JP2009091192A - Lithium-cobalt oxide and its preparation method - Google Patents

Lithium-cobalt oxide and its preparation method Download PDF

Info

Publication number
JP2009091192A
JP2009091192A JP2007263093A JP2007263093A JP2009091192A JP 2009091192 A JP2009091192 A JP 2009091192A JP 2007263093 A JP2007263093 A JP 2007263093A JP 2007263093 A JP2007263093 A JP 2007263093A JP 2009091192 A JP2009091192 A JP 2009091192A
Authority
JP
Japan
Prior art keywords
lithium
cobalt
cobalt oxide
acid salt
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007263093A
Other languages
Japanese (ja)
Inventor
Tetsuo Minamino
哲郎 南野
Toru Matsui
徹 松井
Koji Yoshizawa
浩司 芳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007263093A priority Critical patent/JP2009091192A/en
Publication of JP2009091192A publication Critical patent/JP2009091192A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide highly homogeneous lithium-cobalt oxide by a heat-treatment carried out at a relatively low temperature for a short time, and its preparation method. <P>SOLUTION: A lithium-cobalt oxide powder is prepared by thermally decomposing a lithium-cobalt organic acid salt comprising a trivalent cobalt ion using a preparation method of the lithium-cobalt oxide powder comprising: (1) a step of mixing lithium hydroxide with a cobalt organic acid salt dissolved in an oxidizing medium and; (2) a step of thermally decomposing a precipitated lithium-cobalt organic acid salt. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムコバルト酸化物およびその製造方法に関するものであり、特に、リチウム二次電池の正極活物質材料として好適であるものに関する。   The present invention relates to a lithium cobalt oxide and a method for producing the same, and particularly relates to a material suitable as a positive electrode active material for a lithium secondary battery.

近年、コードレスおよびポータブルなAV機器およびノートパソコンなどの移動情報端末の小型、軽量化の普及にともない、それらの駆動用電源である電池についても、小型、軽量および高エネルギー密度の電池への要望が強まっている。特に、リチウム二次電池は、高エネルギー密度を有する電池であることから、次世代の主力電池として期待され、その潜在的市場規模も大きい。現在市販されているリチウム二次電池の正極活物質として主にリチウムコバルト酸化物(LiCoO2)が用いられている。リチウムコバルト酸化物は、電位が高く、電気導電性に優れ、しかもリチウムイオンを比較的安定して挿入離脱することができるなどの長所を有する。 In recent years, with the spread of small and lightweight mobile information terminals such as cordless and portable AV devices and notebook personal computers, there is a demand for small, lightweight, and high energy density batteries as power sources for driving them. It is getting stronger. In particular, since the lithium secondary battery is a battery having a high energy density, it is expected as a next-generation main battery and has a large potential market scale. Lithium cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material for lithium secondary batteries currently on the market. Lithium cobalt oxide has advantages such as high potential, excellent electrical conductivity, and relatively stable insertion and removal of lithium ions.

リチウムコバルト酸化物は、従来よりコバルトを含む酸化物原料粉末とリチウム化合物粉末を混合し、焼成する乾式固相法により得られている。しかし、この方法では固相熱反応時の酸化コバルト粉末の反応性が低く、高温で長時間焼成することが必要であるため、粒子が粗大化し、その後に粉砕処理が必要である。さらに固相同士の反応であるため、原料同士を分子レベルで均一に混合することはできず、反応が不均一となりやすく、生成時に部分的に組成の不均一が起こり、安定した品質のリチウムコバルト酸化物が得られにくいという問題があった。   Conventionally, lithium cobalt oxide is obtained by a dry solid phase method in which an oxide raw material powder containing cobalt and a lithium compound powder are mixed and fired. However, in this method, the reactivity of the cobalt oxide powder at the time of solid phase thermal reaction is low, and it is necessary to calcinate for a long time at a high temperature, so that the particles become coarse and then a pulverization treatment is necessary. Furthermore, because the reaction is between solid phases, the raw materials cannot be mixed uniformly at the molecular level, the reaction tends to be non-uniform, and the composition is partially non-uniform during production, resulting in stable quality lithium cobalt. There was a problem that it was difficult to obtain an oxide.

さらにはコバルト酸化物とリチウム塩とを混合し、焼成時のガス雰囲気を酸素雰囲気で制御することなどがなされているが、焼成工程の制御だけでは、均一な組成を得ることは難しく、生成物の本来の特性を十分には引き出しにくい。   Furthermore, cobalt oxide and lithium salt are mixed, and the gas atmosphere during firing is controlled in an oxygen atmosphere. However, it is difficult to obtain a uniform composition only by controlling the firing process, and the product It is difficult to fully draw out its original characteristics.

上記の課題を解決する方法として、熱処理前の遷移金属(Co、Niなど)の価数を制御する方法が試みられている。例えば、オキシ水酸化コバルト粒子とリチウム塩原料を混合して加熱処理する方法(特許文献1)、オキシ水酸化コバルトとリチウム化合物を、アルコールを溶媒として反応させる方法(特許文献2)、コバルト原料からpHを調整しながら生成した2価の水酸化コバルトを、水酸化ナトリウム、酸素供給下、60〜200℃で熱処理して高次コバルト酸化物を得る方法(特許文献3)などが開示されている。   As a method for solving the above problems, a method of controlling the valence of a transition metal (Co, Ni, etc.) before heat treatment has been attempted. For example, a method in which cobalt oxyhydroxide particles and a lithium salt raw material are mixed and heat-treated (Patent Document 1), a method in which cobalt oxyhydroxide and a lithium compound are reacted using an alcohol as a solvent (Patent Document 2), from a cobalt raw material Disclosed is a method (Patent Document 3) in which divalent cobalt hydroxide produced while adjusting pH is heat-treated at 60 to 200 ° C. with sodium hydroxide and oxygen supply (Patent Document 3). .

これら方法はいずれもコバルト化合物とリチウム化合物の反応性を高める方法であるが、コバルト化合物を乾燥させた上で、リチウム化合物と混合する方法であり、一度溶媒を除去するとコバルト化合物粒子の凝集は避けられず、リチウム化合物と混合しても原子レベルでの均一混合状態にすることは難しい。
特開平10−279315号公報 特開平10−310430号公報 特開2005−162574号公報
All of these methods are methods for increasing the reactivity of the cobalt compound and the lithium compound, but the cobalt compound is dried and mixed with the lithium compound. Once the solvent is removed, the aggregation of the cobalt compound particles is avoided. It is difficult to achieve a uniform mixed state at the atomic level even when mixed with a lithium compound.
JP-A-10-279315 JP 10-310430 A JP 2005-162574 A

以上に鑑み、本発明は、比較的低温でかつ短時間の熱処理によって、均質性の高い、特にリチウム二次電池の正極活物質として有用であるリチウムコバルト酸化物、およびその製造方法を提供することにある。   In view of the above, the present invention provides a lithium cobalt oxide having high homogeneity, particularly useful as a positive electrode active material of a lithium secondary battery, and a method for producing the same, by heat treatment at a relatively low temperature for a short time. It is in.

前記課題を解決するための本発明は、少なくとも3価のコバルトイオンとリチウムを含む有機酸塩を加熱分解して得られることを特徴とするリチウムコバルト酸化物の製造方法である。   The present invention for solving the above problems is a method for producing lithium cobalt oxide, which is obtained by thermally decomposing an organic acid salt containing at least trivalent cobalt ions and lithium.

また、本発明は、(1)酸化性媒質中に溶解したコバルト有機酸塩に水酸化リチウムを混合する工程、(2)析出した前駆体を加熱分解する工程を経ることを特徴とするリチウムコバルト酸化物の製造方法である。   Further, the present invention includes (1) a step of mixing lithium hydroxide with a cobalt organic acid salt dissolved in an oxidizing medium, and (2) a step of thermally decomposing a deposited precursor. It is a manufacturing method of an oxide.

また、本発明は、上記のリチウムコバルト酸化物の製造方法において、リチウム対コバルト(Li/Co)の配合モル比が1.00〜1.20の範囲であることを特徴とするものである。   Further, the present invention is characterized in that in the above-described method for producing lithium cobalt oxide, the blending molar ratio of lithium to cobalt (Li / Co) is in the range of 1.00 to 1.20.

また、本発明は、上記のリチウムコバルト酸化物の製造方法において、酸化性媒質の酸化剤が過酸化水素又は溶存酸素の少なくとも一つであるものである。   The present invention is the above-described method for producing lithium cobalt oxide, wherein the oxidizing agent of the oxidizing medium is at least one of hydrogen peroxide or dissolved oxygen.

また、本発明は、上記のリチウムコバルト酸化物の製造方法において、コバルト有機酸塩が酢酸塩であることを特徴とするものである。   Further, the present invention is characterized in that, in the above-described method for producing lithium cobalt oxide, the cobalt organic acid salt is acetate.

本発明より得られたリチウムコバルト酸化物は、リチウム二次電池の正極活物質材料に有用である。また、本製造方法によれば、比較的低温度でかつ短時間の熱処理によって、均質性が高く、粉砕処理を必要としないリチウムコバルト酸化物の粉末を提供することが可能である。   The lithium cobalt oxide obtained from the present invention is useful as a positive electrode active material for a lithium secondary battery. Moreover, according to this manufacturing method, it is possible to provide a lithium cobalt oxide powder that has high homogeneity and does not require a pulverization treatment, by heat treatment at a relatively low temperature for a short time.

本発明の実施形態は以下の通りである。すなわち、本発明のリチウムコバルト酸化物は少なくとも3価のコバルトイオンとリチウムを含む有機酸塩を加熱分解することで得られる。   Embodiments of the present invention are as follows. That is, the lithium cobalt oxide of the present invention can be obtained by thermally decomposing an organic acid salt containing at least trivalent cobalt ions and lithium.

本発明の3価のコバルトイオンとリチウムを含む有機酸塩は、高次のコバルト源とリチウム源が原子レベルで双方の近傍に存在する好適な前駆体混合物であるため、これを焼成することにより、比較的低温で、かつ短時間でリチウムコバルト酸化物を生成することが可能となる。   The organic acid salt containing trivalent cobalt ions and lithium of the present invention is a suitable precursor mixture in which a higher-order cobalt source and a lithium source are present in the vicinity of both at the atomic level. It becomes possible to produce lithium cobalt oxide at a relatively low temperature and in a short time.

さらに、本発明のリチウムコバルト酸化物は、(1)酸化性媒質中に溶解したコバルト有機酸塩に水酸化リチウムを混合する工程、(2)析出した前駆体を加熱分解する工程を経る製造方法により得られる。   Furthermore, the lithium cobalt oxide of the present invention is manufactured by (1) a step of mixing lithium hydroxide with a cobalt organic acid salt dissolved in an oxidizing medium, and (2) a method of thermally decomposing the deposited precursor. Is obtained.

前記製造方法では、コバルト有機酸塩の原料を溶解した水溶液に酸化剤を添加して、水溶液に酸化性を付与した状態として反応させることでコバルトの価数を2価から3価に促進でき、その溶液に水酸化リチウムあるいは水酸化リチウムを溶解した水溶液を添加反応させるため、上記の3価のコバルトイオンとリチウムを含む有機酸塩の前駆体混合物を調製することができる。   In the manufacturing method, the valence of cobalt can be promoted from divalent to trivalent by adding an oxidizing agent to an aqueous solution in which the raw material of the cobalt organic acid salt is dissolved, and allowing the aqueous solution to react in an oxidized state. In order to add and react lithium hydroxide or an aqueous solution in which lithium hydroxide is dissolved in the solution, a precursor mixture of the above-described organic acid salt containing trivalent cobalt ions and lithium can be prepared.

また、前記製造方法により調製された前駆体混合物粒子をX線回折で測定すると、同定できていないが回折ピークが得られることから本前駆体粒子は結晶物あるいは結晶物の混合体であることが確認できる。この前駆体を500〜700℃の比較的低温の焼成処理をすることで結晶性リチウムコバルト酸化物を生成することができる。得られたリチウムコバルト酸化物は、一次粒子が融着することがなく、粒子の大きさがよく揃っており、例え
ば、リチウムイオン二次電池用の正極活物質として利用する場合は、粉砕処理を必要がない。
Further, when the precursor mixture particles prepared by the above production method are measured by X-ray diffraction, a diffraction peak is obtained although it cannot be identified. Therefore, the precursor particles may be a crystal or a mixture of crystals. I can confirm. A crystalline lithium cobalt oxide can be produced by subjecting this precursor to a relatively low-temperature baking treatment at 500 to 700 ° C. The obtained lithium cobalt oxide has primary particles that are not fused, and has a uniform particle size. For example, when used as a positive electrode active material for a lithium ion secondary battery, a pulverization treatment is performed. There is no need.

酸化剤を添加する別の方法、例えば、コバルト有機塩を添加する前の水酸化リチウムを溶解した水溶液中に添加するか、あるいは、水酸化リチウムとコバルト有機塩を溶解した混合水溶液に添加した場合は、2価のコバルト有機塩と水酸化リチウムの反応が速やかに生じて2価のコバルトの割合が多い化合物、特に2価の水酸化コバルトが生成してしまう。この前駆体化合物を熱処理すると、本発明の製造方法に比べて熱処理時間が長くなり、粒度もばらついたものとなる。   Another method of adding an oxidizing agent, for example, when adding to an aqueous solution in which lithium hydroxide is dissolved before adding the cobalt organic salt, or adding to an aqueous solution in which lithium hydroxide and cobalt organic salt are dissolved , A reaction between a divalent cobalt organic salt and lithium hydroxide occurs rapidly, and a compound having a large proportion of divalent cobalt, particularly divalent cobalt hydroxide, is produced. When this precursor compound is heat-treated, the heat treatment time becomes longer and the particle size varies as compared with the production method of the present invention.

本発明で調製したリチウムコバルトの前駆体化合物の析出は、コバルト有機酸塩水溶液と水酸化リチウム粉末あるいは水酸化リチウム水溶液を均一に混合することによって行うが、均一な反応を確保するために、攪拌しながら行うことが望ましい。攪拌の方法は特に限定されないが、通常の溶液を攪拌させる公知の方法に従えばよい。反応させる温度は、通常、室温で行うのが望ましい。室温とはおおよそ10〜35℃である。反応時間は30分間〜10時間、好ましくは1時間〜5時間である。   Precipitation of the lithium cobalt precursor compound prepared in the present invention is carried out by uniformly mixing a cobalt organic acid salt aqueous solution and a lithium hydroxide powder or a lithium hydroxide aqueous solution, but in order to ensure a uniform reaction, stirring is performed. It is desirable to do it. The method for stirring is not particularly limited, and may be a known method for stirring a normal solution. The reaction temperature is usually preferably room temperature. Room temperature is approximately 10 to 35 ° C. The reaction time is 30 minutes to 10 hours, preferably 1 hour to 5 hours.

リチウムの供給源となるリチウム化合物は、水酸化リチウムを使用するが、この水酸化リチウムは水和物であっても無水物であってもよい。   The lithium compound used as the lithium supply source uses lithium hydroxide, which may be a hydrate or an anhydride.

リチウム化合物とコバルト化合物の混合比は、Li/Coの配合モル比で1.00〜1.20の範囲であることが好ましい。より好ましくは1.00〜1.10である。1.00より小さいと、リチウムコバルト酸化物以外に正極活物質として作用しないコバルトの酸化物が残存してしまい、この酸化物を除去することが困難であるため、この混合物を用いて正極とした場合、電池特性の性能が低下する。一方、1.20より大きくなると、熱処理後に生成した粒子が強固に凝集した塊が形成され、粉砕処理して過剰のリチウム分を除去して正極とした場合、同様に電池特性の性能が低下するものしか得られない。   The mixing ratio of the lithium compound and the cobalt compound is preferably in the range of 1.00 to 1.20 in terms of the molar ratio of Li / Co. More preferably, it is 1.00-1.10. If it is smaller than 1.00, cobalt oxide that does not act as a positive electrode active material other than lithium cobalt oxide remains, and it is difficult to remove this oxide. In this case, the performance of the battery characteristics is degraded. On the other hand, when it becomes larger than 1.20, a lump in which particles generated after heat treatment are strongly aggregated is formed, and when the positive electrode is formed by removing excess lithium by pulverization, the performance of battery characteristics is similarly lowered. You can only get things.

本発明では溶液に酸化性を付与するために酸化剤を添加するが、その製造方法において、コバルトを所望の価数にして、高温下の加熱焼成処理をしないで該リチウムコバルト酸化物を製造することが可能な酸化剤を使用することが望ましいが、具体的には過酸化水素あるいは酸素が、反応生成後に混入する不純物がないため好ましい。過酸化水素、酸素ガスは単独で用いてもよく、両方用いてもよい。   In the present invention, an oxidizing agent is added to impart oxidizability to the solution. In the production method, cobalt is made into a desired valence, and the lithium cobalt oxide is produced without heating and baking at a high temperature. It is desirable to use an oxidizing agent that can be used, but specifically, hydrogen peroxide or oxygen is preferable because there are no impurities mixed in after the reaction. Hydrogen peroxide and oxygen gas may be used alone or in combination.

過酸化水素水を使用する場合は、H225%〜50%濃度のものが市販されており、これらをはじめ適宜なものでよいが、30%前後のものが市販品として代表的なものであるので、これを使用してもよい。 In the case of using hydrogen peroxide solution, those having a concentration of 5% to 50% of H 2 O 2 are commercially available, and may be appropriate ones such as these. Since it is a thing, you may use this.

酸化剤の使用量は適宜設定が可能であるが、過酸化水素を用いる場合は、コバルト源より多いモル量であれば良い。酸素を用いる場合は、所定の流量でコバルト有機酸塩水溶液に流入させる、いわゆるバブリングさせて扱えばよい。   The amount of the oxidizing agent used can be set as appropriate, but when hydrogen peroxide is used, the molar amount may be larger than that of the cobalt source. When oxygen is used, it may be handled by so-called bubbling, which is caused to flow into the cobalt organic acid salt aqueous solution at a predetermined flow rate.

コバルトの供給源となるコバルト有機酸塩は酢酸塩を使用する。硫酸塩、塩化物の場合と異なり、例えば、500℃以下の加熱処理においても酢酸分は分解して不純物が残らないため有効である。このコバルト酢酸塩は、水和物であっても無水物であってもよい。   The cobalt organic acid salt that is the source of cobalt uses acetate. Unlike the case of sulfates and chlorides, for example, even in heat treatment at 500 ° C. or lower, the acetic acid content is effective because it decomposes and no impurities remain. The cobalt acetate may be a hydrate or an anhydride.

酸化剤を付与したコバルト酢酸塩水溶液と水酸化リチウムあるいは水酸化リチウム水溶液を混合して反応させることによりリチウムコバルトの前駆体化合物の沈殿が生成する。固液分離して回収した前駆体粒子を大気中もしくは酸素含有雰囲気下において加熱することで結晶化粒子を得ることができる。   Precipitation of a precursor compound of lithium cobalt is generated by mixing and reacting an aqueous cobalt acetate solution to which an oxidizing agent has been added and lithium hydroxide or an aqueous lithium hydroxide solution. Crystallized particles can be obtained by heating the precursor particles recovered by solid-liquid separation in the air or in an oxygen-containing atmosphere.

リチウムコバルトの前駆体化合物の加熱温度は、400℃〜800℃、好ましくは500℃〜700℃の範囲であり、加熱時間は30分〜10時間である。   The heating temperature of the precursor compound of lithium cobalt is 400 ° C. to 800 ° C., preferably 500 ° C. to 700 ° C., and the heating time is 30 minutes to 10 hours.

上記加熱処理により得られる本発明のリチウムコバルト酸化物は、リチウムイオン二次電池の正極材料として好適に使用することができる。正極活物質として使用する本発明の粉末以外は、公知のリチウムイオン二次電池の構成材料を採用することにより、リチウムイオン二次電池を製造することができる。   The lithium cobalt oxide of this invention obtained by the said heat processing can be used conveniently as a positive electrode material of a lithium ion secondary battery. Other than the powder of the present invention used as the positive electrode active material, a lithium ion secondary battery can be produced by employing known constituent materials of a lithium ion secondary battery.

一般に、リチウムコバルト酸化物をリチウムイオン二次電池の活物質として用いる場合、電池特性を向上させるために、場合により、他の金属を部分ドーピングさせるが、本発明の方法であれば、金属の有機酸塩、特には、金属の酢酸塩を原料として用いれば、コバルト有機酸塩とともに混合して水に溶解することができる。この混合水溶液と水酸化リチウムあるいは水酸化リチウム水溶液とを混合反応させ、生成した前駆体粉末を加熱処理すれば、リチウムとコバルト以外の金属をドーピングしたリチウムコバルト酸化物を得ることができる。ドーピングさせる原料としては、例えば、酢酸マグネシウム、酢酸カルシウム、酢酸マンガン、酢酸ニッケル、酢酸亜鉛、酢酸ストロンチウム、酢酸バリウム、酢酸ランタンおよびそれらの水和物などを使用することができる。   In general, when lithium cobalt oxide is used as an active material of a lithium ion secondary battery, in order to improve battery characteristics, in some cases, other metals are partially doped. If an acid salt, particularly a metal acetate is used as a raw material, it can be mixed with a cobalt organic acid salt and dissolved in water. If this mixed aqueous solution and lithium hydroxide or lithium hydroxide aqueous solution are mixed and reacted, and the resulting precursor powder is heat-treated, a lithium cobalt oxide doped with a metal other than lithium and cobalt can be obtained. As a raw material to be doped, for example, magnesium acetate, calcium acetate, manganese acetate, nickel acetate, zinc acetate, strontium acetate, barium acetate, lanthanum acetate and hydrates thereof can be used.

(実施例1)
酢酸コバルト四水和物10gを溶解した水溶液に攪拌下、コバルトの10倍モル量の過酸化水素水を徐々に添加し、赤紫色から3価のコバルトを含む黄褐色に変化した溶液が得られた。この溶液に水酸化リチウム一水和物(Li/Co=1.05モル比量)を溶解した水溶液を添加反応させて沈澱物を得た。この時、溶液は緑色に変化した。この沈澱物から溶媒を蒸発させて前駆体粉末を得た。この前駆体粉末のX線回折パターンを図1に示す。鋭い回折ピークが得られたことから、この前駆体粉末はコバルトとリチウムを含む有機酸塩である。また、この粉末を単位重量当たりのICP発光分析によるコバルト量の定量、及びシュウ酸ナトリウムを用いてコバルトを還元した後、余剰シュウ酸ナトリウムの硫酸酸性KMnO4による酸化還元滴定を行い、コバルトの酸化数を2.8と算出した。通常コバルトは2価と3価化合物が知られており、本コバルトとリチウムを含む有機酸塩中のコバルトは3価を含むことは明らかである。この粉末を550℃で1時間焼成して活物質を得た。得られた粉末をX線回折で測定すると、図2に示すような回折パターンが得られ、この粉末がコバルト酸リチウムであることを確認した。図3に粒子表面の走査電子顕微鏡写真を示す。図3より、得られた粒子は比較的大きさの揃った直径約0.1から0.3μmの一次粒子から構成され、これらの表面が緩やかにネッキングしていることが確認された。
(Example 1)
Under stirring, an aqueous solution containing 10 g of cobalt acetate tetrahydrate is gradually added with 10 times the molar amount of hydrogen peroxide solution of cobalt to obtain a solution that changes from reddish purple to yellowish brown containing trivalent cobalt. It was. To this solution, an aqueous solution in which lithium hydroxide monohydrate (Li / Co = 1.05 molar ratio) was dissolved was added and reacted to obtain a precipitate. At this time, the solution turned green. The solvent was evaporated from the precipitate to obtain a precursor powder. The X-ray diffraction pattern of this precursor powder is shown in FIG. Since a sharp diffraction peak was obtained, this precursor powder is an organic acid salt containing cobalt and lithium. In addition, this powder was quantified by ICP emission analysis per unit weight, and after cobalt was reduced using sodium oxalate, oxidation and reduction titration of sulfuric acid KMnO 4 with excess sodium oxalate was performed to oxidize cobalt. The number was calculated as 2.8. Normally, divalent and trivalent compounds are known for cobalt, and it is clear that cobalt in the organic acid salt containing cobalt and lithium contains trivalent. This powder was fired at 550 ° C. for 1 hour to obtain an active material. When the obtained powder was measured by X-ray diffraction, a diffraction pattern as shown in FIG. 2 was obtained, and it was confirmed that this powder was lithium cobaltate. FIG. 3 shows a scanning electron micrograph of the particle surface. From FIG. 3, it was confirmed that the obtained particles were composed of primary particles having a relatively uniform diameter of about 0.1 to 0.3 μm and that their surfaces were gently necked.

(実施例2)
Li/Coの比を1.10モル比とした以外は、実施例1と同様にしてコバルト酸リチウムを得た。前駆体粉末のコバルト酸化数を実施例1と同様にして算出したところ、2.9であった。
(Example 2)
Lithium cobaltate was obtained in the same manner as in Example 1 except that the Li / Co ratio was changed to 1.10 molar ratio. When the cobalt oxidation number of the precursor powder was calculated in the same manner as in Example 1, it was 2.9.

(比較例1)
酸化剤を用いない以外は実施例1と同様に反応させて沈殿物を得た。この時、溶液は赤紫色であった。この沈澱物から溶媒を蒸発させて前駆体粉末を得た。この前駆体粉末について、実施例1と同様にコバルト酸化数の分析を行い、2.0という値を得た。この粉末を550℃で1時間焼成して活物質を得た。得られた粉末をX線回折で分析し、コバルト酸リチウムと四酸化三コバルトの混合物であることを確認した。この粒子表面の走査電子顕微鏡写真を図4に示す。直径約0.3から1μmの塊状一次粒子から構成され、この一
次粒子同士が互いに融着して二次粒子を構成していることが確認された。
(Comparative Example 1)
A precipitate was obtained by reacting in the same manner as in Example 1 except that the oxidizing agent was not used. At this time, the solution was reddish purple. The solvent was evaporated from the precipitate to obtain a precursor powder. About this precursor powder, the cobalt oxidation number was analyzed similarly to Example 1, and the value of 2.0 was obtained. This powder was fired at 550 ° C. for 1 hour to obtain an active material. The obtained powder was analyzed by X-ray diffraction and confirmed to be a mixture of lithium cobaltate and tricobalt tetroxide. A scanning electron micrograph of the particle surface is shown in FIG. It was confirmed to be composed of massive primary particles having a diameter of about 0.3 to 1 μm, and the primary particles were fused together to form secondary particles.

(比較例2)
コバルト(II)アセチルアセトナート10gをエタノールに溶解し、この溶液に酢酸リチウム二水和物(Li/Co=1.05モル比量)をエタノールに溶解した溶液を攪拌下滴下した。この混合溶液を、エバポレーターを用いて溶媒を除去して前駆体粉末を得た。この前駆体粉末について、実施例1と同様にコバルト酸化数の分析を行い、2.9という値を得た。この粉末を550℃で1時間焼成して活物質を得た。得られた粉末をX線回折で測定すると、この粉末がコバルト酸リチウムであることを確認した。この粉末をSEM観察すると一次粒子が強固に融着した二次凝集体を形成していた。この粉末を正極活物質として利用する場合、粉砕処理が必要であり、粉砕処理すると、粒度がばらついたものしか得られなかった。
(Comparative Example 2)
10 g of cobalt (II) acetylacetonate was dissolved in ethanol, and a solution obtained by dissolving lithium acetate dihydrate (Li / Co = 1.05 molar ratio) in ethanol was added dropwise to this solution with stirring. From this mixed solution, the solvent was removed using an evaporator to obtain a precursor powder. About this precursor powder, the cobalt oxidation number was analyzed similarly to Example 1, and the value of 2.9 was obtained. This powder was fired at 550 ° C. for 1 hour to obtain an active material. When the obtained powder was measured by X-ray diffraction, it was confirmed that this powder was lithium cobaltate. When this powder was observed by SEM, a secondary aggregate in which primary particles were firmly fused was formed. When this powder is used as the positive electrode active material, a pulverization process is required, and when the pulverization process is performed, only powders with varying particle sizes can be obtained.

次に上記のようにして得られた正極活物質を用いて、上記活物質100重量部、導電材としてアセチレンブラック3重量部、結着剤としてポリフッ化ビニリデン5重量部を混合して正極合剤を作製し、負極には金属リチウムを用いて電池セルを製作した。このセルを用いて、電池電圧が2.0〜4.0Vの間で充放電特性について検討した。その結果を表1に示す。   Next, using the positive electrode active material obtained as described above, 100 parts by weight of the active material, 3 parts by weight of acetylene black as a conductive material, and 5 parts by weight of polyvinylidene fluoride as a binder are mixed to form a positive electrode mixture. A battery cell was manufactured using metallic lithium for the negative electrode. Using this cell, the charge / discharge characteristics were examined when the battery voltage was 2.0 to 4.0 V. The results are shown in Table 1.

これらの結果より、実施例1および2で得られたリチウムコバルト酸化物は比較例のものに比べて大きな値を示しており、電池特性の優れたものであることがわかった。本発明による前駆体粉末が3価のコバルトイオンを含むため、加熱処理時にコバルトの価数を引き上げる必要がなく速やかにリチウムコバルト酸化物が得られること、また、前駆体のリチウムコバルト有機酸塩において均一にコバルトとリチウムが配置されているため、反応の均一性が高くなったと考えられる。従って、本発明によれば一次粒子が融着することなく、粒子の大きさがよく揃ったリチウムコバルト酸化物が得られ、電池特性が比較例と比べて向上したものであると考えられる。   From these results, it was found that the lithium cobalt oxide obtained in Examples 1 and 2 showed a larger value than that of the comparative example and had excellent battery characteristics. Since the precursor powder according to the present invention contains trivalent cobalt ions, it is not necessary to increase the valence of cobalt at the time of heat treatment, and lithium cobalt oxide can be obtained quickly, and in the precursor lithium cobalt organic acid salt Since cobalt and lithium are uniformly arranged, it is considered that the uniformity of the reaction has increased. Therefore, according to the present invention, it is considered that the primary particles are not fused, and lithium cobalt oxide having a uniform particle size is obtained, and the battery characteristics are improved as compared with the comparative example.

実施例1で得られた前駆体化合物粉末のX線回折ピークパターンを示す図The figure which shows the X-ray-diffraction peak pattern of the precursor compound powder obtained in Example 1 実施例1で得られた550℃焼成後の粉末のX線回折ピークパターンを示す図The figure which shows the X-ray-diffraction peak pattern of the powder after baking at 550 degreeC obtained in Example 1 実施例1で得られた550℃焼成後の粉末の走査電子顕微鏡写真Scanning electron micrograph of the powder after baking at 550 ° C. obtained in Example 1 比較例1で得られた550℃焼成後の粉末の走査電子顕微鏡写真Scanning electron micrograph of the powder after firing at 550 ° C. obtained in Comparative Example 1

Claims (6)

少なくとも3価のコバルトイオンとリチウムを含む有機酸塩を加熱分解してリチウムコバルト酸化物とする工程を含むリチウムコバルト酸化物の製造方法。   A method for producing lithium cobalt oxide, comprising a step of thermally decomposing an organic acid salt containing at least trivalent cobalt ions and lithium into lithium cobalt oxide. 酸化性媒質中に溶解したコバルト有機酸塩に水酸化リチウムを混合して、少なくとも3価のコバルトイオンを含む前駆体を得る工程と前記前駆体を加熱分解してリチウムコバルト酸化物とする工程を含むリチウムコバルト酸化物の製造方法。   Mixing lithium hydroxide with cobalt organic acid salt dissolved in an oxidizing medium to obtain a precursor containing at least trivalent cobalt ions, and thermally decomposing the precursor to form lithium cobalt oxide A method for producing lithium cobalt oxide. 前記リチウムコバルト酸化物のリチウム対コバルトの配合モル比が1.00〜1.20の範囲であることを特徴とする請求項1または2記載のリチウムコバルト酸化物の製造方法。   3. The method for producing lithium cobalt oxide according to claim 1, wherein a blending molar ratio of lithium to cobalt in the lithium cobalt oxide is in a range of 1.00 to 1.20. 前記酸化性媒質中の酸化剤が過酸化水素又は溶存酸素の少なくとも一つであることを特徴とする請求項2記載のリチウムコバルト酸化物の製造方法。   3. The method for producing a lithium cobalt oxide according to claim 2, wherein the oxidizing agent in the oxidizing medium is at least one of hydrogen peroxide or dissolved oxygen. 前記コバルト有機酸塩が酢酸塩であることを特徴とする請求項2記載のリチウムコバルト酸化物の製造方法。   The method for producing a lithium cobalt oxide according to claim 2, wherein the cobalt organic acid salt is an acetate salt. 請求項1乃至5のいずれかの項に記載のリチウムコバルト酸化物の製造方法により製造されたリチウムコバルト酸化物。   The lithium cobalt oxide manufactured by the manufacturing method of the lithium cobalt oxide in any one of Claims 1 thru | or 5.
JP2007263093A 2007-10-09 2007-10-09 Lithium-cobalt oxide and its preparation method Pending JP2009091192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007263093A JP2009091192A (en) 2007-10-09 2007-10-09 Lithium-cobalt oxide and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007263093A JP2009091192A (en) 2007-10-09 2007-10-09 Lithium-cobalt oxide and its preparation method

Publications (1)

Publication Number Publication Date
JP2009091192A true JP2009091192A (en) 2009-04-30

Family

ID=40663546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263093A Pending JP2009091192A (en) 2007-10-09 2007-10-09 Lithium-cobalt oxide and its preparation method

Country Status (1)

Country Link
JP (1) JP2009091192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071351A1 (en) * 2021-10-26 2023-05-04 广东邦普循环科技有限公司 Method for preparing polyanionic positive electrode material for sodium-ion batteries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071351A1 (en) * 2021-10-26 2023-05-04 广东邦普循环科技有限公司 Method for preparing polyanionic positive electrode material for sodium-ion batteries

Similar Documents

Publication Publication Date Title
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4691711B2 (en) Lithium manganese composite oxide and method for producing the same
JP4963059B2 (en) Lithium manganese composite oxide containing titanium and nickel
JP5158787B2 (en) NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP2017188428A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery using the same
JP5569034B2 (en) Lithium hydroxide for producing lithium nickel composite oxide, method for producing the same, and method for producing lithium nickel composite oxide using the lithium hydroxide
WO2017170548A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using same
JPWO2016017783A1 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
WO2010038424A1 (en) Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JPWO2014061653A1 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2009120480A (en) Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
TW201424100A (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP6479632B2 (en) Method for producing nickel lithium metal composite oxide
JP7464102B2 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the same
JP2015140292A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2017100894A (en) Manufacturing method of nickel lithium metal composite oxide
JP5686459B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery including the positive electrode
JP2006012616A (en) Positive electrode material for lithium secondary battery and its manufacturing method
KR101170095B1 (en) Method for synthesizing nanostructured gamma manganese oxide at atmospheric pressure and low temperature and spinel lithium manganese oxide thereof
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP4423391B2 (en) Lithium ferrite composite oxide and method for producing the same
JP2004010375A (en) Processes for preparing tricobalt tetraoxide and lithium cobaltate
JP2009091192A (en) Lithium-cobalt oxide and its preparation method
JPWO2017033894A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, non-aqueous electrolyte secondary battery