was immersed in an electroless Ni plating solution to form a nickel electroless plating layer on the surface of the antireflective structure 1. Next, the master mold on which the electroless plating layer was formed was immersed in a nickel sulfamate electrolyte, and electroplating was performed to form a nickel plating layer on the surface of the master mold. Thereafter, the nickel-plated master mold was immersed in a base solution, and the antireflective structure 1 was pulled away to obtain a replica mold 23.
Using this replication mold 23, the non-reflective structure 2 was formed on the epoxy resin surface. The reflectance at a wavelength of 600 nm was 0.92%. As a comparison, since the reflectance of the epoxy resin that was not surface-treated was 5.97%, a non-reflective structure excellent in performance could be formed even if the replication mold 23 was used.

以上、添付図面を参照しながら、本発明にかかる無反射構造体の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到しえることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the nonreflective structure according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

本発明は、レンズ素子、プリズム素子およびミラー素子などの光学素子の表面、ディスプレイの表面、光ファイバー間の接続部などに利用できる。   The present invention can be used for the surface of an optical element such as a lens element, a prism element, and a mirror element, the surface of a display, a connection portion between optical fibers, and the like.

第1の実施の形態に係る無反射構造体1を示す図。The figure which shows the non-reflective structure 1 which concerns on 1st Embodiment. 無反射構造体1の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure. 無反射構造体1の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure. 無反射構造体1の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure. 無反射構造体1の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure. 無反射構造体1の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure. 無反射構造体1の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure. 第2の実施の形態に係る無反射構造体2の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure 2 which concerns on 2nd Embodiment. 第2の実施の形態に係る無反射構造体2の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure 2 which concerns on 2nd Embodiment. 第2の実施の形態に係る無反射構造体2の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure 2 which concerns on 2nd Embodiment. 第2の実施の形態に係る無反射構造体2の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure 2 which concerns on 2nd Embodiment. 第2の実施の形態に係る無反射構造体2の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure 2 which concerns on 2nd Embodiment. 第2の実施の形態に係る無反射構造体2の製造工程を示す図。The figure which shows the manufacturing process of the non-reflective structure 2 which concerns on 2nd Embodiment. 各種の比較例を示す図。The figure which shows various comparative examples.

符号の説明Explanation of symbols

1、2、3、4………無反射構造体
5、7、25、30、34………基板
9、27、29、33………錐体
10、31、35………母線
11………金属層
13………レジスト層
15………レジストマスク
17………金属マスク
19………無電解めっき層
21………めっき層
23………複製金型
1, 2, 3, 4 ......... Non-reflective structure 5, 7, 25, 30, 34 ......... Substrate 9, 27, 29, 33 ...... Cone 10, 31, 35 ......... Bus 11 ... …… Metal layer 13 ……… Resist layer 15 ………… Resist mask 17 ………… Metal mask 19 ………… Electroless plating layer 21 ………… Plating layer 23 ………… Replication mold

Claims (8)

錐体が、反射を抑制すべき光の波長以下のピッチで配列され、
前記錐体の側面が、錐体の底面周上の点と頂点とを結ぶ線に対して凹であることを特徴とする無反射構造体。
The cones are arranged at a pitch below the wavelength of the light whose reflection should be suppressed,
A non-reflective structure characterized in that a side surface of the cone is concave with respect to a line connecting a point and a vertex on the circumference of the bottom surface of the cone.
前記錐体のアスペクト比が1以下であることを特徴とする請求項1記載の無反射構造体。   The nonreflective structure according to claim 1, wherein an aspect ratio of the cone is 1 or less. 請求項1または2記載の無反射構造体を表面に形成したことを特徴とする光学素子。   An optical element comprising the nonreflective structure according to claim 1 or 2 formed on a surface thereof. 錐形状の孔が、反射を抑制すべき光の波長以下のピッチで配列され、
前記孔の側面が、孔入り口の周上の点と、孔の頂点とを結ぶ線に対して凸であることを特徴とする金型。
The cone-shaped holes are arranged at a pitch equal to or less than the wavelength of the light whose reflection should be suppressed,
The mold characterized in that the side surface of the hole is convex with respect to a line connecting a point on the periphery of the hole entrance and a vertex of the hole.
基板の表面に金属膜を形成する工程(a)と、
前記金属膜の上に、感光性レジストを形成する工程(b)と、
前記感光性レジストに微細構造を形成する工程(c)と、
前記感光性レジストをマスクとして、前記金属膜に微細構造を形成する工程(d)と、
前記感光性レジストを除去する工程(e)と、
前記微細加工した金属膜をエッチングマスクとして、ウェットエッチングを行い、前記基板表面に微細構造を形成する工程(f)と、
を具備することを特徴とする無反射構造体の製造方法。
Forming a metal film on the surface of the substrate (a);
A step (b) of forming a photosensitive resist on the metal film;
Forming a microstructure in the photosensitive resist (c);
Forming a microstructure on the metal film using the photosensitive resist as a mask (d);
Removing the photosensitive resist (e);
Using the finely processed metal film as an etching mask and performing wet etching to form a fine structure on the substrate surface;
The manufacturing method of the non-reflective structure characterized by comprising.
請求項1記載の無反射構造体の表面に、金属層を形成する工程(g)と、
前記無反射構造体を前記金属層より分離する工程(h)と
を具備し、
前記金属層を金型とすることを特徴とする金型の製造方法。
A step (g) of forming a metal layer on the surface of the non-reflective structure according to claim 1;
Separating the nonreflective structure from the metal layer (h),
A metal mold manufacturing method, wherein the metal layer is a metal mold.
請求項4記載の金型を、成形型の内側に設ける工程(i)と、
前記成形型の内部に流動状態の材料を充填する工程(j)と、
前記材料より前記金型を離型する工程(k)と、
を具備することを特徴とする、無反射構造体の製造方法。
A step (i) of providing the mold according to claim 4 inside the mold; and
Filling the inside of the mold with a fluid material (j);
A step (k) of releasing the mold from the material;
The manufacturing method of the non-reflective structure characterized by comprising.
請求項4記載の金型を、軟化した材料に押しあてる工程(l)と、
前記材料より前記金型を離型する工程(m)と、
を具備することを特徴とする、無反射構造体の製造方法。
Pressing the mold according to claim 4 against the softened material (l);
A step (m) of releasing the mold from the material;
The manufacturing method of the non-reflective structure characterized by comprising.
JP2007267455A 2007-10-15 2007-10-15 Nonreflective structure, optical element, metallic mold and their manufacturing method Pending JP2009098237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267455A JP2009098237A (en) 2007-10-15 2007-10-15 Nonreflective structure, optical element, metallic mold and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267455A JP2009098237A (en) 2007-10-15 2007-10-15 Nonreflective structure, optical element, metallic mold and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2009098237A true JP2009098237A (en) 2009-05-07

Family

ID=40701342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267455A Pending JP2009098237A (en) 2007-10-15 2007-10-15 Nonreflective structure, optical element, metallic mold and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2009098237A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101078561B1 (en) 2010-11-25 2011-11-01 경희대학교 산학협력단 Fabricating method for antireflection subwavelength grating nanostructure and fabricating method for optoelectronic device with antireflection layer
JP2013077617A (en) * 2011-09-29 2013-04-25 Toppan Printing Co Ltd Manufacturing method of original plate for molding low reflection structure and original plate
US20130155644A1 (en) * 2011-12-19 2013-06-20 Samsung Electronics Co., Ltd. Lighting device and photographing system including the same
JP2014504699A (en) * 2011-02-02 2014-02-24 スリーエム イノベイティブ プロパティズ カンパニー NOZZLE AND METHOD FOR PRODUCING NOZZLE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240904A (en) * 2002-02-20 2003-08-27 Dainippon Printing Co Ltd Antireflection article
JP2004054253A (en) * 2002-05-29 2004-02-19 Nippon Sheet Glass Co Ltd Graded index lens and its manufacturing method
WO2006059686A1 (en) * 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP2007004155A (en) * 2005-05-27 2007-01-11 Fujifilm Holdings Corp Anti-reflection film and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240904A (en) * 2002-02-20 2003-08-27 Dainippon Printing Co Ltd Antireflection article
JP2004054253A (en) * 2002-05-29 2004-02-19 Nippon Sheet Glass Co Ltd Graded index lens and its manufacturing method
WO2006059686A1 (en) * 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP2007004155A (en) * 2005-05-27 2007-01-11 Fujifilm Holdings Corp Anti-reflection film and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101078561B1 (en) 2010-11-25 2011-11-01 경희대학교 산학협력단 Fabricating method for antireflection subwavelength grating nanostructure and fabricating method for optoelectronic device with antireflection layer
JP2014504699A (en) * 2011-02-02 2014-02-24 スリーエム イノベイティブ プロパティズ カンパニー NOZZLE AND METHOD FOR PRODUCING NOZZLE
US10054094B2 (en) 2011-02-02 2018-08-21 3M Innovative Properties Company Microstructured pattern for forming a nozzle pre-form
JP2013077617A (en) * 2011-09-29 2013-04-25 Toppan Printing Co Ltd Manufacturing method of original plate for molding low reflection structure and original plate
US20130155644A1 (en) * 2011-12-19 2013-06-20 Samsung Electronics Co., Ltd. Lighting device and photographing system including the same
US8950880B2 (en) 2011-12-19 2015-02-10 Samsung Electronics Co., Ltd. Lighting device and photographing system including the same

Similar Documents

Publication Publication Date Title
JP4368384B2 (en) Antireflection material, optical element, display device, stamper manufacturing method, and antireflection material manufacturing method using stamper
JP4583506B2 (en) Antireflection film, optical element including antireflection film, stamper, stamper manufacturing method, and antireflection film manufacturing method
JPWO2005109042A1 (en) Optical element and manufacturing method thereof
JP2000071290A (en) Manufacture of antireflection article
JP2010281876A (en) Optical element and optical system including the same
TWI457589B (en) Mold for motheye structure, mold manufacturing method and motheye structure formation method
CN110347014A (en) It is a kind of to prepare the high vertical wide vertical etch technique than titanium dioxide
JP2007193249A (en) Method for producing molded component
KR100951915B1 (en) Fabricating method of micro-nano pattern using plasma etching
JP2004012856A (en) Optical element, mold for optical element, and method for manufacturing optical element
JP2009098237A (en) Nonreflective structure, optical element, metallic mold and their manufacturing method
CN114994817A (en) Preparation method of micro-nano grating
US7108819B2 (en) Process for fabricating high aspect ratio embossing tool and microstructures
JP2009128539A (en) Method for manufacturing antireflection structure
JP6089402B2 (en) Master plate for antireflection film production
JP2006235195A (en) Method for manufacturing member with antireflective structure
JP4714627B2 (en) Method for producing structure having fine uneven structure on surface
JP4457589B2 (en) Optical apparatus having a transmissive optical element
JP2009128541A (en) Method for manufacturing antireflection structure
CN112723305A (en) Super surface manufacturing method
JP2006171229A (en) Nonreflective structure and optical element with nonreflective structure, and manufacturing method thereof and mask used for same
JP2007328128A (en) Optical element and its manufacturing method
CN1710447A (en) Mould core of non-spherical diffraction lens and mfg. method thereof
JP2009128540A (en) Method for manufacturing antireflection structure
US20030201241A1 (en) Tool for embossing high aspect ratio microstructures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113