JP2009097931A - Microchannel fluid visualization method and device using the method - Google Patents

Microchannel fluid visualization method and device using the method Download PDF

Info

Publication number
JP2009097931A
JP2009097931A JP2007268263A JP2007268263A JP2009097931A JP 2009097931 A JP2009097931 A JP 2009097931A JP 2007268263 A JP2007268263 A JP 2007268263A JP 2007268263 A JP2007268263 A JP 2007268263A JP 2009097931 A JP2009097931 A JP 2009097931A
Authority
JP
Japan
Prior art keywords
microchannel
metal film
light
fluid
fluid flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007268263A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Iga
光博 伊賀
Makoto Kawano
誠 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007268263A priority Critical patent/JP2009097931A/en
Publication of JP2009097931A publication Critical patent/JP2009097931A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchannel fluid visualization method that dispenses with complicated image processings, capable of visualizing the state of fluid flowing in a microchannel, in inexpensive manner, in a small-size, to provide and a device that uses the method. <P>SOLUTION: This device using the microchannel fluid visualization method, capable of visualizing the state of the fluid flowing in the microchannel, is equipped with the microchannel constituted of a channel wall made of a transparent material, and has a metal film formed on a part of the inner wall surface; an incident optical system for allowing a light having a wide wavelength domain to enter so as to be reflected totally by the metal film, and exciting surface plasmon wave; a polarizer for controlling the polarization direction of the outgoing light in the incident optical system; and a receiving optical system for receiving and photographic reflected light from the metal film. In the device, many fine particles are mixed into the fluid flowing in the microchannel, and the light intensity of the reflected light is observed as time series. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法及び装置に関し、特に複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法及びこれを用いた装置に関する。   The present invention relates to a micro-channel fluid visualization method and apparatus for visualizing the status of a fluid flowing in a micro-channel, and in particular, visualizes the status of a fluid flowing in a micro-channel in a small and inexpensive manner that does not require complicated image processing. The present invention relates to a microchannel fluid visualization method and an apparatus using the same.

従来の微小流路内を流れる流体の状況を可視化する方法等に関連する先行技術文献としては次のようなものがある。   Prior art documents related to a conventional method for visualizing the state of a fluid flowing in a microchannel include the following.

特開2003−232725号公報JP 2003-232725 A 特表2003−322659号公報Special table 2003-322659 gazette 特開2004−028660号公報JP 2004-028660 A 特開2005−283556号公報JP 2005-283556 A 特開2006−058321号公報JP 2006-058321 A 特開2007−010524号公報JP 2007-010524 A

図15は従来の微小流路内を流れる流体の状況を可視化する方法を用いた装置の一例を示す構成ブロック図である。特に、図15に示す従来例は、流体中を流れる蛍光物質の蛍光発光を連続的に撮影し解析することにより流体の状況を可視化するPIV(Particle Imaging Velocimetry)である。   FIG. 15 is a block diagram showing an example of an apparatus using a conventional method for visualizing the state of a fluid flowing in a microchannel. In particular, the conventional example shown in FIG. 15 is PIV (Particle Imaging Velocimetry) that visualizes the state of a fluid by continuously photographing and analyzing fluorescence emission of a fluorescent substance flowing in the fluid.

図15において、1はレーザ光を出射するレーザ光源、2はミラー、3は微小流路が形成されたマイクロチップ、4はCCD(Charge-Coupled Devices)カメラ等の撮像手段、5は撮像された画像の処理及び解析等を行なうコンピュータ等の演算処理手段である。   In FIG. 15, 1 is a laser light source that emits laser light, 2 is a mirror, 3 is a microchip with a microchannel formed, 4 is an imaging means such as a CCD (Charge-Coupled Devices) camera, and 5 is imaged. An arithmetic processing means such as a computer for processing and analyzing images.

レーザ光源1の出力光であるレーザ光はミラー2で反射され、マイクロチップ3に形成された微小流路に照射される。また、マイクロチップ3に形成された微小流路で発生した蛍光は撮像手段4に入射され、撮像手段4の出力である画像情報は演算処理手段5に供給される。   Laser light, which is output light from the laser light source 1, is reflected by the mirror 2 and applied to a microchannel formed in the microchip 3. In addition, the fluorescence generated in the microchannel formed in the microchip 3 is incident on the imaging unit 4, and the image information that is the output of the imaging unit 4 is supplied to the arithmetic processing unit 5.

ここで、図15に示す従来例の動作を説明する。マイクロチップ3に形成された微小流路には図示しない手段によって、多数の蛍光物質(微小粒子)を混合した流体が流れている。また、微小流路を流れている多数の蛍光物質にはレーザ光が照射されそれぞれ蛍光を発光する。   Here, the operation of the conventional example shown in FIG. 15 will be described. A fluid in which a large number of fluorescent substances (microparticles) are mixed flows through a microchannel formed in the microchip 3 by means (not shown). In addition, a large number of fluorescent materials flowing through the microchannels are irradiated with laser light to emit fluorescence.

このため、多数の蛍光物質は蛍光を発光しながら微小流路内を流体の流れに従ってそれぞれ流れて行くことになる。   For this reason, a large number of fluorescent substances flow in the microchannel according to the flow of the fluid while emitting fluorescence.

そして、撮像手段4により蛍光物質の蛍光の発光状況の画像を時系列的に撮影し、演算処理手段5で画像解析することにより、マイクロチップに形成された微小流路内を流れる流体の状況を時系列に可視化する。   Then, an image of the fluorescence emission state of the fluorescent material is taken in time series by the imaging means 4 and the image processing is analyzed by the arithmetic processing means 5, so that the state of the fluid flowing in the microchannel formed in the microchip is determined. Visualize in time series.

この結果、微小流路に多数の蛍光物質(微小粒子)を混合した流体を流すと共にレーザ光を照射し、レーザ光の照射で生じる蛍光物質の蛍光の発光状況の画像を時系列的に撮影し画像解析することにより、微小流路内を流れる流体の状況を可視化することができる。   As a result, a fluid in which a large number of fluorescent substances (microparticles) are mixed is allowed to flow through the microchannel and laser light is irradiated, and images of the fluorescence emission status of the fluorescent substances generated by laser light irradiation are taken in time series. By analyzing the image, it is possible to visualize the state of the fluid flowing in the microchannel.

しかし、図15に示す従来例では、蛍光物質の発光する蛍光は微弱であり、このような微弱な蛍光を捉えるために、高強度で大型なレーザ光源や、高感度な撮像手段等が必要となり、高価で大型な装置となってしまうと言った問題点があった。   However, in the conventional example shown in FIG. 15, the fluorescence emitted from the fluorescent material is weak, and in order to capture such weak fluorescence, a high-intensity and large-scale laser light source, a highly sensitive imaging means, and the like are required. There was a problem that it would be an expensive and large device.

また、蛍光物質により照射するレーザ光の励起波長が異なるため、使用する蛍光物質毎にレーザ光源を選択しなければならないと言った問題点があった。   Further, since the excitation wavelength of the laser light irradiated by the fluorescent material is different, there is a problem that a laser light source must be selected for each fluorescent material to be used.

また、レーザ光の透過する全ての領域において蛍光発光が生じるため、微小流路全体に流れる流体の状況を可視化することはできるものの、一定の深さの層に流れる流体の状況を可視化することが困難である。   In addition, since the fluorescence emission occurs in all the areas where the laser light is transmitted, it is possible to visualize the state of the fluid flowing through the entire microchannel, but it is possible to visualize the state of the fluid flowing through the layer of a certain depth. Have difficulty.

確かに、複雑な画像処理を行うことにより、或いは、共焦点顕微鏡を用いることにより、一定の深さの層に流れる流体の状況を可視化することは可能であるものの、装置が大きくなり高価になってしまうと言った問題点があった。
従って本発明が解決しようとする課題は、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法及びこれを用いた装置を実現することにある。
Certainly, it is possible to visualize the state of fluid flowing in a layer of a certain depth by performing complex image processing or using a confocal microscope, but the apparatus becomes large and expensive. There was a problem that said.
Therefore, the problem to be solved by the present invention is to realize a micro-channel fluid visualization method and an apparatus using the same that visualize the state of fluid flowing in the micro-channel in a small and inexpensive manner that does not require complicated image processing. It is in.

このような課題を達成するために、本発明のうち請求項1記載の発明は、
微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法を用いた装置において、
透明材質の流路壁で構成され内壁面の一部に金属膜が形成された微小流路と、広い波長領域の光を前記金属膜で全反射するように入射して表面プラズモン波を励起させる入射光学系と、この入射光学系の出射する光の偏光方向を制御する偏光子と、前記金属膜からの反射光を受光し撮影する受光光学系とを備え、前記微小流路内を流れる流体に微小粒子を多数混合させると共に前記反射光の光強度を時系列で観測することにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
In the apparatus using the micro-channel fluid visualization method for visualizing the state of the fluid flowing in the micro-channel,
A micro-channel with a metal film formed on a part of the inner wall surface, which is composed of a transparent channel wall, and a light having a wide wavelength range are incident so as to be totally reflected by the metal film to excite surface plasmon waves. A fluid that flows through the minute flow path, comprising an incident optical system, a polarizer that controls the polarization direction of light emitted from the incident optical system, and a light receiving optical system that receives and captures the reflected light from the metal film By mixing a large number of microparticles and observing the light intensity of the reflected light in time series, it is possible to visualize the state of the fluid flowing in the microchannel in a small and inexpensive manner without the need for complicated image processing. Become.

請求項2記載の発明は、
請求項1記載の発明である装置において、
前記前記微小粒子が、
誘電体微小粒子であることにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。
The invention according to claim 2
The device according to claim 1,
The fine particles are
Since the dielectric fine particles are used, it is possible to visualize the state of the fluid flowing in the minute flow path at a low cost and without complicated image processing.

請求項3記載の発明は、
請求項1記載の発明である装置において、
前記微小粒子が、
金属微小粒子であることにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。
The invention described in claim 3
The device according to claim 1,
The fine particles are
By being a metal microparticle, complicated image processing is not required, and it is possible to visualize the state of the fluid flowing through the microchannel in a small and inexpensive manner.

請求項4記載の発明は、
微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法を用いた装置において、
透明材質の流路壁で構成され内壁面の一部に金属膜が形成された微小流路と、広い波長領域の光を前記金属膜で全反射するように入射して表面プラズモン波を励起させる入射光学系と、この入射光学系の出射する光の偏光方向を制御する偏光子と、前記金属膜表面で生じる蛍光を受光し撮影する受光光学系とを備え、前記微小流路内を流れる流体に蛍光微小粒子を多数混合させると共に前記蛍光の光強度を時系列で観測することにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。
The invention according to claim 4
In the apparatus using the micro-channel fluid visualization method for visualizing the state of the fluid flowing in the micro-channel,
A micro-channel with a metal film formed on a part of the inner wall surface, which is composed of a transparent channel wall, and a light having a wide wavelength range are incident so as to be totally reflected by the metal film to excite surface plasmon waves. A fluid that flows through the microchannel, including an incident optical system, a polarizer that controls the polarization direction of the light emitted from the incident optical system, and a light receiving optical system that receives and captures fluorescence generated on the surface of the metal film By mixing a large number of fluorescent microparticles and observing the light intensity of the fluorescence in time series, it is possible to visualize the state of the fluid flowing in the microchannel in a small and inexpensive manner, without complicated image processing. Become.

請求項5記載の発明は、
請求項4記載の発明である装置において、
前記蛍光微小粒子の内部が金属体であることにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。
The invention according to claim 5
The device according to claim 4,
Since the inside of the fluorescent microparticle is a metal body, it is possible to visualize the state of the fluid flowing through the microchannel in a small and inexpensive manner without requiring complicated image processing.

請求項6記載の発明は、
微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法であって、
微小流路内を流れる流体に微小粒子が多数混合させると共に、微小流路内に金属膜を形成し当該金属膜に全反射するように光を入射して表面プラズモン波を微小流路内の金属膜表面に励起して反射光の光強度を時系列で観測することが可能になる。
The invention described in claim 6
A microchannel fluid visualization method for visualizing the state of a fluid flowing in a microchannel,
A large number of microparticles are mixed in the fluid flowing in the microchannel, and a metal film is formed in the microchannel, and light is incident so as to be totally reflected on the metal film, so that surface plasmon waves are transmitted to the metal in the microchannel. It becomes possible to observe the light intensity of the reflected light in time series by exciting the film surface.

請求項7記載の発明は、
請求項6記載の発明である微小流路流体可視化方法であって、
前記微小粒子が、
誘電体微小粒子であることにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。
The invention described in claim 7
A microchannel fluid visualization method according to claim 6,
The fine particles are
Since the dielectric fine particles are used, it is possible to visualize the state of the fluid flowing in the minute flow path at a low cost and without complicated image processing.

請求項8記載の発明は、
請求項6記載の発明である微小流路流体可視化方法であって、
前記微小粒子が、
金属微小粒子であることにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。
The invention described in claim 8
A microchannel fluid visualization method according to claim 6,
The fine particles are
By being a metal microparticle, complicated image processing is not required, and it is possible to visualize the state of the fluid flowing through the microchannel in a small and inexpensive manner.

請求項9記載の発明は、
微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法であって、
微小流路内を流れる流体に蛍光微小粒子が多数混合させると共に、微小流路内に金属膜を形成し当該金属膜に全反射するように光を入射して表面プラズモン波を微小流路内の金属膜表面に励起して、金属膜表面で生じた蛍光の光強度を時系列で観測することにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。
The invention according to claim 9
A microchannel fluid visualization method for visualizing the state of a fluid flowing in a microchannel,
A large number of fluorescent microparticles are mixed in the fluid flowing in the microchannel, and a metal film is formed in the microchannel and light is incident so as to be totally reflected on the metal film. Visualizes the state of the fluid flowing in the microchannel in a small and inexpensive manner without complicated image processing by exciting the metal film surface and observing the light intensity of the fluorescence generated on the metal film surface in time series It becomes possible.

請求項10記載の発明は、
請求項9記載の発明である微小流路流体可視化方法であって、
前記蛍光微小粒子の内部が金属体であることにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。
The invention according to claim 10 is:
A microchannel fluid visualization method according to claim 9,
Since the inside of the fluorescent microparticle is a metal body, it is possible to visualize the state of the fluid flowing through the microchannel in a small and inexpensive manner without requiring complicated image processing.

本発明によれば次のような効果がある。
請求項1,2,3,6,7及び請求項8の発明によれば、微小流路内を流れる流体に微小粒子が多数混合させると共に、微小流路内に金属膜を形成し当該金属膜に全反射するように光を入射して表面プラズモン波を微小流路内の金属膜表面に励起して反射光の光強度を時系列で観測することにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。
The present invention has the following effects.
According to the first, second, third, sixth, seventh and eighth aspects of the present invention, a large number of microparticles are mixed in the fluid flowing in the microchannel, and a metal film is formed in the microchannel to form the metal film. Light is incident so that it is totally reflected, surface plasmon waves are excited on the surface of the metal film in the microchannel, and the light intensity of the reflected light is observed in time series, which eliminates the need for complicated image processing and is inexpensive. It becomes possible to visualize the state of the fluid flowing through the microchannel in a small size.

また、請求項4,5,9及び請求項10の発明によれば、微小流路内を流れる流体に微小粒子が多数混合させると共に、微小流路内に金属膜を形成し当該金属膜に全反射するように光を入射して表面プラズモン波を微小流路内の金属膜表面に励起して金属膜表面で生じる蛍光の光強度を時系列で観測することにより、複雑な画像処理が不要で安価で小型に微小流路内を流れる流体の状況を可視化することが可能になる。   According to the fourth, fifth, ninth, and tenth aspects of the present invention, a large number of fine particles are mixed with the fluid flowing in the fine flow path, and a metal film is formed in the fine flow path so that the entire metal film is formed. Light is incident so as to be reflected, and surface plasmon waves are excited on the surface of the metal film in the microchannel to observe the light intensity of the fluorescence generated on the surface of the metal film in time series, eliminating the need for complicated image processing. It is possible to visualize the state of the fluid flowing through the microchannel in a small and inexpensive manner.

以下本発明を図面を用いて詳細に説明する。図1は本発明に係る微小流路流体可視化方法を用いた装置の一実施例を示す断面図である。但し、図1において微小流路は微小流路に垂直な方向の断面図として示している。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of an apparatus using a microchannel fluid visualization method according to the present invention. However, in FIG. 1, the microchannel is shown as a cross-sectional view in a direction perpendicular to the microchannel.

図1において、6及び7は微小流路を構成する透明材質(例えば、石英やガラス等)の流路壁、8は流路壁7の表面に形成された金属膜、9は白色光等の広い波長領域の光を出射するLED(Light Emitting Diode)等の入射光学系、10は光の偏光方向を制御する偏光子、11はプリズム、12は反射光を受光し信号処理を行う汎用のCCDカメラ等の受光光学系である。   In FIG. 1, 6 and 7 are flow path walls made of a transparent material (for example, quartz or glass) constituting a micro flow path, 8 is a metal film formed on the surface of the flow path wall 7, and 9 is white light or the like. Incident optical system such as LED (Light Emitting Diode) that emits light in a wide wavelength region, 10 is a polarizer that controls the polarization direction of light, 11 is a prism, 12 is a general-purpose CCD that receives reflected light and performs signal processing. It is a light receiving optical system such as a camera.

流路壁6及び7により構成される微小流路内であって、流路壁7の表面には表面プラズモン共鳴を励起するための金属膜8が形成される。また、金属膜8が形成された流路壁7の外側にはプリズム11の底辺が密着するように固定される。   A metal film 8 for exciting surface plasmon resonance is formed on the surface of the flow path wall 7 in the micro flow path constituted by the flow path walls 6 and 7. Further, the prism 11 is fixed so that the bottom side of the prism 11 is in close contact with the outside of the flow path wall 7 on which the metal film 8 is formed.

一方、入射光学系9の出力光は偏光子10に入射され、偏光子10から出射されるp偏光の光はプリズム11及び透明な流路壁7を透過して金属膜8に入射される。金属膜8からの反射光は透明な流路壁7及びプリズム11を透過して受光光学系12に入射される。   On the other hand, the output light of the incident optical system 9 enters the polarizer 10, and the p-polarized light emitted from the polarizer 10 passes through the prism 11 and the transparent flow path wall 7 and enters the metal film 8. The reflected light from the metal film 8 passes through the transparent flow path wall 7 and the prism 11 and enters the light receiving optical system 12.

また、図2は微小流路に水平な方向の断面図であり、図2中”WC11”及び”WC12”に示す2つの微小流路が図2中”PT11”に示す位置で合流し、図2中”WC13”に示す微小流路となる、所謂、Y字型の微小流路が形成されている。   FIG. 2 is a cross-sectional view in the horizontal direction to the micro flow path. The two micro flow paths indicated by “WC11” and “WC12” in FIG. 2 merge at the position indicated by “PT11” in FIG. 2, a so-called Y-shaped microchannel, which is a microchannel indicated by “WC13”, is formed.

例えば、図2中”IN11”及び”IN12”に示す2つの流入口から異なる成分の流体を導入し、図2中”PT11”に示す合流部で反応を起こさせ、図2中”OT11”に示す流出口から生成物を収集することができる。   For example, fluids of different components are introduced from the two inlets indicated by “IN11” and “IN12” in FIG. 2, and a reaction is caused at the junction indicated by “PT11” in FIG. 2, to “OT11” in FIG. Product can be collected from the outlet shown.

また、図1に示す金属膜が形成され光の入射及び反射を行なう部分は、図2中”RG13”に示すような、微小流路”WC13”の一部であるものとする。   Further, it is assumed that the portion where the metal film shown in FIG. 1 is formed and on which light is incident and reflected is a part of the minute flow path “WC13” as indicated by “RG13” in FIG.

ここで、図1に示す実施例の動作を図3、図4、図5、図6、図7、図8及び図9を用いて説明する。図3、図6及び図8は微小流路内の金属膜の周辺の状況を説明する説明図、図4は入射光学系9の出力光のスペクトルを示す特性曲線図、図5、図7及び図9は金属膜からの反射光のスペクトルを示す特性曲線図である。また、図3、図6及び図8において符号は図1と同一符号を付している。   Here, the operation of the embodiment shown in FIG. 1 will be described with reference to FIGS. 3, 4, 5, 6, 7, 8 and 9. 3, FIG. 6 and FIG. 8 are explanatory diagrams for explaining the situation around the metal film in the microchannel, FIG. 4 is a characteristic curve diagram showing the spectrum of the output light of the incident optical system 9, and FIGS. FIG. 9 is a characteristic curve diagram showing a spectrum of reflected light from the metal film. 3, 6 and 8, the same reference numerals as those in FIG. 1 are given.

入射光学系9からの出力光は金属膜8に対し全反射条件を満足した角度”θ”で入射され、全反射される。この時、入射光のエネルギーにより図1中”SP01”に示すような表面プラズモン波が励起される。   The output light from the incident optical system 9 is incident on the metal film 8 at an angle “θ” that satisfies the total reflection condition, and is totally reflected. At this time, the surface plasmon wave as shown by “SP01” in FIG. 1 is excited by the energy of the incident light.

表面プラズモン波とは、金属膜8の表面(入射光の入射面の裏側であって、微小流路内部:以下、単に、金属膜の表面と呼ぶ。)より波長程度染み出すエバネッセント波であり、金属膜8の表面の近傍に存在する物質と相互作用を生じる。   The surface plasmon wave is an evanescent wave that oozes out from the surface of the metal film 8 (behind the incident surface of incident light and inside the microchannel: hereinafter simply referred to as the surface of the metal film) to a wavelength. It interacts with substances present in the vicinity of the surface of the metal film 8.

例えば、微小流路内を流れる流体には図1中”PT01”に示す微小粒子が多数混合されており、図1中”SP01”に示す表面プラズモン波の近傍に存在する図1中”PT02”に示す微小粒子と相互作用を生じることになる。   For example, the fluid flowing in the microchannel is mixed with a large number of microparticles indicated by “PT01” in FIG. 1, and “PT02” in FIG. 1 exists in the vicinity of the surface plasmon wave indicated by “SP01” in FIG. This causes an interaction with the fine particles shown in FIG.

図3は、金属膜8の表面に微小粒子が存在しない場合の状況を示しており、図3中”SP21”に示す表面プラズモン波と微小粒子とは近接していないので、図3中”LQ21”に示す微小流路内を流れている流体との間で相互作用を生じることになる。   FIG. 3 shows a situation where there are no microparticles on the surface of the metal film 8. Since the surface plasmon wave indicated by “SP21” in FIG. 3 and the microparticles are not close to each other, “LQ21” in FIG. Interaction with the fluid flowing in the microchannel shown in FIG.

このような状況下で、図4中”CH31”に示すようなスペクトルを有する光を金属膜8に入射した場合、受光光学系12において、図5中”CH41”に示すような反射光のスペクトルを得ることができる。   Under such circumstances, when light having a spectrum as indicated by “CH31” in FIG. 4 is incident on the metal film 8, the light-receiving optical system 12 reflects the spectrum of reflected light as indicated by “CH41” in FIG. Can be obtained.

例えば、図5中”CH41”は、入射角”θ=70度”、金属膜として”Au”、膜厚”50nm”、流路壁屈折率”1.51509”、流体屈折率”1.333”とした場合の反射光のスペクトルである。   For example, “CH41” in FIG. 5 has an incident angle “θ = 70 degrees”, a metal film “Au”, a film thickness “50 nm”, a channel wall refractive index “1.51509”, and a fluid refractive index “1.333”. Is the spectrum of the reflected light.

図5中”CH41”から分かるように、図5中”WL41”に示す波長(共鳴波長)で最も大きな光減衰を生じる特性を有する。従って、図5中”WL41”に示す波長(共鳴波長)での光減衰の有無により、金属膜8の近傍の図3中”LQ21”に示す流体の有無を判断することができる。   As can be seen from “CH41” in FIG. 5, it has the characteristic of causing the largest optical attenuation at the wavelength (resonance wavelength) indicated by “WL41” in FIG. Therefore, the presence or absence of the fluid indicated by “LQ21” in FIG. 3 in the vicinity of the metal film 8 can be determined based on the presence or absence of light attenuation at the wavelength (resonance wavelength) indicated by “WL41” in FIG.

図6は、金属膜8の表面に微小粒子、特に、誘電体微小粒子が存在する場合の状況を示しており、図6中”SP51”に示す表面プラズモン波には図6中”PT51”に示す誘電体微小粒子が近接しているので、図6中”PT51”に示す誘電体微小粒子及び図6中”LQ51”に示す微小流路内を流れている流体との間で相互作用を生じることになる。   FIG. 6 shows a situation where microparticles, particularly dielectric microparticles, are present on the surface of the metal film 8. The surface plasmon wave indicated by “SP51” in FIG. 6 is indicated by “PT51” in FIG. Since the dielectric microparticles shown are close to each other, an interaction occurs between the dielectric microparticles indicated by “PT51” in FIG. 6 and the fluid flowing in the microchannel indicated by “LQ51” in FIG. It will be.

このような状況下で、図4中”CH31”に示すようなスペクトルを有する光を金属膜8に入射した場合、受光光学系12において、図7中”CH61”に示すような反射光のスペクトルを得ることができる。   Under such circumstances, when light having a spectrum as indicated by “CH31” in FIG. 4 is incident on the metal film 8, the light-receiving optical system 12 reflects the spectrum of reflected light as indicated by “CH61” in FIG. Can be obtained.

例えば、誘電対微小粒子の屈折率が流路壁の屈折率よりも大きい場合、表面プラズモン波は励起されず、光減衰が生じないので、図7中”CH61”に示すような反射光のスペクトルを得ることができる。   For example, when the refractive index of the dielectric versus fine particles is larger than the refractive index of the flow path wall, the surface plasmon wave is not excited and no light attenuation occurs, so the spectrum of reflected light as shown by “CH61” in FIG. Can be obtained.

この場合、共鳴波長における光減衰の大きさを観測することに加えて、スペクトル全域の光強度を用いることにより、より高コントラストに金属膜8の近傍の流体の状況を把握することができる。   In this case, in addition to observing the magnitude of light attenuation at the resonance wavelength, the state of the fluid in the vicinity of the metal film 8 can be grasped with higher contrast by using the light intensity in the entire spectrum.

また、例えば、誘電対微小粒子の屈折率が流路壁の屈折率よりも小さい場合、表面プラズモン波が励起され、図7中”WL61”に示す波長(共鳴波長)で光減衰が生じるので、図7中”CH62”に示すような反射光のスペクトルを得ることができる。   In addition, for example, when the refractive index of the dielectric pair microparticles is smaller than the refractive index of the flow path wall, the surface plasmon wave is excited and light attenuation occurs at the wavelength (resonance wavelength) indicated by “WL61” in FIG. A spectrum of reflected light as indicated by “CH62” in FIG. 7 can be obtained.

この場合、図7中”WL62”に示す流体の波長(共鳴波長)と、図7中”WL61”に示す波長(共鳴波長)における光強度の変動を観察することにより、金属膜8の近傍の流体の状況を把握することができる。   In this case, by observing the fluctuation of the light intensity at the wavelength (resonance wavelength) of the fluid indicated by “WL62” in FIG. 7 and the wavelength (resonance wavelength) indicated by “WL61” in FIG. The situation of the fluid can be grasped.

例えば、金属膜8の近傍に誘電体微小粒子(屈折率が流路壁の屈折率よりも小さいもの)が存在しない場合には、図7中”WL62”に示す波長(共鳴波長)で光減衰が観測され、金属膜8の近傍に誘電体微小粒子(屈折率が流路壁の屈折率よりも小さいもの)が存在する場合には、図7中”WL61”に示す波長(共鳴波長)で光減衰が観測されることになるので、金属膜8の近傍における誘電体微小粒子(流体)の動きを把握することができる。   For example, when there are no dielectric fine particles (having a refractive index smaller than the refractive index of the channel wall) in the vicinity of the metal film 8, light attenuation is performed at the wavelength (resonance wavelength) indicated by “WL62” in FIG. When dielectric fine particles (having a refractive index smaller than the refractive index of the channel wall) are present in the vicinity of the metal film 8, the wavelength (resonance wavelength) indicated by “WL61” in FIG. Since light attenuation is observed, the movement of the dielectric fine particles (fluid) in the vicinity of the metal film 8 can be grasped.

さらに、例えば、誘電対微小粒子の屈折率が流路壁の屈折率よりも小さく、尚且つ、誘電体微小粒子が金属膜から若干離れた位置に存在する場合等、表面プラズモン波が励起され、図7中”CH63”に示す流体のみが存在する場合の特性と、図7中”CH62”に示す特性を併せ持つような反射光のスペクトルを得ることができる。   Furthermore, for example, when the refractive index of the dielectric pair microparticles is smaller than the refractive index of the flow path wall, and the dielectric microparticles are present at a position slightly away from the metal film, the surface plasmon wave is excited, It is possible to obtain a spectrum of reflected light having both the characteristic when only the fluid indicated by “CH63” in FIG. 7 is present and the characteristic indicated by “CH62” in FIG.

この場合、図7中”WL62”に示す流体の波長(共鳴波長)と、図7中”WL61”に示す波長(共鳴波長)における光強度の比率を観察することにより、金属膜8の近傍の流体の状況を把握することができる。   In this case, by observing the ratio of the light intensity at the wavelength (resonance wavelength) of the fluid indicated by “WL62” in FIG. 7 and the wavelength (resonance wavelength) indicated by “WL61” in FIG. The situation of the fluid can be grasped.

また、図8は、金属膜8の表面に微小粒子、特に、金属微小粒子が存在する場合の状況を示しており、図8中”SP71”に示す表面プラズモン波には図8中”PT71”に示す金属微小粒子が近接しているので、図8中”PT71”に示す金属微小粒子及び図8中”LQ71”に示す微小流路内を流れている流体との間で相互作用を生じることになる。   FIG. 8 shows a situation where fine particles, in particular, metal fine particles are present on the surface of the metal film 8, and the surface plasmon wave indicated by “SP71” in FIG. 8 shows “PT71” in FIG. Since the metal microparticles shown in FIG. 8 are close to each other, an interaction occurs between the metal microparticles shown in “PT71” in FIG. 8 and the fluid flowing in the microchannel shown in “LQ71” in FIG. become.

このような状況下で、図4中”CH31”に示すようなスペクトルを有する光を金属膜8に入射した場合、受光光学系12において、図9中”CH81”に示すような反射光のスペクトルを得ることができる。   Under such circumstances, when light having a spectrum as indicated by “CH31” in FIG. 4 is incident on the metal film 8, the light receiving optical system 12 reflects the spectrum of reflected light as indicated by “CH81” in FIG. Can be obtained.

例えば、金属膜8に金属微小粒子が近づくことにより、表面プラズモン波の電場増強が生じるため、図9中”CH82”に示す表面プラズモン波の電場増強が無い場合と比較して、図9中”WL81”に示す流体の波長(共鳴波長)において、大きな光減衰を生じることになる。   For example, since the electric field enhancement of the surface plasmon wave occurs when the metal fine particles approach the metal film 8, the electric field of the surface plasmon wave shown in “CH82” in FIG. At the fluid wavelength (resonance wavelength) indicated by WL81 ″, large light attenuation occurs.

この場合、共鳴波長における光減衰の増減のみならず、スペクトルの全波長域の光強度を観測することにより、より高コントラストに金属膜8の近傍の流体の状況を把握することができる。   In this case, the state of the fluid in the vicinity of the metal film 8 can be grasped with higher contrast by observing not only the increase / decrease of the light attenuation at the resonance wavelength but also the light intensity in the entire wavelength region of the spectrum.

この結果、微小流路内を流れる流体に微小粒子が多数混合させると共に、微小流路内に金属膜を形成し当該金属膜に全反射するように光を入射して表面プラズモン波を微小流路内の金属膜表面に励起して反射光を観測することにより、金属膜の近傍における微小粒子(流体)の動きを把握することができる。   As a result, a large number of micro particles are mixed with the fluid flowing in the micro flow channel, and a metal film is formed in the micro flow channel, and light is incident so as to be totally reflected on the metal film, so that the surface plasmon wave is transmitted to the micro flow channel. By observing reflected light by exciting the surface of the inner metal film, it is possible to grasp the movement of fine particles (fluid) in the vicinity of the metal film.

また、このような表面プラズモン波の電場増強を用いることにより、より明るい蛍光スペクトルを得ることができる。   Moreover, a brighter fluorescence spectrum can be obtained by using such an electric field enhancement of the surface plasmon wave.

図10は本発明に係る微小流路流体可視化方法を用いた装置の他の実施例を示す断面図である。但し、図1において微小流路は微小流路に垂直な方向の断面図として示しており、光減衰により生じる蛍光を観測するものである。   FIG. 10 is a sectional view showing another embodiment of the apparatus using the microchannel fluid visualization method according to the present invention. However, in FIG. 1, the microchannel is shown as a cross-sectional view in the direction perpendicular to the microchannel, and observes fluorescence generated by light attenuation.

図10において、13は白色光等の広い波長領域の光を出射する入射光学系、14は光の偏光方向を制御する偏光子、15は透明材質(例えば、石英やガラス等)の流路壁で構成され内壁面の一部に金属膜が形成された微小流路(図1に示す微小流路と同じもの)、16は微小流路内で発生した蛍光を受光し撮影するCCDカメラ等の受光光学系である。   In FIG. 10, 13 is an incident optical system that emits light in a wide wavelength region such as white light, 14 is a polarizer that controls the polarization direction of light, and 15 is a channel wall made of a transparent material (for example, quartz or glass). 1 is a microchannel (same as the microchannel shown in FIG. 1) in which a metal film is formed on a part of the inner wall surface, and 16 is a CCD camera or the like that receives and shoots fluorescence generated in the microchannel This is a light receiving optical system.

入射光学系13の出力光は偏光子14に入射され、偏光子14から出射されるp偏光の光は透明な流路壁を透過して金属膜に入射される。金属膜の表面(微小流路内部)で生じた蛍光は透明な流路壁を透過して受光光学系16に入射される。   The output light of the incident optical system 13 enters the polarizer 14, and the p-polarized light emitted from the polarizer 14 passes through the transparent flow path wall and enters the metal film. Fluorescence generated on the surface of the metal film (inside the microchannel) passes through the transparent channel wall and enters the light receiving optical system 16.

ここで、図10に示す実施例の動作を図11及び図12を用いて説明する。図11は微小流路内の金属膜の周辺の状況を説明する説明図、図12は金属膜の表面(微小流路内部)で生じた蛍光のスペクトルを示す特性曲線図である。また、図11において符号は図1と同一符号を付している。   Here, the operation of the embodiment shown in FIG. 10 will be described with reference to FIGS. FIG. 11 is an explanatory diagram for explaining the situation around the metal film in the microchannel, and FIG. 12 is a characteristic curve diagram showing the spectrum of fluorescence generated on the surface of the metal film (inside the microchannel). In FIG. 11, the same reference numerals as those in FIG.

入射光学系13からの出力光は金属膜に対し全反射条件を満足した角度”θ”で入射され、全反射される。この時、入射光のエネルギーにより表面プラズモン波が励起される。   The output light from the incident optical system 13 is incident on the metal film at an angle “θ” that satisfies the total reflection condition, and is totally reflected. At this time, the surface plasmon wave is excited by the energy of the incident light.

図11は、金属膜8の表面に微小粒子、特に、内部が金属体である蛍光微小粒子が存在する場合の状況を示しており、図11中”SP91”に示す表面プラズモン波には図11中”PT91”に示す蛍光微小粒子が近接しているので、図11中”PT91”に示す蛍光微小粒子及び図11中”LQ91”に示す微小流路内を流れている流体との間で相互作用を生じることになる。   FIG. 11 shows a situation where microparticles, particularly fluorescent microparticles whose inside is a metal body, are present on the surface of the metal film 8, and the surface plasmon wave indicated by “SP91” in FIG. Since the fluorescent microparticles indicated by “PT91” in the middle are close to each other, the fluorescent microparticles indicated by “PT91” in FIG. 11 and the fluid flowing in the microchannel indicated by “LQ91” in FIG. This will produce an effect.

このような状況下で、図4中”CH31”に示すようなスペクトルを有する光を金属膜8に入射した場合、受光光学系16において、図12中”CH101”に示すような蛍光のスペクトルを得ることができる。   Under such circumstances, when light having a spectrum as indicated by “CH31” in FIG. 4 is incident on the metal film 8, the light receiving optical system 16 generates a fluorescence spectrum as indicated by “CH101” in FIG. Obtainable.

例えば、金属膜8に内部が金属体である蛍光微小粒子が近づくことにより、表面プラズモン波の電場増強が生じるため、図12中”CH102”に示す表面プラズモン波の電場増強が無い場合と比較して、図12中”CH101”に示すように、大きな蛍光スペクトルを生じることになる。   For example, since the electric field enhancement of the surface plasmon wave occurs when the fluorescent fine particles whose inside is the metal body approaches the metal film 8, compared with the case where there is no electric field enhancement of the surface plasmon wave indicated by “CH102” in FIG. Thus, as shown by “CH101” in FIG. 12, a large fluorescence spectrum is generated.

この場合、表面プラズモン波の電場増強により、より明るい蛍光スペクトルの光強度を観察することにより、より高コントラストに金属膜8の近傍の状況を流体の把握することができる。   In this case, by observing the light intensity of the brighter fluorescence spectrum by enhancing the electric field of the surface plasmon wave, the state of the fluid near the metal film 8 can be grasped with higher contrast.

この結果、微小流路内を流れる流体に微小粒子(内部が金属体である蛍光微小粒子)が多数混合させると共に、微小流路内に金属膜を形成し当該金属膜に全反射するように光を入射して表面プラズモン波を微小流路内の金属膜表面に励起して、金属膜表面で生じた蛍光を観測することにより、金属膜の近傍における微小粒子(流体)の動きを把握することができる。   As a result, a large number of microparticles (fluorescent microparticles whose inside is a metal body) are mixed with the fluid flowing in the microchannel, and a metal film is formed in the microchannel so that the light is totally reflected on the metal film. To detect the movement of microparticles (fluids) near the metal film by exciting surface plasmon waves on the metal film surface in the microchannel and observing the fluorescence generated on the metal film surface Can do.

従って、このように金属膜の近傍における微小粒子(流体)の動きを把握することにより、微小流路内を流れる流体の状況を可視化する方法を図13及び図14を用いてより具体的に説明する。図13は微小流路に水平な方向の断面図、図14は受光光学系で得られた画像の一例を示す説明図である。   Therefore, the method of visualizing the state of the fluid flowing in the micro flow path by grasping the movement of the micro particles (fluid) in the vicinity of the metal film in this way will be described more specifically with reference to FIGS. To do. FIG. 13 is a cross-sectional view in the direction horizontal to the microchannel, and FIG. 14 is an explanatory view showing an example of an image obtained by the light receiving optical system.

例えば、図13中”PR111”に示す領域の反射光の光強度を画像として表示すると、図14(A)、或いは、図14(B)に示すようになる。図14(A)はある時刻における画像で、図14(B)は一定時刻が経過した後の画像である。   For example, when the light intensity of the reflected light in the region indicated by “PR111” in FIG. 13 is displayed as an image, it is as shown in FIG. 14A or FIG. 14B. FIG. 14A shows an image at a certain time, and FIG. 14B shows an image after a certain time has elapsed.

図14は画像を8×8のセルに分割して各セルの光強度を表現したものであり、白色になるほど反射光が明るい(光強度が強い)ことを示している。また、図14中の”○”は微小粒子を、矢印は微小粒子の流れる方向(或いは、流れてきた方向)を示している。   FIG. 14 shows the light intensity of each cell by dividing the image into 8 × 8 cells, and indicates that the reflected light is brighter (the light intensity is stronger) as it becomes whiter. Further, “◯” in FIG. 14 indicates a microparticle, and an arrow indicates a direction in which the microparticle flows (or a direction in which the microparticle flows).

微小粒子が存在する部分では表面プラズモン波が励起されず、言い換えれば、反射光において光減衰が生じないので、高強度は強くなる。   The surface plasmon wave is not excited in the portion where the microparticles exist, in other words, no optical attenuation occurs in the reflected light, and the high intensity becomes strong.

そして、このような光強度の強弱は、流体の流れに従って時系列的に変化(移動)してゆくので、このような反射光の光強度を画像において、光強度の強弱を時系列で観測することにより、微小流路内を流れる流体の状況を可視化することが可能になる。   Then, such intensity of light intensity changes (moves) in time series according to the flow of the fluid. Therefore, the intensity of such reflected light is observed in the image in time series. This makes it possible to visualize the state of the fluid flowing in the microchannel.

この結果、微小流路内を流れる流体に微小粒子が多数混合させると共に、微小流路内に金属膜を形成し当該金属膜に全反射するように光を入射して表面プラズモン波を微小流路内の金属膜表面に励起して反射光の光強度を時系列で観測することにより、微小流路内を流れる流体の状況を可視化することが可能になる。   As a result, a large number of micro particles are mixed with the fluid flowing in the micro flow channel, and a metal film is formed in the micro flow channel, and light is incident so as to be totally reflected on the metal film, so that the surface plasmon wave is transmitted to the micro flow channel. By observing the light intensity of the reflected light in time series by exciting the surface of the inner metal film, it is possible to visualize the state of the fluid flowing in the microchannel.

また、LEDや汎用のCCD等で構成可能なので、高強度で大型なレーザ光源や、高感度な撮像手段等が不要であり、安価で小型化が可能になり、表面プラズモン波は金属膜の表面より波長程度染み出すエバネッセント波であるので、複雑な画像処理をすることなく一定の深さの層に流れる流体の状況を可視化することが可能になる。   In addition, since it can be composed of LEDs, general-purpose CCDs, etc., there is no need for a high-intensity, large-sized laser light source, high-sensitivity imaging means, etc., and it is possible to reduce the size at low cost. Since it is an evanescent wave that oozes about a wavelength, it is possible to visualize the state of a fluid flowing in a layer of a certain depth without performing complicated image processing.

なお、図1に示す実施例の説明に際しては、流路壁7の表面に表面プラズモン共鳴を励起するための金属膜8を形成して反射光を観測しているが、別の流路壁である流路壁6の表面に表面プラズモン共鳴を励起するための金属膜を形成して反射光を観測しても構わない。言い換えれば、微小流路内の複数個所に金属膜を形成して反射光を観測しても構わない。   In the description of the embodiment shown in FIG. 1, the reflected light is observed by forming a metal film 8 for exciting surface plasmon resonance on the surface of the flow path wall 7. Reflected light may be observed by forming a metal film for exciting surface plasmon resonance on the surface of a certain channel wall 6. In other words, the reflected light may be observed by forming a metal film at a plurality of locations in the microchannel.

また、図13及び図14を用いた説明に際しては、図13中”PR111”に示す領域の反射光の光強度を画像として表示する旨記載しているが、図13中”PR111”に示す領域の蛍光の光強度を画像として表示して観測しても勿論構わないし、微小流路内の複数個所に金属膜を形成して蛍光を観測しても構わない。   Further, in the description using FIGS. 13 and 14, it is described that the light intensity of the reflected light in the region indicated by “PR111” in FIG. 13 is displayed as an image, but the region indicated by “PR111” in FIG. Of course, the fluorescence light intensity may be displayed and observed as an image, or the fluorescence may be observed by forming a metal film at a plurality of locations in the microchannel.

また、図1に示す実施例の説明に際しては、金属膜としては”Au”を例示したが、銀やアルミニウム等の表面プラズモン波を励起することが可能な金属であれば構わない。   In the description of the embodiment shown in FIG. 1, “Au” is exemplified as the metal film, but any metal capable of exciting a surface plasmon wave such as silver or aluminum may be used.

また、図1に示す実施例の説明に際しては、プリズムを例示しているが必須の構成要素ではない。   In the description of the embodiment shown in FIG. 1, a prism is illustrated, but it is not an essential component.

また、図1に示す実施例の説明に際しては、入射光学系として白色光等の広い波長領域の光を出射するLEDを例示しているが、ハロゲンランプ等であっても構わない。また、連続光であってもパルス光であっても構わない。   In the description of the embodiment shown in FIG. 1, an LED that emits light in a wide wavelength region such as white light is exemplified as the incident optical system, but a halogen lamp or the like may be used. Further, it may be continuous light or pulsed light.

本発明に係る微小流路流体可視化方法を用いた装置の一実施例を示す断面図である。It is sectional drawing which shows one Example of the apparatus using the microchannel fluid visualization method which concerns on this invention. 微小流路に水平な方向の断面図である。It is sectional drawing of a direction horizontal to a microchannel. 微小流路内の金属膜の周辺の状況を説明する説明図である。It is explanatory drawing explaining the condition of the periphery of the metal film in a microchannel. 入射光学系の出力光のスペクトルを示す特性曲線図である。It is a characteristic curve figure which shows the spectrum of the output light of an incident optical system. 金属膜からの反射光のスペクトルを示す特性曲線図である。It is a characteristic curve figure which shows the spectrum of the reflected light from a metal film. 微小流路内の金属膜の周辺の状況を説明する説明図である。It is explanatory drawing explaining the condition of the periphery of the metal film in a microchannel. 金属膜からの反射光のスペクトルを示す特性曲線図である。It is a characteristic curve figure which shows the spectrum of the reflected light from a metal film. 微小流路内の金属膜の周辺の状況を説明する説明図である。It is explanatory drawing explaining the condition of the periphery of the metal film in a microchannel. 金属膜からの反射光のスペクトルを示す特性曲線図である。It is a characteristic curve figure which shows the spectrum of the reflected light from a metal film. 本発明に係る微小流路流体可視化方法を用いた装置の他の実施例を示す断面図である。It is sectional drawing which shows the other Example of the apparatus using the microchannel fluid visualization method which concerns on this invention. 微小流路内の金属膜の周辺の状況を説明する説明図である。It is explanatory drawing explaining the condition of the periphery of the metal film in a microchannel. 金属膜の表面で生じた蛍光のスペクトルを示す特性曲線図である。It is a characteristic curve figure which shows the spectrum of the fluorescence produced on the surface of the metal film. 微小流路に水平な方向の断面図である。It is sectional drawing of a direction horizontal to a microchannel. 受光光学系で得られた画像の一例を示す説明図である。It is explanatory drawing which shows an example of the image obtained with the light reception optical system. 従来の微小流路内を流れる流体の状況を可視化する方法を用いた装置の一例を示す構成ブロック図である。It is a block diagram which shows an example of the apparatus using the method of visualizing the condition of the fluid which flows through the conventional microchannel.

符号の説明Explanation of symbols

1 レーザ光源
2 ミラー
3 マイクロチップ
4 撮像手段
5 演算処理手段
6,7 流路壁
8 金属膜
9,13 入射光学系
10,14 偏光子
11 プリズム
12,16 受光光学系
15 微小流路
DESCRIPTION OF SYMBOLS 1 Laser light source 2 Mirror 3 Microchip 4 Imaging means 5 Arithmetic processing means 6,7 Channel wall 8 Metal film 9,13 Incident optical system 10,14 Polarizer 11 Prism 12,16 Light receiving optical system 15 Microchannel

Claims (10)

微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法を用いた装置において、
透明材質の流路壁で構成され内壁面の一部に金属膜が形成された微小流路と、
広い波長領域の光を前記金属膜で全反射するように入射して表面プラズモン波を励起させる入射光学系と、
この入射光学系の出射する光の偏光方向を制御する偏光子と、
前記金属膜からの反射光を受光し撮影する受光光学系とを備え、
前記微小流路内を流れる流体に微小粒子を多数混合させると共に前記反射光の光強度を時系列で観測することを特徴とする装置。
In the apparatus using the micro-channel fluid visualization method for visualizing the state of the fluid flowing in the micro-channel,
A micro-channel having a metal film formed on a part of the inner wall surface, which is composed of a channel wall made of a transparent material;
An incident optical system for exciting a surface plasmon wave by making light of a wide wavelength region incident so as to be totally reflected by the metal film;
A polarizer for controlling the polarization direction of the light emitted from the incident optical system;
A light receiving optical system for receiving and photographing reflected light from the metal film,
An apparatus characterized by mixing a large number of microparticles in a fluid flowing in the microchannel and observing the light intensity of the reflected light in time series.
前記微小粒子が、
誘電体微小粒子であることを特徴とする
請求項1記載の装置。
The fine particles are
The device according to claim 1, wherein the device is a dielectric fine particle.
前記微小粒子が、
金属微小粒子であることを特徴とする
請求項1記載の装置。
The fine particles are
The device according to claim 1, wherein the device is a metal microparticle.
微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法を用いた装置において、
透明材質の流路壁で構成され内壁面の一部に金属膜が形成された微小流路と、
広い波長領域の光を前記金属膜で全反射するように入射して表面プラズモン波を励起させる入射光学系と、
この入射光学系の出射する光の偏光方向を制御する偏光子と、
前記金属膜表面で生じる蛍光を受光し撮影する受光光学系とを備え、
前記微小流路内を流れる流体に蛍光微小粒子を多数混合させると共に前記蛍光の光強度を時系列で観測することを特徴とする装置。
In the apparatus using the micro-channel fluid visualization method for visualizing the state of the fluid flowing in the micro-channel,
A micro-channel having a metal film formed on a part of the inner wall surface, which is composed of a channel wall made of a transparent material;
An incident optical system for exciting a surface plasmon wave by making light of a wide wavelength region incident so as to be totally reflected by the metal film;
A polarizer for controlling the polarization direction of the light emitted from the incident optical system;
A light receiving optical system for receiving and photographing fluorescence generated on the surface of the metal film,
An apparatus characterized in that a large number of fluorescent microparticles are mixed in a fluid flowing in the microchannel and the light intensity of the fluorescence is observed in time series.
前記蛍光微小粒子の内部が金属体であることを特徴とする
請求項4記載の装置。
The apparatus according to claim 4, wherein the inside of the fluorescent microparticle is a metal body.
微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法であって、
微小流路内を流れる流体に微小粒子が多数混合させると共に、微小流路内に金属膜を形成し当該金属膜に全反射するように光を入射して表面プラズモン波を微小流路内の金属膜表面に励起して反射光の光強度を時系列で観測することを特徴とする
微小流路流体可視化方法。
A microchannel fluid visualization method for visualizing the state of a fluid flowing in a microchannel,
A large number of microparticles are mixed in the fluid flowing in the microchannel, and a metal film is formed in the microchannel, and light is incident so as to be totally reflected on the metal film, so that surface plasmon waves are transmitted to the metal in the microchannel. A method of visualizing a microfluidic fluid characterized by observing the light intensity of reflected light in time series by exciting the film surface.
前記微小粒子が、
誘電体微小粒子であることを特徴とする
請求項6記載の微小流路流体可視化方法。
The fine particles are
The method of visualizing a microchannel fluid according to claim 6, wherein the microchannel fluid is a dielectric microparticle.
前記微小粒子が、
金属微小粒子であることを特徴とする
請求項6記載の微小流路流体可視化方法。
The fine particles are
The method for visualizing a microchannel fluid according to claim 6, wherein the microchannel fluid is a metal microparticle.
微小流路内を流れる流体の状況を可視化する微小流路流体可視化方法であって、
微小流路内を流れる流体に蛍光微小粒子が多数混合させると共に、微小流路内に金属膜を形成し当該金属膜に全反射するように光を入射して表面プラズモン波を微小流路内の金属膜表面に励起して、金属膜表面で生じた蛍光の光強度を時系列で観測することを特徴とする
微小流路流体可視化方法。
A microchannel fluid visualization method for visualizing the state of a fluid flowing in a microchannel,
A large number of fluorescent microparticles are mixed in the fluid flowing in the microchannel, and a metal film is formed in the microchannel and light is incident so as to be totally reflected on the metal film. A method for visualizing a microfluidic fluid characterized by observing light intensity of fluorescence generated on a metal film surface in a time series by being excited on the metal film surface.
前記蛍光微小粒子の内部が金属体であることを特徴とする
請求項9記載の微小流路流体可視化方法。
The method for visualizing a microchannel fluid according to claim 9, wherein the inside of the fluorescent microparticle is a metal body.
JP2007268263A 2007-10-15 2007-10-15 Microchannel fluid visualization method and device using the method Withdrawn JP2009097931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268263A JP2009097931A (en) 2007-10-15 2007-10-15 Microchannel fluid visualization method and device using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268263A JP2009097931A (en) 2007-10-15 2007-10-15 Microchannel fluid visualization method and device using the method

Publications (1)

Publication Number Publication Date
JP2009097931A true JP2009097931A (en) 2009-05-07

Family

ID=40701080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268263A Withdrawn JP2009097931A (en) 2007-10-15 2007-10-15 Microchannel fluid visualization method and device using the method

Country Status (1)

Country Link
JP (1) JP2009097931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007701A (en) * 2011-06-27 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Flow rate measuring apparatus and flow rate measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504582A (en) * 1996-11-16 2001-04-03 イギリス国 Analysis equipment
JP2002022654A (en) * 2000-07-11 2002-01-23 Suzuki Motor Corp Spr sensor plate and immunoreaction-measuring apparatus using the same
JP2003232725A (en) * 2002-02-12 2003-08-22 Japan Science & Technology Corp Chemical reaction analysis sensor using surface plasmon resonance measuring method
JP2004239715A (en) * 2003-02-05 2004-08-26 Fuji Photo Film Co Ltd Measuring unit
JP2006308321A (en) * 2005-04-26 2006-11-09 Toyobo Co Ltd Chip for surface plasmon resonance sensor
JP2007010524A (en) * 2005-06-30 2007-01-18 Univ Of Tokyo Apparatus and method for measuring velocity distribution in micropassage
WO2007105771A1 (en) * 2006-03-15 2007-09-20 Omron Corporation Chip for surface plasmon resonance sensor and surface plasmon resonance sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504582A (en) * 1996-11-16 2001-04-03 イギリス国 Analysis equipment
JP2002022654A (en) * 2000-07-11 2002-01-23 Suzuki Motor Corp Spr sensor plate and immunoreaction-measuring apparatus using the same
JP2003232725A (en) * 2002-02-12 2003-08-22 Japan Science & Technology Corp Chemical reaction analysis sensor using surface plasmon resonance measuring method
JP2004239715A (en) * 2003-02-05 2004-08-26 Fuji Photo Film Co Ltd Measuring unit
JP2006308321A (en) * 2005-04-26 2006-11-09 Toyobo Co Ltd Chip for surface plasmon resonance sensor
JP2007010524A (en) * 2005-06-30 2007-01-18 Univ Of Tokyo Apparatus and method for measuring velocity distribution in micropassage
WO2007105771A1 (en) * 2006-03-15 2007-09-20 Omron Corporation Chip for surface plasmon resonance sensor and surface plasmon resonance sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007701A (en) * 2011-06-27 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> Flow rate measuring apparatus and flow rate measurement method

Similar Documents

Publication Publication Date Title
KR102114628B1 (en) Spectral microscope
JP2007171186A (en) Sample detection system
JP2017116558A (en) Particle imaging device and particle imaging method
Kong et al. A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles
Kotsifaki et al. Dynamic multiple nanoparticle trapping using metamaterial plasmonic tweezers
Kim et al. Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications
JP2012128295A (en) Optical measuring device
WO2004106903A1 (en) Light receiving unit and measuring device comprising it
Hagsäter et al. Investigations on LED illumination for micro-PIV including a novel front-lit configuration
JP2019039993A (en) Fluorescence observation filter and fluorescent observation microscope
JP2019066461A (en) Analyzer
JP2011186182A (en) Microscope apparatus
EP3667299B1 (en) Multimodal imaging system
JP2009097931A (en) Microchannel fluid visualization method and device using the method
JP2009009139A (en) Wavelength-specific phase microscopy
JP2009063462A (en) Optical measuring instrument and particulate analyzer
JP2014081330A (en) Fine particle detection device and fine particle detection method
JP2009133677A (en) Analysis element chip and analyzer using the same
RU2457466C2 (en) Array-based control device
Shi et al. Micromixing visualization and quantification in a microscale multi-inlet vortex nanoprecipitation reactor using confocal-based reactive micro laser-induced fluorescence
US10054781B2 (en) Microscope, sheet-illumination microscope, and microscope-image acquiring method
JP7027249B2 (en) Analytical equipment and analytical method
JP6046723B2 (en) Method and device for coupling a light beam into a foil
WO2018193491A1 (en) Laser beam profile measurement device
US20170089835A1 (en) Sensor Element For Photoluminescence Measurements, Photoluminescence Detection Means, Method For Operating Photoluminescence Detection Means, Method For Producing A Sensor Element And Use Of A Sensor Element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120417