JPH01163142A - Production of high-purity monoethylene glycol - Google Patents

Production of high-purity monoethylene glycol

Info

Publication number
JPH01163142A
JPH01163142A JP32156987A JP32156987A JPH01163142A JP H01163142 A JPH01163142 A JP H01163142A JP 32156987 A JP32156987 A JP 32156987A JP 32156987 A JP32156987 A JP 32156987A JP H01163142 A JPH01163142 A JP H01163142A
Authority
JP
Japan
Prior art keywords
glycol
crude
ethylene
aluminate
ethylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32156987A
Other languages
Japanese (ja)
Inventor
Harushige Sugawara
菅原 晴茂
Takashi Okawa
尚 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP32156987A priority Critical patent/JPH01163142A/en
Publication of JPH01163142A publication Critical patent/JPH01163142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To simply obtain the title high-quality compound, by separating water from an aqueous solution of crude glycol formed in recovering and purifying process of ethylene oxide to give anhydrous liquid ethylene glycol, adding a specific amount of an aluminate to the crude ethylene glycol, distilling and separating. CONSTITUTION:In producing ethylene oxide by oxidizing ethylene in gas phase, water is distilled and separated from an aqueous solution of crude ethylene glycol formed in recovering and purifying process of the compound to give substantially anhydrous liquid glycol. 100 pts.wt. of the glycol is incorporated with 0.1-5 pts.wt., preferably 0.2-2 pts.wt. aluminate, preferably Na3AlO3, NaAlO2 and/or MgOAl2O3, etc., distilled and separated at 10-170 deg.C to simply and economically give high-purity monoethylene glycol usable as a raw material for producing synthetic fibers requiring high qualities.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高純度モノエチレングリコールの製造方法に
関する。詳しくは、エチレンオキシドの回収、精製工程
において生成する粗グリコール水溶液から、高品位を要
求される合成繊維製造用原料に用いることができる高純
度モノエチレングリコールを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing high purity monoethylene glycol. Specifically, the present invention relates to a method for producing high-purity monoethylene glycol, which can be used as a raw material for producing synthetic fibers requiring high quality, from a crude glycol aqueous solution produced in the process of recovering and purifying ethylene oxide.

〔従来の技術〕[Conventional technology]

エチレンの酸素による気相接触酸化によってエチレンオ
キシドを工業的に製造する方法には、酸素源として空気
を用いる空気酸化法、純酸素を用いる酸素酸化法とがあ
るが、何れの方法にお゛いても得られたエチレンオキシ
ドを含む反応生成ガスは、水と接触させて反応ガス中の
エチレンオキシドを水に吸収させ、次いでエチレンオキ
シドを吸収させた水をストリッピングし、放出されたエ
チレンオキシドを回収する。
Methods for industrially producing ethylene oxide by gas phase catalytic oxidation of ethylene with oxygen include an air oxidation method using air as an oxygen source and an oxygen oxidation method using pure oxygen. The resulting reaction product gas containing ethylene oxide is brought into contact with water to cause the ethylene oxide in the reaction gas to be absorbed by the water, and then the water that has absorbed ethylene oxide is stripped, and the released ethylene oxide is recovered.

エチレンオキシドの吸収、放出工程において、エチレン
オキシドが分離、精製される。この工程で使用される水
は循環され、且つ、pH調節のため通常苛性ソーダが添
加される。
In the ethylene oxide absorption and release process, ethylene oxide is separated and purified. The water used in this process is recycled and usually has caustic soda added to adjust the pH.

従って、反応ガス中の各種副生物は、例えば、炭酸ガス
、有機酸等の酸類はナトリウム塩となり、アルデヒド頚
はそのままあるいはアルドール反応等による逐次反応生
成物として、その他の不、屯吻はそのままあるいは他の
物質との反応生成物として循環水中に吸収され蓄積され
る。
Therefore, various by-products in the reaction gas include, for example, acids such as carbon dioxide gas and organic acids become sodium salts, aldehyde necks as they are or as sequential reaction products such as aldol reactions, and other by-products as they are or as sequential reaction products such as aldol reactions. It is absorbed and accumulated in circulating water as a reaction product with other substances.

更にこの循環水中には、エチレンオキシドが水和して生
成するモノエチレングリコールやその三量体のジエチレ
ングリコール、三量体のトリエチレングリコール、さら
に高重合体エチレングリコール類等が含まれる。
Furthermore, this circulating water contains monoethylene glycol produced by hydration of ethylene oxide, its trimer diethylene glycol, its trimer triethylene glycol, and high polymer ethylene glycols.

これらの不渾発成分は、水の循環使用によって漸次循環
水中に蓄積するので、循環水は時々あるいは定常的にそ
の一部を系外に抜き出し、新たに水を補給する必要があ
る。
These unresponsive components gradually accumulate in the circulating water as the water is recycled, so it is necessary to periodically or regularly extract a portion of the circulating water from the system and replenish the system with fresh water.

抜き出した循環水は、各種ナトリウム塩、アルデヒドと
の逐次反応生成物ならびにエチレングリコール類を含有
した水溶液であり、これらからグリコール類を経済的に
、且つ、高純度で回収することは、エチレンオキシド製
造コストに対して影響する重要な課題である。
The extracted circulating water is an aqueous solution containing various sodium salts, successive reaction products with aldehydes, and ethylene glycols.Recovering glycols from these economically and with high purity reduces the cost of producing ethylene oxide. This is an important issue that affects the

上記粗グリコール水溶液からエチレングリコール類を回
収する方法として、蒸留の組合せによる方法がとられて
いる。しかしながら、この方法では蒸留によっては分離
し得ない不純物が混入し、得られるエチレングリコール
類の品質が悪く、限られた用途にしか使用出来なかった
As a method for recovering ethylene glycols from the above-mentioned crude glycol aqueous solution, a method using a combination of distillation is used. However, in this method, impurities that cannot be separated by distillation are mixed in, and the quality of the ethylene glycols obtained is poor, so that they can only be used for limited purposes.

この品質を改善する方法として蒸留に加えて、更に、酸
、例えば、塩酸で処理する方法(特公昭4l−1184
8)、アルカリ、例えば苛性ソーダで処理する方法(特
公昭45−9926)、粗エチレングリコールで処理す
る方法(特公昭45−10324) 、蒸留エチレング
リコールを水素添加触媒の存在下に水素と接触させる方
法(特開昭5l−1403)、同じく、無水の粗グリコ
ール液を水素化触媒の存在下に水素ガスで水呑処理する
方法(特開昭6O−178834)、あるいは、還元剤
、例えば、ナトリウムボロンハイドライドで処理する方
法(特開昭53−63304)、又、イオン交換樹脂で
吸着処理する方法(特開昭58−62124)、等エチ
レングリコール類中の不純物を物理吸着あるいは化学的
に処理して精製する方法が数多く提案されている。
As a method for improving this quality, in addition to distillation, there is also a method of treating with an acid, for example, hydrochloric acid (Japanese Patent Publication No. 41-1184
8) A method of treatment with an alkali, such as caustic soda (Japanese Patent Publication No. 45-9926), a method of treatment with crude ethylene glycol (Japanese Patent Publication No. 45-10324), a method of contacting distilled ethylene glycol with hydrogen in the presence of a hydrogenation catalyst. (Japanese Unexamined Patent Publication No. 51-1403), similarly, a method of treating anhydrous crude glycol liquid with hydrogen gas in the presence of a hydrogenation catalyst (Japanese Unexamined Patent Publication No. 60-178834), or using a reducing agent such as sodium boron hydride. (Japanese Unexamined Patent Publication No. 53-63304), adsorption treatment with an ion exchange resin (Unexamined Japanese Patent Publication No. 58-62124), etc., to purify impurities in ethylene glycols by physical adsorption or chemical treatment. Many methods have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、エチレンオキシドの製造において、回収、精製
工程にて生成する粗グリコール液から高純度のモノエチ
レングリコールを回収するに際しては、蒸留のみで達成
することは困難である。なぜならば、生成した粗グリコ
ール液中にモノエチレングリコールと沸点の近似した不
純物を含有しており、更に蒸留時高温に曝されることに
より熱安定性の良くない微量成分が熱分解し、不純物を
生成する等の原因によるものと考えられる。
However, in the production of ethylene oxide, it is difficult to recover high-purity monoethylene glycol from the crude glycol liquid produced in the recovery and purification steps by distillation alone. This is because the resulting crude glycol liquid contains impurities with boiling points similar to monoethylene glycol, and when exposed to high temperatures during distillation, trace components with poor thermal stability are thermally decomposed and impurities are removed. This is thought to be due to factors such as generation.

前述の従来処理方法においては、何れも品質面、特に高
純度なモノエチレングリコールが要求される繊維用の原
料に用いるには必ずしも満足出来るものではなく、又、
処理操作が複雑で、且つ、設備が大掛かりとなり処理コ
ストが高い等の問題があった。
None of the above-mentioned conventional processing methods are necessarily satisfactory in terms of quality, especially when used as a raw material for fibers that requires high purity monoethylene glycol.
There were problems such as complicated processing operations, large-scale equipment, and high processing costs.

〔問題点を解決するための手段および作用〕本発明者ら
は、前記問題点を解決するため鋭意研究した結果、粗グ
リコール液をアルミン酸塩で処理した後、更にy留分離
することにより、品質良好な合成繊維グレード高純度モ
ノエチレングリコールが得られることを見出し本発明を
完成させるに至ったものである。
[Means and effects for solving the problems] As a result of intensive research in order to solve the above problems, the present inventors found that by treating the crude glycol liquid with an aluminate and then further separating the y-distillation, It was discovered that synthetic fiber grade high purity monoethylene glycol of good quality could be obtained and the present invention was completed.

すなわち、本発明は、 エチレンの気相接触酸化によるエチレンオキシドの製造
に際し、該エチレンオキシドの回収、精製工程において
生成する粗グリコール水溶液から水分を1留分離して得
られる実質的に無水の粗グリコール液を、該粗グリコー
ル液100重世部に対してアルミン酸塩0.1〜5重量
部を添加した後、蒸留分離することを特徴とする高純度
モノエチレングリコールの製造方法である。
That is, the present invention provides a method for producing ethylene oxide by gas-phase catalytic oxidation of ethylene, by separating one distillation of water from a crude glycol aqueous solution produced in the recovery and purification process of ethylene oxide, and then using a substantially anhydrous crude glycol liquid obtained by is a method for producing high-purity monoethylene glycol, which is characterized in that 0.1 to 5 parts by weight of an aluminate is added to 100 parts by weight of the crude glycol liquid and then separated by distillation.

本発明に用いるアルミン酸塩は、酸化アルミニウムとこ
れより塩基性の強い金属酸化物とから生成した塩で一般
式xMOYAlz(h HzHzo (但し門は、1価
又は■価の金属、X及びyは自然数、2は整数)で表さ
れる、例えば、CaA1zO4、Co0AlzOz、K
AlO2、Na3AlO3、NaA10z 、 Ba5
11zOb、MgOA1.0.等が挙げられ、中でもN
azAIOz、NaA10□、Mg0Alz03等が好
ましく用いられる。これらは一種或いは二種以上を粗グ
リコール水溶液から水分を薄留分離して得た実質的に無
水の粗グリコール液100重量部に対し0.1〜5重量
部、好ましくは0.2〜2重量部添加する。添加量が0
.1重量部に満たないと効果が不充分であり、5重量部
を越えると添加量見合いの効果が得られず、不経済であ
り、処理液との分離にも障害となる。
The aluminate used in the present invention is a salt produced from aluminum oxide and a more basic metal oxide, and has the general formula (natural number, 2 is an integer), for example, CaA1zO4, Co0AlzOz, K
AlO2, Na3AlO3, NaA10z, Ba5
11zOb, MgOA1.0. Among them, N
azAIOz, NaA10□, Mg0Alz03, etc. are preferably used. One or more of these may be added in an amount of 0.1 to 5 parts by weight, preferably 0.2 to 2 parts by weight, per 100 parts by weight of a substantially anhydrous crude glycol solution obtained by thin distillation separation of water from a crude glycol aqueous solution. Add part. Added amount is 0
.. If the amount is less than 1 part by weight, the effect is insufficient, and if it exceeds 5 parts by weight, the effect commensurate with the amount added cannot be obtained, which is uneconomical, and also poses an obstacle to separation from the processing liquid.

アルミン酸塩の添加方法として特に制限はないが、連続
プロセスにおいては、例えば、過剰のアルミン酸塩を予
め無水の粗グリコール液に添加混合したスラリー液とし
て、蒸留塔フィード液に所定濃度になるよう定量的に添
加するか、或いは、アルミン酸塩の粉体を定量フィーダ
ーを用いて直接蒸留塔フィード液に添加する等が考えら
れる。
There are no particular restrictions on the method of adding aluminate, but in a continuous process, for example, an excess aluminate may be added to an anhydrous crude glycol liquid in advance and mixed as a slurry liquid, and then added to the distillation column feed liquid to a predetermined concentration. It may be added quantitatively, or the aluminate powder may be directly added to the distillation column feed liquid using a quantitative feeder.

又、回分式蒸留の場合は、例えば、無水の粗グリコール
液を仕込んだ蒸留塔下部スチルにアルミン酸塩を直接添
加した後昇温し蒸留すれば良い。
In the case of batch distillation, for example, an aluminate salt may be directly added to a still at the bottom of a distillation column charged with an anhydrous crude glycol solution, and then the temperature may be raised to perform distillation.

前述の如くアルミン酸塩は、粗グリコール液中に存在し
たまま蒸留しても、或いは添加処理後、濾過等により分
離してから粗グリコール液を蒸留しても良く、何れの方
法を採用するにせよ、粗グリコール液との充分なる接触
が肝要である。
As mentioned above, the aluminate may be distilled while existing in the crude glycol solution, or after addition treatment, it may be separated by filtration etc. and then the crude glycol solution may be distilled, whichever method is adopted. However, sufficient contact with the crude glycol solution is essential.

添加後の処理温度は常温で充分であり、引き続き蒸留操
作をも行う連続プロセスの場合を含めて10〜170°
Cの範囲が可能である。処理温度が10″Cに満たない
場合は、処理液の粘度が高く混合が不充分となり接触効
果が低下し処理時間が長くなる。
The processing temperature after addition is sufficient at room temperature, and 10 to 170°C, including in the case of a continuous process that also includes subsequent distillation.
A range of C is possible. If the treatment temperature is less than 10''C, the viscosity of the treatment liquid will be high and mixing will be insufficient, the contact effect will be reduced and the treatment time will be longer.

又、170°Cを越えると処理液の熱変質を起こしやす
く製品の収率低下につながる。
Furthermore, if the temperature exceeds 170°C, the treatment liquid is likely to undergo thermal alteration, leading to a decrease in product yield.

前記処理における所要時間は、液質及び処理温度により
異なるが、通常15分〜60分程度で充分目的は達成さ
れる。
The time required for the treatment varies depending on the liquid quality and treatment temperature, but usually about 15 to 60 minutes is sufficient to achieve the purpose.

〔実施例〕〔Example〕

以下、本発明を実施例により更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例−1 エチレンの空気酸化によるエチレンオキシド製造プラン
トより排出される粗エチレングリコール水溶液から得ら
れた、モノエチレングリコール85〜90重量%、ジエ
チレングリコール6〜8重量%、トリエチレングリコー
ル2〜4重量%、他に高重合物を1〜2重量%含んだ実
質的に無水の粗エチレングリコール液750gを、窒素
で置換したガラス製蒸留フラスコ(容積12)に入れ、
次いで、窒素気流中でアルミン酸ソーダ(和光紬薬製:
NaA10z)粉末を1.5g(0,2重世部)添加し
、攪拌機を取り付けた後、室温で60分間撹拌混合した
Example-1 Monoethylene glycol 85-90% by weight, diethylene glycol 6-8% by weight, triethylene glycol 2-4% by weight, obtained from a crude ethylene glycol aqueous solution discharged from an ethylene oxide manufacturing plant by air oxidation of ethylene. In addition, 750 g of a substantially anhydrous crude ethylene glycol solution containing 1 to 2% by weight of a high polymer was placed in a glass distillation flask (volume 12) purged with nitrogen.
Next, sodium aluminate (manufactured by Wako Tsumugi Co., Ltd.:
1.5 g (0.2 parts) of NaA10z) powder was added, a stirrer was attached, and the mixture was stirred and mixed at room temperature for 60 minutes.

しかるのち、該攪拌機を取り除いたフラスコをウィドマ
ー(長さ30cm)蒸留装置にセットして、塔底温度が
160±1 ”Cになる様に塔頂圧力を調節しながら減
圧蒸留をし、仕込み量の84.8重量%を留出捕集した
。この留出液について220nm U V吸光度(10
mm cell)を測定した結果は良好で、合成繊維用
品質規格(富純度エチレングリコールの合成繊維用規格
は特に定められていないが、判定指数として一般に用い
られている220nm U V吸光度(10mm ce
ll)値が0,12以下、好ましくは0.10以下であ
る)に合格する値が得られた。結果を表−1に示す。
After that, the flask from which the stirrer had been removed was set in a Widmer (length 30 cm) distillation apparatus, and vacuum distillation was carried out while adjusting the tower top pressure so that the tower bottom temperature was 160 ± 1"C. 84.8% by weight of the distillate was collected by distillation.
The results of measuring the 220nm UV absorbance (10mm ce
ll) value is 0.12 or less, preferably 0.10 or less) was obtained. The results are shown in Table-1.

実施例−2 アルミン酸ソーダ0.5N量部、処理時間を30分に変
えた他は実施例−1と同様に行った。結果を表−1に示
す。
Example 2 The same procedure as Example 1 was carried out except that the amount of sodium aluminate was changed to 0.5N and the treatment time was changed to 30 minutes. The results are shown in Table-1.

実施例−3 アルミン酸ソーダ2.0重量部、処理時間を15分に変
えた他は実施例−1と同様に行った。結果を表−1に示
す。
Example 3 The same procedure as Example 1 was carried out except that 2.0 parts by weight of sodium aluminate and the treatment time were changed to 15 minutes. The results are shown in Table-1.

実施例−4 アルミン酸ソーダ0.5重量部に変えた他は実施例−1
と同様に行った。結果を表−1に示す。
Example-4 Example-1 except that sodium aluminate was changed to 0.5 parts by weight
I did the same thing. The results are shown in Table-1.

比較例−1 実施例−1において、アルミン酸ソーダを添加せずに蒸
留操作を実施し留出液について220nm UV吸光度
測定した結果を表−1に示す。UV吸光度は高く合成繊
維用としては不合格であった。
Comparative Example 1 In Example 1, the distillation operation was carried out without adding sodium aluminate, and the 220 nm UV absorbance of the distillate was measured. The results are shown in Table 1. The UV absorbance was high and it was rejected for use in synthetic fibers.

実施例−5 実施例−1に用いたと同様の粗グリコール液を窒素で置
換したSUS製オートクレーブ(容積12)に800g
秤り取り、次いで、窒素気流中でアルミン酸ソーダ0.
5重量部を添加して、予め160’Cに調節した加熱槽
中に浸漬したまま30分間PA拌混合処理した。冷却後
実施例−1と同様に蒸留し得られた留分について220
nmUV吸光度を測定した結果は良好であった。結果を
表−1に示す。
Example-5 800 g of the same crude glycol solution used in Example-1 was placed in a SUS autoclave (volume 12) purged with nitrogen.
Weigh it out, then add 0.0% sodium aluminate in a nitrogen stream.
After adding 5 parts by weight, the mixture was stirred and mixed with PA for 30 minutes while being immersed in a heating tank pre-adjusted to 160'C. After cooling, distillation was carried out in the same manner as in Example-1.
The results of measuring nm UV absorbance were good. The results are shown in Table-1.

実施例−6 蒸留に用いた粗グリコール液が、アルミン酸ソーダで処
理した後、該アルミン酸ソーダを濾過分離した粗グリコ
ール液である以外は、実施例−5と同様に行った。得ら
れた留分について220nm U■吸光度を測定した。
Example 6 The same procedure as in Example 5 was carried out, except that the crude glycol liquid used in the distillation was obtained by treating with sodium aluminate and then filtering and separating the sodium aluminate. The 220 nm U* absorbance of the obtained fraction was measured.

結果を表−1に示す。The results are shown in Table-1.

実施例−7 実施例−1と同様の粗グリコール液を用い、アルミン酸
ソーダをアルミン酸マグネシウムに変えた他は実施例−
2と同様に行った1表−1に示す様にアルミン酸ソーダ
と路間等の結果を得た。
Example-7 Example-7 The same crude glycol liquid as in Example-1 was used, except that sodium aluminate was replaced with magnesium aluminate.
As shown in Table 1, results such as sodium aluminate and road spacing were obtained.

実施例−8 実施例−1と同様の粗グリコール液を用い、アルミン酸
ソーダをアルミン酸カルシウムに変えた他は実施例−2
と同様に行った。表−1に示す様にアルミン酸ソーダと
路間等の結果を得た。
Example-8 Example-2 except that the same crude glycol liquid as in Example-1 was used and sodium aluminate was replaced with calcium aluminate.
I did the same thing. As shown in Table 1, results such as sodium aluminate and road spacing were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明により、エチレンオキシドの回収、精製工程にお
いて生成する粗グリコール水溶液から水を分離して得ら
れた無水の粗エチレングリコール液に、少量のアルミン
酸塩を添加混合するだけで簡単且つ、経済的に高品位の
エチレングリコールを得る事が出来、産業上極めて有利
である。
According to the present invention, it is easy and economical to simply add and mix a small amount of aluminate to an anhydrous crude ethylene glycol solution obtained by separating water from a crude glycol aqueous solution produced in the ethylene oxide recovery and purification process. It is possible to obtain high-grade ethylene glycol, which is extremely advantageous industrially.

特許出願人 三井東圧化学株式会社Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)エチレンの気相接触酸化によるエチレンオキシドの
製造に際し、該エチレンオキシドの回収、精製工程にお
いて生成する粗グリコール水溶液から水分を蒸留分離し
て得られる実質的に無水の粗グリコール液を、該粗グリ
コール液100重量部に対してアルミン酸塩0.1〜5
重量部を添加した後、蒸留分離することを特徴とする高
純度モノエチレングリコールの製造方法。
1) During the production of ethylene oxide by gas-phase catalytic oxidation of ethylene, a substantially anhydrous crude glycol liquid obtained by distilling and separating water from the crude glycol aqueous solution produced in the recovery and purification process of the ethylene oxide is used as the crude glycol liquid. Aluminate 0.1-5 per 100 parts by weight
A method for producing high-purity monoethylene glycol, which comprises adding parts by weight and then separating by distillation.
JP32156987A 1987-12-21 1987-12-21 Production of high-purity monoethylene glycol Pending JPH01163142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32156987A JPH01163142A (en) 1987-12-21 1987-12-21 Production of high-purity monoethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32156987A JPH01163142A (en) 1987-12-21 1987-12-21 Production of high-purity monoethylene glycol

Publications (1)

Publication Number Publication Date
JPH01163142A true JPH01163142A (en) 1989-06-27

Family

ID=18134027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32156987A Pending JPH01163142A (en) 1987-12-21 1987-12-21 Production of high-purity monoethylene glycol

Country Status (1)

Country Link
JP (1) JPH01163142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114740A (en) * 2000-09-29 2002-04-16 Nippon Shokubai Co Ltd Method for producing hydroxyalkyl (meth)acrylate
JP2008156263A (en) * 2006-12-22 2008-07-10 Sanshin Chem Ind Co Ltd Method for stabilizing ethylene glycol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114740A (en) * 2000-09-29 2002-04-16 Nippon Shokubai Co Ltd Method for producing hydroxyalkyl (meth)acrylate
JP2008156263A (en) * 2006-12-22 2008-07-10 Sanshin Chem Ind Co Ltd Method for stabilizing ethylene glycol

Similar Documents

Publication Publication Date Title
TWI698423B (en) Method of synthesizing 2,2,4,4-tetramethyl-1,3-cyclobutadione
JP5101495B2 (en) Method for producing 3-methyl-1,5-pentanediol
KR20110011917A (en) Process for preparing of n-methyl pyrrolidone
JPH01163142A (en) Production of high-purity monoethylene glycol
CN112739675A (en) Method for recovering high-quality 3-methyl-but-3-en-1-ol
JP3182946B2 (en) Method for producing N- (α-alkoxyethyl) formamide
JP3318992B2 (en) Method for producing N- (α-alkoxyethyl) formamide
JPH0789917A (en) Purification of n-vinylcarboxylic acid amide
CN111566078B (en) Comprising selective removal of Cu from butynediol starting material ++ Ionic improved process for the production of butanediol
JP2526611B2 (en) Purification method of dialkylaminoethanol
WO1995017366A1 (en) Process for purifying 1,1,1,3,3-pentafluoro-2,3-dichloropropane
JP3570760B2 (en) Method for producing 2-t-butylhydroquinone
CN115260029B (en) Method for producing 2,3, 5-trimethylhydroquinone diester by using bubble column reactor
JPS63190862A (en) Recovery of n-vinylformamide
JPH03181440A (en) Purification of acrylic acid by distillation
US3164535A (en) Recovery of high purity nitrosodimethylamine by distillation and phase separation both with caustic
JPH06746B2 (en) Pyridine purification method
CN116874385A (en) Synthesis method of 3-methoxy-N, N-dimethylpropionamide
JPS61246147A (en) Purification of dialkyl maleate
JP4267417B2 (en) Process for producing purified tricyclo [5.2.1.02,6] decane-2-carboxylic acid ethyl ester
SU368750A1 (en) METHOD OF OBTAINING e-CAPROLACTAM
JPS62142129A (en) Recovery of alcohol
JPH03261736A (en) Production of dipentaerythritol
JPH036132B2 (en)
JPS6141507B2 (en)