JP2009095686A - Heavy nitrogen enrichment and production apparatus - Google Patents

Heavy nitrogen enrichment and production apparatus Download PDF

Info

Publication number
JP2009095686A
JP2009095686A JP2007266521A JP2007266521A JP2009095686A JP 2009095686 A JP2009095686 A JP 2009095686A JP 2007266521 A JP2007266521 A JP 2007266521A JP 2007266521 A JP2007266521 A JP 2007266521A JP 2009095686 A JP2009095686 A JP 2009095686A
Authority
JP
Japan
Prior art keywords
reflux
tower
hno
reflux tower
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007266521A
Other languages
Japanese (ja)
Inventor
Masashi Sugiyama
正史 杉山
Kisao Uekusa
吉幸男 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007266521A priority Critical patent/JP2009095686A/en
Publication of JP2009095686A publication Critical patent/JP2009095686A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heavy nitrogen enrichment and production apparatus that can produce a large quantity of heavy nitrogen by enrichment safely and efficiently on a commercial scale even by using a fewer reflux columns in virtue of its possibility of reducing localized thermal load on each reflux column. <P>SOLUTION: The heavy nitrogen enrichment and production apparatus is one comprising a reflux column 2 which forms nitrogen monoxide from nitric acid and a sulfur dioxide gas and an exchange column that concentrates heavy nitrogen<SP>15</SP>N in nitric acid by the nitrogen isotope chemical exchange reaction between the nitrogen oxide formed in the reflux column 2 and nitric acid, wherein as a sulfur dioxide gas feed port in the reflux column 2, the second SO<SB>2</SB>feed port 4, in addition to the first SO<SB>2</SB>feed port 3 provided at the lower end of the reflux column 2, is formed at least at one position, for example, the middle, nearer to the overhead of the reflux column 2 than the lower end. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、硝酸と二酸化硫黄ガスの反応で発生させた一酸化窒素を用いて、硝酸との化学交換法により重窒素15Nを濃縮製造する装置に関する。 The present invention relates to an apparatus for concentrating and producing heavy nitrogen 15 N by chemical exchange with nitric acid using nitric oxide generated by the reaction of nitric acid and sulfur dioxide gas.

天然に存在する窒素の同位体は、質量数14の14Nが99.634%、質量数15の15Nが0.366%の割合である。上記同位体のうち質量数15の15Nは一般に重窒素と呼ばれており、分離濃縮された重窒素はバイオ分野におけるトレーサーや、化学分野における核磁気共鳴分析などに利用されている。 Naturally occurring nitrogen isotopes have a ratio of 99.634% of 14 N having a mass number of 14 and 0.366% of 15 N having a mass number of 15. Of the above isotopes, 15 N having a mass number of 15 is generally called heavy nitrogen, and the separated and concentrated heavy nitrogen is used for tracers in the bio field and nuclear magnetic resonance analysis in the chemical field.

窒素を含む軽元素の同位体分離法としては、様々な方法が研究もしくは開発されているが、実用化されているのは統計的分離法(化学交換法あるいは蒸留法)によるものだけである。個別的分離法(レーザー法あるいは電磁的分離法)も知られているが、一段の分離係数が高いため少量の分離精製には有効である反面、分離速度が極端に遅いために、研究用はともかく、商業的に必要な量を大量に生産する場合には実質的な製造コストが高くなりすぎるという欠点がある。   Various methods have been studied or developed as isotope separation methods for light elements containing nitrogen, but only the statistical separation method (chemical exchange method or distillation method) has been put to practical use. Although individual separation methods (laser method or electromagnetic separation method) are also known, they are effective for a small amount of separation and purification because of the high one-stage separation factor, but because the separation rate is extremely slow, In any case, there is a disadvantage that the substantial manufacturing cost becomes too high when a commercially necessary amount is produced in large quantities.

現在実用化されている窒素同位体の分離方法は、一酸化窒素NOガスと硝酸HNOの水溶液との接触によって起こる窒素同位体化学交換反応、例えば下記化学式1において、交換反応が僅かに右側にシフトする、即ち15Nが硝酸水溶液側に偏ることを利用している。具体的には、ある程度の長さを有する交換塔内において、下記化学式1のHNO−NO化学交換反応が重畳されることにより、HNO中に15Nの濃縮が進行する。 The nitrogen isotope separation method currently in practical use is a nitrogen isotope chemical exchange reaction that occurs by contact of nitric oxide NO gas and an aqueous solution of nitric acid HNO 3. For example, in the following chemical formula 1, the exchange reaction is slightly on the right side. Shifting, that is, utilizing the fact that 15 N is biased toward the nitric acid aqueous solution side. Specifically, in the exchange column having a certain length, the HNO 3 —NO chemical exchange reaction of the following chemical formula 1 is superimposed, so that the concentration of 15 N proceeds in HNO 3 .

[化学式1]
15N+H14NO14NO+H15NO(分離係数α=1.055)
[Chemical Formula 1]
15 N + H 14 NO 3 NO 14 NO + H 15 NO 3 (separation coefficient α = 1.05)

実際の濃縮操作は、例えば特開平3−47518号公報に示されたように行われる。具体的には、図1に示すように、HNOは交換塔1の塔頂部から供給されて交換塔1内を下降し、交換塔1の底部から抜け出たHNOは交換塔1の下に設置された還流塔2に入り、更に還流塔2内を下降する。ここで、HNO下降流は還元剤として還流塔2の下端から供給された二酸化硫黄SOガスの上昇流と接触し、界面で下記化学式2の反応が起こり一酸化窒素NOと硫酸HSOが生成する。 The actual concentration operation is performed, for example, as disclosed in Japanese Patent Laid-Open No. 3-47518. Specifically, as shown in FIG. 1, HNO 3 is supplied from the top of the exchange tower 1 and descends in the exchange tower 1, and the HNO 3 exiting from the bottom of the exchange tower 1 is placed under the exchange tower 1. It enters the installed reflux tower 2 and further descends in the reflux tower 2. Here, the downward flow of HNO 3 comes into contact with the upward flow of sulfur dioxide SO 2 gas supplied from the lower end of the reflux tower 2 as a reducing agent, the reaction of the following chemical formula 2 occurs at the interface, and nitric oxide NO and sulfuric acid H 2 SO 4 is generated.

[化学式2]
2HNO+3SO+2HO → 3HSO+2NO
[Chemical formula 2]
2HNO 3 + 3SO 2 + 2H 2 O → 3H 2 SO 4 + 2NO

生成したNOは上昇流となって交換塔1に戻り、交換塔1内でHNOとNOの気液対向流となり、上記化学式1のHNO−NO化学交換反応により15NがHNO側に濃縮される。そして、15Nが濃縮されて所定の15N濃度となった硝酸HNOの一部は、還流比に従って交換塔1の底部から製品として抜き取られる。また、還流塔2で生成したHSOは還流塔2の底部から回収され、HNOと同位体交換したNOガスは交換塔1の塔頂部から排出される。 The produced NO returns to the exchange tower 1 as an upward flow, and becomes a gas-liquid countercurrent flow of HNO 3 and NO in the exchange tower 1, and 15 N is moved to the HNO 3 side by the HNO 3 —NO chemical exchange reaction of the above chemical formula 1. Concentrated. Then, part of nitric acid HNO 3 to 15 N becomes is enriched with a predetermined 15 N concentration is withdrawn as a product from the bottom of the exchange column 1 in accordance with a reflux ratio. In addition, H 2 SO 4 generated in the reflux tower 2 is recovered from the bottom of the reflux tower 2, and NO gas that isotope exchanged with HNO 3 is discharged from the top of the exchange tower 1.

上記の方法では、還流塔でHNOを還元してNOとするとき大量のSOガスが必要であり、また大量の硫酸が副生することから処理の負担が大きい。このため、特開2005−205346号公報では、硫酸製造プロセスのプロセスガスを精製して得られたSOを利用し、また副生した硫酸を硫酸製造プロセスで利用することが提案されている。これにより、大量のSO源が確保され、同時に大量の副生硫酸を処理する必要がなくなることから、重窒素の製造コストの低減が可能となるものと期待されている。 In the above method, when HNO 3 is reduced to NO by a reflux tower, a large amount of SO 2 gas is required, and a large amount of sulfuric acid is by-produced, so that the processing burden is large. For this reason, Japanese Patent Application Laid-Open No. 2005-205346 proposes to use SO 2 obtained by refining the process gas of the sulfuric acid production process and to use the by-produced sulfuric acid in the sulfuric acid production process. As a result, a large amount of SO 2 source is secured, and at the same time, it is not necessary to treat a large amount of by-product sulfuric acid. Therefore, it is expected that the production cost of heavy nitrogen can be reduced.

特開平3−47518号公報Japanese Patent Laid-Open No. 3-47518 特開2005−205346号公報JP 2005-205346 A

上記化学式1のHNO−NO化学交換反応により重窒素15Nを濃縮製造する装置では、NO生成のための上記化学式2による反応が大きな発熱を伴う反応であるため、還流塔を常に冷却する必要がある。しかし、還流塔を冷却していても、還流塔内で反応が暴走して安定な反応を制御することが困難となったり、局所的な熱負荷のために還流塔が破損する危険があるなどの問題があった。 In the apparatus for concentrating and manufacturing heavy nitrogen 15 N by the HNO 3 —NO chemical exchange reaction of the above chemical formula 1, the reaction according to the above chemical formula 2 for generating NO is a reaction accompanied by a large exotherm, and therefore the reflux tower must be constantly cooled. There is. However, even if the reflux tower is cooled, it is difficult to control a stable reaction due to a runaway reaction in the reflux tower, or the reflux tower may be damaged due to local heat load. There was a problem.

また、高温の硫酸が発生する還流塔には、内部冷却管及び/又は外部冷却ジャケットを備えたガラス製の反応塔が使用されている。そのため、材質がガラスであることから作製可能な還流塔の大きさには自ずと制限が生じ、大量の重窒素濃縮製造においては上記した冷却の問題から数多くの還流塔を設置することが必要となるため、操作が複雑になるという問題があった。   In addition, a glass reaction tower provided with an internal cooling pipe and / or an external cooling jacket is used as a reflux tower for generating high-temperature sulfuric acid. Therefore, since the material is glass, the size of the reflux tower that can be produced is naturally limited, and in the production of a large amount of heavy nitrogen, it is necessary to install a large number of reflux towers due to the above-mentioned cooling problem. Therefore, there is a problem that the operation becomes complicated.

本発明は、上記した従来の問題点に鑑みてなされたものであり、還流塔での局所的な熱負荷を低減することができ、還流塔の数をできるだけ少なくしながら、商業的規模で大量の重窒素を安全に且つ効率よく濃縮製造することが可能な重窒素濃縮製造装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and can reduce the local heat load in the reflux tower, and can reduce the number of reflux towers as much as possible on a commercial scale. An object of the present invention is to provide a heavy nitrogen concentration production apparatus that can safely and efficiently concentrate and manufacture heavy nitrogen.

上記目的を達成するため、本発明が提供する重窒素濃縮製造装置は、硝酸と二酸化硫黄ガスから一酸化窒素を生成する還流塔と、還流塔で生成した一酸化窒素と硝酸との窒素同位体化学交換反応により重窒素を硝酸に濃縮する交換塔とを備えた重窒素濃縮製造装置において、還流塔における二酸化硫黄ガスの供給口を、還流塔下端の他に、還流塔の下端よりも塔頂側に少なくとも1箇所設けたことを特徴とするものである。   In order to achieve the above-mentioned object, the heavy nitrogen concentration production apparatus provided by the present invention comprises a reflux tower for producing nitric oxide from nitric acid and sulfur dioxide gas, and a nitrogen isotope of nitrogen monoxide and nitric acid produced in the reflux tower. In a heavy nitrogen concentration production apparatus comprising an exchange tower for concentrating heavy nitrogen to nitric acid by a chemical exchange reaction, the sulfur dioxide gas supply port in the reflux tower is connected to the top of the tower from the bottom of the reflux tower in addition to the bottom of the reflux tower. At least one place is provided on the side.

上記本発明の重窒素濃縮製造装置において、複数設けたSO供給口からの合計SO流量は、還流塔に流入するHNOの流量に対して前記化学式2で計算される必要量であればよい。この合計SO流量は、SO供給口の数で等分してもよいが、還流塔下端以外のSO供給口からの流量を少なく設定し、還流塔下端のSO供給口からの流量を最も多くすることが好ましい。その理由は、装置のトラブル等によりHNOの流量が減少した場合に、未反応のSOガスが還流塔を抜け出て交換塔に入る可能性を極力抑えるためである。 In the heavy nitrogen concentration production apparatus of the present invention, the total SO 2 flow rate from a plurality of SO 2 supply ports is a necessary amount calculated by the chemical formula 2 with respect to the flow rate of HNO 3 flowing into the reflux tower. Good. The total SO 2 flow rate may be equally divided by the number of SO 2 supply ports, but the flow rate from the SO 2 supply port other than the lower end of the reflux column is set to be small, and the flow rate from the SO 2 supply port at the lower end of the reflux column. It is preferable to increase the number of The reason is to suppress the possibility that unreacted SO 2 gas escapes from the reflux tower and enters the exchange tower when the flow rate of HNO 3 decreases due to trouble of the apparatus or the like.

本発明によれば、還流塔内でのHNOとSOガスの反応による発熱を分散させることにより還流塔の冷却が容易となるため、局所的な熱負荷による還流塔の破損を防止することができると共に、大量の重窒素濃縮製造においても還流塔の数が増加することを防ぐことができる。 According to the present invention, since the cooling of the reflux tower is facilitated by dispersing the heat generated by the reaction of HNO 3 and SO 2 gas in the reflux tower, damage to the reflux tower due to local heat load is prevented. In addition, it is possible to prevent an increase in the number of reflux towers even in a large amount of concentrated heavy nitrogen production.

また、本発明によれば、SO供給口が還流塔下端一箇所にのみ設置されていた従来の装置に比べて、交換塔から還流塔に流入したHNOが還流塔内でSOと反応するまでの時間が短くなることから、所定の最高15N濃縮度に到達するのに必要な時間を従来よりも短縮することができる。 Further, according to the present invention, compared with the conventional apparatus in which the SO 2 supply port is installed only at one lower end of the reflux tower, HNO 3 flowing into the reflux tower from the exchange tower reacts with SO 2 in the reflux tower. Therefore, the time required to reach the predetermined maximum 15 N concentration can be shortened compared to the conventional case.

本発明による重窒素濃縮製造装置は、図1に示すように、硝酸HNOと二酸化硫黄SOから一酸化窒素NOを生成する還流塔2と、還流塔2で生成した一酸化窒素NOと硝酸HNOとの窒素同位体化学交換反応により重窒素15Nを硝酸HNOに濃縮する交換塔1とを備えている。しかも、本発明の重窒素濃縮製造装置では、還流塔2における二酸化硫黄SOの供給口が、従来と同じ還流塔2下端の一箇所に加えて、還流塔2の下端よりも塔頂側に少なくとも更に1箇所設けである。尚、図1は一般的な重窒素濃縮製造装置の説明のため、SO供給口が還流塔の下端の一箇所のみ図示してある。 As shown in FIG. 1, the heavy nitrogen concentration production apparatus according to the present invention includes a reflux tower 2 that produces nitric oxide NO from nitric acid HNO 3 and sulfur dioxide SO 2, and nitric oxide NO and nitric acid produced in the reflux tower 2. and a replacement column 1 for concentrating the heavy nitrogen 15 N nitric acid HNO 3 with nitrogen isotope chemical exchange reaction with HNO 3. In addition, in the heavy nitrogen concentration production apparatus of the present invention, the supply port for sulfur dioxide SO 2 in the reflux tower 2 is located at the top of the reflux tower 2 in addition to the same one at the bottom of the reflux tower 2 as in the prior art. At least one more location is provided. FIG. 1 shows only one portion of the SO 2 supply port at the lower end of the reflux tower in order to explain a general heavy nitrogen concentration production apparatus.

本発明の還流塔について、一具体例を示す図2に基づいて説明する。この還流塔2は、SO供給口として、還流塔下端に設けた第1SO供給口3と、還流塔中央部付近に設けた第2SO供給口4とを備えている。また、還流塔2の冷却は、外部冷却ジャケット5及び内部冷却管6に冷却水を流すことによって行われる。還流塔2の内部には充填材7としてガラス製のへリックス等が充填され、塔底部には充填材7の落下を防止するための目皿8が設けてある。尚、図中の10は、熱電対挿入用パイレックス管である。 The reflux tower of the present invention will be described with reference to FIG. 2 showing a specific example. The reflux tower 2 includes, as SO 2 supply ports, a first SO 2 supply port 3 provided at the lower end of the reflux tower and a second SO 2 supply port 4 provided near the center of the reflux tower. The reflux tower 2 is cooled by flowing cooling water through the external cooling jacket 5 and the internal cooling pipe 6. The reflux tower 2 is filled with a glass helix or the like as the packing material 7, and an eye plate 8 for preventing the packing material 7 from falling is provided at the bottom of the tower. In the figure, reference numeral 10 denotes a thermocouple insertion Pyrex tube.

交換塔(図示せず)の底部から流れ出た硝酸HNOは、還流塔2の塔頂部に設置されたHNO供給口9からが還流塔2に入り、充填材7の表面を伝わるようにして塔内を下降する。還流塔2内を下降するHNOは、第1SO供給口3及び第2SO供給口4から供給された二酸化硫黄SOと反応し、NOとHSOが生成する。 The nitric acid HNO 3 flowing out from the bottom of the exchange tower (not shown) enters the reflux tower 2 through the HNO 3 supply port 9 installed at the top of the reflux tower 2 and is transmitted along the surface of the packing material 7. Go down the tower. The HNO 3 descending in the reflux tower 2 reacts with the sulfur dioxide SO 2 supplied from the first SO 2 supply port 3 and the second SO 2 supply port 4 to generate NO and H 2 SO 4 .

その際、まず第2SO供給口4付近において、第2SO供給口4から供給されるSO量に見合った量のHNOが反応し、残りのHNOは更に塔内を下降して、還流塔2の下端の第1SO供給口3から供給されるSOと反応する。このとき、第1SO供給口3からのSOとHNOが反応する位置は、次のように任意の位置に設定することができる。 At that time, in the First 2SO 2 nearby supply port 4, the amount of HNO 3 commensurate with the SO 2 volume supplied from the 2SO 2 supply port 4 is reacted, the rest of HNO 3 is further lowered in the column, It reacts with SO 2 supplied from the 1SO 2 supply port 3 of the lower end of the reflux column 2. At this time, a position SO 2 and HNO 3 from first 1SO 2 supply port 3 is reacted can be set at any position as follows.

即ち、装置運転開始時には還流塔下端の第1SO供給口3から供給されるSOとHNOとの反応は第1SO供給口3付近で起こるが、第1SO供給口3へのSOの供給量を第1SO供給口3に到達するHNOと反応するのに必要なSO量より多く設定することにより、余分となったSOは第1SO供給口3より上方にあるHNOと反応することから、徐々にSOとHNOの反応位置が上昇する。その後、適当な位置にSO−HNO反応帯が上昇した時点で、第1SO供給口3からのSO供給量を正常な値に戻すことにより、反応帯を任意の適当な位置に保つことができる。 That, SO 2 to While the reaction of SO 2 and HNO 3 during device operation start supplied from the 1SO 2 supply port 3 of the reflux column lower end occurs in the vicinity of the 1SO 2 supply port 3, the 1SO 2 supply port 3 Is set to be larger than the amount of SO 2 required to react with HNO 3 reaching the first SO 2 supply port 3, so that excess SO 2 is present in the HNO located above the first SO 2 supply port 3. 3 reacting with, gradually reaction site of SO 2 and HNO 3 is increased. Then, when the SO 2-HNO3-3 reaction zone is raised in place, by returning the SO 2 supply from the 1SO 2 supply port 3 to the normal value, while maintaining the reaction zone at any suitable location be able to.

このように複数のSO供給口を設けて、HNOとSOの反応を還流塔2内で複数箇所に分けることによって、HNOとSOの反応による発熱が1箇所に集中することを防ぐことができる。そのため、外部冷却ジャケット5及び内部冷却管6による還流塔2の冷却が容易になり、還流塔2にかかる熱負荷が小さくなることから、従来に比べて多くの硝酸を還流塔2内で安全に反応させることが可能となる。尚、SO供給口の数は還流塔下端を含めて2箇所以上であればよく、また各SO供給口の間隔は上記したSO−HNO反応帯の位置に応じて任意に設定することができる。 Thus by providing a plurality of SO 2 feed port, by dividing the plurality of locations reaction HNO 3 and SO 2 in the reflux column 2, that the heat generated by the reaction of HNO 3 and SO 2 are concentrated in one place Can be prevented. Therefore, the cooling of the reflux tower 2 by the external cooling jacket 5 and the internal cooling pipe 6 is facilitated, and the heat load on the reflux tower 2 is reduced. Therefore, more nitric acid can be safely contained in the reflux tower 2 than in the past. It becomes possible to make it react. The number of SO 2 supply ports may be two or more including the lower end of the reflux tower, and the interval between the SO 2 supply ports is arbitrarily set according to the position of the SO 2 —HNO 3 reaction zone. be able to.

上記のごとく還流塔2内でHNOとSOの反応により生成したNOは、還流塔2の塔頂部から交換塔(図示せず)の底部に入り、交換塔の塔頂部に供給されたHNOとのHNO−NO化学交換法により15NがHNO側に移って次第に濃縮される。所定の15N濃度まで濃縮されたHNOの一部は、一般の精留操作と同様に還流比に従って交換塔底部から抜き取られ、製品H15NOとして回収される。尚、還流塔2内で生成したHSOは、還流塔2の底部から排出されて回収される。 As described above, NO produced by the reaction of HNO 3 and SO 2 in the reflux tower 2 enters the bottom of the exchange tower (not shown) from the top of the reflux tower 2 and is supplied to the top of the exchange tower. the HNO 3 -NO chemical exchange method with 3 15 N is concentrated gradually move to HNO 3 side. A part of HNO 3 concentrated to a predetermined 15 N concentration is withdrawn from the bottom of the exchange column according to the reflux ratio in the same manner as in a general rectification operation, and is recovered as product H 15 NO 3 . The H 2 SO 4 generated in the reflux tower 2 is discharged from the bottom of the reflux tower 2 and collected.

また、上記したHNO−NO化学交換法では、還流塔内でのSOとHNOの反応より発生したNOが交換塔に戻り、交換塔頂部から供給されたHNOとの平衡反応に従ってNO中の15NがHNO側に移る。本発明の重窒素濃縮製造装置では、従来の装置と比較してSO供給口が還流塔底部より上方にも設置されているので、HNOが還流塔内でSOと反応するまでの時間(還流塔内での滞留時間)が短くなり、従って15Nを多く含むNOが交換塔に戻るのに要する時間が短縮されて15Nの濃縮が早く進むため、最高15N濃縮度に到達するまでに要する時間を短縮することができる。 Further, in the above-described HNO 3 -NO chemical exchange method, NO generated by the reaction of SO 2 and HNO 3 in the reflux tower returns to the exchange tower, and NO in accordance with the equilibrium reaction with HNO 3 supplied from the top of the exchange tower. 15 N inside moves to HNO 3 side. In the heavy nitrogen concentration production apparatus of the present invention, since the SO 2 supply port is also installed above the bottom of the reflux tower as compared with the conventional apparatus, the time until HNO 3 reacts with SO 2 in the reflux tower. (Residence time in the reflux column) is shortened, and therefore the time required for NO containing a large amount of 15 N to return to the exchange column is shortened and 15 N enrichment proceeds quickly, so that the maximum 15 N enrichment is reached. The time required for the process can be shortened.

交換塔として、内径25mm×長さ2000mmのパイレックス管を使用し、内部に充填材のヘリパックを充填した。また、還流塔として、内径40mm×長さ1500mmで、外部水冷ジャケットと内部冷却管を備えたパイレックス管を作製し、内部に充填材のガラス製ヘリックスを充填した。この還流塔の下端に第1SO供給口、及び中央部に第2SO供給口を設けた。更に、還流塔内の発熱状況を観測するために、熱電対挿入用パイレックス管を挿入した。 As an exchange tower, a Pyrex tube having an inner diameter of 25 mm and a length of 2000 mm was used, and the inside was filled with a helicac of filler. Further, as a reflux tower, a Pyrex tube having an inner diameter of 40 mm and a length of 1500 mm and having an external water cooling jacket and an internal cooling tube was produced, and a glass helix as a filler was filled therein. The 1SO 2 feed port to the lower end of the reflux column, and the first 2SO 2 supply ports provided in the center portion. Furthermore, in order to observe the heat generation in the reflux tower, a Pyrex tube for inserting a thermocouple was inserted.

上記交換塔の塔頂部から10モル/lの硝酸水溶液を5ml/minで供給すると共に、還流塔下端の第1SO供給口から1.1リットル/min、還流塔中央部の第2SO供給口から0.6リットル/minの流量で、それぞれSOガスを供給した。また、比較例として、還流塔下端のSO供給口のみから、1.7リットル/minの流量でSOガスを供給した。 Nitric acid aqueous solution of 10 mol / l from the top of the exchange column is supplied at 5 ml / min, the reflux tower first 1SO from second supply ports 1.1 l / min of the bottom, first 2SO 2 supply port of the reflux tower central section From the above, SO 2 gas was supplied at a flow rate of 0.6 liter / min. As a comparative example, SO 2 gas was supplied at a flow rate of 1.7 liter / min only from the SO 2 supply port at the lower end of the reflux tower.

上記実施例及び比較例において、還流塔内の発熱状況を塔内に挿入した熱電対で測定し、得られた結果を図3のグラフに示す。尚、図3における横軸は、還流塔下端のSO供給口から塔頂方向に向かっての距離を表したものである。この結果から分るように、SO供給口を還流塔下端と中央部の2箇所に設けた実施例では、SO供給口が還流塔下端の1箇所のみの比較例に比べて最高温度が半分近くにまで低下し、還流塔にかかる熱負荷が小さくなった。 In the above examples and comparative examples, the heat generation in the reflux tower was measured with a thermocouple inserted in the tower, and the obtained results are shown in the graph of FIG. The horizontal axis in FIG. 3 represents the distance from the SO 2 supply port at the lower end of the reflux tower toward the top of the tower. As can be seen from the results, in the embodiment in which a SO 2 supply port in two places reflux column lower end and the central portion, the maximum temperature compared to the comparative example of the SO 2 feed opening only one place of the reflux column lower end The heat load applied to the reflux tower was reduced.

また、上記実施例及び比較例において、15N濃縮度と時間との関係を測定した結果を図4のグラフに示す。実施例及び比較例ともに到達した最高15N濃縮度は3%程度であるが、実施例では最高濃縮度に到達するまでの時間が比較例よりも短くなっていることが分る。 In the above Examples and Comparative Examples, showing the results of measuring the relationship between the 15 N enrichment and time in the graph of FIG. Although the maximum 15 N concentration reached in both the examples and the comparative examples is about 3%, it can be seen that in the examples, the time until the maximum concentration is reached is shorter than in the comparative examples.

還流塔と交換塔を備えた重窒素濃縮製造装置を示す概略の断面図である。It is a schematic sectional drawing which shows the heavy nitrogen concentration manufacturing apparatus provided with the reflux tower and the exchange tower. 本発明の重窒素濃縮製造装置における還流塔の一具体例を示す概略の断面図である。It is a schematic sectional drawing which shows one specific example of the reflux tower in the heavy nitrogen concentration manufacturing apparatus of this invention. 本発明の実施例と比較例における還流塔内の温度測定結果を示すグラフである。It is a graph which shows the temperature measurement result in the reflux tower in the Example and comparative example of this invention. 本発明の実施例と比較例における15N濃縮度の時間変化を示すグラフである。It is a graph which shows the time change of 15 N concentration in the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 交換塔
2 還流塔
3 第1SO供給口
4 第2SO供給口
5 外部冷却ジャケット
6 内部冷却管
7 充填材
8 目皿
9 HNO供給口
10 熱電対挿入用パイレックス管
1 the exchange column 2 reflux column 3 the 1SO 2 supply port 4 first 2SO 2 feed port 5 external cooling jacket 6 inside the cooling pipe 7 filler 8 perforated plate 9 HNO 3 supply port 10 thermocouple insertion pyrex tube

Claims (1)

硝酸と二酸化硫黄ガスから一酸化窒素を生成する還流塔と、還流塔で生成した一酸化窒素と硝酸との窒素同位体化学交換反応により重窒素を硝酸に濃縮する交換塔とを備えた重窒素濃縮製造装置において、還流塔における二酸化硫黄ガスの供給口を、還流塔下端の他に、還流塔の下端よりも塔頂側に少なくとも1箇所設けたことを特徴とする重窒素濃縮製造装置。   Heavy nitrogen equipped with a reflux tower for producing nitric oxide from nitric acid and sulfur dioxide gas, and an exchange tower for concentrating heavy nitrogen to nitric acid by a nitrogen isotope chemical exchange reaction between nitric oxide and nitric acid produced in the reflux tower In the concentration manufacturing apparatus, the heavy nitrogen concentration manufacturing apparatus is characterized in that at least one supply port for sulfur dioxide gas in the reflux tower is provided on the tower top side with respect to the bottom of the reflux tower in addition to the lower end of the reflux tower.
JP2007266521A 2007-10-12 2007-10-12 Heavy nitrogen enrichment and production apparatus Pending JP2009095686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007266521A JP2009095686A (en) 2007-10-12 2007-10-12 Heavy nitrogen enrichment and production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007266521A JP2009095686A (en) 2007-10-12 2007-10-12 Heavy nitrogen enrichment and production apparatus

Publications (1)

Publication Number Publication Date
JP2009095686A true JP2009095686A (en) 2009-05-07

Family

ID=40699206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007266521A Pending JP2009095686A (en) 2007-10-12 2007-10-12 Heavy nitrogen enrichment and production apparatus

Country Status (1)

Country Link
JP (1) JP2009095686A (en)

Similar Documents

Publication Publication Date Title
EP1813346B1 (en) Multitubular reaction apparatus for contact gas-phase reaction
US6165435A (en) Method and production of nitric acid
EP3575264B1 (en) Energy recovery in manufacture of sulfuric acid
US6986874B2 (en) Method and apparatus for the production of nitrogen trifluoride
US4470959A (en) Continuous production of silicon tetrafluoride gas in a vertical column
JP2009095686A (en) Heavy nitrogen enrichment and production apparatus
KR20180095027A (en) Recovery tower control
EP4077212B1 (en) A venturi absorber tube for absorbing sulfur trioxide in sulfuric acid
JP2012121745A (en) Recovery method for nitrogen monoxide gas and recovery device for nitrogen monoxide gas
JP2011104577A (en) Method for producing concentration of heavy nitrogen
US9849419B2 (en) Process and plant for the production of liquid acid
WO2002059071A1 (en) Process for producing alkanedicarboxylic acid
JP2009255009A (en) Heavy nitrogen concentrating and manufacturing device
JP2011200762A (en) Method for concentrating/producing heavy nitrogen
JP2011083752A (en) Method for concentrating/producing heavy nitrogen
JP2011177668A (en) Method for recovering nitrogen monoxide gas
JP2011177667A (en) Method for manufacturing heavy nitrogen by enrichment
ZA200507484B (en) Process for the production of nitrogen trifluoride
US3857926A (en) Production of nickel sulfate
JP2004224689A (en) Method for condensing sulfuric acid vapor for manufacturing sulfuric acid
US20230202845A1 (en) Absorption column comprising a feed box having a serrated weir and a structured packing and process for the production of nitric acid
ITMI961530A1 (en) PROCESS FOR THE SYNTHESIS OF UREA FROM AMMONIA AND CARBON DIOXIDE AND USEFUL EQUIPMENT FOR CARRYING OUT THE PROCESS
JP2011194351A (en) Method for concentrating and manufacturing heavy nitrogen
US3567406A (en) Method and apparatus for producing cyanogen chloride using a flooded reactor
US20240286893A1 (en) Process and system for producing a gas comprising nitrogen (n2) and hydrogen (h2) by combustion of hydrogen in the presence of air