JP2009093916A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2009093916A
JP2009093916A JP2007263214A JP2007263214A JP2009093916A JP 2009093916 A JP2009093916 A JP 2009093916A JP 2007263214 A JP2007263214 A JP 2007263214A JP 2007263214 A JP2007263214 A JP 2007263214A JP 2009093916 A JP2009093916 A JP 2009093916A
Authority
JP
Japan
Prior art keywords
fuel cell
control
insulation resistance
recovery control
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007263214A
Other languages
Japanese (ja)
Inventor
Michio Yoshida
道雄 吉田
Kenji Mayahara
健司 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007263214A priority Critical patent/JP2009093916A/en
Priority to PCT/JP2008/065993 priority patent/WO2009047957A1/en
Publication of JP2009093916A publication Critical patent/JP2009093916A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04656Other electric variables, e.g. resistance or impedance of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04888Voltage of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system capable of making compatible insulating resistance measurement and control of catalytic activity recovery without causing defect such as measurement error of insulating resistance of a fuel cell. <P>SOLUTION: A fuel cell system 100 has a fuel cell 40 generating power by electrochemical reaction of reaction gasses; an insulating resistance measuring part 90 measuring insulating resistance of the fuel cell 40; and a control device 10 controlling power generation of the fuel cell 40, and the control device 10 executes insulating resistance measurement control measuring insulating resistance in the insulating resistance measuring part 90 and catalytic activity recovery control recovering the activity of the catalyst of the fuel cell 40 in each prescribed execution condition. The control device 10 prohibits execution of the catalytic activity recovery control during the insulating resistance measurement control. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池システムに係り、特に、その制御の改善に関する。   The present invention relates to a fuel cell system, and more particularly to an improvement in control thereof.

近年、反応ガス(燃料ガス及び酸化ガス)の電気化学反応によって発電する燃料電池をエネルギ源とする燃料電池システムが注目されている。燃料電池システムは、燃料電池のアノードに燃料タンクから高圧の燃料ガスを供給するとともに、カソードに酸化ガスとしての空気を供給し、これら燃料ガスと酸化ガスとを電気化学反応させ、起電力を発生させるものである。このような燃料電池システムにおいて、白金触媒表面に形成された酸化皮膜を除去する回復制御を実行し、I−V特性の低下を抑制するものがある(例えば、特許文献1参照)。
特開2005−346979号公報
In recent years, a fuel cell system that uses a fuel cell that generates electric power by an electrochemical reaction of reaction gases (fuel gas and oxidizing gas) as an energy source has attracted attention. The fuel cell system supplies high-pressure fuel gas from the fuel tank to the anode of the fuel cell, and also supplies air as the oxidizing gas to the cathode, and generates an electromotive force by electrochemically reacting these fuel gas and oxidizing gas. It is something to be made. In such a fuel cell system, there is one that executes a recovery control for removing an oxide film formed on the surface of the platinum catalyst and suppresses a decrease in IV characteristics (see, for example, Patent Document 1).
JP-A-2005-346979

しかしながら、上記の燃料電池システムにおいては、触媒の活性の回復制御を実行すると、燃料電池のセル総電圧が大きく変動する。したがって、絶縁抵抗測定部によって燃料電池の絶縁抵抗を測定している最中に、触媒活性回復制御が実行されると、絶縁抵抗の誤測定を生じてしまうことがある。   However, in the fuel cell system described above, when the recovery control of the catalyst activity is executed, the total cell voltage of the fuel cell greatly fluctuates. Therefore, if the catalyst activity recovery control is executed while the insulation resistance measurement unit is measuring the insulation resistance of the fuel cell, an erroneous measurement of the insulation resistance may occur.

そこで、本発明は、誤測定などの不具合なく、絶縁抵抗測定及び触媒活性回復の制御を両立させることが可能な燃料電池システムを提供することを目的とする。   Therefore, an object of the present invention is to provide a fuel cell system that can achieve both insulation resistance measurement and control of catalyst activity recovery without inconvenience such as erroneous measurement.

本発明の燃料電池システムは、反応ガスの電気化学反応によって発電する燃料電池と、前記燃料電池の絶縁抵抗を測定する絶縁抵抗測定部と、前記燃料電池の発電を制御する制御部とを有し、前記制御部が、前記絶縁抵抗測定部により絶縁抵抗を測定する前記絶縁抵抗測定制御及び前記燃料電池の触媒の活性を回復させる触媒活性回復制御を、それぞれ所定の実行条件にて実行する燃料電池システムであって、前記制御部は、前記絶縁抵抗測定制御中における前記触媒活性回復制御の実行を禁止する。   The fuel cell system of the present invention includes a fuel cell that generates electric power by an electrochemical reaction of a reaction gas, an insulation resistance measurement unit that measures an insulation resistance of the fuel cell, and a control unit that controls power generation of the fuel cell. The fuel cell in which the control unit executes the insulation resistance measurement control for measuring the insulation resistance by the insulation resistance measurement unit and the catalyst activity recovery control for recovering the activity of the catalyst of the fuel cell, respectively, under predetermined execution conditions. In the system, the control unit prohibits execution of the catalyst activity recovery control during the insulation resistance measurement control.

かかる構成によれば、絶縁抵抗測定制御中に触媒活性回復制御の実行を禁止するので、触媒活性回復制御による電圧変動の影響を受けることなく、精度良く絶縁抵抗を測定することができる。つまり、誤測定などの不具合なく、絶縁抵抗測定制御及び触媒活性回復制御を両立させることができる。   According to such a configuration, since the execution of the catalyst activity recovery control is prohibited during the insulation resistance measurement control, the insulation resistance can be accurately measured without being affected by the voltage fluctuation due to the catalyst activity recovery control. That is, it is possible to achieve both insulation resistance measurement control and catalyst activity recovery control without inconvenience such as erroneous measurement.

前記制御部は、前記触媒活性回復制御の実行条件が不成立のときに前記絶縁抵抗測定制御の実行条件が成立した場合には、前記触媒活性回復制御の実行を所定時間禁止する物でも良い。   The controller may be configured to prohibit the execution of the catalyst activation recovery control for a predetermined time when the execution condition of the insulation resistance measurement control is satisfied when the execution condition of the catalyst activation recovery control is not satisfied.

前記制御部は、前記絶縁抵抗測定制御及び前記触媒活性回復制御の実行条件が同時に成立している場合には、前記絶縁抵抗測定制御の実行前に前記触媒活性回復制御を実行するものでも良い。   The controller may execute the catalyst activity recovery control before executing the insulation resistance measurement control when the execution conditions of the insulation resistance measurement control and the catalyst activity recovery control are satisfied at the same time.

本発明の燃料電池システムによれば、燃料電池の絶縁抵抗を誤測定するなどの不具合なく、絶縁抵抗測定及び触媒活性回復の制御を両立させることが可能となる。   According to the fuel cell system of the present invention, it is possible to achieve both insulation resistance measurement and catalyst activity recovery control without inconvenience such as erroneous measurement of the insulation resistance of the fuel cell.

以下、本発明に係る実施の形態について図面を参照しながら説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1は本実施形態に係る燃料電池システム100の要部構成を示す図である。本実施形態では、燃料電池自動車(FCHV;Fuel Cell Hybrid Vehicle)、電気自動車、ハイブリッド自動車などの車両に搭載される燃料電池システムを想定するが、車両のみならず各種移動体(例えば、二輪車や船舶、飛行機、ロボットなど)にも適用可能である。さらに、移動体に搭載された燃料電池システムに限らず、定置型の燃料電池システムや携帯型の燃料電池システムにも適用可能である。   FIG. 1 is a diagram showing a main configuration of a fuel cell system 100 according to the present embodiment. In the present embodiment, a fuel cell system mounted on a vehicle such as a fuel cell hybrid vehicle (FCHV), an electric vehicle, or a hybrid vehicle is assumed, but not only the vehicle but also various mobile bodies (for example, two-wheeled vehicles and ships). , Airplanes, robots, etc.). Furthermore, the present invention is not limited to a fuel cell system mounted on a moving body, but can be applied to a stationary fuel cell system and a portable fuel cell system.

この車両は、減速ギア12を介して車輪63L、63Rに連結されたトラクションモータ61を駆動力源として走行する。トラクションモータ61の電源は、電源システム1である。電源システム1から出力される直流は、インバータ60で三相交流に変換され、トラクションモータ61に供給される。トラクションモータ61は制動時に発電機としても機能することができる。電源システム1は、燃料電池40、バッテリ20、DC/DCコンバータ30などから構成される。   This vehicle travels using the traction motor 61 connected to the wheels 63L and 63R via the reduction gear 12 as a driving force source. The power source of the traction motor 61 is the power system 1. The direct current output from the power supply system 1 is converted into a three-phase alternating current by the inverter 60 and supplied to the traction motor 61. The traction motor 61 can also function as a generator during braking. The power supply system 1 includes a fuel cell 40, a battery 20, a DC / DC converter 30, and the like.

燃料電池40は、供給される反応ガス(燃料ガス及び酸化ガス)から電力を発生する手段であり、固体高分子型、燐酸型、溶融炭酸塩型など種々のタイプの燃料電池を利用することができる。燃料電池40は、フッ素系樹脂などで形成されたプロトン伝導性のイオン交換膜などから成る高分子電解質膜41を備え、高分子電解質膜の表面には白金触媒(電極触媒)が塗布されている。
なお、高分子電解質膜41に塗布する触媒は白金触媒に限らず、白金コバルト触媒(以下、単に触媒という)などにも適用可能である。燃料電池40を構成する各セルは、高分子電解質膜41の両面にアノード極42とカソード極43とをスクリーン印刷などで形成した膜・電極接合体44を備えている。燃料電池40は、複数の単セルを直列に積層したスタック構造を有している。
The fuel cell 40 is means for generating electric power from supplied reaction gas (fuel gas and oxidizing gas), and various types of fuel cells such as a solid polymer type, a phosphoric acid type, and a molten carbonate type can be used. it can. The fuel cell 40 includes a polymer electrolyte membrane 41 made of a proton conductive ion exchange membrane formed of a fluorine-based resin or the like, and a platinum catalyst (electrode catalyst) is applied to the surface of the polymer electrolyte membrane. .
The catalyst applied to the polymer electrolyte membrane 41 is not limited to a platinum catalyst, but can be applied to a platinum cobalt catalyst (hereinafter simply referred to as a catalyst). Each cell constituting the fuel cell 40 includes a membrane / electrode assembly 44 in which an anode electrode 42 and a cathode electrode 43 are formed on both surfaces of a polymer electrolyte membrane 41 by screen printing or the like. The fuel cell 40 has a stack structure in which a plurality of single cells are stacked in series.

この燃料電池40の出力電圧(以下、FC電圧)及び出力電流(以下、FC電流)は、それぞれ電圧センサ140及び電流センサ150によって測定される。燃料電池40の燃料極(アノード)には、燃料ガス供給源70から水素ガスなどの燃料ガスが供給される一方、酸素極(カソード)には、酸化ガス供給源80から空気などの酸化ガスが供給される。   The output voltage (hereinafter referred to as FC voltage) and output current (hereinafter referred to as FC current) of the fuel cell 40 are measured by a voltage sensor 140 and a current sensor 150, respectively. A fuel gas such as hydrogen gas is supplied from the fuel gas supply source 70 to the fuel electrode (anode) of the fuel cell 40, while an oxidizing gas such as air is supplied from the oxidizing gas supply source 80 to the oxygen electrode (cathode). Supplied.

燃料ガス供給源70は、例えば水素タンクや様々な弁などから構成され、弁開度やON/OFF時間などを調整することにより、燃料電池40に供給する燃料ガス量を制御する。   The fuel gas supply source 70 includes, for example, a hydrogen tank, various valves, and the like, and controls the amount of fuel gas supplied to the fuel cell 40 by adjusting the valve opening degree and the ON / OFF time.

酸化ガス供給源80は、例えばエアコンプレッサやエアコンプレッサを駆動するモータ、インバータなどから構成され、該モータの回転数などを調整することにより、燃料電池40に供給する酸化ガス量を調整する。   The oxidizing gas supply source 80 includes, for example, an air compressor, a motor that drives the air compressor, an inverter, and the like, and adjusts the amount of oxidizing gas supplied to the fuel cell 40 by adjusting the rotational speed of the motor.

バッテリ20は、充放電可能な二次電池であり、例えばニッケル水素バッテリなどにより構成されている。もちろん、バッテリ20の代わりに二次電池以外の充放電可能なあらゆる蓄電器(例えばキャパシタ)を設けても良い。このバッテリ20は、燃料電池40の放電経路に介挿され、燃料電池40と並列に接続されている。バッテリ20と燃料電池40とはトラクションモータ用のインバータ60に並列接続されており、バッテリ20とインバータ6の間にはDC/DCコンバータ30が設けられている。   The battery 20 is a chargeable / dischargeable secondary battery, and is composed of, for example, a nickel metal hydride battery. Of course, any chargeable / dischargeable capacitor (for example, a capacitor) other than the secondary battery may be provided instead of the battery 20. The battery 20 is inserted in the discharge path of the fuel cell 40 and connected in parallel with the fuel cell 40. The battery 20 and the fuel cell 40 are connected in parallel to an inverter 60 for a traction motor, and a DC / DC converter 30 is provided between the battery 20 and the inverter 6.

インバータ60は、例えば複数のスイッチング素子によって構成されたパルス幅変調方式のPWMインバータであり、制御装置10から与えられる制御指令に応じて燃料電池40またはバッテリ20から出力される直流電力を三相交流電力に変換し、トラクションモータ61へ供給する。トラクションモータ61は、車輪63L、63Rを駆動するためのモータであり、かかるモータの回転数はインバータ60によって制御される。   The inverter 60 is, for example, a pulse width modulation type PWM inverter constituted by a plurality of switching elements, and converts the DC power output from the fuel cell 40 or the battery 20 in accordance with a control command given from the control device 10 into a three-phase AC. It is converted into electric power and supplied to the traction motor 61. The traction motor 61 is a motor for driving the wheels 63 </ b> L and 63 </ b> R, and the rotation speed of the motor is controlled by the inverter 60.

DC/DCコンバータ(電子機器、電圧変換装置)30は、例えば4つのパワー・トランジスタ(スイッチング素子)と専用のドライブ回路(いずれも図示略)によって構成されたフルブリッジ・コンバータである。DC/DCコンバータ30は、バッテリ20から入力されたDC電圧を昇圧または降圧して燃料電池40側に出力する機能、燃料電池40などから入力されたDC電圧を昇圧または降圧してバッテリ20側に出力する機能を備えている。また、DC/DCコンバータ30の機能により、バッテリ20の充放電が実現される。   The DC / DC converter (electronic device, voltage conversion device) 30 is a full-bridge converter configured by, for example, four power transistors (switching elements) and a dedicated drive circuit (all not shown). The DC / DC converter 30 functions to step up or step down the DC voltage input from the battery 20 and output it to the fuel cell 40 side, and step up or step down the DC voltage input from the fuel cell 40 or the like to the battery 20 side. It has a function to output. In addition, charging / discharging of the battery 20 is realized by the function of the DC / DC converter 30.

バッテリ20とDC/DCコンバータ30の間には、車両補機やFC補機などの補機類50が接続されている。バッテリ20は、これら補機類50の電源となる。なお、車両補機とは、車両の運転時などに使用される種々の電力機器(照明機器、空調機器、油圧ポンプなど)をいい、FC補機とは、燃料電池40の運転に使用される種々の電力機器(燃料ガスや酸化ガスを供給するためのポンプなど)をいう。   An auxiliary machine 50 such as a vehicle auxiliary machine or an FC auxiliary machine is connected between the battery 20 and the DC / DC converter 30. The battery 20 is a power source for these auxiliary machines 50. The vehicle auxiliary equipment refers to various electric power devices (lighting equipment, air conditioning equipment, hydraulic pump, etc.) used during vehicle operation, and the FC auxiliary equipment is used to operate the fuel cell 40. It refers to various power devices (pumps for supplying fuel gas and oxidizing gas, etc.).

また、燃料電池40につながる配線には、絶縁抵抗測定部90が接続されている。絶縁抵抗測定部90は、燃料電池40と車体との間の絶縁抵抗を測定する。   An insulation resistance measuring unit 90 is connected to the wiring connected to the fuel cell 40. The insulation resistance measuring unit 90 measures the insulation resistance between the fuel cell 40 and the vehicle body.

上述した各要素の運転は制御装置(制御部)10によって制御される。制御装置10は、内部にCPU、ROM、RAMを備えたマイクロコンピュータとして構成されている。   The operation of each element described above is controlled by a control device (control unit) 10. The control device 10 is configured as a microcomputer having a CPU, a ROM, and a RAM therein.

制御装置10は、入力される各センサ信号に基づいて燃料ガス通路に設けられた調圧弁71や酸化ガス通路に設けられた調圧弁81、燃料ガス供給源70、酸化ガス供給源80、バッテリ20、DC/DCコンバータ30、インバータ60など、システム各部を制御する。この制御装置10には、例えば圧力センサ91によって検知される燃料ガスの供給圧力や電圧センサ92によって検知される燃料電池40のFC電圧、電流センサ93によって検知される燃料電池40のFC電流、SOCセンサ21によって検知されるバッテリ20の充電状態SOC(State Of Charge)をあらわすSOC値など、種々のセンサ信号が入力される。   The control device 10 includes a pressure regulating valve 71 provided in the fuel gas passage, a pressure regulating valve 81 provided in the oxidizing gas passage, a fuel gas supply source 70, an oxidizing gas supply source 80, and a battery 20 based on the input sensor signals. , DC / DC converter 30, inverter 60 and other parts of the system are controlled. The control device 10 includes, for example, the supply pressure of the fuel gas detected by the pressure sensor 91, the FC voltage of the fuel cell 40 detected by the voltage sensor 92, the FC current of the fuel cell 40 detected by the current sensor 93, and the SOC. Various sensor signals such as an SOC value representing a state of charge (SOC) of the battery 20 detected by the sensor 21 are input.

ところで、燃料電池40を低負荷で連続運転し続けると、高分子電解質膜41の白金触媒表面に酸化皮膜が形成されて白金触媒の有効面積が減少し、燃料電池40のI−V特性が低下する。このため、燃料電池システム100では、セル電圧を還元領域まで低下させることにより、白金触媒の表面の酸化皮膜を還元して取り除き、I−V特性の低下を抑制し、航続距離を伸ばす触媒活性回復制御を行う。   By the way, if the fuel cell 40 is continuously operated at a low load, an oxide film is formed on the platinum catalyst surface of the polymer electrolyte membrane 41, the effective area of the platinum catalyst is reduced, and the IV characteristic of the fuel cell 40 is lowered. To do. For this reason, in the fuel cell system 100, by reducing the cell voltage to the reduction region, the oxide film on the surface of the platinum catalyst is reduced and removed, the deterioration of the IV characteristic is suppressed, and the catalyst activity recovery that extends the cruising distance is achieved. Take control.

例えば、停車中における間欠運転時に、DC/DCコンバータ30によって、所定の高電位回避電圧(酸化領域)からそれよりも低電圧に設定された所定の触媒活性回復目標電圧(還元領域)まで燃料電池40のセル総電圧を下げる。その後、コンバータ指令電圧をこの触媒活性回復目標電圧に維持したまま、酸化ガス欠乏状態にて燃料電池40のセル総電圧が低下するのを許容する。
そして、燃料電池40のセル総電圧が触媒活性回復目標電圧よりも低電圧に設定された所定の酸化ガス供給開始電圧に到達したところで、触媒活性回復制御を終了する。しかる後、酸化ガスの供給を開始して高電位回避制御に移行させ、燃料電池40のセル総電圧を高電位回避電圧に戻す。
For example, during intermittent operation while the vehicle is stopped, the fuel cell is operated by the DC / DC converter 30 from a predetermined high potential avoidance voltage (oxidation region) to a predetermined catalytic activity recovery target voltage (reduction region) set to a lower voltage. Reduce the total cell voltage of 40. Thereafter, while the converter command voltage is maintained at the catalyst activation recovery target voltage, the total cell voltage of the fuel cell 40 is allowed to decrease in an oxidizing gas deficient state.
Then, when the total cell voltage of the fuel cell 40 reaches a predetermined oxidizing gas supply start voltage set to a voltage lower than the catalyst activation recovery target voltage, the catalyst activation recovery control is terminated. Thereafter, the supply of oxidizing gas is started to shift to high potential avoidance control, and the total cell voltage of the fuel cell 40 is returned to the high potential avoidance voltage.

なお、この触媒活性回復制御は、車速が所定速度以下(例えば、図2における車速ゼロの停車状態)となり、間欠運転中(例えば、図2における間欠ON以降の状態)であり、バッテリ20が所定電圧以下であり、前回の触媒活性回復制御から所定時間以上経過(例えば、図2におけるカウンタ成立以降の状態)し、水素漏れ判定中でなく、エアコンプレッサが停止中であることを実行許可の条件とし、基本的に、この条件が成立した際に実行される。   In this catalyst activity recovery control, the vehicle speed is equal to or lower than a predetermined speed (for example, the vehicle is stopped at zero vehicle speed in FIG. 2) and is intermittently operated (for example, the state after intermittent ON in FIG. 2). The condition for permitting execution is that the voltage is below the voltage, a predetermined time has passed since the previous catalyst activation recovery control (for example, the state after the counter is established in FIG. 2), and the air compressor is stopped, not in the hydrogen leak determination. Basically, it is executed when this condition is satisfied.

ところが、上記の触媒活性回復制御を実行すると、前述したように、燃料電池40のセル総電圧が大きく変動する。したがって、絶縁抵抗測定部90による絶縁抵抗測定中に触媒活性回復制御が実行されると、燃料電池40の絶縁抵抗を測定した際に誤測定を生じることがある。   However, when the above catalyst activity recovery control is executed, the total cell voltage of the fuel cell 40 varies greatly as described above. Therefore, if the catalyst activity recovery control is executed during the insulation resistance measurement by the insulation resistance measurement unit 90, an erroneous measurement may occur when the insulation resistance of the fuel cell 40 is measured.

したがって、本実施形態にかかる燃料電池システム100では、同じ絶縁抵抗測定許可条件が成立している場合であっても、触媒活性回復制御の実行許可の条件が不成立であるときと成立しているときとでは、以下に説明するように別々の制御を行うようにしている。   Therefore, in the fuel cell system 100 according to this embodiment, even when the same insulation resistance measurement permission condition is satisfied, when the condition for permitting execution of the catalyst activation recovery control is not satisfied and when it is satisfied. In this case, separate control is performed as described below.

(1)絶縁抵抗測定許可条件が成立したときに、触媒活性回復制御の実行許可の条件が不成立である場合
つまり、所定の絶縁抵抗測定許可条件が成立している一方で、図2に示すように、車両が停車して間欠運転中であるにもかかわらず、未だ前回の触媒活性回復制御から所定時間が経過していない(カウンタ不成立)場合は、触媒活性回復制御の実行許可の条件が不成立の場合に該当するから、かかる場合には同図に示すように、触媒活性回復制御の実施(触媒活性回復運転)を一定時間(例えば、60秒程度)禁止する触媒活性回復制御禁止時間(図2における触媒活性回復運転禁止の間)を設ける。
(1) When the condition for permitting the activation of the catalyst activation control is not satisfied when the condition for permitting the insulation resistance measurement is satisfied. That is, as shown in FIG. In addition, even if the vehicle stops and is intermittently operated, if the predetermined time has not passed since the previous catalyst activation recovery control (counter is not established), the conditions for permitting execution of the catalyst activation recovery control are not established. In this case, as shown in the figure, the catalyst activity recovery control prohibition time (FIG. 5) for prohibiting the catalyst activity recovery control (catalyst activity recovery operation) for a certain time (for example, about 60 seconds). 2 during the catalyst activity recovery operation prohibition in 2).

その結果、触媒活性回復制御禁止時間の間に、触媒活性回復制御の実行許可の条件が成立したとしても、触媒活性回復制御は禁止される。つまり、この触媒活性回復制御禁止時間中に、たとえ前回の触媒活性回復制御からの経過時間が所定時間を超えた(カウント成立)としても、触媒活性回復制御は行わない。かかる場合には、触媒活性回復制御禁止時間の終了後に、触媒活性回復制御が所定時間(例えば、10秒あるいはそれ以上)実行される。したがって、触媒活性回復制御を禁止している間に、絶縁抵抗測定部90によって精度良く絶縁抵抗を測定することができる。   As a result, even if the conditions for permitting execution of the catalyst activity recovery control are satisfied during the catalyst activity recovery control prohibition time, the catalyst activity recovery control is prohibited. That is, even if the elapsed time from the previous catalyst activation recovery control exceeds a predetermined time (count establishment) during this catalyst activation recovery control prohibition time, the catalyst activation recovery control is not performed. In such a case, after the end of the catalyst activity recovery control prohibition time, the catalyst activity recovery control is executed for a predetermined time (for example, 10 seconds or more). Therefore, the insulation resistance measurement unit 90 can measure the insulation resistance with high accuracy while the catalyst activity recovery control is prohibited.

(2)絶縁抵抗測定許可条件が成立したときに、触媒活性回復制御の実行許可の条件が成立している場合
つまり、所定の絶縁抵抗測定許可条件が成立している場合であって、さらに図3に示すように、車両が停車して間欠運転中であり、前回の触媒活性回復制御から所定時間が経過している(カウンタ成立)ときは、触媒活性回復制御の実行許可の条件も成立している場合にも該当するから、かかる場合には同図に示すように、触媒活性回復制御の実施を一定時間(例えば、60秒)禁止する触媒活性回復制御禁止時間を(図3における触媒活性回復運転禁止の間)設ける。
したがって、この場合にも、触媒活性回復制御を禁止している間に、絶縁抵抗測定部90によって精度良く絶縁抵抗を測定することができる。
(2) When the insulation resistance measurement permission condition is satisfied, a condition for permitting execution of the catalyst activation recovery control is satisfied, that is, when a predetermined insulation resistance measurement permission condition is satisfied, As shown in FIG. 3, when the vehicle stops and is intermittently operated and a predetermined time has elapsed since the previous catalyst activation recovery control (counter established), the condition for permitting execution of the catalyst activation recovery control is also satisfied. In this case, as shown in FIG. 3, the catalyst activity recovery control prohibition time for prohibiting the catalyst activity recovery control from being performed for a certain time (for example, 60 seconds) is set (the catalyst activity in FIG. 3). Provided during recovery operation ban.
Therefore, also in this case, the insulation resistance can be accurately measured by the insulation resistance measuring unit 90 while the catalyst activity recovery control is prohibited.

しかし、かかる場合において、触媒活性回復制御を触媒活性回復制御禁止時間の経過後に実行することとすると、その後の車両の走行パターンによっては、触媒活性回復制御の実行許可の条件が成立しなくなり、一旦は触媒活性回復制御の実行許可条件が成立したことがあるにもかかわらず、触媒活性回復制御が実行されなくなる恐れがある。   However, in such a case, if the catalyst activity recovery control is executed after the elapse of the catalyst activity recovery control prohibition time, the condition for permitting execution of the catalyst activity recovery control may not be satisfied depending on the subsequent running pattern of the vehicle. However, there is a possibility that the catalyst activity recovery control is not executed even though the condition for permitting the catalyst activity recovery control is satisfied.

そこで、かかる場合には、触媒活性回復制御を禁止する前に、所定時間(例えば、10秒以内)だけ触媒活性回復制御を実行する。これにより、一旦は触媒活性回復制御の実行許可条件が成立したことがあるにもかかわらず、触媒活性回復制御が実行されないといった不具合を回避しつつ、絶縁抵抗測定部90によって絶縁抵抗を良好に測定することができる。   Therefore, in such a case, the catalyst activity recovery control is executed for a predetermined time (for example, within 10 seconds) before prohibiting the catalyst activity recovery control. As a result, the insulation resistance measurement unit 90 measures the insulation resistance satisfactorily while avoiding the problem that the catalyst activation recovery control is not executed even though the execution permission condition for the catalyst activation recovery control has once been satisfied. can do.

以上、説明したように、上記実施形態にかかる燃料電池システム100によれば、絶縁抵抗測定制御中に触媒活性回復制御の実行を禁止するので、触媒活性回復制御による電圧変動の影響を受けることなく、精度良く絶縁抵抗を測定することができる。つまり、誤測定などの不具合なく、絶縁抵抗測定制御及び触媒活性回復制御を両立させることができる。   As described above, according to the fuel cell system 100 according to the above-described embodiment, the execution of the catalyst activity recovery control is prohibited during the insulation resistance measurement control, so that it is not affected by the voltage fluctuation due to the catalyst activity recovery control. Insulation resistance can be measured with high accuracy. That is, it is possible to achieve both insulation resistance measurement control and catalyst activity recovery control without inconvenience such as erroneous measurement.

本実施形態に係る燃料電池システムの要部構成を示す図である。It is a figure which shows the principal part structure of the fuel cell system which concerns on this embodiment. 触媒活性回復制御の実行タイミングを示すタイミングチャートである。It is a timing chart which shows the execution timing of catalyst activity recovery control. 触媒活性回復制御の実行タイミングを示すタイミングチャートである。It is a timing chart which shows the execution timing of catalyst activity recovery control.

符号の説明Explanation of symbols

10・・・制御装置(制御部)、40・・・燃料電池、90…絶縁抵抗測定部、100・・・燃料電池システム。   DESCRIPTION OF SYMBOLS 10 ... Control apparatus (control part), 40 ... Fuel cell, 90 ... Insulation resistance measurement part, 100 ... Fuel cell system.

Claims (3)

反応ガスの電気化学反応によって発電する燃料電池と、
前記燃料電池の絶縁抵抗を測定する絶縁抵抗測定部と、
前記燃料電池の発電を制御する制御部とを有し、
前記制御部が、前記絶縁抵抗測定部により絶縁抵抗を測定する前記絶縁抵抗測定制御及び前記燃料電池の触媒の活性を回復させる触媒活性回復制御を、それぞれ所定の実行条件にて実行する燃料電池システムであって、
前記制御部は、前記絶縁抵抗測定制御中における前記触媒活性回復制御の実行を禁止する燃料電池システム。
A fuel cell that generates electricity by an electrochemical reaction of the reaction gas; and
An insulation resistance measurement unit for measuring insulation resistance of the fuel cell;
A control unit for controlling the power generation of the fuel cell,
A fuel cell system in which the control unit executes the insulation resistance measurement control for measuring the insulation resistance by the insulation resistance measurement unit and the catalyst activity recovery control for recovering the activity of the catalyst of the fuel cell under predetermined execution conditions. Because
The control unit is a fuel cell system that prohibits execution of the catalyst activity recovery control during the insulation resistance measurement control.
請求項1に記載の燃料電池システムであって、
前記制御部は、前記触媒活性回復制御の実行条件が不成立のときに前記絶縁抵抗測定制御の実行条件が成立した場合には、前記触媒活性回復制御の実行を所定時間禁止する燃料電池システム。
The fuel cell system according to claim 1,
The control unit is a fuel cell system that prohibits execution of the catalyst activation recovery control for a predetermined time when the execution condition of the insulation resistance measurement control is satisfied when the execution condition of the catalyst activation recovery control is not satisfied.
請求項1に記載の燃料電池システムであって、
前記制御部は、前記絶縁抵抗測定制御及び前記触媒活性回復制御の実行条件が同時に成立している場合には、前記絶縁抵抗測定制御の実行前に前記触媒活性回復制御を実行する燃料電池システム。
The fuel cell system according to claim 1,
The control unit performs the catalyst activity recovery control before executing the insulation resistance measurement control when execution conditions of the insulation resistance measurement control and the catalyst activity recovery control are satisfied at the same time.
JP2007263214A 2007-10-09 2007-10-09 Fuel cell system Pending JP2009093916A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007263214A JP2009093916A (en) 2007-10-09 2007-10-09 Fuel cell system
PCT/JP2008/065993 WO2009047957A1 (en) 2007-10-09 2008-09-04 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007263214A JP2009093916A (en) 2007-10-09 2007-10-09 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2009093916A true JP2009093916A (en) 2009-04-30

Family

ID=40549103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263214A Pending JP2009093916A (en) 2007-10-09 2007-10-09 Fuel cell system

Country Status (2)

Country Link
JP (1) JP2009093916A (en)
WO (1) WO2009047957A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173986A (en) * 2019-04-11 2020-10-22 トヨタ自動車株式会社 Fuel battery system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110315980B (en) * 2019-08-30 2020-01-31 潍柴动力股份有限公司 Control method and system for fuel cell electric vehicle electric pile
JP7172918B2 (en) * 2019-09-04 2022-11-16 トヨタ自動車株式会社 Fuel cell system and its control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3863042B2 (en) * 2002-03-20 2006-12-27 東芝燃料電池システム株式会社 Fuel cell reactivation processing method and system
JP2004014193A (en) * 2002-06-04 2004-01-15 Sony Corp Fuel cell, separator for fuel cell, control method of fuel cell, and activation method of catalyst of fuel cell
JP2006331918A (en) * 2005-05-27 2006-12-07 Toyota Motor Corp Fuel cell system
JP5071879B2 (en) * 2005-12-07 2012-11-14 トヨタ自動車株式会社 Fuel cell system
JP5083642B2 (en) * 2006-02-03 2012-11-28 日産自動車株式会社 Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173986A (en) * 2019-04-11 2020-10-22 トヨタ自動車株式会社 Fuel battery system
JP7167825B2 (en) 2019-04-11 2022-11-09 トヨタ自動車株式会社 fuel cell system

Also Published As

Publication number Publication date
WO2009047957A1 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP4888519B2 (en) Fuel cell system and control method thereof
US9368850B2 (en) Fuel cell system and fuel cell vehicle
US8263278B2 (en) Fuel cell system and its operation method
JP5007665B2 (en) Fuel cell system
JP5083709B2 (en) Fuel cell system
US9793558B2 (en) Fuel cell system
JP4274278B2 (en) Fuel cell system
US9225028B2 (en) Fuel cell system
JP4400669B2 (en) Fuel cell system
CN107452972B (en) Fuel cell system and control method thereof
JP2011146326A (en) Fuel cell system
WO2011004489A1 (en) Fuel cell system and method for controlling the same
JP2010244937A (en) Fuel cell system
JP2009059558A (en) Fuel cell system
KR101151750B1 (en) Fuel cell system
JP2008226594A (en) Fuel cell system
JP2009093916A (en) Fuel cell system
WO2009084578A1 (en) Fuel cell system
JP2008053162A (en) Fuel cell system and measuring method of ac impedance
JP2008304290A (en) Electric leak detector
JP2009043645A (en) Degradation determination system for fuel cell
JP2010244980A (en) Fuel cell system and electric vehicle mounted with the same
WO2013150619A1 (en) Fuel cell system
JP2009129679A (en) Fuel cell system
JP2009104977A (en) Fuel cell system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091203