JP2009098008A - Method for measuring crystal orientation of single-crystal sample - Google Patents
Method for measuring crystal orientation of single-crystal sample Download PDFInfo
- Publication number
- JP2009098008A JP2009098008A JP2007270275A JP2007270275A JP2009098008A JP 2009098008 A JP2009098008 A JP 2009098008A JP 2007270275 A JP2007270275 A JP 2007270275A JP 2007270275 A JP2007270275 A JP 2007270275A JP 2009098008 A JP2009098008 A JP 2009098008A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- crystal
- crystal orientation
- single crystal
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、EBSD(後方散乱電子回折)法を利用した単結晶試料の結晶方位測定方法に関するもので、特にSiC等の六方晶系単結晶試料の結晶方位測定方法に関する。 The present invention relates to a method for measuring crystal orientation of a single crystal sample using an EBSD (backscattered electron diffraction) method, and more particularly to a method for measuring crystal orientation of a hexagonal single crystal sample such as SiC.
SiC単結晶半導体は、Si半導体に比べて耐熱性、耐電圧性に優れ、かつ電力損失が小さいという優れた特性を有している。この特性故に、現在のSiパワーデバイスに変わる次世代の新しいパワーデバイス材料として注目されており、各種のインバータ機器、家電用パワーモジュール、ハイブリッド車用パワーデバイス等に利用されることにより大きな効果(高性能、省電力)が期待される。 A SiC single crystal semiconductor has excellent characteristics such as excellent heat resistance and voltage resistance and low power loss as compared with a Si semiconductor. Because of this characteristic, it is attracting attention as a next-generation new power device material that replaces the current Si power device, and can be used for various inverter devices, power modules for home appliances, power devices for hybrid vehicles, etc. Performance and power saving) are expected.
SiC単結晶半導体を材料として高性能のパワーデバイスを形成するためには、高品位SiC単結晶を低コストで得るための結晶成長技術の開発が不可欠である。しかしながら、現状の結晶成長技術によって生成したSiC単結晶は、結晶欠陥を多く含み、実用デバイスを作製する上でこれが大きな障害となっている。したがって、このような結晶欠陥の発生原因を追究してそれを取り除くことが不可欠であり、そのためには、製造された単結晶試料を高精度で観測してその結晶性を評価することが必要である。 In order to form a high-performance power device using a SiC single crystal semiconductor as a material, it is indispensable to develop a crystal growth technique for obtaining a high-quality SiC single crystal at a low cost. However, the SiC single crystal produced by the current crystal growth technique includes many crystal defects, which is a great obstacle to producing a practical device. Therefore, it is indispensable to investigate the cause of such crystal defects and remove it. To that end, it is necessary to observe the manufactured single crystal sample with high accuracy and evaluate its crystallinity. is there.
単結晶試料の結晶性の評価には、試料の正確な結晶方位測定が必要である。従来からのX線回折によるラウエパターンを利用する方法に代わって、最近では、走査型電子顕微鏡(SEM)を用いた後方散乱電子回折(EBSD)法を利用して、単結晶試料の結晶方位の測定を行う手法が開発されている。EBSD法は、バルク状の結晶試料に電子線を入射させたときに発生する後方散乱電子線によって、菊池パターンと呼ばれる回折パターンが形成されることを利用するもので、この回折パターンに対してコンピュータを用いて結晶面の指数付けを行い、この面指数分布に基づいて結晶方位を決定する手法である。 In order to evaluate the crystallinity of a single crystal sample, it is necessary to accurately measure the crystal orientation of the sample. Instead of the conventional method of using the Laue pattern by X-ray diffraction, recently, the back-scattered electron diffraction (EBSD) method using a scanning electron microscope (SEM) is used to determine the crystal orientation of a single crystal sample. Techniques for measuring have been developed. The EBSD method uses the fact that a diffraction pattern called a Kikuchi pattern is formed by a backscattered electron beam generated when an electron beam is incident on a bulk crystal sample. Is used to index the crystal plane and determine the crystal orientation based on this plane index distribution.
EBSD法を用いた結晶方位測定方法の一般的な技術水準を示す資料として、特許文献1がある。特許文献1では、EBSD法によって結晶方位を測定する際に、基準試料を用いて被検体と比較測定することで、外径形状と結晶方位との位置関係を明確にする方法を開示している。この方法では、菊池パターンのコンピュータによる面指数付けを行う場合に、基準試料と被検体のパターンが適切な面でマッチングされないと、広範囲での結晶方位分布の測定が困難であるが、特許文献1の場合は、基準試料および被検体が立方晶であるため、その面指数付けが比較的容易である。 Patent Document 1 is a document showing a general technical level of a crystal orientation measurement method using the EBSD method. Patent Document 1 discloses a method of clarifying the positional relationship between the outer diameter shape and the crystal orientation by measuring the crystal orientation by the EBSD method by using a reference sample for comparison with the subject. . In this method, it is difficult to measure the crystal orientation distribution in a wide range unless the reference sample and the pattern of the subject are matched on an appropriate surface when performing surface indexing by the computer of the Kikuchi pattern. In this case, since the reference sample and the specimen are cubic crystals, the surface indexing is relatively easy.
結晶方位測定の一般的な技術水準を示すその他の資料として、特許文献2および3がある。特許文献2では、例えばEBSD法を用いて試料表面の結晶粒の結晶方位分布を測定する方法を開示しているが、単結晶試料の場合の様に、精度の高い結晶方位分布を測定するものではない。特許文献3は、試料を透過型電子顕微鏡(TEM)で観測する場合に、電子線の入射方向を試料の特定の面、例えば(1−100)面、に対して垂直方向とすることにより、従来では観測が難しかった六方晶系試料等の観測を可能とする技術を開示している。 Other documents showing the general technical level of crystal orientation measurement include Patent Documents 2 and 3. Patent Document 2 discloses a method for measuring the crystal orientation distribution of crystal grains on the sample surface using, for example, the EBSD method. However, as in the case of a single crystal sample, the crystal orientation distribution with high accuracy is measured. is not. In Patent Document 3, when a sample is observed with a transmission electron microscope (TEM), the incident direction of the electron beam is set to be perpendicular to a specific surface of the sample, for example, (1-100) surface, A technique that enables observation of a hexagonal sample or the like, which has been difficult to observe in the past, is disclosed.
上述したように、例えばSiC等の高品質単結晶半導体を得るためには、製造された単結晶試料の高精度の結晶方位測定が不可欠であるが、SiC単結晶のような六方晶系の試料に対しては確立した結晶方位測定方法が未だ提案されていない。 As described above, in order to obtain a high-quality single crystal semiconductor such as SiC, it is indispensable to measure the crystal orientation of the manufactured single crystal sample with high accuracy, but a hexagonal sample such as a SiC single crystal. However, an established crystal orientation measurement method has not yet been proposed.
本発明は、かかる点に関してなされたもので、特に六方晶系の単結晶試料の結晶方位測定を、EBSD法によって高精度で行うことが可能な測定方法を提供することを課題とするものである。 The present invention has been made with regard to this point, and it is an object of the present invention to provide a measurement method capable of measuring the crystal orientation of a hexagonal single crystal sample with high accuracy by the EBSD method. .
上記課題を解決するために、本発明は、六方晶系単結晶試料の結晶方位を後方散乱電子回折法によって測定するために、試料座標系におけるTD(Transverse・Direction)軸を前記六方晶系単結晶試料の[0001]方向と平行に配置して後方散乱電子回折パターンを取得するステップと、前記取得した後方散乱電子回折パターンをコンピュータ解析して回折パターンの面指数付けを行うステップと、前記指数付けされた面指数分布に基づいて前記試料の結晶方位を決定するステップと、を含む、単結晶試料の結晶方位測定方法を提供する。 In order to solve the above-described problems, the present invention provides a hexagonal single crystal sample with a TD (Transverse / Direction) axis in a sample coordinate system for measuring the crystal orientation of a hexagonal single crystal sample by backscattering electron diffraction. A step of acquiring a backscattered electron diffraction pattern by arranging the crystal sample in parallel with the [0001] direction, a step of performing computer analysis of the acquired backscattered electron diffraction pattern to assign a surface index to the diffraction pattern, and the index Determining the crystal orientation of the sample based on the attached plane index distribution.
上記の方法において、前記六方晶系単結晶試料は6Hあるいは4H−SiC単結晶であっても良い。また、前記六方晶系単結晶試料を、入射電子線に垂直な平面に対してほぼ70度傾斜して配置しても良い。 In the above method, the hexagonal single crystal sample may be a 6H or 4H—SiC single crystal. Further, the hexagonal single crystal sample may be arranged with an inclination of approximately 70 degrees with respect to a plane perpendicular to the incident electron beam.
六方晶系の試料に電子線を照射した場合に発生する後方散乱電子によって形成される菊池パターンを解析して面指数付けする場合、単結晶試料の[0001]方向を、試料に固定された座標、即ち、試料座標系におけるTD(Transverse・Direction)軸と平行となるように配置することで、菊池パターンの面指数付けの精度が向上し、その結果、広範囲の結晶方位分布の測定が可能となる。 When analyzing the Kikuchi pattern formed by backscattered electrons generated when a hexagonal sample is irradiated with an electron beam and assigning a surface index, the coordinates of the [0001] direction of the single crystal sample are fixed to the sample. In other words, by placing it parallel to the TD (Transverse Direction) axis in the sample coordinate system, the surface indexing accuracy of the Kikuchi pattern is improved, and as a result, a wide range of crystal orientation distributions can be measured. Become.
以下に、本発明を、図面を参照して詳細に説明する。なお、以下の図面において、共通の符号はそれぞれ同一又は類似の構成要素を示すので、重複した説明は行わない。 Hereinafter, the present invention will be described in detail with reference to the drawings. Note that, in the following drawings, common reference numerals indicate the same or similar components, and thus redundant description will not be given.
EBSD法では、後方散乱電子回折を利用して、単結晶試料の結晶方位を測定する。約70度傾斜させたバルク状の単結晶試料に電子線を照射すると、後方散乱電子により、菊池パターンと呼ばれる回折パターンが形成される。この菊池パターンを例えばSEM(走査電子顕微鏡)に装備された検出器によって撮像し、コンピュータによって画像解析することにより、各パターンの面指数付けを行い、面指数の分布から単結晶試料の結晶方位を得ることができる。 In the EBSD method, the crystal orientation of a single crystal sample is measured using backscattered electron diffraction. When an electron beam is irradiated to a bulk single crystal sample inclined at about 70 degrees, a diffraction pattern called a Kikuchi pattern is formed by backscattered electrons. The Kikuchi pattern is imaged by a detector equipped in an SEM (scanning electron microscope), for example, and image analysis is performed by a computer to assign a surface index to each pattern, and the crystal orientation of the single crystal sample is determined from the distribution of the surface index. Obtainable.
図1は、EBSD法により単結晶試料の菊池パターンを撮像するための装置の概略を示す。通常、この装置はSEMである。図において、1は試料台、2は試料台1上に設置された試料、3は電子線4を発生させるための電子線銃である。さらに、5は後方散乱電子の検出装置であり、蛍光材料を塗布したスクリーンとこのスクリーンに投影された菊池パターンを取り込むためのカメラで構成されている。なお、試料台1、電子銃3および検出装置5はコンピュータによって統合的に制御されているが、図1ではその制御機構は省略されている。 FIG. 1 shows an outline of an apparatus for imaging a Kikuchi pattern of a single crystal sample by the EBSD method. Usually this device is a SEM. In the figure, 1 is a sample stage, 2 is a sample installed on the sample stage 1, and 3 is an electron beam gun for generating an electron beam 4. Further, reference numeral 5 denotes a backscattered electron detection device, which comprises a screen coated with a fluorescent material and a camera for capturing a Kikuchi pattern projected on the screen. The sample stage 1, the electron gun 3, and the detection device 5 are controlled in an integrated manner by a computer, but the control mechanism is omitted in FIG.
図1に示す装置において、試料2に電子線4が照射されると、試料2から後方散乱電子(菊池パターンの形成に寄与する非弾性散乱電子)6が発生し、その一部が検出装置5のスクリーンに入射して回折パターン(菊池パターン)を形成する。この回折パターンをカメラによって読み取り、コンピュータで解析することにより、菊池パターンの面指数付けを行うことができる。単結晶試料2の結晶方位は、このようにして作成された面指数の分布図を基に特定される。なお、EBSDの測定装置では、通常、試料2の表面を電子線4の入射方向に対して70度程度傾斜させてある。これは、試料2の表面からの充分なEBSD強度を得るとともに、必要な空間分解能を確保するためである。 In the apparatus shown in FIG. 1, when the sample 2 is irradiated with the electron beam 4, backscattered electrons (inelastically scattered electrons that contribute to the formation of the Kikuchi pattern) 6 are generated from the sample 2, and a part thereof is the detection device 5. A diffraction pattern (Kikuchi pattern) is formed on the screen. By reading this diffraction pattern with a camera and analyzing it with a computer, the surface index of the Kikuchi pattern can be assigned. The crystal orientation of the single crystal sample 2 is specified based on the distribution map of the plane index created in this way. In the EBSD measuring apparatus, the surface of the sample 2 is usually inclined about 70 degrees with respect to the incident direction of the electron beam 4. This is for obtaining sufficient EBSD intensity from the surface of the sample 2 and ensuring necessary spatial resolution.
図2は、単結晶試料2の試料座標系を示す図である。試料座標系は試料表面の電子線照射領域内に原点を有するRD(X軸)、TD(Y軸)、ND(Z軸)で構成されている。NDはNormal・Directionを示し、試料表面の法線方向の軸を示す。TDは試料のTransverse・Direction、RDはReference・Directionを示す。一般に、試料座標系の各軸は、菊池パターンの指数付けによって得られた結晶方位をオイラー角(試料に固定された座標系と測定点の結晶格子に固定された座標系の間の回転関係)として表記するために定義される。 FIG. 2 is a diagram showing a sample coordinate system of the single crystal sample 2. The sample coordinate system is composed of RD (X axis), TD (Y axis), and ND (Z axis) having an origin in the electron beam irradiation region on the sample surface. ND indicates Normal Direction, and indicates the normal axis of the sample surface. TD indicates Transverse Direction of the sample, and RD indicates Reference Direction. In general, each axis of the sample coordinate system is the Euler angle of the crystal orientation obtained by indexing the Kikuchi pattern (rotational relationship between the coordinate system fixed to the sample and the coordinate system fixed to the crystal lattice of the measurement point) Is defined to represent as
発明者等は、EBSD法を用いてSiC単結晶試料の結晶方位分布を観察する上で、単結晶試料2の結晶方位と試料座標の関係を変化させて種々の実験を行った結果、回折パターンの指数付け精度を向上させる適切な観察方位が存在することを見出した。 The inventors have conducted various experiments by changing the relationship between the crystal orientation of the single crystal sample 2 and the sample coordinates when observing the crystal orientation distribution of the SiC single crystal sample using the EBSD method. We found that there is an appropriate observation direction to improve the indexing accuracy of the.
図3および図4は、6H−SiC単結晶試料のEBSD法における観察方位と、回折パターンに基づいて作成した極点図を示す図である。図3では、6H−SiC単結晶試料2Aの結晶方向[0001]が試料座標のTD軸に平行となるような配置関係、即ち、TD//[0001]の場合(図3(a)参照)の、(0001)面の極点図(図3(d))、(11−20)面の極点図(図3(c))および(1−100)面の極点図(図3(d))を示す。図4は、6H−SiC単結晶試料2Bの結晶方向[1−100]をTD軸に平行に置いた場合、即ち、TD//[1−100]の場合(図4(a)参照)の、(0001)面の極点図(図4(b))、(11−20)面の極点図(図4(c))および(1−100)面の極点図(図4(d))を示す。なお、図3および図4において、20は6H−SiCの種結晶を示し、結晶成長の方向は種結晶の[0001]方向である。 FIG. 3 and FIG. 4 are diagrams showing the pole figure created based on the observation direction in the EBSD method of the 6H-SiC single crystal sample and the diffraction pattern. In FIG. 3, the arrangement relationship is such that the crystal direction [0001] of the 6H-SiC single crystal sample 2A is parallel to the TD axis of the sample coordinates, that is, TD // [0001] (see FIG. 3A). The pole figure of the (0001) plane (FIG. 3 (d)), the pole figure of the (11-20) plane (FIG. 3 (c)) and the pole figure of the (1-100) plane (FIG. 3 (d)) Indicates. FIG. 4 shows a case where the crystal direction [1-100] of the 6H—SiC single crystal sample 2B is placed parallel to the TD axis, that is, in the case of TD // [1-100] (see FIG. 4A). The pole figure of the (0001) plane (FIG. 4B), the pole figure of the (11-20) plane (FIG. 4C) and the pole figure of the (1-100) plane (FIG. 4D). Show. 3 and 4, reference numeral 20 denotes a 6H—SiC seed crystal, and the crystal growth direction is the [0001] direction of the seed crystal.
図3および図4に示す各極点図(b)、(c)、(d)において、回折パターンの指数付けが正しく行われている場合、極点図において円形又は楕円形のフレームで示す領域10内にスポットが出る必要がある。単結晶試料2の[0001]方向をTD軸に平行に配置した場合の極点図である図3(b)、(c)、(d)では、領域10内にスポットが現れ、したがってこの場合の指数付けは正確にマッチングされていることが理解される。 In each of the pole figures (b), (c), and (d) shown in FIG. 3 and FIG. 4, when the indexing of the diffraction pattern is correctly performed, in the area 10 indicated by a circular or elliptical frame in the pole figure The spot needs to come out. In FIGS. 3B, 3C, and 3D, which are pole figures when the [0001] direction of the single crystal sample 2 is arranged in parallel to the TD axis, spots appear in the region 10, and therefore in this case It is understood that the indexing is matched exactly.
特に、極点図(c)では領域10内の各スポット(図に矢印で示す)が60度間隔で配置されており、また極点図(d)では各スポットが60度間隔で現れているが、極点図(c)とは30度ずれた位置に現れている。これは、六方晶系における[11−20]方向と、[11−00]方向と等価な[10−10]方向が、図5に示すように30度ずれていることに起因する。したがって、このことからも、図3(a)に示す試料の配置位置において、精度の高い回折パターンの指数付けが行われていることがわかる。 In particular, in the pole figure (c), the spots in the region 10 (indicated by arrows in the figure) are arranged at intervals of 60 degrees, and in the pole figure (d), the spots appear at intervals of 60 degrees. It appears at a position shifted by 30 degrees from the pole figure (c). This is because the [11-20] direction in the hexagonal system and the [10-10] direction equivalent to the [11-00] direction are shifted by 30 degrees as shown in FIG. Therefore, this also shows that indexing of the diffraction pattern with high accuracy is performed at the sample arrangement position shown in FIG.
これに対して、図4(a)に示す試料において、各極点図(b)、(c)、(d)では、スポットが出るべき位置、即ち領域10内にスポットが現れておらず(図の矢印参照)、その結果、指数付けが正確に行われていないことがわかる。 On the other hand, in the sample shown in FIG. 4A, in each of the pole figures (b), (c), and (d), no spot appears in the position where the spot should appear, that is, in the region 10 (FIG. As a result, it can be seen that indexing is not performed correctly.
以上のように、単結晶試料の[0001]方向をTD軸に平行にしてEBSDの測定を行った場合は、回折パターンの精度の高い指数付けが広範囲で可能となる。この理由は、以下のように考えられる。 As described above, when EBSD measurement is performed with the [0001] direction of the single crystal sample parallel to the TD axis, indexing with high accuracy of the diffraction pattern is possible in a wide range. The reason is considered as follows.
図6は、回折パターンを指数付けする場合に利用されるフィッテング用の三角形を示す。指数付けは、三角形の各辺の長さと角度を実際の結晶面の関係に対比させて行うが、EBSDの観察方位をTD//[1−100]とした場合には、(1−210)、(1−100)面の指数付けに利用する三角形と類似の三角形が存在し、これらの間で混同が生じ易いためと考えられる。 FIG. 6 shows a fitting triangle used when indexing diffraction patterns. Indexing is performed by comparing the length and angle of each side of the triangle with the relationship between the actual crystal planes, but when the observation direction of EBSD is TD // [1-100], (1-210) , (1-100) planes, there are triangles similar to the triangles used for indexing, and confusion is likely to occur between them.
図7は、6H−SiC単結晶試料2を、TD//[0001]配置とした場合のEBSDによる回折パターンとその指数を示す図である。図7(a)は、試料の配置状態を示し、図(b)は撮像された菊池パターンを示し、図(c)は、コンピュータ解析によって菊池パターン上に面指数付けを行った結果を示す。図(c)の面指数の分布図から、測定点における結晶方位がコンピュータ解析される。 FIG. 7 is a diagram showing a diffraction pattern by EBSD and its index when the 6H—SiC single crystal sample 2 has a TD // [0001] arrangement. FIG. 7A shows the arrangement state of the sample, FIG. 7B shows the imaged Kikuchi pattern, and FIG. 7C shows the result of surface indexing on the Kikuchi pattern by computer analysis. The crystal orientation at the measurement point is computer-analyzed from the distribution chart of the plane index in FIG.
図8の(a)〜(f)は、図7(c)の面指数分布図に基づく解析結果を示す図である。図8(a)は、図7(a)の試料配置に固定した場合の回折パターンの信号強度を明度として表した像である。図8(a)では、マトリックスと空隙の濃淡が明確に観察されており、後方散乱電子の信号強度は、マトリックス部の結晶方位分布を解析するために充分であることが理解される。図8(b)及び(c)は、面指数の分布図から決定された結晶方位をビジュアル化して示した図であり、図(b)はND軸に対する[11−20]方向の結晶方位分布をカラー(例えば青)で示し、図(c)はND軸に対する[1−100]方向の結晶方位分布をカラー(例えば赤)で示している。図8(d)〜(f)は、(0001)、(11−20)、(1−100)の各格子面の極点図を示している。 (A)-(f) of FIG. 8 is a figure which shows the analysis result based on the surface index distribution map of FIG.7 (c). FIG. 8A is an image showing the signal intensity of the diffraction pattern as lightness when fixed to the sample arrangement of FIG. In FIG. 8A, the density of the matrix and the gap is clearly observed, and it is understood that the signal intensity of the backscattered electrons is sufficient for analyzing the crystal orientation distribution of the matrix portion. FIGS. 8B and 8C are graphs showing the crystal orientation determined from the distribution map of the plane index, and FIG. 8B shows the crystal orientation distribution in the [11-20] direction with respect to the ND axis. (C) shows the crystal orientation distribution in the [1-100] direction with respect to the ND axis in color (eg, red). FIGS. 8D to 8F show pole figures of the lattice planes of (0001), (11-20), and (1-100).
図8(b)および(c)の結晶方位分布から、[11−20]6H−SiCがND軸に沿って配向し、[1−100]6H−SiCがND軸に対して傾角30度で配向していることが理解される。このことは、図8(d)〜(f)の極点図において、(0001)6H−SiCがTD軸両端に分布し、(11−20)6H−SiCおよび(1−100)6H−SiCがRD軸上に30度間隔で交互に分布していることからも明らかである。 From the crystal orientation distributions of FIGS. 8B and 8C, [11-20] 6H—SiC is oriented along the ND axis, and [1-100] 6H—SiC is inclined at 30 degrees with respect to the ND axis. It is understood that they are oriented. This is because (0001) 6H-SiC is distributed at both ends of the TD axis in the pole figures of FIGS. 8D to 8F, and (11-20) 6H-SiC and (1-100) 6H-SiC are It is clear from the fact that they are alternately distributed on the RD axis at intervals of 30 degrees.
図7および図8は、図7(a)の配置関係において、ND//[11−20]となる場合の測定結果であるが、ND//[1−100]となる試料配置においても同様に、TD//[0001]6H−SiCの試料配置が結晶の方位分布の測定に適しているものと考えられる。また、上記の測定は、6H−SiCに対して行ったものであるが、4H−SiCでも同様の結果が得られるものと考えられる。 7 and 8 show the measurement results when ND // [11-20] is obtained in the arrangement relationship of FIG. 7 (a), but the same applies to the sample arrangement that is ND // [1-100]. In addition, it is considered that the sample arrangement of TD // [0001] 6H—SiC is suitable for measurement of crystal orientation distribution. Moreover, although said measurement was performed with respect to 6H-SiC, it is thought that the same result is obtained also with 4H-SiC.
一方、図9および図10に、試料配置をTD//[1−100]とした場合の測定結果を示す。図9(a)は、試料の配置状態を示す図であり、図(b)はこの配置で撮像した菊池パターンを示し、図(c)はコンピュータ解析によって菊池パターン上に面指数付けを行った結果を示す。図(c)の面指数の分布図から、測定点における結晶方位の分布がコンピュータ解析される。 On the other hand, FIG. 9 and FIG. 10 show the measurement results when the sample arrangement is TD // [1-100]. FIG. 9A is a diagram showing the arrangement state of the sample, FIG. 9B shows the Kikuchi pattern imaged in this arrangement, and FIG. 9C shows surface indexing on the Kikuchi pattern by computer analysis. Results are shown. The crystal orientation distribution at the measurement point is computer-analyzed from the distribution chart of the plane index in FIG.
図10の(a)〜(f)は、図9(c)の面指数分布図に基づく解析結果を示す図である。図10(a)は、図9(a)の試料配置に固定した場合の回折パターンの信号強度を明度として表した像である。図10(a)では、マトリックスと空隙の濃淡が明確に観察されており、後方散乱電子の信号強度は、マトリックス部の結晶方位分布を解析するために充分であることが理解される。図10(b)及び(c)は、面指数の分布図から結晶方位をビジュアル化して示す図であり、図(b)はND軸に対する[11−20]方向の結晶方位分布を示し、図(c)はND軸に対する[1−100]方向の結晶方位分布を示している。図10(d)〜(f)は、(0001)、(11−20)、(1−100)の各格子面の極点図を示している。 (A)-(f) of FIG. 10 is a figure which shows the analysis result based on the surface index distribution map of FIG.9 (c). FIG. 10A is an image representing the signal intensity of the diffraction pattern as lightness when the sample arrangement in FIG. 9A is fixed. In FIG. 10A, the density of the matrix and the gap is clearly observed, and it is understood that the signal intensity of the backscattered electrons is sufficient for analyzing the crystal orientation distribution of the matrix portion. FIGS. 10B and 10C are diagrams showing the crystal orientation visualized from the distribution map of the plane index, and FIG. 10B shows the crystal orientation distribution in the [11-20] direction with respect to the ND axis. (C) shows the crystal orientation distribution in the [1-100] direction with respect to the ND axis. FIGS. 10D to 10F show pole figures of the lattice planes of (0001), (11-20), and (1-100).
図10(b)および(c)に示すように、[11−20]6H−SiCおよび[1−100]6H−SiCの結晶方位分布はうまく取れておらず、さらに、図10(d)〜(f)に示した極点図も、分布するべき所にスポットが見られない。これは、図9(c)に示す回折パターンの指数付け精度の低下が原因であると思われる。 As shown in FIGS. 10B and 10C, the crystal orientation distributions of [11-20] 6H—SiC and [1-100] 6H—SiC are not well taken. Further, FIG. In the pole figure shown in (f), no spot is seen where it should be distributed. This seems to be caused by a decrease in the indexing accuracy of the diffraction pattern shown in FIG.
以上のように、六方晶系の単結晶試料においてEBSD法により結晶方位の分布を測定する場合、単結晶試料の[0001]方向が試料座標のTD軸に平行となるように配置した場合、回折パターンのより精度の高い指数付けが可能となり、その結果、広範囲で結晶方位分布の測定が可能となる。 As described above, when the crystal orientation distribution is measured by the EBSD method in a hexagonal single crystal sample, the diffraction is caused when the [0001] direction of the single crystal sample is arranged parallel to the TD axis of the sample coordinates. The pattern can be indexed with higher accuracy, and as a result, the crystal orientation distribution can be measured over a wide range.
1 試料台
2 試料
3 電子銃
4 電子線
5 検出装置
6 後方散乱電子
DESCRIPTION OF SYMBOLS 1 Sample stand 2 Sample 3 Electron gun 4 Electron beam 5 Detector 6 Backscattered electron
Claims (3)
試料座標系におけるTD軸を前記六方晶系単結晶試料の[0001]方向と平行に配置して後方散乱電子回折パターンを取得するステップと、
前記取得した後方散乱電子回折パターンをコンピュータ解析して面指数付けを行うステップと、
前記指数付けされた面指数分布に基づいて前記試料の結晶方位を決定するステップと、を含む、単結晶試料の結晶方位測定方法。 A method of measuring the crystal orientation of a hexagonal single crystal sample by backscattered electron diffraction,
Arranging a TD axis in a sample coordinate system in parallel with the [0001] direction of the hexagonal single crystal sample to obtain a backscattered electron diffraction pattern;
Performing a surface indexing by computer analysis of the acquired backscattered electron diffraction pattern;
Determining the crystal orientation of the sample based on the indexed plane index distribution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007270275A JP5166817B2 (en) | 2007-10-17 | 2007-10-17 | Method for measuring crystal orientation of single crystal samples |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007270275A JP5166817B2 (en) | 2007-10-17 | 2007-10-17 | Method for measuring crystal orientation of single crystal samples |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009098008A true JP2009098008A (en) | 2009-05-07 |
JP5166817B2 JP5166817B2 (en) | 2013-03-21 |
Family
ID=40701152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007270275A Expired - Fee Related JP5166817B2 (en) | 2007-10-17 | 2007-10-17 | Method for measuring crystal orientation of single crystal samples |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5166817B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011071090A1 (en) * | 2009-12-10 | 2011-06-16 | 電気化学工業株式会社 | Method for analyzing bias of crystal orientation distribution |
JP2013217898A (en) * | 2012-03-16 | 2013-10-24 | Hitachi High-Tech Science Corp | Sample preparation device and sample preparation method |
JP2013218901A (en) * | 2012-04-10 | 2013-10-24 | Jeol Ltd | Sample holding device and sample analysis device |
CN103529066A (en) * | 2013-11-05 | 2014-01-22 | 华北电力大学 | Method for calibrating (111) crystal face on cubic crystal back reflection Laue photo |
JP2014178154A (en) * | 2013-03-13 | 2014-09-25 | Tsl Solutions:Kk | Transmission type ebsd method |
JP2017167118A (en) * | 2016-03-15 | 2017-09-21 | 住友金属鉱山株式会社 | Method for analyzing crystal orientation and analyzer of the same |
JP2019158888A (en) * | 2014-02-28 | 2019-09-19 | 学校法人関西学院 | Method for evaluating sic substrate |
JP2020169993A (en) * | 2019-04-02 | 2020-10-15 | 日本製鉄株式会社 | Method for observing and evaluating sintered ore and device for evaluating sintered ore reducibility |
DE112014006546B4 (en) * | 2014-05-09 | 2021-01-21 | Hitachi High-Tech Corporation | Sample processing method and charged particle beam device |
CN113203763A (en) * | 2021-06-04 | 2021-08-03 | 哈尔滨工业大学 | Fast and accurate calibration method for slip line by using pole figure analysis |
CN113376192A (en) * | 2021-06-11 | 2021-09-10 | 华东交通大学 | Method for presuming width of fuzzy chrysanthemum pool strip based on EBSD pattern |
CN113390908A (en) * | 2020-03-12 | 2021-09-14 | 中国科学院上海硅酸盐研究所 | Method for measuring interplanar spacing based on electron back scattering diffraction pattern |
CN114184629A (en) * | 2021-10-09 | 2022-03-15 | 中国航发北京航空材料研究院 | Single crystal material pole figure pole calibration method based on orientation distribution function |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000046762A (en) * | 1998-07-27 | 2000-02-18 | Mitsubishi Electric Corp | Sample evaluating method and apparatus |
JP2002022627A (en) * | 2000-07-12 | 2002-01-23 | Matsushita Electric Ind Co Ltd | Sample for electron beam diffraction and method for producing electron microscope sample |
JP2004285457A (en) * | 2003-01-31 | 2004-10-14 | Kobe Steel Ltd | Titanium sheet with excellent formability, and its manufacturing method |
JP2006112921A (en) * | 2004-10-14 | 2006-04-27 | Jeol Ltd | Reflected electron beam detector |
JP2006194743A (en) * | 2005-01-13 | 2006-07-27 | Canon Inc | Crystal orientation measuring method and sample holder used therefor |
-
2007
- 2007-10-17 JP JP2007270275A patent/JP5166817B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000046762A (en) * | 1998-07-27 | 2000-02-18 | Mitsubishi Electric Corp | Sample evaluating method and apparatus |
JP2002022627A (en) * | 2000-07-12 | 2002-01-23 | Matsushita Electric Ind Co Ltd | Sample for electron beam diffraction and method for producing electron microscope sample |
JP2004285457A (en) * | 2003-01-31 | 2004-10-14 | Kobe Steel Ltd | Titanium sheet with excellent formability, and its manufacturing method |
JP2006112921A (en) * | 2004-10-14 | 2006-04-27 | Jeol Ltd | Reflected electron beam detector |
JP2006194743A (en) * | 2005-01-13 | 2006-07-27 | Canon Inc | Crystal orientation measuring method and sample holder used therefor |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011071090A1 (en) * | 2009-12-10 | 2011-06-16 | 電気化学工業株式会社 | Method for analyzing bias of crystal orientation distribution |
JP2013217898A (en) * | 2012-03-16 | 2013-10-24 | Hitachi High-Tech Science Corp | Sample preparation device and sample preparation method |
DE102013102659B4 (en) | 2012-03-16 | 2021-07-29 | Hitachi High-Tech Science Corp. | Sample preparation facility and sample preparation procedure |
JP2013218901A (en) * | 2012-04-10 | 2013-10-24 | Jeol Ltd | Sample holding device and sample analysis device |
JP2014178154A (en) * | 2013-03-13 | 2014-09-25 | Tsl Solutions:Kk | Transmission type ebsd method |
CN103529066A (en) * | 2013-11-05 | 2014-01-22 | 华北电力大学 | Method for calibrating (111) crystal face on cubic crystal back reflection Laue photo |
JP2019158888A (en) * | 2014-02-28 | 2019-09-19 | 学校法人関西学院 | Method for evaluating sic substrate |
DE112014006546B4 (en) * | 2014-05-09 | 2021-01-21 | Hitachi High-Tech Corporation | Sample processing method and charged particle beam device |
JP2017167118A (en) * | 2016-03-15 | 2017-09-21 | 住友金属鉱山株式会社 | Method for analyzing crystal orientation and analyzer of the same |
JP2020169993A (en) * | 2019-04-02 | 2020-10-15 | 日本製鉄株式会社 | Method for observing and evaluating sintered ore and device for evaluating sintered ore reducibility |
CN113390908A (en) * | 2020-03-12 | 2021-09-14 | 中国科学院上海硅酸盐研究所 | Method for measuring interplanar spacing based on electron back scattering diffraction pattern |
CN113390908B (en) * | 2020-03-12 | 2023-03-10 | 中国科学院上海硅酸盐研究所 | Method for measuring interplanar spacing based on electron back scattering diffraction pattern |
CN113203763A (en) * | 2021-06-04 | 2021-08-03 | 哈尔滨工业大学 | Fast and accurate calibration method for slip line by using pole figure analysis |
CN113203763B (en) * | 2021-06-04 | 2023-07-04 | 哈尔滨工业大学 | Rapid and accurate calibration method for sliding line by utilizing pole figure analysis |
CN113376192A (en) * | 2021-06-11 | 2021-09-10 | 华东交通大学 | Method for presuming width of fuzzy chrysanthemum pool strip based on EBSD pattern |
CN113376192B (en) * | 2021-06-11 | 2023-11-10 | 华东交通大学 | Method for estimating fuzzard pond band width based on EBSD pattern |
CN114184629A (en) * | 2021-10-09 | 2022-03-15 | 中国航发北京航空材料研究院 | Single crystal material pole figure pole calibration method based on orientation distribution function |
CN114184629B (en) * | 2021-10-09 | 2024-04-09 | 中国航发北京航空材料研究院 | Orientation distribution function-based single crystal material pole figure pole point calibration method |
Also Published As
Publication number | Publication date |
---|---|
JP5166817B2 (en) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5166817B2 (en) | Method for measuring crystal orientation of single crystal samples | |
JP5839626B2 (en) | Methods and devices for high-throughput crystal structure analysis by electron diffraction | |
JP6777951B2 (en) | Evaluation method of SiC substrate | |
Schwarzer et al. | Present state of electron backscatter diffraction and prospective developments | |
King et al. | First laboratory X-ray diffraction contrast tomography for grain mapping of polycrystals | |
JP4022512B2 (en) | Crystal analysis method and crystal analysis apparatus | |
US20200279716A1 (en) | Reference sample with inclined support base, method for evaluating scanning electron microscope, and method for evaluating sic substrate | |
US10811217B2 (en) | Crystal orientation figure creating device, charged particle beam device, crystal orientation figure creating method, and program | |
JP6381269B2 (en) | X-ray generator tube, X-ray generator, X-ray imaging system including the target and the target | |
Chen et al. | Optimization of EBSD parameters for ultra‐fast characterization | |
US20140346351A1 (en) | Orientation imaging using wide angle convergent beam diffraction in transmission electron microscopy | |
Caplins et al. | Orientation mapping of graphene using 4D STEM-in-SEM | |
Meng et al. | Three-dimensional nanostructure determination from a large diffraction data set recorded using scanning electron nanodiffraction | |
US9396907B2 (en) | Method of calibrating a scanning transmission charged-particle microscope | |
JP6314890B2 (en) | Crystal orientation analysis method and analyzer | |
Sparks et al. | High-precision orientation mapping from spherical harmonic transform indexing of electron backscatter diffraction patterns | |
Kaboli et al. | Rotation contour contrast reconstruction using electron backscatter diffraction in a scanning electron microscope | |
Nave et al. | Imperfection and radiation damage in protein crystals studied with coherent radiation | |
Hayashida et al. | Accurate measurement of relative tilt and azimuth angles in electron tomography: A comparison of fiducial marker method with electron diffraction | |
Feng et al. | Imaging of Single La Vacancies in LaMnO $ _ {3} $ | |
JP7188199B2 (en) | Error processing device, charged particle beam device, error processing method and program | |
JP2014022174A (en) | Sample table, and electron microscope equipped with the same | |
Kim et al. | Alignment Methods and Analysis of Tilt Angle Range for the Data Scanned in Electron Tomography | |
JP2021043073A (en) | Error calculation device, charged particle beam device, error calculation method and program | |
Kamimura et al. | Low-energy Electron Diffractive Imaging for Three-dimensional Light-element Materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120424 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151228 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151228 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |