JP2009092648A - Test piece preparation method and corrosion resistance evaluation method - Google Patents

Test piece preparation method and corrosion resistance evaluation method Download PDF

Info

Publication number
JP2009092648A
JP2009092648A JP2008151441A JP2008151441A JP2009092648A JP 2009092648 A JP2009092648 A JP 2009092648A JP 2008151441 A JP2008151441 A JP 2008151441A JP 2008151441 A JP2008151441 A JP 2008151441A JP 2009092648 A JP2009092648 A JP 2009092648A
Authority
JP
Japan
Prior art keywords
test piece
corrosion resistance
processing
metal plate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008151441A
Other languages
Japanese (ja)
Other versions
JP5125783B2 (en
Inventor
Shinji Otsuka
真司 大塚
Daisuke Mizuno
大輔 水野
Katsuya Hoshino
克弥 星野
Hiroshi Kajiyama
浩志 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008151441A priority Critical patent/JP5125783B2/en
Publication of JP2009092648A publication Critical patent/JP2009092648A/en
Application granted granted Critical
Publication of JP5125783B2 publication Critical patent/JP5125783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a test piece preparation method that, even when metal plates to be jointed together differ in strengths, is able to evaluate the corrosion resistance of a mating structural part obtained with high accuracy, by jointing the processed metal plates together for use, and to provide a corrosion resistance evaluation method that uses the test piece. <P>SOLUTION: A test piece preparation method is a test piece preparation method for evaluating the corrosion resistance of the mating structural part between metal plates, and the method includes providing flat parts on bent surfaces of the metal plates formed, by processing the metal plates constituting the mating structural part; and forming the mating structural part by jointing the flat parts thus provided. Furthermore, a corrosion resistance method evaluates the corrosion resistance of a mating structural part between metal plates, by using a test piece prepared by the test piece preparation method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属板同士の合わせ構造部における耐食性を評価するための試験片の作製方法およびその試験片を用いた耐食性評価方法に関する。   The present invention relates to a method for producing a test piece for evaluating the corrosion resistance in a laminated structure portion between metal plates, and a corrosion resistance evaluation method using the test piece.

近年、自動車、建築物、家電製品などの製品の長寿命化やライフサイクルコストを最小化することが社会的に求められている。上記のような製品や鋼構造物は、金属板を重ね合わせた上で、溶接や接着剤等を用いて金属板類を接合することにより、所望する形状に形成して用いられることが多い。また、製品外観を確保する観点から、所望とする形状に接合した後に、リン酸塩を中心とする化成処理工程、電着塗装などの塗装処理工程を経ることが一般的である。これらの処理は、外観を確保することのみならず、酸素、水分、塩化物等の腐食性物質から金属板をバリアすることにより、耐食性を向上することにも貢献している。   In recent years, there has been a social demand for extending the life of products such as automobiles, buildings, and home appliances and minimizing life cycle costs. The products and steel structures as described above are often used in a desired shape by overlapping metal plates and joining metal plates using welding, an adhesive, or the like. Further, from the viewpoint of securing the appearance of the product, it is general that after joining in a desired shape, a chemical conversion treatment step centering on phosphate and a coating treatment step such as electrodeposition coating are performed. These treatments not only ensure the appearance, but also contribute to improving the corrosion resistance by barriering the metal plate from corrosive substances such as oxygen, moisture, and chloride.

しかし、上述した金属板類を溶接や接着剤等を用いて接合した部位の金属板が重ね合わされた部分(以下、この部分を「合わせ構造部」という)の内部は、化成処理や電着塗装を完全に施すことは難しく、無処理に近い裸金属板の状態になっていることが多い。そのため、上記金属板の合わせ構造部は、一旦腐食性物質が入り込むと腐食が起こりやすく、製品の寿命や耐久性に大きな影響を与える。そのため、腐食の厳しい部位や腐食環境の厳しい地域で使用される製品類については、一般的に表面処理を施した金属板、例えば、亜鉛系やアルミ系の溶融めっきや、電気めっき、あるいは、それらに合金化処理を施した表面処理鋼板、並びにこれらの表面処理鋼板の表面に有機樹脂等の保護性皮膜を付与した鋼板を用いて使用されることが多い。   However, the inside of the part where the above-mentioned metal plates are joined by welding or using an adhesive or the like (hereinafter, this part is referred to as the “matching structure”) is formed by chemical conversion treatment or electrodeposition coating. It is difficult to completely apply, and it is often a bare metal plate that is almost untreated. For this reason, once the corrosive material enters the corrugated structure of the metal plate, corrosion tends to occur, which greatly affects the life and durability of the product. For this reason, for products used in severely corrosive areas and corrosive environments, surface-treated metal plates, such as zinc- and aluminum-based hot-dip plating, electroplating, or those In many cases, the steel sheet is used by using a surface-treated steel sheet that has been subjected to alloying treatment, and a steel sheet in which a protective film such as an organic resin is applied to the surface of these surface-treated steel sheets.

また、上記製品等に使用される表面処理を施した金属板は、曲げ加工やプレス加工などにより所望の形状へ加工して使用されることが多く、金属板の合わせ構造部内部の無塗装部における耐食性は、使用する表面処理金属板の加工による損傷に大きく影響される。そのため、製品としての耐久性は、上記合わせ構造部の耐久性によって大きく影響されることとなる。このため、合わせ構造部での表面処理金属板の耐食性を精度良く評価することは極めて重要である。   In addition, the surface-treated metal plate used in the above products is often used after being processed into a desired shape by bending or pressing, and the unpainted portion inside the metal plate mating structure Corrosion resistance is greatly affected by damage caused by processing of the surface-treated metal plate used. Therefore, the durability as a product is greatly influenced by the durability of the mating structure. For this reason, it is extremely important to accurately evaluate the corrosion resistance of the surface-treated metal plate in the mating structure.

しかし、製品の設計段階において、使用する表面処理金属板を選定する際には、素材自体や、あるいは加工を施した状態での耐食性試験を実施することはあるものの、加工した表面処理金属板を重ね合わせて接合した部分の重ね合わせ構造部の耐食性までは考慮していないのが普通である。例えば、非特許文献1には、各種亜鉛めっき鋼板(溶融亜鉛めっき鋼板:GI、電気亜鉛めっき鋼板:EG、合金化溶融亜鉛めっき鋼板:GA)を母材とするプレコート鋼板に、プレスによりリブ加工を施してから屋外暴露試験に供して、加工部の耐食性に及ぼすめっき皮膜の影響について評価した結果が開示されている。
塩田、八内、壱岐島、「CAMP−ISIJ」、Vol.2、1989年、p.608
However, when selecting the surface-treated metal plate to be used at the product design stage, the material itself or a corrosion resistance test in the processed state may be performed, but the processed surface-treated metal plate Normally, the corrosion resistance of the overlapping structure portion of the overlapped and joined portions is not considered. For example, Non-Patent Document 1 discloses that pre-coated steel sheets whose base materials are various galvanized steel sheets (hot dip galvanized steel sheets: GI, electrogalvanized steel sheets: EG, galvannealed steel sheets: GA) are subjected to rib machining by pressing. The results of evaluating the influence of the plating film on the corrosion resistance of the processed part are disclosed after being subjected to an outdoor exposure test.
Shioda, Hachiuchi, Ikijima, “CAMP-ISIJ”, Vol. 2, 1989, p. 608

しかし、上記非特許文献1に記載の評価において、上記プレコート鋼板は、鋼板を接合する以前に塗装を実施している。そのため、合わせ構造部の内部は、上述したように、実際に使用されている状態とは乖離しており、表面処理鋼板自体の合わせ構造部内部における耐食性を評価するものとはなっていない。   However, in the evaluation described in Non-Patent Document 1, the precoated steel sheet is coated before the steel sheets are joined. Therefore, as described above, the inside of the mating structure part deviates from the actually used state, and does not evaluate the corrosion resistance inside the mating structure part of the surface-treated steel sheet itself.

このような状況において、本発明者らは、上記の問題を解決すべく研究を重ねた。その結果、被評価サンプルの表面に加工を加え、それら加工を加えた2つの表面処理金属板の被加工面同士を重ね合わせて接合し、その接合部に形成された合わせ構造部の腐食試験を行うことにより、実際に使用されている状態に近い形で表面処理金属板の耐食性を評価できることを見出し、特許出願(特願2007−006852)を行った。   In such a situation, the present inventors have repeated researches to solve the above problems. As a result, the surface of the sample to be evaluated is processed, the processed surfaces of the two surface-treated metal plates subjected to the processing are overlapped and bonded, and the corrosion test of the laminated structure formed at the bonded portion is performed. As a result, it was found that the corrosion resistance of the surface-treated metal sheet can be evaluated in a form close to the actual use state, and a patent application (Japanese Patent Application No. 2007-006852) was filed.

上記特許出願に記載の方法によれば、十分な精度で、金属板の合わせ構造部における耐食性を評価し得ることが確認された。しかし、その後の検討を重ねる中で、接合する金属板の強度が異なる場合において、加工後の金属板の反り返り度合い等の加工後の形状が異なることに起因して、合わせ構造部における耐食性評価の精度が低下することが明らかとなった。   According to the method described in the above patent application, it was confirmed that the corrosion resistance of the metal plate mating structure can be evaluated with sufficient accuracy. However, in repeated examinations, when the strength of the metal plates to be joined is different, the shape after processing such as the degree of warping of the metal plate after processing is different, and therefore the corrosion resistance evaluation of the laminated structure portion It became clear that accuracy fell.

そこで、本発明は、接合する金属板の強度が異なる場合においても、加工を受けた金属板を接合して用いる場合の合わせ構造部における耐食性を精度良く評価することが可能な試験片の作製方法およびその試験片を用いた耐食性評価方法を提供することを目的とする。   Therefore, the present invention provides a method for producing a test piece capable of accurately evaluating the corrosion resistance in a mating structure portion when a metal plate subjected to processing is used by joining even when the strength of the metal plate to be joined is different. And it aims at providing the corrosion-resistance evaluation method using the test piece.

本発明者らは、接合する金属板の強度が異なる場合においても、合わせ構造部における耐食性を精度良く評価できる方法について鋭意検討を行った。その結果、(1)金属板に加工を加えた後に、この金属板に、平面部を有する深絞り加工を施すことにより、金属板の表面を平坦化し、(2)表面を平坦化した2つの金属板の平坦面を対向させて、それぞれの一部を重ね合わせて接合した試験片を作製し、(3)その接合部の合わせ構造部を対象として公知の腐食試験を行う、ことにより、接合する金属板の強度が異なる場合においても、被加工面耐食性を精度良く評価できることを見出した。   The present inventors diligently studied a method that can accurately evaluate the corrosion resistance of the laminated structure even when the strength of the metal plates to be joined is different. As a result, (1) after processing the metal plate, the surface of the metal plate is flattened by subjecting the metal plate to a deep drawing process having a flat portion. By making a test piece in which the flat surfaces of the metal plates face each other and overlapping each other and joining, (3) performing a known corrosion test on the joint structure part of the joint, It was found that the corrosion resistance of the processed surface can be accurately evaluated even when the strength of the metal plates to be processed is different.

本発明は、上記知見に基づきなされたもので、以下のような特徴を有する。
[1]金属板同士の合わせ構造部における耐食性を評価するための試験片の作製方法であって、合わせ構造部を構成する金属板に加工を施すことで形成された金属板の湾曲した面に、平坦部を設け、該設けた平坦部同士を接合して合わせ構造部を形成することを特徴とする試験片の作製方法。
[2]前記[1]において、金属板の湾曲した面に設ける平坦部が、深絞り加工により形成されることを特徴とする試験片の作製方法。
[3]前記[1]または[2]において、湾曲した面に、深さが2mm以上であり、平坦部面積と深さとから算出される比である平坦部面積(mm)/深さ(mm)が、200以上2000以下となるように、深絞り加工を施し、平坦部を形成することを特徴とする試験片の作製方法。
[4]前記[1]〜[3]のいずれかにおいて、金属板に施される加工が、摺動加工であることを特徴とする記載の試験片の作製方法。
[5]前記[4]において、金属板に施される加工が、曲げ曲げ戻しを含む摺動加工であることを特徴とする試験片の作製方法。
[6]前記[1]〜[3]のいずれかにおいて、金属板に施される加工が、引張加工または張出加工であることを特徴とする試験片の作成方法。
[7]前記[1]〜[6]のいずれかにおいて、合わせ構造部を形成した後に、リン酸塩による化成処理を施し、さらに、電着塗装を施すことを特徴とする試験片の作製方法。
[8]前記[1]〜[7]のいずれかに記載の試験片の作製方法により作製された試験片を用いて、金属板同士の合わせ構造部における耐食性を評価することを特徴とする耐食性評価方法。
The present invention has been made based on the above findings and has the following characteristics.
[1] A method for producing a test piece for evaluating corrosion resistance in a mating structure portion between metal plates, which is formed on a curved surface of a metal plate formed by processing the metal plate constituting the mating structure portion. A method for producing a test piece, comprising providing a flat portion and joining the provided flat portions to form a combined structure portion.
[2] The method for producing a test piece according to [1], wherein the flat portion provided on the curved surface of the metal plate is formed by deep drawing.
[3] In the above [1] or [2], the depth of the curved surface is 2 mm or more, and the flat portion area (mm 2 ) / depth (which is a ratio calculated from the flat portion area and the depth) mm) is 200 to 2000, deep drawing is performed to form a flat portion.
[4] The method for producing a test piece according to any one of [1] to [3], wherein the processing applied to the metal plate is sliding processing.
[5] The method for producing a test piece according to [4], wherein the processing applied to the metal plate is sliding processing including bending and bending back.
[6] In any one of the above [1] to [3], the processing performed on the metal plate is a tensile processing or an overhanging processing method.
[7] In any one of the above [1] to [6], after forming the mating structure portion, a chemical conversion treatment with phosphate is performed, and electrodeposition coating is further performed. .
[8] Corrosion resistance characterized by evaluating the corrosion resistance of the mating structure of metal plates using the test piece produced by the method for producing a test piece according to any one of [1] to [7]. Evaluation methods.

本発明によれば、接合する金属板の強度が異なる場合においても、加工を受けた金属板を接合して用いる場合の合わせ構造部における耐食性を精度良く評価することが可能な試験片の作製方法およびその試験片を用いた耐食性評価方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, even when the metal plate to join differs, the test piece preparation method which can evaluate the corrosion resistance in the joining structure part in the case of joining and using the processed metal plate accurately And the corrosion-resistance evaluation method using the test piece is provided.

以下、本発明を実施するための最良の形態の一例を説明する。   Hereinafter, an example of the best mode for carrying out the present invention will be described.

本発明に係る金属板同士の合わせ構造部における耐食性を評価するための試験片の作製方法は、合わせ構造部を構成する金属板に加工を施すことで形成された金属板の湾曲した面に、平坦部を設け、この設けた平坦部同士を接合して合わせ構造部を形成するものである。そして、本発明に係る耐食性評価方法は、上記方法により作製された試験片を用いて、加工を受けた金属板を接合した合わせ構造部における耐食性の評価を行うものである。   The method for producing a test piece for evaluating the corrosion resistance in the mating structure portion between the metal plates according to the present invention is a curved surface of the metal plate formed by processing the metal plate constituting the mating structure portion. A flat part is provided, and the provided flat parts are joined together to form a combined structure part. And the corrosion resistance evaluation method which concerns on this invention evaluates the corrosion resistance in the joining structure part which joined the metal plate which received the process using the test piece produced by the said method.

前記合わせ構造部を構成する金属板としては、鋼、アルミニウム、銅、マグネシウム、これらの合金等からなる板を用いることができ、それらの成分には特に制限がない。しかし、実用上は、合わせ構造部の耐食性の評価に対する要望が強い、自動車や家電製品等に多く使用されている鋼板類、中でも、亜鉛系めっき処理を施した表面処理鋼板、例えば、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、溶融亜鉛めっき後に合金化処理を施した合金化溶融亜鉛めっき鋼板、アルミニウムの含有率が高い溶融亜鉛−アルミめっき鋼板や、耐食性を向上させる目的として上記鋼板にさらに有機樹脂等の皮膜を付与した鋼板等を用いることが好ましい。また、接合させる2つの金属板の種類は、自動車や家電製品等に実用されている合わせ構造部の状況に合わせて選択すればよく、同種のものであっても異種のものであっても良い。   As a metal plate which comprises the said matching structure part, the board which consists of steel, aluminum, copper, magnesium, these alloys etc. can be used, and there is no restriction | limiting in particular in those components. However, in practice, there is a strong demand for evaluation of the corrosion resistance of the laminated structure, and steel plates that are frequently used in automobiles and home appliances, among others, surface-treated steel plates that have been subjected to zinc-based plating, such as electrogalvanizing Steel plate, hot dip galvanized steel plate, alloyed hot dip galvanized steel plate subjected to alloying treatment after hot dip galvanization, hot dip galvanized steel plate with high aluminum content, and the above steel plate for the purpose of improving corrosion resistance It is preferable to use a steel plate or the like provided with a coating such as. Moreover, what is necessary is just to select the kind of two metal plates to join according to the condition of the mating structure part currently utilized for a motor vehicle, household appliances, etc., and it may be the same kind or a different kind. .

本発明に係る耐食性評価方法は、加工を受けた金属板同士を接合した合わせ構造部における耐食性の評価を行うものである。そこで、本発明では、加工を受け、湾曲した金属板の表面処理面に平坦部を設けることで平坦化した後に、それらを対向して重ね合わせてから、例えば、スポット溶接や接着剤等により接合して合わせ構造部を形成する。そして、接合した金属板同士をそのまま、あるいは必要に応じて適当な大きさに切断後、腐食試験に供するものである。   The corrosion resistance evaluation method according to the present invention evaluates the corrosion resistance in a mating structure where bonded metal plates are joined. Therefore, in the present invention, after processing and flattening by providing a flat portion on the surface treatment surface of the curved metal plate, they are overlapped facing each other, and then joined by, for example, spot welding or an adhesive. To form a mating structure. Then, the joined metal plates are subjected to a corrosion test as they are or after being cut into an appropriate size as necessary.

前記湾曲した金属板の表面処理面に平坦部を設ける方法としては、深絞り加工により形成することが好ましい。平坦化する他の方法としては、張出成型、引張成型、圧延等が挙げられるが、これらは金属板の表面処理面を加工した後に、さらに加工を加えることになり、一定の評価が困難になるため好ましくない。深絞り加工は金属板の表面処理面を加工した後に、被評価面にさらに加工を加えることがなく、一定の評価が得られるため特に好ましい。   As a method of providing a flat portion on the surface-treated surface of the curved metal plate, it is preferable to form by deep drawing. Other methods of flattening include overhang molding, tensile molding, rolling, etc., but these require further processing after processing the surface-treated surface of the metal plate, making certain evaluation difficult. Therefore, it is not preferable. Deep drawing is particularly preferable because after the surface-treated surface of the metal plate is processed, no further processing is applied to the surface to be evaluated, and a certain evaluation can be obtained.

深絞り加工により形成される平坦部の平坦性は、加工深さと加工した後の平坦部の面積に影響される。本発明者らは、加工深さと平坦部の面積を変化させて検討を行った。その結果、平坦部面積と深さとから算出される比である平坦部面積(mm)/深さ(mm)が、200以上2000以下の場合に十分な平坦性が得られることを見出した。200より小さい場合は、平坦部面積が小さくなる為に評価のばらつきが大きくなるだけでなく、絞り成型が厳しいため、素材が限定される場合があるので好ましくない。2000より大きい場合は、平坦部の絞り量が低すぎるため、十分な平坦性が保てなくなるため好ましくない。200より大きい場合は、平坦部面積が大きくなる為に評価のばらつきが小さくなるだけでなく、絞り成型が容易であるため、素材が限定されることがないため好ましい。2000以下の場合は、平坦部の絞り量が適量であるため、十分な平坦性が保てるため好ましい。 The flatness of the flat portion formed by deep drawing is affected by the processing depth and the area of the flat portion after processing. The inventors have studied by changing the processing depth and the area of the flat portion. As a result, it was found that sufficient flatness can be obtained when the flat area (mm 2 ) / depth (mm), which is a ratio calculated from the flat area and depth, is 200 or more and 2000 or less. If it is smaller than 200, not only the variation in evaluation is increased because the area of the flat portion is reduced, but also drawing is severe, and the material may be limited. When the value is larger than 2000, the amount of drawing in the flat portion is too low, and it is not preferable because sufficient flatness cannot be maintained. When the ratio is larger than 200, the flat portion area is increased, so that not only variation in evaluation is reduced, but also drawing is easy, and the material is not limited. In the case of 2000 or less, since the amount of drawing of the flat portion is an appropriate amount, it is preferable because sufficient flatness can be maintained.

しかし、加工深さが2mmより浅い場合は、いずれの面積を用いても十分に平坦化することが困難となる。加工深さを2mm以上とすると、いずれの面積を用いても十分に平坦化することが容易である。そのため、加工深さは2mm以上とすることが好ましい。   However, when the processing depth is shallower than 2 mm, it becomes difficult to sufficiently planarize any area. When the processing depth is 2 mm or more, it is easy to sufficiently flatten any area. Therefore, the processing depth is preferably 2 mm or more.

なお、形成された平坦部の平坦化状況を確認する方法には制限は無い。例えば、レーザ顕微鏡により湾曲率を算出する方法を用いることも可能である。また、簡便な方法としては、平坦面に水平器を乗せることにより平坦か否かを判定することもできる。   In addition, there is no restriction | limiting in the method of confirming the planarization condition of the formed flat part. For example, it is possible to use a method of calculating the curvature with a laser microscope. As a simple method, it is possible to determine whether or not the surface is flat by placing a level on a flat surface.

実際に使用されている製品状態に近い形で耐食性評価を行うために、金属板に施される加工は、摺動加工とすることが好ましい。これは、製品は一般的にプレス加工により製品形状を得ることが多く、耐久性(耐食性)が課題となり得る部位は平面で擦られる部位が多いためである。   In order to evaluate the corrosion resistance in a form close to the product state actually used, it is preferable that the processing applied to the metal plate is a sliding processing. This is because a product generally has a product shape often obtained by press working, and there are many sites where durability (corrosion resistance) can be rubbed on a flat surface.

また、近年、製品形状が複雑化し、その形状を得るためには、プレス機のダイスにビードを設けることにより対応していることが多い。そのため、ビード通過部をより精度良くシミュレートするためには、曲げ曲げ戻しを含む摺動加工を行うことがより好ましい。   In recent years, the product shape has become complicated, and in order to obtain the shape, there are many cases where a bead is provided in a die of a press machine. Therefore, in order to simulate the bead passage portion with higher accuracy, it is more preferable to perform a sliding process including bending and bending back.

さらに、実際に使用されている鋼板の適用部位によっては、金属板に施される加工としては、引張加工や張出加工が好ましい。これは、プレス等の加工により鋼板が伸展し、加工前後での実質的なめっき付着量が大きく変化している場合が多いからである。特に、めっき鋼板のめっき皮膜に延性が無い場合には、引張加工や張出加工におけるめっき皮膜の脱離が生じやすく、適応部位に応じためっき皮膜の損傷をシミュレートする必要があるためである。さらに、めっき鋼板表面に有機樹脂等の皮膜を付与した鋼板の場合、摺動に対する健全性は保たれるが、引張応力や圧縮応力に対しては有機樹脂等の皮膜が追随出来ずに、皮膜に局部的な欠損部が生じ、その部位を基点に腐食が進行する場合がある。このようなめっき皮膜やその上層に形成した皮膜が損傷する場合の耐食性を精度良くシミュレートするためには、引張加工や張出加工を行うことが好ましい。   Furthermore, depending on the application site of the steel plate that is actually used, the processing applied to the metal plate is preferably tensile processing or bulging processing. This is because there are many cases where the steel sheet stretches due to processing such as pressing, and the substantial plating adhesion amount before and after the processing changes greatly. In particular, when the plated film of the plated steel sheet is not ductile, it is easy for the plated film to be detached during tensile processing and overhanging processing, and it is necessary to simulate the damage to the plated film according to the application site. . Furthermore, in the case of a steel plate with a coating of organic resin or the like on the surface of the plated steel plate, the soundness of sliding is maintained, but the coating of organic resin or the like cannot follow the tensile stress or compression stress. In some cases, a local defect occurs, and corrosion proceeds from that site. In order to accurately simulate the corrosion resistance when such a plating film or a film formed on the plating film is damaged, it is preferable to perform a tensile process or an overhang process.

自動車や家電製品等に用いられる金属板の場合には、プレス加工後に、美麗な外観を得るだけではなく、耐久性を向上させる目的で、リン酸塩等による化成処理や、電着塗装を施すことが多い。この場合、電着塗装による塗膜下の腐食は、裸の金属板の腐食挙動とは異なることが多い。そのため、電着塗装をして使用されることをシミュレートする場合には、リン酸塩等による化成処理および電着塗装を施した試験片を作製し、この試験片により耐食性評価を実施することが好ましい。   In the case of metal plates used in automobiles and home appliances, chemical conversion treatment with phosphate etc. or electrodeposition coating is performed for the purpose of improving durability as well as obtaining a beautiful appearance after pressing. There are many cases. In this case, corrosion under the coating film by electrodeposition coating is often different from the corrosion behavior of a bare metal plate. Therefore, when simulating the use with electrodeposition coating, make a test piece that has been subjected to chemical conversion treatment with phosphate, etc. and electrodeposition coating, and evaluate the corrosion resistance using this test piece. Is preferred.

また、本発明に係る試験片を用いて耐食性評価を行う際の腐食試験方法については、特に制限は無く、従来から用いられている暴露試験や、塩水噴霧試験、及び、塩水噴霧と乾湿繰り返しや温度変化を加えた複合サイクル試験などを用いることができる。前記複合サイクル試験は種々の条件があるが、例えば、JASO−M−609−91で規定される試験方法や、米国自動車技術会で定めたSAE−J2334に規定された腐食試験方法を用いることができる。   In addition, there is no particular limitation on the corrosion test method when performing the corrosion resistance evaluation using the test piece according to the present invention, and conventionally used exposure tests, salt spray tests, salt spray and dry / wet repetition, A combined cycle test in which a temperature change is applied can be used. The combined cycle test has various conditions. For example, a test method defined by JASO-M-609-91 or a corrosion test method defined by SAE-J2334 defined by the American Society of Automotive Engineers may be used. it can.

以下、本発明の効果を実施例により説明する。   The effects of the present invention will be described below with reference to examples.

[金属板の加工]
金属板として使用した供試材を表1に示す。
[Metal plate processing]
Table 1 shows test materials used as metal plates.

Figure 2009092648
Figure 2009092648

表1に示すように、母材が鋼板記号SPCで表される軟質の冷延鋼板(軟鋼)と、その鋼板に表面処理を施した表面処理鋼板(鋼板記号:Zn−Ni30、GA45、GI60、GI100、Zn−Al、GA45+有機被覆)、高強度鋼(H4−SPC,H6−SPC)の合計9種類の試験用鋼板を準備した。これらの鋼板(板厚0.8mm)から、幅80mm×長さ350mmの一次試験片を準備し、図1に示すようなダイス1とビード2を模した冶具を用いて、曲げ曲げ戻しを含む摺動加工であるドロービード加工を施した。これにより、鋼板の評価面とダイス肩およびビード部との間で、長さ150mm以上の摺動をおこさせ、図2に示すような形状の二次試験片を得た。   As shown in Table 1, the base material is a soft cold-rolled steel plate (mild steel) represented by a steel plate symbol SPC, and a surface-treated steel plate (steel plate symbol: Zn-Ni30, GA45, GI60, surface-treated). A total of nine types of test steel sheets were prepared: GI100, Zn-Al, GA45 + organic coating) and high-strength steel (H4-SPC, H6-SPC). A primary test piece having a width of 80 mm and a length of 350 mm is prepared from these steel plates (plate thickness of 0.8 mm), and bending and bending back are included using a jig imitating a die 1 and a bead 2 as shown in FIG. A draw bead process, which is a sliding process, was performed. As a result, a slide having a length of 150 mm or more was caused between the evaluation surface of the steel plate and the die shoulder and the bead portion to obtain a secondary test piece having a shape as shown in FIG.

なお、上記ドロービード加工は、用いた冶具のダイス肩およびビード部の曲率半径を、それぞれ2mmR、5mmRとした。また、ダイス1の押し付け圧力は、5.88×10N/m、引き抜き速度は2m/minで行った。さらに、試験片には潤滑油としてスギムラ化学社製:プレトン303PX2を、片面に対して1.5g/mずつ両面に塗布した後、ドロービード加工を実施した。 In the draw bead processing, the radii of curvature of the die shoulder and bead portion of the jig used were 2 mmR and 5 mmR, respectively. The pressing pressure of the die 1 was 5.88 × 10 4 N / m 2 and the drawing speed was 2 m / min. Furthermore, the test piece was coated with 1.5 g / m 2 of Preton 303PX2 manufactured by Sugimura Chemical Co., Ltd. as a lubricating oil on both sides and then subjected to draw bead processing.

[平坦化処理加工]
上記ドロービード加工を施した鋼板に、平坦部を設ける平坦化処理加工を行った。平坦化処理加工として、まず、鋼板を所定のサイズに切り出した後、深絞り加工を施し、三次試験片を得た。深絞り加工の水準を表2に示す。
尚、深絞り加工は、面積3600mm、800mmである2種類ダイスを用い、インナ圧力294200N(30tf)、ブランク圧力49033N(5tf)とし、潤滑油としてスギムラ化学社製:プレトン303PX2を片面に対して3g/mずつ両面に塗布した後、実施した。
[Planarization processing]
The steel sheet subjected to the draw bead processing was subjected to a flattening process for providing a flat portion. As the flattening process, first, the steel sheet was cut out to a predetermined size and then deep-drawn to obtain a tertiary test piece. Table 2 shows the levels of deep drawing.
Incidentally, deep drawing uses two dice the area 3600 mm 2, 800 mm 2, the inner pressure 294200N (30tf), a blank pressure 49033N (5tf), Sugimura Chemical Co. as lubricating oil: a Pureton 303PX2 to one side 3 g / m 2 was applied to both sides and then carried out.

Figure 2009092648
Figure 2009092648

深絞り加工を施した三次試験片について、平坦性の評価を行った。また、平坦化処理加工を施さないサンプルについても比較として平坦性の評価を行った。平坦性の評価は、三次試験片を水平面上に置き、三次試験片表面5箇所に市販の水平器を乗せ、ドロービード引き抜き方向の平坦性を調査した。評価基準は以下の通りである。なお、水平器を乗せた場合に、水平器の丸印の中央に気泡が来た場合を「平坦」、丸印の範囲内で気泡がズレた場合を「ややズレ」、丸印の範囲を超えて気泡がズレた場合を「大きなズレ」として評価を行った。
「◎」:5箇所とも平坦な場合。
「○」:4箇所平坦で、1箇所にややズレが認められる場合。
「△」:3箇所以上が平坦で、1箇所以上に大きなズレが認められる場合。
「×」:2箇所以上に大きなズレが認められる場合。
The flatness of the tertiary test piece subjected to deep drawing was evaluated. Further, the flatness of the sample not subjected to the flattening treatment was also evaluated as a comparison. The flatness was evaluated by placing the tertiary test piece on a horizontal plane, placing a commercially available level on the surface of the tertiary test piece, and examining the flatness in the draw bead drawing direction. The evaluation criteria are as follows. In addition, when a level is placed, if the bubble comes to the center of the circle on the level, it will be “flat”, if the bubble is displaced within the range of the circle, it will be “slightly shifted”, and the range of the circle will be The case where bubbles were shifted beyond this was evaluated as “large shift”.
“◎”: When all five locations are flat.
“◯”: When four places are flat and a slight deviation is observed at one place.
“Δ”: When three or more locations are flat and a large shift is observed at one or more locations.
“X”: When a large shift is observed at two or more locations.

[耐食性評価]
上記により作製した三次試験片の評価面同士を重ね合わせてスポット溶接により接合し、図3に示すような耐食性評価用の試験片を作製した。その後、この耐食性評価用試験片に、日本パーカライジング社製のパルボンドを使用し、標準条件(35℃、120秒)にて浸漬してリン酸塩化成処理を実施した。続いて、関西ペイント社製の電着塗料を用いて電着塗装および焼付処理を行った。なお、電着塗装の膜厚は焼き付け塗装後の膜厚は20μmとし、市販の電磁膜厚計を用いて測定を行った。また、耐食性に及ぼす摺動の影響を評価するために、無加工の試験片および平坦化処理加工を施さない試料も作製し評価に供した。
[Evaluation of corrosion resistance]
The evaluation surfaces of the tertiary test pieces prepared as described above were overlapped and joined by spot welding to prepare a test piece for corrosion resistance evaluation as shown in FIG. Thereafter, Palbond manufactured by Nihon Parkerizing Co., Ltd. was used for this test piece for corrosion resistance evaluation, and immersed in standard conditions (35 ° C., 120 seconds) to perform phosphate chemical conversion treatment. Subsequently, electrodeposition coating and baking treatment were performed using an electrodeposition paint manufactured by Kansai Paint. In addition, the film thickness of electrodeposition coating was set to 20 μm after baking, and measurement was performed using a commercially available electromagnetic film thickness meter. In addition, in order to evaluate the influence of sliding on the corrosion resistance, an unprocessed test piece and a sample not subjected to the flattening treatment were also prepared and used for evaluation.

次いで、上記のようにして作製した耐食性評価用試験片について、図4に示すような、SAE−J2334に規定される、乾燥、湿潤、塩水噴霧の工程からなる複合サイクル腐食試験を行った。なお、各鋼板の耐食性評価は、以下の手順で実施した。
1)スポット溶接部を打ち抜き、合わせ構造部を分解する。
2)塗装の剥離(ネオス社製 デスコート300、15分浸漬)。
3)めっきおよび錆の除去(希薄塩酸浸漬)。
4)合わせ構造部に生じた最大侵食深さ(L)を(株)ミツトヨ社製のポイントマイクロメータで測定。
Next, the test piece for corrosion resistance evaluation produced as described above was subjected to a combined cycle corrosion test comprising the steps of drying, wetting and salt spraying as defined in SAE-J2334 as shown in FIG. In addition, corrosion resistance evaluation of each steel plate was implemented in the following procedures.
1) The spot weld is punched out and the mating structure is disassembled.
2) Peeling of paint (Deoscoat 300, manufactured by Neos, 15 minutes immersion).
3) Plating and rust removal (dilute hydrochloric acid immersion).
4) The maximum erosion depth (L) generated in the mating structure was measured with a point micrometer manufactured by Mitutoyo Corporation.

次に、耐食性試験における精度の評価を行った。評価は、各水準について5組の試験を実施し、上記最大侵食深さ(L)のばらつきにより行った。ここで、各水準のばらつきは、それぞれの5組の合わせ構造部について、最大の最大侵食深さ(Lmax)から、最小の最大侵食深さ(Lmin)を引いた差分(ΔL=Lmax−Lmin)を算出し、以下のように評価を実施した。
「◎」:ΔL≦0.05mm
「○」:0.05mm<ΔL≦0.1mm
「△」:0.1mm<ΔL≦0.2mm
「×」:0.2mm<ΔL
耐食性試験の評価結果の妥当性は、めっき付着量と最大侵食深さの関係により評価した。自動車分野において、実際に走行している自動車の解析結果から、SPC、GA45、GI60、GI100、Zn−Ni30に関しては、めっき付着量と最大侵食深さには負の相関関係が認められることが知られており、めっき付着量と最大侵食深さの相関関係を調査することにより、耐食性評価方法の結果の妥当性について評価が可能である。そこで、本発明に係る耐食性評価方法により評価した結果から、めっき付着量と最大侵食深さの相関関係を調査し、本発明に係る耐食性評価方法の結果の妥当性について評価を実施した。
Next, the accuracy in the corrosion resistance test was evaluated. The evaluation was carried out by performing five sets of tests for each level and by the variation in the maximum erosion depth (L). Here, the variation of each level is the difference (ΔL = L max ) obtained by subtracting the minimum maximum erosion depth (L min ) from the maximum maximum erosion depth (L max ) for each of the five sets of combined structures. -L min ) was calculated and evaluated as follows.
“◎”: ΔL ≦ 0.05 mm
“◯”: 0.05 mm <ΔL ≦ 0.1 mm
“Δ”: 0.1 mm <ΔL ≦ 0.2 mm
“×”: 0.2 mm <ΔL
The validity of the evaluation result of the corrosion resistance test was evaluated based on the relationship between the coating amount and the maximum erosion depth. In the automotive field, it is known from the analysis results of automobiles that are actually running that, for SPC, GA45, GI60, GI100, and Zn-Ni30, there is a negative correlation between the amount of plating and the maximum erosion depth. The validity of the results of the corrosion resistance evaluation method can be evaluated by investigating the correlation between the amount of plating and the maximum erosion depth. Then, from the result evaluated by the corrosion resistance evaluation method according to the present invention, the correlation between the plating adhesion amount and the maximum erosion depth was investigated, and the validity of the result of the corrosion resistance evaluation method according to the present invention was evaluated.

以上により得られた評価結果を試験片作製条件と共に表3に示す。   The evaluation results obtained above are shown in Table 3 together with the test piece preparation conditions.

Figure 2009092648
Figure 2009092648

上記表3に示す評価結果から、以下の事項が明らかとなった。   From the evaluation results shown in Table 3 above, the following matters were clarified.

(1)サンプルNo.1〜9は、平坦化加工を実施した本発明例、サンプルNo.10〜18は、平坦化加工を行わなかった比較例である。平坦化加工を実施した本発明例1〜9において平坦性評価の結果は良好であり、平坦性が向上していることがわかる。さらに、耐食性評価の精度評価の結果は、本発明例1〜9において、比較例1〜9と比べてΔLが大幅に減少しており、精度が大幅に向上していることがわかる。   (1) Sample No. Nos. 1 to 9 are examples of the present invention, sample No. 10 to 18 are comparative examples in which the flattening process was not performed. In Examples 1 to 9 of the present invention in which the flattening process was performed, the results of the flatness evaluation were good, and it was found that the flatness was improved. Furthermore, as a result of the accuracy evaluation of the corrosion resistance evaluation, it can be seen that ΔL is significantly reduced in Invention Examples 1 to 9 compared to Comparative Examples 1 to 9, and the accuracy is greatly improved.

(2)サンプルNo.3及びNo.19〜22は平坦化加工における加工深さを変化させた本発明例である。平坦部面積(mm)/深さ(mm)が3600であるサンプルNo.19(本発明例10)は、平坦化加工を行っていないサンプルNo.12(比較例3)に比べると耐食性評価の精度は向上しているものの、その効果はあまり顕著であるとはいえない。一方、平坦部面積(mm)/深さ(mm)が180であるサンプルNo.22(本発明例13)は、耐食性評価の精度は十分得られているが、最大侵食深さ平均値(mm)の値は、他の本発明例におけるそれに比べて大きな値となっている。このことから、サンプルNo.22では、平坦化加工時に鋼板表面に損傷が加わり、めっき皮膜の脱離が生じていることが予想される。これらの結果から、平坦部面積(mm)/深さ(mm)が200以上2000以下の場合に、より精度良く、合わせ構造部の耐久性(耐食性)を評価し得ることが分かる。 (2) Sample No. 3 and no. Reference numerals 19 to 22 are examples of the present invention in which the processing depth in the flattening processing is changed. Sample No. with a flat area (mm 2 ) / depth (mm) of 3600 19 (Invention Example 10) is a sample No. that has not been flattened. Although the accuracy of the corrosion resistance evaluation is improved as compared with 12 (Comparative Example 3), the effect is not so remarkable. On the other hand, Sample No. with a flat portion area (mm 2 ) / depth (mm) of 180 was obtained. Although 22 (Invention Example 13) has sufficient accuracy in corrosion resistance evaluation, the maximum erosion depth average value (mm) is larger than that in other Invention Examples. From this, sample no. In No. 22, it is expected that the steel plate surface is damaged during the flattening process, and the plating film is detached. From these results, it is understood that when the flat part area (mm 2 ) / depth (mm) is 200 or more and 2000 or less, the durability (corrosion resistance) of the mating structure part can be evaluated with higher accuracy.

(3)サンプルNo.23および24は、平坦部の面積を変化させて、評価を実施した本発明例である。平坦部面積(mm)/深さ(mm)が800で、加工深さが1mmであるNo.23(本発明例14)の場合は、平坦化加工を行っていないサンプルNo.12(比較例3)に比べると耐食性評価の精度は向上しているものの、その効果はあまり顕著であるとはいえない。このことから、加工深さは2mm以上が好適であることが分かる。 (3) Sample No. 23 and 24 are examples of the present invention in which the evaluation was performed by changing the area of the flat portion. The flat part area (mm 2 ) / depth (mm) is 800 and the processing depth is 1 mm. In the case of Sample No. 23 (Invention Example 14), sample No. Although the accuracy of the corrosion resistance evaluation is improved as compared with 12 (Comparative Example 3), the effect is not so remarkable. From this, it can be seen that the processing depth is preferably 2 mm or more.

(4)図5(a)に、本発明例のサンプルNo.1〜5、また、図5(b)には比較例のサンプルNo.10〜14についてのめっき付着量と最大侵食深さ平均値の関係を示す。図5(a)及び図5(b)中に決定係数であるR−2乗値を記載する。本発明例と比較例のR−2乗値を比較すると、本発明例の方が大きく1に近く、直線性が向上している事がわかる。このことから、本発明方法は、有効な試験方法であり、さらに、より耐食性評価の精度が向上することがわかる。   (4) In FIG. 1 to 5 and FIG. The relationship of the plating adhesion amount and the maximum erosion depth average value about 10-14 is shown. In FIG. 5 (a) and FIG. 5 (b), the R-2 power value which is a determination coefficient is described. Comparing the R-2 power values of the inventive example and the comparative example, it can be seen that the inventive example is largely close to 1 and the linearity is improved. From this, it can be seen that the method of the present invention is an effective test method, and the accuracy of corrosion resistance evaluation is further improved.

[金属板の加工]
金属板として使用した供試材として、表1中のNo.1、3、4、5、7の5種類の供試材を準備した。そして、これらの鋼板に、下記の方法により、引張加工又は張出加工を実施した。
・ 引張加工
前記5種類の供試材から幅80mm×長さ350mmの一次試験片を準備し、引張加工を実施した。図6に引張加工試験の概念図を示す。供試材の鋼板の長手方向の伸びが15%となった時点で、加工を終了し、2次試験片を得た。尚、予備試験として、供試材表面にスクライブドサークルを印字して引張加工試験を行い、供試材の面積変化を測定した結果、1.05倍になることを確認した。
・ 張出加工
前記5種類の供試材から、300mm角の一次試験片を準備し、張出加工を実施し、2次試験片を得た。なお、条件は下記の通りである。
ポンチ:150mmΦ
ダイス:160mmΦ
ブランクホールド力:980665N(100tf)
加工量:20%
図7に張出加工試験の概念図を示す。尚、予備試験として、供試材表面にスクライブドサークルを印字して張出加工を行い、供試材の面積変化を測定した結果、1.4倍になることを確認した。
また、引張加工及び張出加工を実施しない比較試験片も準備した。
[Metal plate processing]
As a test material used as a metal plate, No. 1 in Table 1 was obtained. Five types of test materials 1, 3, 4, 5, and 7 were prepared. And these steel plates were subjected to tensile processing or overhang processing by the following method.
-Tensile processing A primary test piece having a width of 80 mm and a length of 350 mm was prepared from the five kinds of test materials, and the tensile processing was performed. FIG. 6 shows a conceptual diagram of the tensile processing test. When the elongation in the longitudinal direction of the steel plate of the test material reached 15%, the processing was finished and a secondary test piece was obtained. As a preliminary test, a scribed circle was printed on the surface of the test material, a tensile test was performed, and the area change of the test material was measured. As a result, it was confirmed that the ratio was 1.05.
-Overhang processing A primary test piece of 300 mm square was prepared from the above five kinds of test materials, and overhang processing was performed to obtain a secondary test piece. The conditions are as follows.
Punch: 150mmΦ
Dice: 160mmΦ
Blank hold force: 980665N (100tf)
Processing amount: 20%
FIG. 7 shows a conceptual diagram of the overhanging test. In addition, as a preliminary test, a scribed circle was printed on the surface of the test material to perform overhanging, and the change in the area of the test material was measured. As a result, it was confirmed that the ratio was 1.4 times.
Moreover, the comparative test piece which does not implement a tension process and an overhang process was also prepared.

[平坦化処理加工]
上記引張加工又は張出加工を施した供試材および引張加工及び張出加工を実施しない比較試験片に対して、2次試験片及び比較試験片を所定サイズに切り出した後、深絞り加工を実施し、3次試験片を得た。平坦化処理加工方法はいずれの鋼板の場合も、表2中の水準No.Cに記載の平坦部面積が3600mm、加工深さが5mmとした。
[Planarization processing]
After the secondary test piece and the comparative test piece are cut out to a predetermined size, the deep drawing process is performed on the test material subjected to the above-described tensile process or the overhang process and the comparative test piece not subjected to the tensile process and the overhang process. This was carried out to obtain a tertiary test piece. As for the flattening processing method, the level No. in Table 2 is used for any steel plate. The flat portion area described in C was 3600 mm 2 and the processing depth was 5 mm.

深絞り加工を施した三次試験片について、平坦性の評価を行った。なお、平坦性の評価は、実施例1と同様である。   The flatness of the tertiary test piece subjected to deep drawing was evaluated. The evaluation of flatness is the same as in Example 1.

[耐食性評価]
上記により作製した三次試験片の評価面同士を重ね合わせてスポット溶接により接合し、実施例1と同様のリン酸塩処理及び電着塗装を実施し、図3に示すような耐食性評価用の試験片を作製し、実施例1と同様に5組の合わせ部内部の最大腐食深さの平均値を求めた。
[Evaluation of corrosion resistance]
The evaluation surfaces of the tertiary test pieces produced as described above are overlapped and joined by spot welding, and the same phosphate treatment and electrodeposition coating as in Example 1 are performed, and a test for corrosion resistance evaluation as shown in FIG. Pieces were prepared, and the average value of the maximum corrosion depths in the five sets of mating portions was determined in the same manner as in Example 1.

耐食性試験の評価結果の妥当性は、めっき付着量と最大侵食深さの関係により評価した。自動車分野において、引張加工及び張出加工を主体とする加工モードの実プレス品の場合、GA+有機皮膜(エポキシ系樹脂)の耐食性は、GAと同等であることが明らかとなっている。また、SPC、GA45、GI60、GI100に関しては、めっき付着量と最大侵食深さには負の相関関係が認められることが知られており、めっき付着量と最大侵食深さの相関関係を調査することにより、耐食性評価方法の結果の妥当性について評価が可能である。そこで、本発明に係る耐食性評価方法により評価した結果から、めっき付着量と最大侵食深さの相関関係を調査し、本発明に係る耐食性評価方法の結果の妥当性について評価した。   The validity of the evaluation result of the corrosion resistance test was evaluated based on the relationship between the coating amount and the maximum erosion depth. In the automotive field, it is clear that the corrosion resistance of the GA + organic coating (epoxy resin) is equivalent to that of GA in the case of an actual press product in a processing mode mainly composed of tensile processing and overhang processing. In addition, regarding SPC, GA45, GI60, and GI100, it is known that a negative correlation is recognized between the plating adhesion amount and the maximum erosion depth, and the correlation between the plating adhesion amount and the maximum erosion depth is investigated. Therefore, it is possible to evaluate the validity of the result of the corrosion resistance evaluation method. Then, from the result evaluated by the corrosion resistance evaluation method according to the present invention, the correlation between the plating adhesion amount and the maximum erosion depth was investigated, and the validity of the result of the corrosion resistance evaluation method according to the present invention was evaluated.

以上により得られた評価結果を試験片作製条件と併せて表4に示す。   The evaluation results obtained above are shown in Table 4 together with the test piece preparation conditions.

Figure 2009092648
Figure 2009092648

上記表4に示す評価結果から、以下の事項が明らかとなった。
(1)サンプルNo.25〜29は、張出加工を行った本発明例、サンプルNo.35〜39は加工を行わなかった比較例である。図8に張出加工後のめっき付着量と最大腐食深さ平均値の関係を示す。本発明例では、加工後のめっき付着量と最大腐食深さには負の相関関係が認められており、試験の妥当性が明らかとなった。
また、比較例である加工を行わなかったGA+有機皮膜(サンプルNo.39)においてはGA(サンプルNo.36)に比べて顕著な耐食性向上効果が認められ実際の部品をシミュレートできていないのに対し、張出成型を行った本発明例GA+有機皮膜(サンプルNo.29)の場合にはGA(サンプルNo.26)と同等の耐食性であることが確認され、実際の部品をシミュレートできていることが分かる。
(2)図9に引張加工後めっき付着量と最大腐食深さ平均値の関係を示す。サンプルNo.30〜34は引張加工を行った本発明例である。GA+有機皮膜(サンプルNo.34)はGA(サンプルNo.31)と同等の耐食性であることから、実際の部品をシミュレート出来ていることが分かる。そして、加工後のめっき付着量と最大腐食深さには負の相関関係が認められていることから試験の妥当性が明らかとなった。
From the evaluation results shown in Table 4 above, the following matters were clarified.
(1) Sample No. Nos. 25 to 29 are examples of the present invention, sample No. 35 to 39 are comparative examples in which no processing was performed. FIG. 8 shows the relationship between the plating adhesion amount after the overhang processing and the average maximum corrosion depth. In the example of the present invention, a negative correlation was found between the plating adhesion amount after processing and the maximum corrosion depth, and the validity of the test became clear.
In addition, in the GA + organic film (sample No. 39) that was not processed as a comparative example, a remarkable corrosion resistance improvement effect was recognized as compared with GA (sample No. 36), and actual parts could not be simulated. On the other hand, in the case of the inventive example GA + organic film (sample No. 29) subjected to the overhang molding, it is confirmed that the corrosion resistance is equivalent to that of GA (sample No. 26), and an actual part can be simulated. I understand that
(2) FIG. 9 shows the relationship between the amount of plated coating after tensile processing and the average maximum corrosion depth. Sample No. Reference numerals 30 to 34 are examples of the present invention subjected to tensile processing. Since GA + organic film (sample No. 34) has the same corrosion resistance as GA (sample No. 31), it can be seen that an actual part can be simulated. And the validity of the test became clear from the fact that a negative correlation was found between the amount of plated deposit after processing and the maximum corrosion depth.

本発明に係る実施例において用いた、試験片にドロービード加工を施す冶具の一例を示す図である。It is a figure which shows an example of the jig which performs the draw bead process to the test piece used in the Example which concerns on this invention. 本発明に係る実施例において作製した、二次試験片の形状の一例を示す図である。It is a figure which shows an example of the shape of the secondary test piece produced in the Example which concerns on this invention. 本発明に係る実施例において作製した、耐食性評価用試験片の形状の一例を示す図である。It is a figure which shows an example of the shape of the test piece for corrosion resistance evaluation produced in the Example which concerns on this invention. 本発明に係る実施例において行った、複合サイクル腐食試験の工程の一例を示す図である。It is a figure which shows an example of the process of the combined cycle corrosion test performed in the Example which concerns on this invention. 本発明に係る実施例において、本発明例および比較例についてめっき付着量と最大侵食深さの関係を調べた結果を示す図である。In the Example which concerns on this invention, it is a figure which shows the result of having investigated the relationship between the plating adhesion amount and the maximum erosion depth about the example of this invention and a comparative example. 本発明に係る実施例において用いた、試験片に引張加工を施す冶具の一例を示す図である。It is a figure which shows an example of the jig used in the Example which concerns on this invention which performs a tensile process to a test piece. 本発明に係る実施例において用いた、試験片に張出加工を施す冶具の一例を示す図である。It is a figure which shows an example of the jig used in the Example which concerns on this invention which performs an overhanging process to a test piece. 本発明に係る実施例において、本発明例および比較例についてめっき付着量と最大侵食深さの関係を調べた結果を示す図である。In the Example which concerns on this invention, it is a figure which shows the result of having investigated the relationship between the plating adhesion amount and the maximum erosion depth about the example of this invention and a comparative example. 本発明に係る実施例において、本発明例および比較例についてめっき付着量と最大侵食深さの関係を調べた結果を示す図である。In the Example which concerns on this invention, it is a figure which shows the result of having investigated the relationship between the plating adhesion amount and the maximum erosion depth about the example of this invention and a comparative example.

符号の説明Explanation of symbols

1 ダイス
2 ビード
3 ポンチ
1 Dice 2 Bead 3 Punch

Claims (8)

金属板同士の合わせ構造部における耐食性を評価するための試験片の作製方法であって、合わせ構造部を構成する金属板に加工を施すことで形成された金属板の湾曲した面に、平坦部を設け、該設けた平坦部同士を接合して合わせ構造部を形成することを特徴とする試験片の作製方法。   A method for producing a test piece for evaluating corrosion resistance in a mating structure part between metal plates, wherein a flat part is formed on a curved surface of a metal plate formed by processing the metal plate constituting the mating structure part. A test piece manufacturing method, wherein the provided flat portions are joined together to form a combined structure portion. 金属板の湾曲した面に設ける平坦部が、深絞り加工により形成されることを特徴とする請求項1に記載の試験片の作製方法。   The method for producing a test piece according to claim 1, wherein the flat portion provided on the curved surface of the metal plate is formed by deep drawing. 湾曲した面に、深さが2mm以上であり、平坦部面積と深さとから算出される比である平坦部面積(mm)/深さ(mm)が、200以上2000以下となるように、深絞り加工を施し、平坦部を形成することを特徴とする請求項1または2に記載の試験片の作製方法。 In the curved surface, the depth is 2 mm or more, and the flat area (mm 2 ) / depth (mm), which is a ratio calculated from the flat area and depth, is 200 or more and 2000 or less, The method for producing a test piece according to claim 1, wherein a deep drawing process is performed to form a flat portion. 金属板に施される加工が、摺動加工であることを特徴とする請求項1〜3のいずれか一項に記載の試験片の作製方法。   The method for producing a test piece according to claim 1, wherein the processing applied to the metal plate is sliding processing. 金属板に施される加工が、曲げ曲げ戻しを含む摺動加工であることを特徴とする請求項4に記載の試験片の作製方法。   The method for producing a test piece according to claim 4, wherein the processing applied to the metal plate is sliding processing including bending and bending back. 金属板に施される加工が、引張加工または張出加工であることを特徴とする請求項1〜3のいずれか一項に記載の試験片の作成方法。   The method for producing a test piece according to any one of claims 1 to 3, wherein the process applied to the metal plate is a tensile process or an overhang process. 合わせ構造部を形成した後に、リン酸塩による化成処理を施し、さらに、電着塗装を施すことを特徴とする請求項1〜6のいずれか一項に記載の試験片の作製方法。   The method for producing a test piece according to any one of claims 1 to 6, wherein after the mating structure portion is formed, chemical conversion treatment with phosphate is performed, and further, electrodeposition coating is performed. 請求項1〜7のいずれか一項に記載の試験片の作製方法により作製された試験片を用いて、金属板同士の合わせ構造部における耐食性を評価することを特徴とする耐食性評価方法。   The corrosion resistance evaluation method characterized by evaluating the corrosion resistance in the joining structure part of metal plates using the test piece produced by the test piece production method as described in any one of Claims 1-7.
JP2008151441A 2007-09-20 2008-06-10 Test piece preparation method and corrosion resistance evaluation method Expired - Fee Related JP5125783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151441A JP5125783B2 (en) 2007-09-20 2008-06-10 Test piece preparation method and corrosion resistance evaluation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007243374 2007-09-20
JP2007243374 2007-09-20
JP2008151441A JP5125783B2 (en) 2007-09-20 2008-06-10 Test piece preparation method and corrosion resistance evaluation method

Publications (2)

Publication Number Publication Date
JP2009092648A true JP2009092648A (en) 2009-04-30
JP5125783B2 JP5125783B2 (en) 2013-01-23

Family

ID=40664762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151441A Expired - Fee Related JP5125783B2 (en) 2007-09-20 2008-06-10 Test piece preparation method and corrosion resistance evaluation method

Country Status (1)

Country Link
JP (1) JP5125783B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237821A (en) * 2021-04-26 2021-08-10 江西科技师范大学 Preparation and detection method of yttrium-doped Inconel625 alloy applied to oxidative high-temperature chlorine corrosion environment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832576A (en) * 1981-08-19 1983-02-25 Nisshin Steel Co Ltd Welding method
JPH02243333A (en) * 1989-03-17 1990-09-27 Nisshin Steel Co Ltd High wetting surface treated steel sheet of superior conductivity
JP2004188474A (en) * 2002-12-13 2004-07-08 Jfe Steel Kk Press working method excellent in shape freezing property
JP2004298964A (en) * 2003-03-19 2004-10-28 Nippon Steel Corp EDGE JOINT OF Sn- OR Pb-BASED GALVANIZED STEEL SHEET AND ITS LASER WELDING METHOD
JP2006283150A (en) * 2005-04-01 2006-10-19 Nippon Parkerizing Co Ltd Phosphate treatment method and electrodeposition coating treatment method for automobile body
JP2007146199A (en) * 2005-11-25 2007-06-14 Nisshin Steel Co Ltd Rust-preventive structure for automobile
JP4788606B2 (en) * 2007-01-16 2011-10-05 Jfeスチール株式会社 Method for evaluating corrosion resistance of surface-treated metals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832576A (en) * 1981-08-19 1983-02-25 Nisshin Steel Co Ltd Welding method
JPH02243333A (en) * 1989-03-17 1990-09-27 Nisshin Steel Co Ltd High wetting surface treated steel sheet of superior conductivity
JP2004188474A (en) * 2002-12-13 2004-07-08 Jfe Steel Kk Press working method excellent in shape freezing property
JP2004298964A (en) * 2003-03-19 2004-10-28 Nippon Steel Corp EDGE JOINT OF Sn- OR Pb-BASED GALVANIZED STEEL SHEET AND ITS LASER WELDING METHOD
JP2006283150A (en) * 2005-04-01 2006-10-19 Nippon Parkerizing Co Ltd Phosphate treatment method and electrodeposition coating treatment method for automobile body
JP2007146199A (en) * 2005-11-25 2007-06-14 Nisshin Steel Co Ltd Rust-preventive structure for automobile
JP4788606B2 (en) * 2007-01-16 2011-10-05 Jfeスチール株式会社 Method for evaluating corrosion resistance of surface-treated metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237821A (en) * 2021-04-26 2021-08-10 江西科技师范大学 Preparation and detection method of yttrium-doped Inconel625 alloy applied to oxidative high-temperature chlorine corrosion environment

Also Published As

Publication number Publication date
JP5125783B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
CN101128614B (en) Coated steel sheet or coil
JP5861766B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot press member using the same
KR102421541B1 (en) Method of producing parts with slight undulation from an electrogalvanized sheet, corresponding part and vehicle
JP2018513909A (en) Method for producing a phosphatable component from a plate coated with an aluminum coating and a zinc coating
CN108350579A (en) With the composition pre-treating aluminium surface containing zirconium and molybdenum
KR20170052670A (en) Use of a sulphate, and method for producing a steel component by forming in a forming machine
JP5272518B2 (en) Zinc-based galvanized steel sheet, galvanized steel sheet cutting method and die for cutting
JP5125783B2 (en) Test piece preparation method and corrosion resistance evaluation method
JP5304122B2 (en) Method for evaluating corrosion resistance of surface-treated steel sheets
JP4788606B2 (en) Method for evaluating corrosion resistance of surface-treated metals
CN1049531A (en) The method that contains the manganese zinc phosphate layer in the surface of galvanized steel manufacturing
JP2011027710A (en) Method for evaluating perforation corrosivity surface-treated steel sheet
JP2009265089A (en) Corrosion resistance evaluation method for surface-treated steel sheet
JP2008180694A (en) Configuration determination method of structure
JP2009069029A (en) Corrosion resistance evaluation method of surface treated metal
JP2003268521A (en) HOT DIP Sn-Zn PLATED STEEL SHEET
JP5217637B2 (en) Method for evaluating corrosion resistance of surface-treated steel sheets
JP5187413B2 (en) Steel sheet for hot press and method for producing hot press member using the same
JP2017510718A (en) Non-phosphorus coating method for plastic working metal materials for cold heading
JP5286883B2 (en) Method for evaluating corrosion resistance of surface-treated steel sheets for automobile side sills
JP2721292B2 (en) Aluminum-zinc alloy coated steel sheet treated with organic surface treatment agent
JP4727840B2 (en) Coated steel sheet excellent in workability and corrosion resistance, and method for producing the same
JP2010122203A (en) Corrosion resistance evaluation method of surface treated steel sheet
Angeli et al. The new family of European ZM coatings–a promising option for the automotive industry
JP2004149850A (en) Method for improving corrosion resistance of zinc plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees