JP2009096792A - Method for purifying dimethylsulfoxide - Google Patents

Method for purifying dimethylsulfoxide Download PDF

Info

Publication number
JP2009096792A
JP2009096792A JP2008040852A JP2008040852A JP2009096792A JP 2009096792 A JP2009096792 A JP 2009096792A JP 2008040852 A JP2008040852 A JP 2008040852A JP 2008040852 A JP2008040852 A JP 2008040852A JP 2009096792 A JP2009096792 A JP 2009096792A
Authority
JP
Japan
Prior art keywords
dmso
acrylonitrile
distillation
nucleophilic component
mea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008040852A
Other languages
Japanese (ja)
Inventor
Hirozane Nishiwaki
寛実 西脇
Michinori Higuchi
徹憲 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008040852A priority Critical patent/JP2009096792A/en
Publication of JP2009096792A publication Critical patent/JP2009096792A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for purification by distillation which is easy to industrially scale up without adding an acid being a factor for reducing the yield of DMSO in purifying DMSO containing a nucleophilic component as an impurity. <P>SOLUTION: The method for purifying dimethylsulfoxide containing a nucleophilic component as an impurity by distillation comprises adding acrylonitrile, and the nucleophilic component is any one of a primary amine, a secondary amine, and a thiol and preferably has a boiling point at 101.3 kPa (absolute pressure) of 160-220°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は不純物として求核性成分を含むジメチルスルホキシド(以下、DMSOと表記する。)からDMSOを蒸留精製する方法に関するものである。   The present invention relates to a method for distilling and purifying DMSO from dimethyl sulfoxide (hereinafter referred to as DMSO) containing a nucleophilic component as an impurity.

DMSOは、医薬品の合成溶媒、電子材料等の処理に使用する特殊洗浄液、ポリマーの製造溶媒として工業的に幅広く使用されている。これらの用途で使用されたDMSOの廃液は精製により再利用できるが、DMSOと沸点の近い成分が混入した場合、精製が著しく不経済となる。例えば、モノエタノールアミン(以下、MEAと表記する。)はDMSOと共に特殊洗浄液等に使用されており、DMSO廃液に混入する代表的な成分であるが、その沸点は171℃と、DMSO(沸点189℃)と沸点が近いため、蒸留精製のみでは、高純度のDMSOを回収することは困難だった。   DMSO is widely used industrially as a synthetic solvent for pharmaceuticals, a special cleaning solution used for processing electronic materials, and a polymer production solvent. The DMSO waste liquid used in these applications can be reused by purification. However, when components having a boiling point close to that of DMSO are mixed, purification becomes extremely uneconomical. For example, monoethanolamine (hereinafter referred to as MEA) is used in DMSO waste liquids and the like as a representative component mixed with DMSO, and has a boiling point of 171 ° C. and DMSO (boiling point 189). Since the boiling point is close to that of (° C.), it was difficult to recover high-purity DMSO only by distillation purification.

DMSOから沸点の近い成分であるMEAの分離方法は、これまで多くの技術開発がなされており、例えば、特許文献1および2には晶析による方法が記載されているが、晶析は精製速度に制限があるため、大量のDMSOを精製する設備へのスケールアップには適していなかった。   Much technology has been developed for the separation method of MEA, which is a component having a boiling point close to that of DMSO. For example, Patent Documents 1 and 2 describe crystallization methods. Therefore, it was not suitable for scaling up to a facility for purifying a large amount of DMSO.

また、イオン交換処理によりMEAの除去は可能であるが、MEA濃度が高い場合イオン交換コストが大きくなり、不経済となる。このため、特許文献3では他の手段によりMEA濃度を低減した後に、イオン交換処理を行っている。   In addition, although the MEA can be removed by the ion exchange treatment, when the MEA concentration is high, the ion exchange cost is increased, which is uneconomical. For this reason, in Patent Document 3, ion exchange treatment is performed after the MEA concentration is reduced by other means.

特許文献3及び4には、DMSOとMEAの蒸留分離を容易にする手段が記載されており、これはMEAを含有するDMSO混合物に酸を添加することで中和塩を形成し、MEAの沸点上昇によって蒸留分離を容易とする技術である。しかしながら、MEAの分離効率を上げるために酸を過剰添加する、または強酸を使用した場合、設備に耐食材質を使用する必要が有ること、また、これら特許文献中にも記載があるように、DMSOは酸性雰囲気では熱分解が起きやすくなるため、蒸留収率低下の一因となるなどの問題もあった。
特開平7−118223号公報 特開2006−069960号公報 特開2001−89438号公報 特開平9−12534
Patent Documents 3 and 4 describe means for facilitating distillative separation of DMSO and MEA, which forms a neutralized salt by adding an acid to a DMSO mixture containing MEA, and has a boiling point of MEA. It is a technique that facilitates distillation separation by ascending. However, when an acid is excessively added or a strong acid is used in order to increase the separation efficiency of MEA, it is necessary to use a corrosion-resistant material for the equipment, and as described in these patent documents, DMSO In the acidic atmosphere, thermal decomposition is likely to occur, which causes problems such as a decrease in distillation yield.
JP 7-118223 A JP 2006-069960 A JP 2001-89438 A JP-A-9-12534

本発明の目的は、DMSOと求核性成分を不純物として含むDMSOを精製するにあたり、DMSOの収率低下の一因となる酸を加えることなく、工業的スケールアップが容易な蒸留による精製方法を提供する点にある。   An object of the present invention is to provide a purification method by distillation that facilitates industrial scale-up without adding an acid that causes a decrease in the yield of DMSO in purifying DMSO containing DMSO and a nucleophilic component as impurities. The point is to provide.

本発明者らは、前記課題を解決すべく鋭意検討した結果、DMSO中の求核性成分がアクリロニトリルと容易に付加反応を起こし、高沸点化するため、蒸留による精製分離が可能になることを見出し、本発明を完成させるに至った。   As a result of diligent studies to solve the above problems, the present inventors have found that the nucleophilic component in DMSO easily undergoes an addition reaction with acrylonitrile and has a high boiling point, so that purification separation by distillation becomes possible. The headline and the present invention have been completed.

すなわち本発明は、求核性成分を不純物として含むジメチルスルホキシドを蒸留精製する方法において、アクリロニトリルを添加することを特徴とするジメチルスルホキシドの精製方法である。   That is, the present invention is a method for purifying dimethyl sulfoxide, characterized in that acrylonitrile is added in a method for distilling and purifying dimethyl sulfoxide containing a nucleophilic component as an impurity.

本発明によれば、求核性成分を不純物として含むDMSOを精製するにあたり、DMSOの収率低下の一因となる酸を加えることなく、工業的スケールアップが容易な蒸留による精製が可能となる。   According to the present invention, when DMSO containing a nucleophilic component as an impurity is purified, it is possible to purify by distillation, which can be easily scaled up industrially, without adding an acid that causes a decrease in the yield of DMSO. .

本発明の目的は、求核性成分を不純物として含むDMSOを蒸留精製する方法に関するもので、DMSOの回収率、精製効率を上げることによるエネルギーコストの削減等のため、以下に述べるようないくつかの好ましい条件がある。   An object of the present invention relates to a method for distilling and purifying DMSO containing a nucleophilic component as an impurity. In order to reduce the energy cost by increasing the recovery rate of DMSO and the purification efficiency, there are some as described below. There are preferable conditions.

本発明において精製を行う粗DMSOは分離の対象となる求核性成分以外の成分を含んでいても、アクリロニトリルの添加により発明の効果を発揮する。また、粗DMSOは水分を含んでいなくても発明の効果を発揮するが、水分を含んだ状態では付加反応が速く進むため、より効果的な精製ができる。付加反応に適した水分濃度は20wt%から75wt%であり、さらに好ましくは25wt%から70wt%である。粗DMSOの水分濃度が低い場合、蒸留前に水分を添加して、好ましい水分濃度にすることもできる。   Even if the crude DMSO to be purified in the present invention contains components other than the nucleophilic component to be separated, the effect of the invention is exhibited by the addition of acrylonitrile. Moreover, although crude DMSO exhibits the effect of the invention even if it does not contain moisture, the addition reaction proceeds faster in the state containing moisture, so that more effective purification can be achieved. The water concentration suitable for the addition reaction is 20 wt% to 75 wt%, more preferably 25 wt% to 70 wt%. When the water concentration of the crude DMSO is low, water can be added before distillation to obtain a preferable water concentration.

分離の対象となる求核性成分は、101.3kPa(絶対圧、以下圧力は全て絶対圧表記とする。)において150℃から230℃の沸点を持つ成分が本発明の効果を有効に発揮できる点で好適であり、さらに好適には160℃から220℃の沸点を持つ成分である。それ以外の沸点を持つ成分は、通常の蒸留でも分離可能だが、アクリロニトリルの添加により、より安価な蒸留条件(低段数、低還流比)で精製可能となる場合が多いため、本発明の適応も可能である。分離の対象となる成分の代表例としてMEAが挙げられるが、それ以外の成分でも求核剤として機能する不純物でDMSOと沸点の近い成分はアクリロニトリルとの付加反応により蒸留が容易になる。このような求核性成分としては、第一級アミン、第二級アミン、チオールのいずれかが好ましく、なかでも前記沸点を有する第一級アミン、第二級アミン、チオールのいずれかが好ましい。   The nucleophilic component to be separated is a component having a boiling point of 150 ° C. to 230 ° C. at 101.3 kPa (absolute pressure, hereinafter, all pressures are expressed in absolute pressure), and can effectively exert the effect of the present invention. In view of this, it is a component having a boiling point of 160 ° C to 220 ° C. Components having other boiling points can be separated by ordinary distillation. However, the addition of acrylonitrile often makes it possible to purify under cheaper distillation conditions (low number of stages, low reflux ratio). Is possible. As a representative example of the component to be separated, MEA can be mentioned, but other components having impurities that function as nucleophiles and having a boiling point close to that of DMSO can be easily distilled by addition reaction with acrylonitrile. As such a nucleophilic component, any of primary amine, secondary amine, and thiol is preferable, and among these, any of primary amine, secondary amine, and thiol having the above boiling point is preferable.

求核性成分が第一級アミンの場合、アクリロニトリル一分子が付加すると第二級アミンに転化するが、過剰のアクリロニトリルが存在するとさらに付加反応を起こして第三級アミンに転化すると沸点が大きく変化するため、発明の効果が顕著に現れる傾向にある。   If the nucleophilic component is a primary amine, it will be converted to a secondary amine when one molecule of acrylonitrile is added, but if there is an excess of acrylonitrile, an additional reaction will occur, and when converted to a tertiary amine, the boiling point will change significantly. Therefore, the effect of the invention tends to appear remarkably.

具体例としてはMEAの他、ベンジルアミン、n−オクチルアミン、ジペンチルアミン、1−ヘプタンチオール、アニリン等が挙げられる。これら不純物のうち、求核性の強い成分は容易に付加反応が進行するため、発明の効果が顕著に現れる。この観点からはMEAの他、ベンジルアミン、n−オクチルアミン、ジペンチルアミン、1−ヘプタンチオールが好ましい。求核性の弱い成分に本発明を適応する場合は、反応条件をより高温で長時間とすることで一定の効果が期待できる。また、微量かつ未同定の求核性成分であっても、DMSOの品質を低下させる成分が存在する場合、アクリロニトリルの添加でDMSOの品質向上が期待できる。   Specific examples include MEA, benzylamine, n-octylamine, dipentylamine, 1-heptanethiol, aniline, and the like. Among these impurities, a strong nucleophilic component easily undergoes an addition reaction, so that the effect of the invention appears remarkably. From this viewpoint, in addition to MEA, benzylamine, n-octylamine, dipentylamine, and 1-heptanethiol are preferable. When the present invention is applied to a component having low nucleophilicity, a certain effect can be expected by setting the reaction conditions at a higher temperature for a longer time. Moreover, even if it is a trace amount and an unidentified nucleophilic component, when the component which reduces the quality of DMSO exists, the quality improvement of DMSO can be anticipated by addition of acrylonitrile.

本発明で添加試薬として使用できるアクリロニトリルは、一般工業原料として入手できるものに限らず、ポリマーの製造工程から回収されたアクリロニトリルも使用することができる。DMSOはアクリロニトリルの重合溶媒として使用されているため、この工程から出るDMSO廃液には未反応のアクリロニトリルを含むものがある。精製を行うDMSOが求核性成分を含むものと、未反応のアクリロニトリルを含むものの2系統以上ある場合、このアクリロニトリルを使用することでさらに経済的に精製を行うことができる。   Acrylonitrile that can be used as an additive reagent in the present invention is not limited to those that can be obtained as general industrial raw materials, and acrylonitrile recovered from the polymer production process can also be used. Since DMSO is used as a polymerization solvent for acrylonitrile, some DMSO waste liquids from this step contain unreacted acrylonitrile. When DMSO to be purified contains two or more systems including those containing a nucleophilic component and those containing unreacted acrylonitrile, purification can be performed more economically by using this acrylonitrile.

求核性成分の含有量については、粗DMSOに対してppm(粗DMSO重量に対する求核成分の重量、以下、ppmは同様の定義とする。)レベルの微量でも本発明の効果を期待できる。しかし、求核性成分を20wt%以上含有する場合は、アクリロニトリルの添加量が増えるため、あらかじめ蒸留等により求核性成分の濃度を下げてからアクリロニトリルの添加を行うことが好ましい。本発明は、求核性成分が100ppm〜5wt%の範囲にある場合に特に有効に適用することができる。   With regard to the content of the nucleophilic component, the effect of the present invention can be expected even with a minute amount of ppm (the weight of the nucleophilic component relative to the weight of the crude DMSO, hereinafter, ppm is defined similarly) with respect to the crude DMSO. However, when the nucleophilic component is contained in an amount of 20 wt% or more, the amount of acrylonitrile added is increased. Therefore, it is preferable to add acrylonitrile after reducing the concentration of the nucleophilic component by distillation or the like in advance. The present invention can be applied particularly effectively when the nucleophilic component is in the range of 100 ppm to 5 wt%.

アクリロニトリルの添加量は、精製DMSOの品質と経済性により自由に設定できる。微量の求核性成分を完全に分離する場合は、アクリロニトリルを過剰に添加することでDMSOの精製が容易になる。また、経済的に使用できるアクリロニトリルの量が限られる場合は、添加量を少量としても一定の効果を期待できる。一般的に添加量は、求核性成分に対して0.1から5当量であることが好ましく、より好ましくは0.3から3当量である。5当量以上ではアクリロニトリルの残存量が多くなり、0.1当量以下では求核性成分の残存量が多くなるためである。   The amount of acrylonitrile added can be freely set depending on the quality and economy of purified DMSO. When a small amount of nucleophilic component is completely separated, DMSO can be easily purified by adding acrylonitrile in excess. In addition, when the amount of acrylonitrile that can be used economically is limited, a certain effect can be expected even if the addition amount is small. In general, the addition amount is preferably 0.1 to 5 equivalents, more preferably 0.3 to 3 equivalents, relative to the nucleophilic component. This is because when the amount is 5 equivalents or more, the residual amount of acrylonitrile increases, and when the amount is 0.1 equivalents or less, the residual amount of the nucleophilic component increases.

本発明は、バッチ式蒸留、連続式蒸留のいずれにも適応できるが、減圧で蒸留を行うことが好ましい。DMSOは高温条件で分解が促進されるため、減圧蒸留により缶の内容物温(缶温)を150℃以下に保つことが好ましく、より好適には130℃以下で蒸留を行うことが好ましい。圧力としては、1〜30kPaで蒸留することが好ましく、さらに好適には1.5〜15kPaで蒸留することが好ましい。   The present invention can be applied to both batch distillation and continuous distillation, but it is preferable to perform distillation under reduced pressure. Since decomposition of DMSO is promoted under high temperature conditions, it is preferable to keep the temperature of the contents of the can (can temperature) at 150 ° C. or lower by distillation under reduced pressure, and more preferably to perform distillation at 130 ° C. or lower. The pressure is preferably 1-30 kPa, more preferably 1.5-15 kPa.

アクリロニトリルは蒸留を行う前に添加するのが好ましいが、連続式蒸留を行う場合はアクリロニトリルを蒸留塔に直接供給することもできる。蒸留を行う前にアクリロニトリルを添加しても付加反応が十分進まない場合、蒸留前に混合液を50℃以上、好ましくは70〜130℃に加熱すると、求核性成分とアクリロニトリルの付加反応が促進されるため、より好ましい。その際の圧力はアクリロニトリルの揮発を考慮し、90〜120kPaで行うことが好ましい。反応時間は10〜120分間で行うことが好ましいが、求核性の強い成分に本発明を適応する場合は10分〜60分間で反応を行うことが好ましい。連続式蒸留で蒸留塔にアクリロニトリルを直接供給する場合は、理論段数として3〜20段の蒸留塔で行うことが好ましく、さらに好適には5〜15段の蒸留塔が好ましい。粗DMSOとアクリロニトリルの供給は上から3分の1に当たる段より下の段に供給する事が好ましく、これらは同一の段に供給しても、それぞれ別の段に供給しても良い。これらの条件により、蒸留塔内で求核性成分とアクリロニトリルの接触時間を上げることができ、付加反応をより進めることができる。   Acrylonitrile is preferably added before distillation, but acrylonitrile can also be fed directly to the distillation column in the case of continuous distillation. If addition reaction does not proceed sufficiently even if acrylonitrile is added before distillation, heating the mixture to 50 ° C. or higher, preferably 70 to 130 ° C. before distillation accelerates the addition reaction between the nucleophilic component and acrylonitrile. Therefore, it is more preferable. The pressure at that time is preferably 90 to 120 kPa in consideration of volatilization of acrylonitrile. The reaction time is preferably 10 to 120 minutes, but when the present invention is applied to a highly nucleophilic component, the reaction is preferably performed for 10 to 60 minutes. When acrylonitrile is directly supplied to the distillation tower by continuous distillation, it is preferably carried out in a distillation tower having 3 to 20 theoretical plates, and more preferably 5 to 15 distillation towers. The crude DMSO and acrylonitrile are preferably supplied to a stage below the stage corresponding to one third from the top, and these may be supplied to the same stage or to different stages. Under these conditions, the contact time between the nucleophilic component and acrylonitrile can be increased in the distillation column, and the addition reaction can be further advanced.

求核性成分はアクリロニトリルの添加により高沸点化し缶残液に濃縮され、DMSOを主成分とする留出液中の求核性成分の濃度は低減できる。留出液に残存する求核性成分がDMSOの品質に影響する場合、留出液をイオン交換処理することで精製DMSOがさらに高純度化できる場合がある。特に求核性成分がアミン類の場合、水分が共存することでアンモニウムイオンを生成し、カチオンとなるため、カチオン交換樹脂に通液することで、アミン類を完全に除去する事ができる。   The nucleophilic component is increased in boiling point by addition of acrylonitrile and concentrated in the can residue, and the concentration of the nucleophilic component in the distillate containing DMSO as a main component can be reduced. When the nucleophilic component remaining in the distillate affects the quality of DMSO, purified DMSO may be further purified by subjecting the distillate to an ion exchange treatment. In particular, when the nucleophilic component is an amine, ammonium ions are generated by the coexistence of water and become a cation, so that the amine can be completely removed by passing the solution through a cation exchange resin.

蒸留精製後のDMSOにアクリロニトリルが混入しても、これらは沸点差が大きいため、再蒸留により容易にアクリロニトリルの分離ができる。イオン交換処理を併用する場合、イオン交換処理前に再蒸留を行っても、イオン交換処理後に再蒸留を行っても、精製DMSOの品質に影響は無い。   Even if acrylonitrile is mixed in DMSO after purification by distillation, since these have large boiling point differences, acrylonitrile can be easily separated by redistillation. When ion exchange treatment is used in combination, there is no effect on the quality of purified DMSO even if re-distillation is performed before the ion exchange treatment or re-distillation is performed after the ion exchange treatment.

本発明で精製されたDMSOは、電子材料処理の他、医農薬中間体の反応溶剤、ポリマーの製造溶媒や合成試薬に好適に使用される。   The DMSO purified by the present invention is suitably used as a reaction solvent for intermediates for medical and agricultural chemicals, a solvent for producing polymers, and a synthesis reagent in addition to electronic material processing.

以下、実施例及び比較例を例示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are illustrated and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

〔実施例1〕
500ml丸底フラスコ、ジムロート式冷却凝集器、7段相当の充填塔を備えた蒸留実験装置を準備した。DMSO(関東化学特級試薬)94wt%、水5wt%、MEA(関東化学特級試薬)1wt%となる蒸留粗液300gの調製を行った。蒸留粗液にアクリロニトリル(関東化学特級試薬)7.8gを添加した(アクリロニトリル/MEA=3mol/1mol)。アクリロニトリル添加後の蒸留粗液を蒸留実験装置に仕込み、常圧のまま加熱100℃で1時間保持した。加熱終了後、蒸留粗液を60℃まで冷却した後、4kPaに減圧、還流比0.1に設定し、缶の内容物温(缶温)96℃となるまでバッチ式蒸留を行った。バッチ式蒸留により留出液270gを回収した。留出液には約5wt%の水分が含まれていたため、同様の蒸留実験装置で水分のみを留去し脱水を行った(水分濃度1wt%以下)。脱水後の精製DMSOをFID−GCで分析したところ、主要ピークにはDMSOのみを検出し、アクリロニトリル、MEAのピークは検出されなかった。精製DMSOをイオンクロマトグラフィー(電気伝導度検出器)で分析したところ、モノエタノールアミン濃度は200ppmに低減したことを確認した。また、蒸留の缶残液をFID−GC分析したところ、DMSOより高沸点側に新規ピークが生成しており、GC−MSによる同定分析を行った結果、MEAとアクリロニトリルの付加生成物であるN−(2−シアノエチル)エタノールアミン、およびN,N−ビス(2−シアノエチル)エタノールアミンが生成していることを確認した。
[Example 1]
A distillation experiment apparatus equipped with a 500 ml round bottom flask, a Dimroth type cooling agglomerator, and a packed tower corresponding to 7 stages was prepared. Preparation of 300 g of distilled crude liquid of 94 wt% DMSO (Kanto Chemical Special Grade Reagent), water 5 wt%, and MEA (Kanto Chemical Special Grade Reagent) 1 wt% was performed. To the distilled crude liquid, 7.8 g of acrylonitrile (Kanto Chemical Special Grade Reagent) was added (acrylonitrile / MEA = 3 mol / 1 mol). The crude distillation liquid after addition of acrylonitrile was charged into a distillation experiment apparatus, and kept at normal temperature and heated at 100 ° C. for 1 hour. After completion of the heating, the distilled crude liquid was cooled to 60 ° C., then the pressure was reduced to 4 kPa, the reflux ratio was set to 0.1, and batch distillation was performed until the temperature of the can (can temperature) reached 96 ° C. 270 g of distillate was recovered by batch distillation. Since the distillate contained about 5 wt% of water, only the water was distilled off by the same distillation experiment apparatus to perform dehydration (water concentration of 1 wt% or less). When the purified DMSO after dehydration was analyzed by FID-GC, only DMSO was detected in the main peak, and the acrylonitrile and MEA peaks were not detected. When purified DMSO was analyzed by ion chromatography (electric conductivity detector), it was confirmed that the monoethanolamine concentration was reduced to 200 ppm. Moreover, when FID-GC analysis was performed on the distillation residue, a new peak was generated on the higher boiling point side than DMSO, and as a result of identification analysis by GC-MS, N, which is an addition product of MEA and acrylonitrile. It was confirmed that-(2-cyanoethyl) ethanolamine and N, N-bis (2-cyanoethyl) ethanolamine were produced.

上記FID−GC、イオンクロマトグラフィー、GC−MSは表1に記載の条件で行った、   The FID-GC, ion chromatography, and GC-MS were performed under the conditions described in Table 1.

Figure 2009096792
Figure 2009096792

〔比較例1〕
アクリロニトリルの添加、および蒸留前の加熱処理が無いほかは、実施例1と同様の精製処理を行った。脱水後の精製DMSOをFID−GCで分析したところ、DMSOのピークのほか、モノエタノールアミンのピークを確認した。精製DMSOをイオンクロマトグラフィーで分析したところ、モノエタノールアミン濃度は1.1wt%となり、モノエタノールアミン濃度は低減しないことを確認した。
[Comparative Example 1]
The same purification treatment as in Example 1 was performed, except that there was no addition of acrylonitrile and no heat treatment before distillation. When purified DMSO after dehydration was analyzed by FID-GC, a peak of monoethanolamine was confirmed in addition to a peak of DMSO. When purified DMSO was analyzed by ion chromatography, the monoethanolamine concentration was 1.1 wt%, and it was confirmed that the monoethanolamine concentration was not reduced.

〔実施例2〕
300ml丸底フラスコ、ジムロート式冷却凝集器、7段相当の充填塔を備えた蒸留実験装置を準備した。DMSO(関東化学特級試薬)99wt%、n−オクチルアミン(関東化学特級試薬)1wt%となる蒸留粗液150gの調製を行った。蒸留粗液にアクリロニトリル(関東化学特級試薬)1.9gを添加した(アクリロニトリル/n−オクチルアミン=3.1mol/1mol)。アクリロニトリル添加後の蒸留粗液を蒸留実験装置に仕込み、常圧のまま加熱100℃で1時間保持した。加熱終了後、蒸留粗液を50℃まで冷却した後、4kPaに減圧、還流比0.1に設定し、缶温97℃となるまでバッチ式蒸留を行った。バッチ式蒸留によりDMSOを主成分とする留出液132gを回収した。留出液をFID−GCで分析したところ、n−オクチルアミン濃度は0.48wt%となった。
[Example 2]
A distillation experiment apparatus equipped with a 300 ml round bottom flask, a Dimroth type cooling aggregator, and a packed tower corresponding to 7 stages was prepared. Preparation of 150 g of distilled crude liquid with DMSO (Kanto Chemical Special Grade Reagent) 99 wt% and n-octylamine (Kanto Chemical Special Grade Reagent) 1 wt% was performed. To the distilled crude liquid, 1.9 g of acrylonitrile (Kanto Chemical Special Grade Reagent) was added (acrylonitrile / n-octylamine = 3.1 mol / 1 mol). The crude distillation liquid after addition of acrylonitrile was charged into a distillation experiment apparatus, and kept at normal temperature and heated at 100 ° C. for 1 hour. After completion of the heating, the distilled crude liquid was cooled to 50 ° C., then the pressure was reduced to 4 kPa, the reflux ratio was set to 0.1, and batch distillation was performed until the can temperature reached 97 ° C. 132 g of a distillate containing DMSO as a main component was recovered by batch distillation. When the distillate was analyzed by FID-GC, the n-octylamine concentration was 0.48 wt%.

〔比較例2〕
アクリロニトリルの添加が無いほかは、実施例2と同様の精製処理を行った。留出液をFID−GCで分析したところ、n−オクチルアミン濃度は1.1wt%となり、実施例2より高いことを確認した。
[Comparative Example 2]
The same purification treatment as in Example 2 was performed, except that acrylonitrile was not added. When the distillate was analyzed by FID-GC, it was confirmed that the n-octylamine concentration was 1.1 wt%, which was higher than Example 2.

〔実施例3〕
実施例2と同様の実験装置を準備した。DMSO(関東化学特級試薬)99wt%、1−ヘプタンチオール(関東化学特級試薬)1wt%となる蒸留粗液150gの調製を行った。蒸留粗液にアクリロニトリル(関東化学特級試薬)1.8gを添加し(アクリロニトリル/1−ヘプタンチオール=3.0mol/1mol)、実施例2と同様の精製処理を行った。留出液をFID−GCで分析したところ、1−ヘプタンチオール濃度は0.30wt%となった。
Example 3
The same experimental apparatus as in Example 2 was prepared. Preparation of 150 g of distilled crude liquid with 99 wt% DMSO (Kanto Chemical Special Grade Reagent) and 1 wt% 1-heptanethiol (Kanto Chemical Special Grade Reagent) was performed. To the distilled crude liquid, 1.8 g of acrylonitrile (Kanto Chemical Special Grade Reagent) was added (acrylonitrile / 1-heptanethiol = 3.0 mol / 1 mol), and the same purification treatment as in Example 2 was performed. When the distillate was analyzed by FID-GC, the concentration of 1-heptanethiol was 0.30 wt%.

〔比較例3〕
アクリロニトリルの添加が無いほかは、実施例3と同様の精製処理を行った。留出液をFID−GCで分析したところ、1−ヘプタンチオール濃度は1.1wt%となり、実施例3より高いことを確認した。
[Comparative Example 3]
The same purification treatment as in Example 3 was performed, except that acrylonitrile was not added. When the distillate was analyzed by FID-GC, it was confirmed that the 1-heptanethiol concentration was 1.1 wt%, which was higher than Example 3.

〔実施例4〕
300ml丸底フラスコ、ジムロート式冷却凝集器、7段相当の充填塔を備えた蒸留実験装置を準備した。DMSO(関東化学特級試薬)176.5g、MEA(関東化学特級試薬)0.7g、イオン交換水10.0gの混合液を調製した。混合液にポリマー製造工程から排出されたアクリロニトリルを含むDMSO廃液12.9gを添加して蒸留粗液200gを調製した。DMSO廃液の組成はDMSO95.1wt%、アクリロニトリル4.9wt%であり、蒸留粗液の組成はDMSO94.3wt%、水5.0%、MEA0.36wt%、アクリロニトリル0.31wt%となった(アクリロニトリル/MEA=1.0mol/1mol)。蒸留粗液を蒸留実験装置に仕込み、常圧のまま加熱100℃で1時間保持した。加熱終了後、蒸留粗液を50℃まで冷却した後、4kPaに減圧、還流比0.1に設定し、缶温97℃となるまでバッチ式蒸留を行った。バッチ式蒸留によりDMSOを主成分とする留出液161gを回収した。留出液の水分濃度は6.0wt%となった。留出液をイオンクロマトグラフィーで分析したところ、MEA濃度は0.11wt%となり、蒸留粗液と比較してMEA濃度が低減したことを確認した。
Example 4
A distillation experiment apparatus equipped with a 300 ml round bottom flask, a Dimroth type cooling aggregator, and a packed tower corresponding to 7 stages was prepared. A mixed solution of 176.5 g of DMSO (Kanto Chemical Special Grade Reagent), 0.7 g of MEA (Kanto Chemical Special Grade Reagent) and 10.0 g of ion-exchanged water was prepared. 200 g of a crude distillation liquid was prepared by adding 12.9 g of DMSO waste liquid containing acrylonitrile discharged from the polymer production process to the mixed liquid. The composition of the DMSO waste liquid was DMSO 95.1 wt% and acrylonitrile 4.9 wt%, and the composition of the distilled crude liquid was DMSO 94.3 wt%, water 5.0%, MEA 0.36 wt%, and acrylonitrile 0.31 wt% (acrylonitrile). /MEA=1.0 mol / 1 mol). The distilled crude liquid was charged into a distillation experimental apparatus and heated at 100 ° C. for 1 hour with normal pressure. After completion of the heating, the distilled crude liquid was cooled to 50 ° C., then the pressure was reduced to 4 kPa, the reflux ratio was set to 0.1, and batch distillation was performed until the can temperature reached 97 ° C. 161 g of distillate containing DMSO as a main component was recovered by batch distillation. The water concentration of the distillate was 6.0 wt%. When the distillate was analyzed by ion chromatography, the MEA concentration was 0.11 wt%, and it was confirmed that the MEA concentration was reduced as compared with the distilled crude liquid.

〔実施例5〕
ガラスフィルターを備えたカラムに強酸性カチオン交換樹脂(Lewatit K2629)10ccを充填した。実施例4で回収した留出液のうち120gを2時間かけてカラムに滴下してイオン交換を行った。イオン交換処理を行った液をイオンクロマトグラフィーで分析したところ、MEA濃度は0.11wt%から10ppm以下に低減したことを確認した。
Example 5
A column equipped with a glass filter was packed with 10 cc of a strongly acidic cation exchange resin (Lewatit K2629). Of the distillate collected in Example 4, 120 g was dropped onto the column over 2 hours for ion exchange. When the liquid subjected to the ion exchange treatment was analyzed by ion chromatography, it was confirmed that the MEA concentration was reduced from 0.11 wt% to 10 ppm or less.

〔実施例6〕
300ml丸底フラスコにDMSO(関東化学特級試薬)100g、MEA(関東化学特級試薬)0.40gを投入し、水4.5gを加えた後、混合液を20℃に温度調節した(水分濃度4.3wt%)。アクリロニトリル0.35gを添加し(アクリロニトリル/MEA=1.0mol/1.0mol)、60分間20℃に保温した。60分間後、混合液を速やかにFID−GCおよびイオンクロマトグラフィーで分析したところ、投入したMEAの1.8%が付加反応により消費されたことを確認した。
Example 6
A 300 ml round bottom flask was charged with 100 g of DMSO (Kanto Chemical Special Reagent) and 0.40 g of MEA (Kanto Chemical Special Reagent), 4.5 g of water was added, and the temperature of the mixture was adjusted to 20 ° C. (water concentration 4 .3 wt%). Acrylonitrile (0.35 g) was added (acrylonitrile / MEA = 1.0 mol / 1.0 mol), and the mixture was kept at 20 ° C. for 60 minutes. After 60 minutes, the mixture was promptly analyzed by FID-GC and ion chromatography, and it was confirmed that 1.8% of the charged MEA was consumed by the addition reaction.

〔実施例7〕
混合液に加える水を100gとする他は実施例6と同様の操作を行った(水分濃度50wt%)。60分間20℃に保温した混合液を分析したところ、投入したMEAの86%が付加反応により消費されたことを確認し、実施例6よりも反応速度が速いことが判った。
Example 7
The same operation as in Example 6 was performed except that the amount of water added to the mixed solution was 100 g (water concentration 50 wt%). When the mixed liquid kept at 20 ° C. for 60 minutes was analyzed, it was confirmed that 86% of the charged MEA was consumed by the addition reaction, and it was found that the reaction rate was faster than Example 6.

〔実施例8〕
温度条件を70℃、保温時間を40分間とする他は実施例6と同様の操作を行った(水分濃濃度4.3wt%)。40分間70℃に保温した混合液を分析したところ、投入したMEAの34%が付加反応により消費されたことを確認した。
Example 8
The same operation as in Example 6 was performed except that the temperature condition was 70 ° C. and the heat retention time was 40 minutes (water concentration 4.3 wt%). When the mixed solution kept at 70 ° C. for 40 minutes was analyzed, it was confirmed that 34% of the charged MEA was consumed by the addition reaction.

〔実施例9〕
混合液に加える水を100gとする他は実施例8と同様の操作を行った(水分濃度50wt%)。40分間70℃に保温した混合液を分析したところ、投入したMEAの86%が付加反応により消費されたことを確認し、実施例8よりも反応速度が速いことが判った。
Example 9
The same operation as in Example 8 was performed except that the amount of water added to the mixed solution was 100 g (water concentration 50 wt%). Analysis of the mixed liquid kept at 70 ° C. for 40 minutes confirmed that 86% of the charged MEA was consumed by the addition reaction, and it was found that the reaction rate was faster than Example 8.

Claims (6)

求核性成分を不純物として含むジメチルスルホキシドを蒸留精製する方法において、アクリロニトリルを添加することを特徴とするジメチルスルホキシドの精製方法。 A method for purifying dimethyl sulfoxide, which comprises adding acrylonitrile in a method for distillation purification of dimethyl sulfoxide containing a nucleophilic component as an impurity. 求核性成分が第一級アミン、第二級アミン、チオールのいずれかであり、101.3kPa(絶対圧)において160℃から220℃の沸点を持つ成分である請求項1記載のジメチルスルホキシドの精製方法。 2. The dimethyl sulfoxide according to claim 1, wherein the nucleophilic component is any one of a primary amine, a secondary amine, and a thiol, and has a boiling point of 160 ° C. to 220 ° C. at 101.3 kPa (absolute pressure). Purification method. 求核性成分がモノエタノールアミンである請求項2記載のジメチルスルホキシドの精製方法。 The method for purifying dimethyl sulfoxide according to claim 2, wherein the nucleophilic component is monoethanolamine. 蒸留精製後に、残存している求核性成分をイオン交換処理によって除去することを特徴とする請求項1から3いずれか1項記載のジメチルスルホキシドの精製方法。 The method for purifying dimethyl sulfoxide according to any one of claims 1 to 3, wherein the remaining nucleophilic component is removed by ion exchange treatment after distillation purification. アクリロニトリルが、ポリマーの製造工程から回収されたアクリロニトリルであることを特徴とする請求項1から4いずれか1項記載のジメチルスルホキシドの精製方法。 The method for purifying dimethyl sulfoxide according to any one of claims 1 to 4, wherein the acrylonitrile is acrylonitrile recovered from the production process of the polymer. アクリロニトリルを添加した後の蒸留原料の水分濃度が20wt%から75wt%であることを特徴とする請求項1から5いずれか1項記載のジメチルスルホキシドの精製方法。 The method for purifying dimethyl sulfoxide according to any one of claims 1 to 5, wherein the water concentration of the distillation raw material after addition of acrylonitrile is 20 wt% to 75 wt%.
JP2008040852A 2007-09-28 2008-02-22 Method for purifying dimethylsulfoxide Pending JP2009096792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008040852A JP2009096792A (en) 2007-09-28 2008-02-22 Method for purifying dimethylsulfoxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007256810 2007-09-28
JP2008040852A JP2009096792A (en) 2007-09-28 2008-02-22 Method for purifying dimethylsulfoxide

Publications (1)

Publication Number Publication Date
JP2009096792A true JP2009096792A (en) 2009-05-07

Family

ID=40700126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008040852A Pending JP2009096792A (en) 2007-09-28 2008-02-22 Method for purifying dimethylsulfoxide

Country Status (1)

Country Link
JP (1) JP2009096792A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225904A (en) * 2011-04-22 2011-10-26 天津美科泰化工科技有限公司 Recovering and refining apparatus and separation method of dimethyl sulfoxide (DMSO)
CN104119256A (en) * 2014-07-28 2014-10-29 福州福大辉翔化工科技有限公司 Method and equipment for extracting dimethyl sulfoxide
WO2014175187A1 (en) * 2013-04-24 2014-10-30 東レ・ファインケミカル株式会社 Method for preparing dimethylsulfoxide
WO2014178309A1 (en) * 2013-04-30 2014-11-06 東レ・ファインケミカル株式会社 Method for purifying dimethyl sulfoxide
JP2014224105A (en) * 2013-04-24 2014-12-04 東レ・ファインケミカル株式会社 Method for purifying dimethylsulfoxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225904A (en) * 2011-04-22 2011-10-26 天津美科泰化工科技有限公司 Recovering and refining apparatus and separation method of dimethyl sulfoxide (DMSO)
WO2014175187A1 (en) * 2013-04-24 2014-10-30 東レ・ファインケミカル株式会社 Method for preparing dimethylsulfoxide
JP2014224105A (en) * 2013-04-24 2014-12-04 東レ・ファインケミカル株式会社 Method for purifying dimethylsulfoxide
WO2014178309A1 (en) * 2013-04-30 2014-11-06 東レ・ファインケミカル株式会社 Method for purifying dimethyl sulfoxide
JPWO2014178309A1 (en) * 2013-04-30 2017-02-23 東レ・ファインケミカル株式会社 Purification method of dimethyl sulfoxide
CN104119256A (en) * 2014-07-28 2014-10-29 福州福大辉翔化工科技有限公司 Method and equipment for extracting dimethyl sulfoxide

Similar Documents

Publication Publication Date Title
US7884241B2 (en) Distillation process
TWI745381B (en) Production method of isopropanol and isopropanol with reduced impurities
JP4712864B2 (en) Method for producing trimethylolpropane
JP2009096792A (en) Method for purifying dimethylsulfoxide
US20210040036A1 (en) Process for the purification of caprolactam from a solution of crude caprolactam without organic solvent extraction
KR101779678B1 (en) Method for purifying acetonitrile
EP2305630B1 (en) Process for recovering valued compounds from a stream derived from purification of methyl methacrylate
JP5643754B2 (en) High purity N-ethylmethylamine and method for preparing the same
EP3388418B1 (en) Method for purifying dimethyl sulfoxide
CN112739675B (en) Method for recovering high quality 3-methyl-but-3-en-1-ol
KR102176381B1 (en) Method for reprocessing wastewater from nitrobenzene production
JP2008184409A (en) Distillation method of alkylamine-containing mixture and method for producing alkylamines
JP2001002638A (en) Production of high-purity pyrrolidone compound
EP2443084A1 (en) Chemical installation
WO2018193749A1 (en) Production method for indane carboaldehyde
JP2007063159A (en) Manufacturing method of methylamines
EP2581358B1 (en) Method for removal of organic amines from hydrocarbon streams
WO2020187953A1 (en) Process to recover 3-methyl-but-3-en-1-ol
JPH07258135A (en) Production and recovery of dipropylene glycol t-butyl ether
JP6890604B2 (en) Method for producing lactonitrile-containing liquid and lactonitrile-containing liquid
WO2022239847A1 (en) Method for collecting carboxylic acid
KR20120077641A (en) For acrylonitrile polymerization solvent dimethyl sulfoxide, and from which recovered to the recovery of dimethyl sulfoxide
JP2003221366A (en) Method for manufacturing methylamine
JP2001002639A (en) Production of high-purity pyrrolidone compound
JPH01163142A (en) Production of high-purity monoethylene glycol