JP2009096697A5 - - Google Patents

Download PDF

Info

Publication number
JP2009096697A5
JP2009096697A5 JP2007272280A JP2007272280A JP2009096697A5 JP 2009096697 A5 JP2009096697 A5 JP 2009096697A5 JP 2007272280 A JP2007272280 A JP 2007272280A JP 2007272280 A JP2007272280 A JP 2007272280A JP 2009096697 A5 JP2009096697 A5 JP 2009096697A5
Authority
JP
Japan
Prior art keywords
raw material
substrate
zeolite membrane
weight
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007272280A
Other languages
Japanese (ja)
Other versions
JP4961322B2 (en
JP2009096697A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2007272280A priority Critical patent/JP4961322B2/en
Priority claimed from JP2007272280A external-priority patent/JP4961322B2/en
Publication of JP2009096697A publication Critical patent/JP2009096697A/en
Publication of JP2009096697A5 publication Critical patent/JP2009096697A5/ja
Application granted granted Critical
Publication of JP4961322B2 publication Critical patent/JP4961322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明のゼオライト膜用アルミナ質基体の製造方法について説明する。
(イ)本発明では、純度99重量%以上、好ましくは99.5重量%以上であるAl原料を用いる。尚、混合・分散工程での不純物の混入を考えると、用いる粉体の1次粒子径は6〜12μm、好ましくは7〜11μmのアルミナ原料を用いるのが良い。このAlはバイヤー法で製造された原料粉体を用いることができる。バイヤー法で製造されたAl原料は従来使用されているアルミナよりもコストが安いため好ましく、特に製造工程で高温で焼成されたアルミナ原料を用いるのが好ましい。Al純度が99重量%未満の場合は、アルミナ質基体に含有する不純物量が多くなり、耐食性に低下をきたすので好ましくない。1次粒子径が6μm未満の場合は、混合・分散後の粒度分布が狭くなり、得られる基体の平均結晶粒径が小さくなり、耐食性の低下や基体のゼータ電位が高くなる原因となるため好ましくない。一方、1次粒子径が12μmを超える場合には、基体が有する気孔径が大きくなり、ゼオライト膜製膜時に基体表面にゼオライト種結晶が均一に担持されないので好ましくない。
(ロ)焼成工程でガラス相を形成する成分は、珪石、長石、粘土よりなる群から選ばれた少なくとも1種を原料粉体の形態で添加する。
これらの原料粉体の使用により、比較的均一な組成のガラス相が形成できる原料粉体の平均粒子径は0.5〜5μm、好ましくは1〜4μmである。平均粒子径が0.5μm未満の場合は、粉体同士の凝集が強くなり、均一に分散し難くなるし、ゼオライト膜製膜時に基体管表面のゼオライト膜の結晶性が不均一になるため好ましくない。また、5μmを超える場合は、焼成工程におけるガラス相の均一分散性が低下し、機械的特性に低下をきたすので好ましくない。これらの成分は焼成により発明におけるアルカリ金属酸化物やアルカリ土類金属酸化物に変化する。
上の原料を用いてAl含有量が85〜95重量%、SiO含有量が3〜13重量%となるように配合し、湿式でボールミルやアトリッションミル等を用い、水または有機溶媒で混合・分散を行う。尚、本発明における原料処理は、粉砕することなく混合・分散処理のみでよく、これにより粉体の表面の処理による変化を極力抑制でき、また基体の結晶粒径を容易に制御できる。
成形は押出成形やプレス成形が採用される。
押出成形の場合は、得られた粉砕・分散スラリーを乾燥し、整粒した後、押出成形用バインダー(CMC、PVA、ワックスエマルジョン等の公知のバインダーが使用できる)と水、場合によっては気孔形成剤を添加し、混合・混練することにより押出成形用坏土を得る。次いでこの成形用坏土を用い、所定の形状になるように押出成形をする。
プレス成形する場合は、得られた分散スラリーにバインダー(ワックスエマルジョン、PVA、アクリル樹脂等)を添加し、スプレードライヤー(SD)で乾燥させて成形用粉体を作製し、この成形粉体を所定の型に入れてプレス成形をする。
(ハ)得られた成形体は大気中1200〜1600℃、好ましくは1250〜1500℃で焼成する。焼成温度が1200℃未満の場合は、焼結が不十分なため機械的特性が低下するだけでなく、ゼオライト膜製膜時に基体管表面のゼオライト膜の結晶性が不均一になるため好ましくない。また、1600℃を超える場合は、焼結が進みすぎて気孔率が低下するため好ましくない。
A method for producing an alumina substrate for a zeolite membrane according to the present invention will be described.
(A) In the present invention, an Al 2 O 3 raw material having a purity of 99% by weight or more, preferably 99.5% by weight or more is used. In view of the mixing of impurities in the mixing / dispersing step, it is preferable to use an alumina raw material having a primary particle diameter of 6 to 12 μm, preferably 7 to 11 μm. As this Al 2 O 3, a raw material powder produced by the Bayer method can be used. The Al 2 O 3 raw material manufactured by the Bayer method is preferable because it is cheaper than conventionally used alumina, and it is particularly preferable to use an alumina raw material fired at a high temperature in the manufacturing process. When the Al 2 O 3 purity is less than 99% by weight, the amount of impurities contained in the alumina substrate is increased, and the corrosion resistance is lowered. When the primary particle size is less than 6 μm, the particle size distribution after mixing / dispersion is narrowed, the average crystal particle size of the obtained substrate is reduced, which causes a decrease in corrosion resistance and an increase in the zeta potential of the substrate. Not . Hand, if the primary particle diameter exceeds 12μm, the pore diameter having the substrate is increased, undesirably zeolite seed crystal on the substrate surface during the zeolite membrane film formation is not uniformly responsible lifting.
(B) The component that forms the glass phase in the firing step is at least one selected from the group consisting of silica, feldspar, and clay in the form of raw material powder.
By using these raw material powders, a glass phase having a relatively uniform composition can be formed . The average particle diameter of the raw material powder is 0.5 to 5 [mu] m, Ru preferably 1~4μm der. When the average particle size is less than 0.5 μm, it is preferable because the powders are strongly aggregated and difficult to disperse uniformly, and the crystallinity of the zeolite membrane on the surface of the base tube becomes non-uniform when forming the zeolite membrane. Absent. Moreover, when exceeding 5 micrometers, since the uniform dispersibility of the glass phase in a baking process falls and it causes a mechanical characteristic to fall, it is unpreferable. These components change to the alkali metal oxide or alkaline earth metal oxide in the present invention by firing.
By using the raw material on more than Al 2 O 3 content 85 to 95 wt%, SiO 2 content is blended so that 3 to 13% by weight, using a ball mill or attrition mill in a wet, water Alternatively, mixing and dispersion are performed with an organic solvent. Note that the raw material treatment in the present invention may be only mixing and dispersion treatment without pulverization, whereby the change due to the treatment of the surface of the powder can be suppressed as much as possible, and the crystal grain size of the substrate can be easily controlled.
As the molding, extrusion molding or press molding is adopted.
In the case of extrusion molding, the obtained pulverized / dispersed slurry is dried and sized, and then a binder for extrusion molding (a known binder such as CMC, PVA, wax emulsion, etc. can be used) and water, and in some cases, pores are formed. An extrudate clay is obtained by adding an agent, mixing and kneading. Next, this molding clay is extruded to a predetermined shape.
In the case of press molding, a binder (wax emulsion, PVA, acrylic resin, etc.) is added to the obtained dispersion slurry and dried with a spray dryer (SD) to produce a molding powder. Into the mold and press-mold.
(C) The obtained molded body is fired in the atmosphere at 1200 to 1600 ° C, preferably 1250 to 1500 ° C. A calcination temperature of less than 1200 ° C. is not preferable because not only the mechanical properties deteriorate due to insufficient sintering, but also the crystallinity of the zeolite membrane on the surface of the substrate tube becomes nonuniform during the formation of the zeolite membrane. Moreover, when it exceeds 1600 degreeC, since sintering advances too much and a porosity falls, it is unpreferable.

実施例1〜7及び比較例1〜11
純度が99.7重量%のアルミナ原料に、平均粒子径0.3〜4.7μmの珪石、長石及び粘土を用いてSiO含有量、アルカリ金属及び/またはアルカリ土類金属の酸化物の含有量が表1の組成となるように配合し、水を用いて湿式で混合・分散させ、乾燥した。尚、比較例7は1次粒子径が細かい原料を所定の平均結晶粒径になるように焼成温度を制御した。これらの粉体100重量%に対して、バインダーとしてメチルセルロース6重量%、水15重量%を加え、混合、混練し、押出成形用の坏土を得た。作製した押出成形用坏土を用いて、チューブを押出成形し、得られた成形体を大気中、1140℃〜1660℃で焼成して、外径Φ12mm、内径Φ9mm、長さ100mmの基体を得た。得られた基体の特性を表1に示す。
実施例1〜7は本発明の請求項の範囲に含まれる基体であり、実施例2の走査型電子顕微鏡(SEM)観察(図1)によりゼオライト膜の結晶性が良いものが得られており、ゼオライト膜用の基体として良好な製膜性を有していることは明らかである。一方比較例1〜11は本発明の条件を少なくとも一つ以上満たしていない基体である。そのため、形成されたゼオライト膜に膜厚が不均一であるものや、ゼオライトの結晶が凝集しているものが見られた。特に、比較例7のSEM観察(図2)の点線で囲った部分に示すように、ゼオライト膜の結晶が凝集しているものが見られた。
Examples 1-7 and Comparative Examples 1-11
Using an alumina raw material with a purity of 99.7% by weight of silica, feldspar and clay with an average particle size of 0.3 to 4.7 μm, the content of SiO 2 , oxides of alkali metal and / or alkaline earth metal It mix | blended so that content might become the composition of Table 1, mixed and disperse | distributed wet with water, and dried. In Comparative Example 7, the firing temperature was controlled so that the raw material having a small primary particle size had a predetermined average crystal particle size. To 100% by weight of these powders, 6% by weight of methylcellulose and 15% by weight of water were added as a binder, mixed and kneaded to obtain a clay for extrusion molding. Using the prepared clay for extrusion molding, a tube was extruded, and the obtained molded body was fired at 1140 ° C. to 1660 ° C. in the atmosphere to obtain a substrate having an outer diameter of Φ12 mm, an inner diameter of Φ9 mm, and a length of 100 mm. It was. The properties of the obtained substrate are shown in Table 1.
Examples 1 to 7 are substrates included in the scope of the claims of the present invention, and those having good crystallinity of the zeolite membrane were obtained by observation with a scanning electron microscope (SEM) of Example 2 (FIG. 1). It is apparent that the substrate for zeolite membrane has good film-forming properties. On the other hand, Comparative Examples 1 to 11 are substrates that do not satisfy at least one of the conditions of the present invention. For this reason, the formed zeolite membrane was found to have a non-uniform film thickness or a zeolite crystal aggregated. In particular, as shown in the portion surrounded by the dotted line in the SEM observation (FIG. 2) of Comparative Example 7, there were observed aggregates of zeolite membrane crystals.

JP2007272280A 2007-10-19 2007-10-19 Alumina substrate for zeolite membrane and method for producing the same Active JP4961322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007272280A JP4961322B2 (en) 2007-10-19 2007-10-19 Alumina substrate for zeolite membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272280A JP4961322B2 (en) 2007-10-19 2007-10-19 Alumina substrate for zeolite membrane and method for producing the same

Publications (3)

Publication Number Publication Date
JP2009096697A JP2009096697A (en) 2009-05-07
JP2009096697A5 true JP2009096697A5 (en) 2010-11-11
JP4961322B2 JP4961322B2 (en) 2012-06-27

Family

ID=40700043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272280A Active JP4961322B2 (en) 2007-10-19 2007-10-19 Alumina substrate for zeolite membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4961322B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312826B2 (en) * 2008-03-18 2013-10-09 株式会社ニッカトー Alumina substrate for separation membrane with excellent corrosion resistance
JP6182748B2 (en) * 2013-07-08 2017-08-23 住友電気工業株式会社 Method for producing fluid separation material
CN111902202B (en) 2018-03-30 2022-11-04 日本碍子株式会社 Ceramic support, zeolite membrane composite, method for producing zeolite membrane composite, and separation method
JP7292188B2 (en) * 2019-11-22 2023-06-16 株式会社ニッカトー Aluminous substrate tube with excellent film-forming properties and filtration separation properties
CN115028174B (en) * 2022-05-26 2023-11-24 中南大学 Method for refining zeolite grains in zeolite coating on surface of metal matrix

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4724529B2 (en) * 2005-10-21 2011-07-13 株式会社ニッカトー Alumina substrate tube for separation membrane and method for producing the same

Similar Documents

Publication Publication Date Title
CN101367666B (en) Large-scale, specially shaped mullite-corundum system sintered refractory material product and preparing technique thereof
JP5412296B2 (en) Refractory ceramic composite and method for producing the same
JP2009096697A5 (en)
JP4961322B2 (en) Alumina substrate for zeolite membrane and method for producing the same
CN102171163A (en) Process for manufacturing a porous SiC material
KR20090105950A (en) METHOD FOR MAKING A SiC BASED CERAMIC POROUS BODY
JP4766910B2 (en) Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered body
CN104987120A (en) Molecular sieve membrane support body preparation method
JP6456857B2 (en) Particles for irregular refractories
JP6284609B2 (en) Aluminum nitride sintered body
JP2010116289A (en) Method for producing aluminum titanate ceramic
JP2008019144A (en) Manufacturing method of ceramic composite material containing zirconia
US10472285B2 (en) Composite ceramic materials, articles, and method of manufacture
JP5928694B2 (en) Alumina sintered body and manufacturing method thereof
JP6062912B2 (en) Aluminum nitride sintered body and manufacturing method thereof
WO2011118025A1 (en) Columnar aluminum titanate and method for producing same
JP5673945B2 (en) Method for producing silicon nitride ceramics
JP2001220260A (en) Alumina-based porous refractory sheet and method for producing the same
JP5274209B2 (en) Columnar aluminum titanate and method for producing the same
JP2004315293A (en) Zirconia member for heat treatment and method for manufacturing the same
JP6053481B2 (en) Silicon carbide sintered body and method for producing the same
JPH04187555A (en) Preparation of ceramic raw material and apparatus therefor
JPH0987040A (en) Ceramic green body
CN117756507A (en) High-temperature thermal shock resistant high-purity corundum brick and preparation method thereof
JP2020059617A (en) Sintered body and manufacturing method thereof