JP2009090576A - Molding member - Google Patents

Molding member Download PDF

Info

Publication number
JP2009090576A
JP2009090576A JP2007264594A JP2007264594A JP2009090576A JP 2009090576 A JP2009090576 A JP 2009090576A JP 2007264594 A JP2007264594 A JP 2007264594A JP 2007264594 A JP2007264594 A JP 2007264594A JP 2009090576 A JP2009090576 A JP 2009090576A
Authority
JP
Japan
Prior art keywords
core
design
molded member
molded
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007264594A
Other languages
Japanese (ja)
Other versions
JP5270899B2 (en
Inventor
Shinji Sugimoto
伸二 杉本
Ichiu Kikuchi
一宇 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINO KOGYO KK
Original Assignee
MINO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINO KOGYO KK filed Critical MINO KOGYO KK
Priority to JP2007264594A priority Critical patent/JP5270899B2/en
Publication of JP2009090576A publication Critical patent/JP2009090576A/en
Application granted granted Critical
Publication of JP5270899B2 publication Critical patent/JP5270899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding member which is hardly deformed even when it is heated/cooled, excellent in strength, and lightweight. <P>SOLUTION: The molding member 1 comprises a design part 10 consisting of a resin material and a core part 20 embedded in the design part 10. The design part 10 and the core part 20 are integrally molded so as to make the core part 20 cylindrical, the strength of the core part 20 larger than the strength of the design part 10 and the coefficient of linear expansion of the core part 20 smaller than the coefficient of linear expansion of the design part 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、構造用部材や外観用部材などに使用できる成形部材に関する。   The present invention relates to a molded member that can be used as a structural member, an appearance member, or the like.

ポリエチレンやポリプロピレン、ポリスチレンなどの樹脂材料からなる成形部材は、従来から、建築用部材などに用いられている。しかし、これらの樹脂材料は線膨張係数が大きいため、気温の変化などによって大きく膨張または収縮する。参考までに、高密度ポリエチレンの線膨張係数は100〜120×10-6/℃程度である。他の樹脂材料に関しても、線膨張係数は同程度である。したがって、これらの樹脂材料からなる成形部材を温度変化の大きい環境で用いると、成形部材が変形し、成形部材を組み付けた相手材と成形部材との間や隣接する成形部材同士の間等に隙間が生じ、成形部材を安定に組み付け難い問題がある。また、成形部材の一部が加熱・冷却された場合などには、成形部材が大きく反り返ったり曲がったりする。さらに、樹脂材料からなる成形部材は、強度に劣る問題もある。 Molded members made of resin materials such as polyethylene, polypropylene, and polystyrene have been conventionally used for building members. However, since these resin materials have a large coefficient of linear expansion, they are greatly expanded or contracted due to changes in temperature or the like. For reference, the linear expansion coefficient of high-density polyethylene is about 100 to 120 × 10 −6 / ° C. For other resin materials, the linear expansion coefficient is similar. Therefore, when a molded member made of these resin materials is used in an environment with a large temperature change, the molded member is deformed, and a gap is formed between the mating member assembled with the molded member and the molded member or between adjacent molded members. Occurs, and there is a problem that it is difficult to assemble the molded member stably. In addition, when a part of the molded member is heated / cooled, the molded member warps or bends greatly. Furthermore, the molded member made of a resin material also has a problem of poor strength.

このため従来は、樹脂材料に木粉などの線膨張係数の小さい材料(以下、低膨張材料と呼ぶ)を練り込んだ複合材料を成形部材の材料として用いていた。しかしこの場合には、樹脂材料と低膨張材料とが互いに独立して存在するために、樹脂材料の膨張や収縮を十分に抑制することは困難である。またこの場合には、成形部材を切断すると切断面に低膨張材料が露出する。この場合、例えば木粉を低膨張材料として用いる場合には、切断面が変色したりカビが生じるなどの問題もある。   For this reason, conventionally, a composite material obtained by kneading a material having a low linear expansion coefficient such as wood powder (hereinafter referred to as a low expansion material) into a resin material has been used as the material of the molded member. However, in this case, since the resin material and the low expansion material exist independently of each other, it is difficult to sufficiently suppress the expansion and contraction of the resin material. In this case, when the molded member is cut, the low expansion material is exposed on the cut surface. In this case, for example, when wood powder is used as the low expansion material, there is a problem that the cut surface is discolored or mold is generated.

成形部材の内部に金属板やFRP板などの低膨張材料からなる板材を一体成形する技術もある(例えば、特許文献1参照)。しかし、この技術によっても樹脂材料の膨張や収縮を十分に抑制することは困難である。すなわち、成形部材のなかで樹脂材料からなる部分(以下、意匠部と呼ぶ)と板材との接合面積は小さいため、意匠部のなかで板材との境界に位置する部分の膨張や収縮を抑制する効果はあるが、板材と離れた部分における意匠部の膨張や収縮を抑制することは困難である。さらに、アルミニウム板などの板材は曲げ強度に劣り、変形し易いため、成形部材全体の強度を向上させるのは困難である。このため、板材が一体成形されてなる成形部材もまた、形状の安定性に劣りかつ安定に組み付け難い問題がある。   There is also a technique in which a plate material made of a low expansion material such as a metal plate or an FRP plate is integrally formed inside the molded member (for example, see Patent Document 1). However, even with this technique, it is difficult to sufficiently suppress the expansion and contraction of the resin material. That is, since the bonding area between the part made of a resin material (hereinafter referred to as the design part) and the plate material in the molded member is small, the expansion and contraction of the part located at the boundary with the plate material in the design part is suppressed. Although effective, it is difficult to suppress the expansion and contraction of the design portion in a portion away from the plate material. Furthermore, since plate materials, such as an aluminum plate, are inferior in bending strength and are easy to deform | transform, it is difficult to improve the intensity | strength of the whole shaping | molding member. For this reason, the molded member formed by integrally molding the plate material also has a problem that it is inferior in shape stability and difficult to assemble stably.

さらに、板材が一体成形されてなる成形部材は他の成形部材や相手材などに安定に組み付け難いため、成形部材と他の成形部材(または相手材)とを接着剤やネジなどで固定する必要がある。板材が一体成形されてなる成形部材を相手材に組み付けている様子を模式的に表す説明図を図11〜図15に示す。   Furthermore, it is necessary to fix the molded member and the other molded member (or the mating material) with an adhesive or screws, etc., because it is difficult to stably assemble the molded member made of the plate material to other molded members or the mating material. There is. FIGS. 11 to 15 are explanatory views schematically showing a state in which a forming member formed by integrally forming a plate material is assembled to a counterpart material.

図11に示す成形部材100は、樹脂材料からなる意匠部101と、金属材料からなる板材102とを持つ。この成形部材100は、一般には、接着剤108を塗布した相手材107に押しつけつつ、複数の固定ネジ109a、109bで相手材107に固着していた。このとき、成形部材100が組み付けられる環境の温度差に応じた成形部材100の伸縮量を考慮し、隣接する固定ネジ109a、109b同士の間隔Pを小さくする必要があった。また、隣接する成形部材100a、100bの隙間もまた、成形部材100a、100bの伸縮量を考慮して設定する必要があった。なお、この隙間は弾性材料110で埋めていた。   A molding member 100 shown in FIG. 11 has a design portion 101 made of a resin material and a plate material 102 made of a metal material. In general, the molded member 100 is fixed to the counterpart material 107 with a plurality of fixing screws 109a and 109b while being pressed against the counterpart material 107 to which the adhesive 108 is applied. At this time, it is necessary to reduce the interval P between the adjacent fixing screws 109a and 109b in consideration of the expansion / contraction amount of the molding member 100 according to the temperature difference of the environment in which the molding member 100 is assembled. Further, the gap between the adjacent molded members 100a and 100b also needs to be set in consideration of the amount of expansion / contraction of the molded members 100a and 100b. The gap was filled with the elastic material 110.

しかし、図11に示す方法で組み付けた成形部材100であっても、加熱・冷却のサイクルを数回繰り返すと熱膨張して、図12に示すように、隣接する成形部材100a、100bの突き合わせ部分が浮き上がる。これは、板材102が曲げ強度に劣るためである。   However, even if the molding member 100 assembled by the method shown in FIG. 11 is heated and cooled several times, it thermally expands, and as shown in FIG. 12, the abutting portions of the adjacent molding members 100a and 100b. Comes up. This is because the plate material 102 is inferior in bending strength.

図13に示すように、成形部材100の端部を切り欠き形状にして、隣接する成形部材100a、100bの板材102a、102bを重ね合わせると、隣接する成形部材100a、100bの突き合わせ部分を固定できると考えられる。また、図13に示すように、成形部材100a、100bとは別体のカバー体111によって隣接する成形部材100a、100bの突き合わせ部分を押さえ込む場合にも、隣接する成形部材100a、100bの突き合わせ部分を固定できると考えられる。   As shown in FIG. 13, when the ends of the molded member 100 are cut out and the plate members 102a and 102b of the adjacent molded members 100a and 100b are overlapped, the butted portions of the adjacent molded members 100a and 100b can be fixed. it is conceivable that. In addition, as shown in FIG. 13, even when pressing the butted portion of the adjacent molded members 100 a and 100 b with the cover body 111 separate from the molded members 100 a and 100 b, the butted portions of the adjacent molded members 100 a and 100 b are It can be fixed.

しかしこれらの場合にも、板材102または意匠部101が熱膨張すると成形部材100a、100bが変形し、図14に示すように、成形部材100a、100bのなかで相手材107に強く固定されていない部分105が相手材107から浮き上がる。   However, even in these cases, when the plate member 102 or the design portion 101 is thermally expanded, the molded members 100a and 100b are deformed and are not firmly fixed to the mating member 107 in the molded members 100a and 100b as shown in FIG. The portion 105 is lifted from the counterpart material 107.

これは、成形部材100aを他の成形部材100bに組み付ける場合も同様である。例えば図15に示すように、2つの成形部材100a、100bの板材102a、102bを露出させ、板材102aおよび板材102bを重ね合わせて固定ネジ109で固着することで、2つの成形部材100a、100bを組み付けることができる。しかしこの場合にも、板材102a、102bまたは意匠部101の熱膨張によって、成形部材100aと成形部材100bとの結合部分に大きな応力が作用し、この結合部分が変形する場合があった。また、この場合には、板材102a、102bが意匠部101の外部に露出するため、板材102a、102bを覆うためのカバー120が必要になる。したがって、成形部材100a、100bの部品点数が多くなり、組み付け工数が増大する問題もあった。さらにこの場合には、2つの成形部材100a、100bの一体感がカバー120によって損なわれるため、成形部材100a、100bの意匠性が悪化する問題もあった。   The same applies to the case where the molded member 100a is assembled to another molded member 100b. For example, as shown in FIG. 15, the plate members 102a and 102b of the two molded members 100a and 100b are exposed, and the two plate members 102a and 102b are overlapped and fixed with a fixing screw 109, thereby fixing the two molded members 100a and 100b. Can be assembled. However, even in this case, due to the thermal expansion of the plate members 102a and 102b or the design portion 101, a large stress may act on the joint portion between the molding member 100a and the molding member 100b, and the joint portion may be deformed. In this case, since the plate materials 102a and 102b are exposed to the outside of the design portion 101, a cover 120 for covering the plate materials 102a and 102b is necessary. Therefore, there is a problem that the number of parts of the molded members 100a and 100b is increased and the number of assembling steps is increased. Furthermore, in this case, since the unity feeling of the two molded members 100a and 100b is damaged by the cover 120, there is a problem that the design of the molded members 100a and 100b deteriorates.

また、成形部材や相手材の形状などによっては、接着やネジ止めができない場合もある。また、接着剤は高価であり、かつ、接着する工程に要する費用が高い問題もあった。   Further, depending on the shape of the molded member or the counterpart material, bonding or screwing may not be possible. In addition, the adhesive is expensive, and there is a problem that the cost required for the bonding process is high.

板材を厚肉にすると、成形部材の強度を向上させ得るが、成形部材の重量が増大しかつ成形部材の材料コストが高くなる。板材を薄肉にすると成形部材は軽量になるが、成形部材の強度は低下し、かつ、板材の体積が小さいために意匠部の材料である樹脂材料をさほど低減できない。このため、この場合の成形部材の材料コストは、板材を持たない従来の成形部材の材料コストと板材に要する材料コストとの和とほぼ同じになる。すなわち、この場合には成形部材の材料コストが高くなり、成形部材を安価に製造し難い問題があった。さらにこの場合には、成形部材の内部に板材をインサートする工程が必要になることによっても、成形部材の製造コストが高くなり、成形部材を安価に製造し難い問題があった。さらに、特に、成形部材の肉厚が大きい場合には、意匠部のなかで太陽光などに曝される面とその他の面との間で熱膨張量が大きく異なる。この場合には、意匠部が大きく変形するため、板材によってこの意匠部の変形を十分に抑制することは困難である。このため、成形部材が大きく変形する問題もあった。
特開2007−196545号公報
If the plate material is thick, the strength of the molded member can be improved, but the weight of the molded member increases and the material cost of the molded member increases. If the thickness of the plate material is reduced, the molded member becomes lighter, but the strength of the molded member is reduced and the volume of the plate material is small, so that the resin material that is the material of the design portion cannot be reduced so much. For this reason, the material cost of the molded member in this case is substantially the same as the sum of the material cost of the conventional molded member having no plate material and the material cost required for the plate material. That is, in this case, there is a problem that the material cost of the molded member becomes high and it is difficult to manufacture the molded member at a low cost. Further, in this case, there is a problem that the manufacturing cost of the molded member increases because the process of inserting the plate material into the molded member is necessary, and it is difficult to manufacture the molded member at low cost. Further, particularly when the thickness of the molded member is large, the amount of thermal expansion greatly differs between the surface exposed to sunlight or the like in the design portion and the other surface. In this case, since the design portion is greatly deformed, it is difficult to sufficiently suppress the deformation of the design portion by the plate material. For this reason, there also existed a problem which a molded member deform | transforms large.
JP 2007-196545 A

本発明は上記事情に鑑みてなされたものであり、加熱・冷却されても変形し難く、強度に優れ、かつ、軽量である成形部材を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the shaping | molding member which is hard to deform | transform even if heated and cooled, is excellent in intensity | strength, and is lightweight.

上記課題を解決する本発明の成形部材は、樹脂材料からなる意匠部と、意匠部に埋設されている芯部と、を持ち、芯部は、筒状をなし、芯部の強度は、意匠部の強度よりも大きく、芯部の線膨張係数は、意匠部の線膨張係数よりも小さく、意匠部と芯部とは一体成形されてなることを特徴とする。   The molded member of the present invention that solves the above problems has a design portion made of a resin material and a core portion embedded in the design portion, the core portion has a cylindrical shape, and the strength of the core portion is the design. The linear expansion coefficient of the core portion is smaller than the linear expansion coefficient of the design portion, and the design portion and the core portion are integrally formed.

本発明の成形部材は、下記の(1)〜(4)の一つを、より好ましくは二つ以上の複数を備えるのが好ましい。
(1)上記意匠部は、発泡樹脂材料からなる。
(2)上記芯部は、金属材料からなる。
(3)上記芯部は、繊維強化樹脂材料からなる。
(4)上記芯部の線膨張係数は25×10-6/℃以下である。
The molded member of the present invention preferably includes one of the following (1) to (4), more preferably two or more.
(1) The design part is made of a foamed resin material.
(2) The core is made of a metal material.
(3) The said core part consists of fiber reinforced resin materials.
(4) The linear expansion coefficient of the core is 25 × 10 −6 / ° C. or less.

本発明の成形部材は、意匠部と、意匠部に埋設されている芯部とを持つ。芯部は意匠部よりも線膨張係数が小さいため、加熱・冷却されても変形し難い。また、芯部は単なる平板状ではなく筒状(中空形状)をなす。このため、芯部の表面積は大きい。従って、意匠部と芯部との接合面積は大きく、意匠部は芯部に強固に固定される。このため、芯部に固定されている意匠部もまた、加熱・冷却されても変形し難い。よって、本発明の成形部材は、加熱・冷却されても変形し難い。   The molded member of the present invention has a design portion and a core portion embedded in the design portion. Since the core portion has a smaller linear expansion coefficient than the design portion, it is difficult to deform even when heated and cooled. Further, the core portion is not a mere flat plate shape but a cylindrical shape (hollow shape). For this reason, the surface area of the core is large. Therefore, the joint area between the design portion and the core portion is large, and the design portion is firmly fixed to the core portion. For this reason, the design part fixed to the core part is not easily deformed even when heated and cooled. Therefore, the molded member of the present invention hardly deforms even when heated and cooled.

さらに、芯部は筒状であるために軽量である。このため、本発明の成形部材は軽量である。さらに、芯部の強度は意匠部の強度よりも大きい。すなわち、芯部は強度に優れる。このため、本発明の成形部材もまた強度に優れる。さらに、芯部が筒状(中空状)をなすために、芯部に要する材料コストを低減できる。   Furthermore, since the core part is cylindrical, it is lightweight. For this reason, the molded member of the present invention is lightweight. Furthermore, the strength of the core is greater than the strength of the design portion. That is, the core part is excellent in strength. For this reason, the molded member of the present invention is also excellent in strength. Furthermore, since the core portion has a cylindrical shape (hollow shape), the material cost required for the core portion can be reduced.

さらに、芯部は筒状をなすために、荷重を周方向に分散して受けることができる。このため筒状をなす芯部は、特に曲げ変形し難い利点もある。また、芯部は意匠部に埋設されている。換言すると、芯部の外周面は意匠部で覆われている。したがって、意匠部の断熱作用によって、芯部には熱が伝わり難い。このため芯部は変形し難く、芯部に固定されている意匠部もまた変形し難い。   Furthermore, since the core portion has a cylindrical shape, the load can be distributed and received in the circumferential direction. For this reason, the cylindrical core has an advantage that it is particularly difficult to bend and deform. Moreover, the core part is embed | buried under the design part. In other words, the outer peripheral surface of the core part is covered with the design part. Therefore, it is difficult for heat to be transmitted to the core due to the heat insulating action of the design portion. For this reason, a core part cannot change easily and the design part currently fixed to the core part also cannot change easily.

さらに、芯部は筒状をなすため、その内部に連結用の部材を組み付け得る。このため本発明の成形部材は、芯部の外周面全体を意匠部で覆っても(芯部を成形部材の外部に露出しないようにしても)、他の成形部材や相手材に組み付け得る。このため、本発明の成形部材は、組み付け作業性および意匠性に優れる。   Furthermore, since the core portion has a cylindrical shape, a connecting member can be assembled therein. Therefore, the molded member of the present invention can be assembled to another molded member or a counterpart material even if the entire outer peripheral surface of the core is covered with the design portion (even if the core is not exposed to the outside of the molded member). For this reason, the molded member of the present invention is excellent in assembly workability and designability.

さらに、意匠部が樹脂材料からなるために、本発明の成形部材は形状の自由度に優れる。また、意匠部と芯部とが一体成形されてなるために、本発明の成形部材における意匠部は芯部から剥離し難い。よって、本発明の成形部材は、高温・低温に繰り返し曝されるような環境でも使用できる。換言すると、本発明の成形部材は使用できる環境の自由度にも優れる。   Furthermore, since the design portion is made of a resin material, the molded member of the present invention is excellent in the degree of freedom of shape. Moreover, since the design part and the core part are integrally molded, the design part in the molded member of the present invention is difficult to peel from the core part. Therefore, the molded member of the present invention can be used even in an environment where it is repeatedly exposed to high and low temperatures. In other words, the molded member of the present invention is excellent in the degree of freedom of the environment in which it can be used.

上記(1)を備える本発明の成形部材は、意匠部が発泡樹脂材料からなるために軽量である。また、発泡樹脂材料を材料としてなる意匠部は、発泡体状(多孔体状)をなす。このため、意匠部の材料(樹脂材料)の量を低減できる。よって、上記(1)を備える本発明の成形部材によると、意匠部に要する材料コストを低減でき、安価に製造できる。さらに、発泡体状をなす意匠部は断熱材として働くため、意匠部に埋設されている芯部は、外界から熱的に遮断される。このため、加熱・冷却による芯部の変形はより一層抑制され、成形部材の変形もまたより一層抑制される。さらに、発泡樹脂材料からなる意匠部は、樹脂の薄膜で区画される微細な気泡(以下、セルと呼ぶ)の集合体からなるため、セルの伸縮によって自身の変形を吸収する。したがって、意匠部を発泡樹脂材料で構成することで、加熱・冷却による意匠部の変形を抑制でき、加熱・冷却による成形部材の変形を抑制できる。   The molded member of the present invention having the above (1) is lightweight because the design portion is made of a foamed resin material. Moreover, the design part which uses a foamed resin material as a material makes a foam form (porous body form). For this reason, the quantity of the material (resin material) of the design part can be reduced. Therefore, according to the molded member of the present invention provided with the above (1), the material cost required for the design portion can be reduced and can be manufactured at low cost. Furthermore, since the design part in the form of a foam works as a heat insulating material, the core part embedded in the design part is thermally blocked from the outside. For this reason, the deformation of the core due to heating and cooling is further suppressed, and the deformation of the molded member is further suppressed. Furthermore, since the design portion made of the foamed resin material is composed of an aggregate of fine bubbles (hereinafter referred to as cells) partitioned by a resin thin film, it absorbs its deformation by expansion and contraction of the cells. Therefore, by configuring the design portion with the foamed resin material, deformation of the design portion due to heating / cooling can be suppressed, and deformation of the molded member due to heating / cooling can be suppressed.

上記(2)を備える本発明の成形部材は、芯部の強度に優れる。このため、上記(2)を備える本発明の成形部材は、強度に優れる。   The molded member of the present invention having the above (2) is excellent in the strength of the core. For this reason, the molded member of this invention provided with said (2) is excellent in intensity | strength.

上記(3)を備える本発明の成形部材は、芯部が繊維強化樹脂材料(所謂FRP)からなるため、芯部をより一層軽量にできる。さらに、繊維強化樹脂材料は耐食性に優れるため、上記(3)を備える本発明の成形部材は、海岸付近や湿度の高い環境などで好ましく使用できる。さらに、繊維強化樹脂材料からなる芯部は樹脂材料を含む。このため繊維強化樹脂材材料からなる芯部は、アルミニウム等の金属材料からなる芯部に比べて、熱容量が小さい。このため、繊維強化樹脂材料からなる芯部は、成形時における意匠部の熱を奪い難く、意匠部を薄肉にできる。外形の同じ成形体であれば、意匠部を薄肉にすることで、芯部を大形にでき、芯部の表面積を大きくできる。このため、上記(3)を備える本発明の成形部材によると、意匠部と芯部との接合面積をさらに大きくでき、意匠部と芯部とをさらに強固に一体化できる。また、FRP製の芯部は熱容量が小さい。このため、例えば予め形成した芯部をインサート材として意匠部を成形する際にも、芯部を高温にする必要がない。よってこの場合には成形部材の生産性が向上する。さらにこの場合には、芯部の吸熱量が小さいことで意匠部の厚さを低減できるため、成形部材をさらに軽量化でき、かつ、成形部材の材料コストを低減できる。   Since the core part of the molded member of the present invention having the above (3) is made of a fiber reinforced resin material (so-called FRP), the core part can be further reduced in weight. Furthermore, since the fiber reinforced resin material is excellent in corrosion resistance, the molded member of the present invention having the above (3) can be preferably used in the vicinity of the coast or in a high humidity environment. Furthermore, the core part which consists of fiber reinforced resin materials contains resin material. For this reason, the core part which consists of fiber reinforced resin material materials has a small heat capacity compared with the core part which consists of metal materials, such as aluminum. For this reason, the core part which consists of fiber reinforced resin materials cannot take away the heat of the design part at the time of shaping | molding, and can make a design part thin. If it is a molded object with the same external shape, a core part can be enlarged by making a design part thin, and the surface area of a core part can be enlarged. For this reason, according to the shaping | molding member of this invention provided with said (3), the joining area of a design part and a core part can be enlarged further, and a design part and a core part can be integrated more firmly. Further, the FRP core has a small heat capacity. For this reason, for example, when the design portion is formed using a preformed core portion as an insert material, the core portion does not need to be heated to a high temperature. Therefore, in this case, the productivity of the molded member is improved. Furthermore, in this case, since the thickness of the design portion can be reduced because the endothermic amount of the core portion is small, the molded member can be further reduced in weight and the material cost of the molded member can be reduced.

上記(4)を備える本発明の成形部材は、加熱・冷却によっても芯部が変形し難く、加熱・冷却による成形部材全体の変形を抑制できる。   In the molded member of the present invention having the above (4), the core part is hardly deformed even by heating and cooling, and deformation of the entire molded member due to heating and cooling can be suppressed.

本発明の成形部材における芯部の強度は、意匠部の強度よりも大きければ良い。なお、本発明の成形部材における芯部の強度および意匠部の強度は、機械的強度を指し、詳しくは、曲げ強度を指す。芯部の強度および意匠部の強度は、JIS Z 2101に基づく曲げ試験によって測定できる。   The strength of the core part in the molded member of the present invention may be larger than the strength of the design part. In addition, the intensity | strength of the core part in the molded member of this invention and the intensity | strength of a design part point out mechanical strength, and point out bending strength in detail. The strength of the core portion and the strength of the design portion can be measured by a bending test based on JIS Z 2101.

芯部は筒状をなすため強度に優れるが、芯部の材料として意匠部の材料よりも強度の大きいものを用いることで、芯部の強度をさらに大きくできる。なお、本発明における筒状とは、断面矩形の筒状(角筒状)や断面円形の筒状(円筒状)に限定されるものではなく、例えば、芯部の内部を複数に区画しても良い。この場合には、芯部の強度がより一層大きくなる。   Since the core portion has a cylindrical shape and is excellent in strength, the strength of the core portion can be further increased by using a material having a higher strength than the material of the design portion as the material of the core portion. The cylindrical shape in the present invention is not limited to a cylindrical shape with a rectangular cross section (square tube shape) or a cylindrical shape with a circular cross section (cylindrical shape). For example, the inside of the core is divided into a plurality of parts. Also good. In this case, the strength of the core portion is further increased.

本発明の成形部材における芯部は、強度に優れるため、成形部材を他の成形部材や相手材に組み付ける際の組付部として好ましく用いることができる。   Since the core part in the molded member of the present invention is excellent in strength, it can be preferably used as an assembly part when the molded member is assembled to another molded member or a counterpart material.

芯部の線膨張係数(詳しくは、芯部を構成する材料の線膨張係数)は、意匠部の線膨張係数(詳しくは、意匠部を構成する材料の線膨張係数)よりも小さければ良いが、芯部の線膨張係数は25×10-6/℃以下であるのが好ましい。アルミニウム、チタン、鋼、ステンレス、繊維材料としての炭素繊維を含む繊維強化樹脂材料、繊維材料としてガラス繊維を含む繊維強化樹脂材料等の線膨張係数は、25×10-6/℃以下である。したがって、芯部の材料としては、これらから選ばれる少なくとも一種を用いるのが好ましい。なお、意匠部の強度によっては、芯部の材料として紙や木材、竹材などを用いることもできる。これらの材料の線膨張係数は25×10-6/℃以下である。なお、芯部の材料として合板を含む木材や竹材、紙などを用い、かつ、成形部材を切断して使用する場合には、芯部の切断面に樹脂を含浸させたり防腐処理を施すことが好ましい。 The linear expansion coefficient of the core part (specifically, the linear expansion coefficient of the material constituting the core part) may be smaller than the linear expansion coefficient of the design part (specifically, the linear expansion coefficient of the material constituting the design part). The linear expansion coefficient of the core is preferably 25 × 10 −6 / ° C. or less. The linear expansion coefficient of aluminum, titanium, steel, stainless steel, a fiber reinforced resin material containing carbon fiber as a fiber material, a fiber reinforced resin material containing glass fiber as a fiber material, and the like is 25 × 10 −6 / ° C. or less. Therefore, it is preferable to use at least one selected from these as the material of the core. Depending on the strength of the design part, paper, wood, bamboo, or the like can be used as the material of the core part. The linear expansion coefficient of these materials is 25 × 10 −6 / ° C. or less. In addition, when wood, bamboo, paper, etc. including plywood are used as the material of the core part and the molded member is cut and used, the cut surface of the core part may be impregnated with resin or subjected to antiseptic treatment. preferable.

成形部材を軽量化するためには、芯部用の金属材料としてアルミニウムやチタン等を用いるのが好ましい。また、成形部材の寸法精度や強度を向上させるためには、芯部用の金属材料として鋼やステンレスを用いるのが好ましい。なお、金属材料からなる芯部は、押し出し成形などの方法で成形すればよい。   In order to reduce the weight of the molded member, it is preferable to use aluminum, titanium, or the like as the metal material for the core. In order to improve the dimensional accuracy and strength of the molded member, it is preferable to use steel or stainless steel as the metal material for the core. In addition, what is necessary is just to shape | mold the core part which consists of metal materials by methods, such as extrusion molding.

芯部の材料として繊維強化樹脂材料を用いる場合には、芯部の材料として金属材料を用いる場合に比べて、加熱・冷却による成形部材の変形を抑制でき、かつ、成形部材を安価に製造できる。すなわち、芯部の材料として金属材料を用いる場合には、成形時における意匠部の反応熱を芯部が奪い、意匠部のなかで芯部との境界に相当する部分(以下、境界意匠部と呼ぶ)は、意匠部のなかの他の部分(以下、一般意匠部と呼ぶ)に比べて、熱の影響を大きく受け、かつ、大きな応力が作用する。このため、金属材料からなる芯部は、境界意匠部との接着強度を十分に高めるために、表面処理を施したり、成形時に加温したりする必要がある。繊維強化樹脂材料は金属材料に比べて線膨張係数が小さい。このため、芯部の材料として繊維強化樹脂材料を用いる場合には、表面処理や成形時の加温が不要になるため、成形部材の製造工数を低減できる利点がある。繊維強化樹脂材料は熱容量が小さいため、意匠部を繊維強化樹脂材料からなる芯部と一体成形する際の熱で、芯部が十分に加温される。このため、意匠部と芯部とを一体成形する際には、芯部を加温しなくても薄肉の意匠部を形成できる。   When a fiber reinforced resin material is used as the core material, deformation of the molded member due to heating and cooling can be suppressed and the molded member can be manufactured at a lower cost than when a metal material is used as the core material. . That is, when a metal material is used as the material of the core part, the core part takes away the reaction heat of the design part at the time of molding, and the part corresponding to the boundary with the core part in the design part (hereinafter referred to as the boundary design part) Compared to the other part of the design part (hereinafter referred to as a general design part), it is greatly affected by heat and is subjected to a large stress. For this reason, the core portion made of a metal material needs to be subjected to a surface treatment or heated during molding in order to sufficiently increase the adhesive strength with the boundary design portion. The fiber reinforced resin material has a smaller linear expansion coefficient than the metal material. For this reason, when a fiber reinforced resin material is used as the material of the core portion, there is an advantage that the number of manufacturing steps of the molded member can be reduced because surface treatment and heating at the time of molding become unnecessary. Since the fiber-reinforced resin material has a small heat capacity, the core part is sufficiently heated by heat when the design part is integrally formed with the core part made of the fiber-reinforced resin material. For this reason, when the design part and the core part are integrally formed, a thin design part can be formed without heating the core part.

参考までに、ガラス繊維と不飽和ポリエステル樹脂材料とからなる繊維強化樹脂材料の線膨張係数は7×10-6/℃程度であり、この繊維強化樹脂材料からなる芯部と発泡樹脂材料からなる意匠部とを持つ成形部材の線膨張係数は、3〜4×10-6/℃程度である。なお、ここでいう成形部材の線膨張係数とは、相手材などに実装したときの成形部材の線膨張係数(以下、実装線膨張係数と呼ぶ)を指す。すなわち、通常、線膨張係数を測定する際には、試験体を均一な温度になるまで加熱するが、相手材などに実装したときの成形部材の表面温度や内部温度は、成形部材の部分毎に異なる。このため、成形部材の実装線膨張係数は、一般的な方法で測定された線膨張係数とは僅かに異なる場合がある。 For reference, the linear expansion coefficient of a fiber reinforced resin material made of glass fiber and an unsaturated polyester resin material is about 7 × 10 −6 / ° C., and consists of a core portion made of this fiber reinforced resin material and a foamed resin material. The linear expansion coefficient of the molded member having the design portion is about 3 to 4 × 10 −6 / ° C. In addition, the linear expansion coefficient of the molding member here refers to the linear expansion coefficient of the molding member when mounted on a mating member or the like (hereinafter referred to as a mounting linear expansion coefficient). That is, when measuring the linear expansion coefficient, the specimen is usually heated to a uniform temperature, but the surface temperature and the internal temperature of the molded member when mounted on the mating material are different for each part of the molded member. Different. For this reason, the mounting linear expansion coefficient of the molded member may be slightly different from the linear expansion coefficient measured by a general method.

上述したように、ガラス繊維と不飽和ポリエステル樹脂材料とからなる繊維強化樹脂材料の線膨張係数は7×10-6/℃程度であり、この繊維強化樹脂材料からなる芯部と発泡樹脂材料からなる意匠部とを持つ成形部材の実装線膨張係数は、3〜4×10-6/℃程度である。この成形部材の実装線膨張係数は、乾燥木材の線膨張係数(1.2〜2.5×10-6/℃程度)と同程度である。よって、この場合には、本発明の成形部材を木材の代用として使用できる。また、この場合、本発明の成形部材は樹脂材料とガラス繊維等の繊維材料とを主材料とするために、木材に比べてカビや虫の発生を抑制できる利点もある。なお、後述するように、発泡樹脂材料からなる意匠部は断熱性に優れる。このため、意匠部の材料として発泡樹脂材料を用いる場合には、成形部材の実装線膨張係数を芯部の線膨張係数よりも小さくできる。 As described above, the linear expansion coefficient of the fiber reinforced resin material made of glass fiber and unsaturated polyester resin material is about 7 × 10 −6 / ° C., and the core portion made of this fiber reinforced resin material and the foamed resin material The mounting linear expansion coefficient of the molded member having the design portion is about 3 to 4 × 10 −6 / ° C. The mounting linear expansion coefficient of this molded member is about the same as the linear expansion coefficient of dried wood (about 1.2 to 2.5 × 10 −6 / ° C.). Therefore, in this case, the molded member of the present invention can be used as a substitute for wood. In this case, since the molded member of the present invention is mainly composed of a resin material and a fiber material such as glass fiber, there is an advantage that generation of mold and insects can be suppressed as compared with wood. In addition, as will be described later, the design portion made of the foamed resin material is excellent in heat insulation. For this reason, when using a foamed resin material as the material of the design portion, the mounting linear expansion coefficient of the molded member can be made smaller than the linear expansion coefficient of the core portion.

さらに、繊維強化樹脂材料は樹脂材料を含む。このため、繊維強化樹脂材料からなる芯部は、樹脂材料からなる意匠部との接合性に優れる利点もある。なお、繊維強化樹脂材料用の樹脂材料としては、不飽和ポリエステル樹脂やエポキシ樹脂、ビニルエステル、ポリウレタン樹脂等から選ばれる少なくとも一種を用いるのが好ましい。また、繊維強化樹脂材料用の繊維材料としては、ガラス繊維、カーボン繊維、ケブラー、ビニロンなどの樹脂繊維等から選ばれる少なくとも一種を用いるのが好ましい。なお、繊維強化樹脂材料からなる芯部は、引き抜き成形などの方法で成形すればよい。   Further, the fiber reinforced resin material includes a resin material. For this reason, the core part which consists of fiber reinforced resin materials also has the advantage which is excellent in bondability with the design part which consists of resin materials. In addition, it is preferable to use at least 1 type chosen from unsaturated polyester resin, an epoxy resin, vinyl ester, a polyurethane resin etc. as a resin material for fiber reinforced resin materials. Further, as the fiber material for the fiber reinforced resin material, it is preferable to use at least one selected from resin fibers such as glass fiber, carbon fiber, Kevlar, and vinylon. In addition, what is necessary is just to shape | mold the core part which consists of fiber reinforced resin materials by methods, such as drawing.

芯部の外周面の面積は、意匠部の外周面の面積を100%としたときに40%以上であるのが好ましく、50%以上であるのがより好ましい。芯部の外周面の面積を大きくすることで、芯部と意匠部との接合面積を大きくできるためである。   The area of the outer peripheral surface of the core part is preferably 40% or more, more preferably 50% or more when the area of the outer peripheral surface of the design part is 100%. This is because by increasing the area of the outer peripheral surface of the core portion, the bonding area between the core portion and the design portion can be increased.

本発明の成形部材における意匠部は、樹脂材料からなれば良い。意匠部用の樹脂材料としては、硬質ウレタン樹脂、フェノール樹脂などの熱硬化性樹脂から選ばれる少なくとも一種を用いるのが好ましい。これらの材料は線膨張係数が小さく、圧縮強度、釘打ち強度、ネジ止め強度、表面硬度、表面の耐摩耗性能、耐候性、成形性、に優れる。また、これらの材料は、木材に類似した質感を持ち、打音が木材に類似しているため、木材の代用として好ましく使用できる。さらに、これらの材料は、塗装し易く、安価であり、材料調達が容易である。   The design part in the molded member of the present invention may be made of a resin material. As the resin material for the design portion, it is preferable to use at least one selected from thermosetting resins such as hard urethane resins and phenol resins. These materials have a small coefficient of linear expansion, and are excellent in compressive strength, nailing strength, screwing strength, surface hardness, surface wear resistance, weather resistance, and moldability. In addition, these materials have a texture similar to that of wood and the sound of hitting is similar to that of wood, and therefore can be preferably used as a substitute for wood. Furthermore, these materials are easy to paint, inexpensive, and easy to procure materials.

意匠部が発泡樹脂材料からなる場合、意匠部を加圧成形することで、意匠部の表面にスキン層と呼ばれる表層が形成される。この場合には、発泡樹脂材料からなる意匠部の意匠性が向上する。発泡樹脂材料としては、硬質発泡ウレタン樹脂材料、発泡スチレン樹脂材料、発泡フェノール樹脂材料等から選ばれる少なくとも一種を用いることが好ましい。これらの発泡樹脂材料からなる意匠部は、意匠性に優れるためである。なお、硬質発泡ウレタン樹脂材料からなる意匠部は、耐熱性や耐候性、寸法安定性に優れ、かつ、硬質発泡ウレタン樹脂材料を発泡加圧成形すると意匠層の表面に硬質の表層(スキン層)を形成できるため、特に好ましく使用できる。このスキン層は硬質であるため、成形部材をネジ止めする際にもネジ頭が意匠層に潜り込み難い利点もある。また、このスキン層は耐摩耗性および圧縮強度に優れる利点もある。さらに、硬質発泡ウレタン樹脂材料は、比較的安価であり、かつ、入手し易い利点もある。さらに、硬質発泡ウレタン樹脂材料は一般的な成形装置で成形できる利点もある。さらに、硬質発泡ウレタン樹脂材料は成形性に優れるため、意匠層の表面に緻密な凹凸からなる意匠を付与できる利点もある。さらにウレタン樹脂は接着剤としても使用される材料であるため、硬質発泡ウレタン樹脂材料からなる意匠部は、芯部と強固に一体化できる。   When the design part is made of a foamed resin material, a surface layer called a skin layer is formed on the surface of the design part by pressure-molding the design part. In this case, the designability of the design portion made of the foamed resin material is improved. As the foamed resin material, it is preferable to use at least one selected from a hard foamed urethane resin material, a foamed styrene resin material, a foamed phenol resin material, and the like. This is because the design portion made of these foamed resin materials is excellent in design properties. In addition, the design part which consists of hard foaming urethane resin material is excellent in heat resistance, weather resistance, and dimensional stability, and when hard foaming urethane resin material is foamed and pressure-molded, a hard surface layer (skin layer) on the surface of the design layer Can be particularly preferably used. Since the skin layer is hard, there is an advantage that the screw head does not easily enter the design layer even when the molded member is screwed. This skin layer also has the advantage of excellent wear resistance and compressive strength. Further, the rigid foamed urethane resin material has an advantage that it is relatively inexpensive and easily available. Further, the rigid foamed urethane resin material has an advantage that it can be molded by a general molding apparatus. Further, since the hard foamed urethane resin material is excellent in moldability, there is an advantage that a design composed of dense irregularities can be imparted to the surface of the design layer. Furthermore, since the urethane resin is a material used also as an adhesive, the design portion made of the hard foamed urethane resin material can be firmly integrated with the core portion.

また、意匠部の材料として発泡樹脂材料を選択する場合には、成形時の発泡圧によって、薄肉かつ意匠性に優れる意匠部を得ることができる。さらに、発泡樹脂材料からなる意匠部はセルの集合体からなるため、変形量が小さい。加熱・冷却時には個々のセルが変形し、この個々のセルの変形は他のセルに伝達し難いためである。また、発泡樹脂材料からなる意匠部は熱伝導率が小さいため、熱の影響を受け難い。よって、この場合には、意匠部の変形や、芯部からの意匠部の剥離をさらに低減でき、成形部材の形状を信頼性高く維持できる。さらに、発泡樹脂材料からなる意匠部は断熱性に優れるため、芯部の温度変化を抑制できる。このため、芯部の変形をより一層抑制できる。また、芯部の変形を抑制することで、芯部に固定されている意匠部の変形も抑制でき、成形部材全体の変形を抑制できる利点もある。意匠部の断熱性を考慮すると、発泡樹脂材料としては、熱伝導率の小さくなる密度のものを用いるのが好ましい。例えば、硬質発泡ウレタン樹脂材料からなる発泡体は、その密度が35kg/cm3程度である場合に、特に熱伝導率が小さくなる(断熱性に優れる)。換言すると、発泡樹脂材料として硬質発泡ウレタン樹脂材料を用いる場合には、発泡後の密度が発泡前の密度の1/33程度になるようにすると、熱伝導率が小さくなる。したがって、このような発泡樹脂材料は、意匠部の材料として好ましく使用できる。なお、発泡樹脂材料の密度は、意匠部の強度に応じて適宜設定できる。 In addition, when a foamed resin material is selected as the material for the design portion, a design portion that is thin and excellent in design properties can be obtained by the foaming pressure during molding. Furthermore, since the design part which consists of foamed resin materials consists of an aggregate | assembly of a cell, its deformation amount is small. This is because the individual cells are deformed during heating and cooling, and the deformation of the individual cells is difficult to be transmitted to other cells. Moreover, since the design part which consists of foamed resin materials has small heat conductivity, it is hard to receive to the influence of a heat | fever. Therefore, in this case, deformation of the design portion and peeling of the design portion from the core portion can be further reduced, and the shape of the molded member can be maintained with high reliability. Furthermore, since the design part which consists of foamed resin materials is excellent in heat insulation, the temperature change of a core part can be suppressed. For this reason, a deformation | transformation of a core part can be suppressed further. Further, by suppressing the deformation of the core part, it is possible to suppress the deformation of the design part fixed to the core part, and there is an advantage that the deformation of the entire molded member can be suppressed. In consideration of the heat insulating property of the design portion, it is preferable to use a foamed resin material having a density with low thermal conductivity. For example, a foam made of a hard foamed urethane resin material has a particularly low thermal conductivity (excellent heat insulation) when its density is about 35 kg / cm 3 . In other words, when a hard foamed urethane resin material is used as the foamed resin material, the thermal conductivity is reduced if the density after foaming is about 1/33 of the density before foaming. Therefore, such a foamed resin material can be preferably used as a material for the design portion. Note that the density of the foamed resin material can be appropriately set according to the strength of the design portion.

参考までに、意匠部の材料として硬質発泡ウレタン樹脂材料を用い、芯部の材料としてアルミニウム(線膨張係数は約23×10-6/℃)を用いる場合、硬質発泡ウレタン樹脂材料からなる意匠部の断熱効果で芯部の温度変化が小さくなる。このため、成形部材全体の実装線膨張係数はコンクリートと同程度(アルミニウムの線膨張係数の1/2程度)になる。このため、本発明の成形部材における意匠層の材料として硬質発泡ウレタン樹脂材料を用いる場合には、本発明の成形部材を温度変化の大きい環境でも好ましく使用できる。なお、芯部の温度変化を抑制して芯部の変形をさらに抑制するためには、芯部の材料として熱伝導率の小さなものを用いるのが好ましい。 For reference, when a hard foamed urethane resin material is used as the material of the design part and aluminum (linear expansion coefficient is about 23 × 10 −6 / ° C.) is used as the material of the core part, the design part made of the hard foamed urethane resin material The temperature change of the core is reduced by the heat insulation effect. For this reason, the mounting linear expansion coefficient of the whole molded member is about the same as that of concrete (about 1/2 of the linear expansion coefficient of aluminum). For this reason, when using a rigid foaming urethane resin material as a material of the design layer in the shaping | molding member of this invention, the shaping | molding member of this invention can be preferably used also in an environment with a large temperature change. In addition, in order to suppress the temperature change of a core part and to further suppress a deformation | transformation of a core part, it is preferable to use a thing with small heat conductivity as a material of a core part.

本発明の成形部材は、平板状、柱状、棒状、球状等、用途に応じた種々の形状にできる。芯部の形状は、成形部材の形状に応じた種々の形状にできる。例えば、成形部材を平板状にする場合には、芯部を薄肉の筒状にすればよい。なお、芯部の形状は成形部材の形状と相似形状でなくても良い。例えば、角柱状をなす成形部材の芯部として円筒状のものを用いても良い。   The molded member of the present invention can be formed into various shapes according to the application, such as flat plate shape, columnar shape, rod shape, and spherical shape. The shape of the core portion can be various shapes according to the shape of the molded member. For example, when the forming member is formed into a flat plate shape, the core portion may be formed into a thin cylindrical shape. Note that the shape of the core portion may not be similar to the shape of the molded member. For example, you may use a cylindrical thing as a core part of the shaping | molding member which makes prismatic shape.

本発明の意匠部は、射出成形、射出プレス成形、発泡成形、加圧発泡成形、注形成形等に代表される種々の方法で成形できる。なお、予め芯部の端部を塞いでおけば、意匠部を押し出し成形や引き抜き成形することもできる。   The design part of the present invention can be molded by various methods represented by injection molding, injection press molding, foam molding, pressure foam molding, cast molding, and the like. In addition, if the end part of the core part is closed in advance, the design part can be extruded or pultruded.

なお、意匠部を、射出成形、射出プレス成形、発泡成形、加圧発泡成形等の方法で成形する場合には、意匠部の表面に天然の木材や石材などにみられる不連続かつ細かい凹凸模様を付与でき、意匠性に優れた成形部材を得ることができる。   When the design part is molded by injection molding, injection press molding, foam molding, pressure foam molding, etc., the surface of the design part is a discontinuous and fine uneven pattern found in natural wood or stone. Can be provided, and a molded member excellent in design can be obtained.

本発明の成形部材は、建築用の板材、角材、柱、床柱、梁、扉、ウッドデッキ用板材、テーブル用天板、枕木、敷石、庭石などに代表される種々の用途に用いることができる。   The molded member of the present invention can be used for various applications typified by architectural plate materials, square members, columns, floor columns, beams, doors, wood deck plate materials, table top plates, sleepers, paving stones, garden stones and the like.

以下、本発明の成形部材を図面を基に説明する。
(実施例1)
実施例1の成形部材は、上記(1)、(2)、(4)を備える。実施例1の成形部材を模式的に表す一部切り欠き斜視図を図1に示す。実施例1の成形部材同士を組み付けている様子を模式的に表す断面図を図2に示す。
Hereinafter, the molded member of the present invention will be described with reference to the drawings.
(Example 1)
The molded member of Example 1 includes the above (1), (2), and (4). A partially cutaway perspective view schematically showing the molded member of Example 1 is shown in FIG. FIG. 2 is a cross-sectional view schematically showing how the molded members of Example 1 are assembled together.

実施例1の成形部材1は、意匠部10と芯部20とを持つ。芯部20は金属材料の一種であるアルミニウムからなり、角筒状をなす。意匠部10は硬質発泡ウレタン樹脂材料からなる。意匠部10の表面には、木目調の凹凸が形成されている。芯部20は意匠部10に埋設されている。アルミニウムの線膨張係数は約23×10-6/℃であり、硬質発泡ウレタン樹脂材料からなる発泡樹脂の線膨張係数は約60×10-6/℃である。したがって、芯部20の線膨張係数は意匠部10の線膨張係数よりも小さい。 The molded member 1 of Example 1 has a design portion 10 and a core portion 20. The core portion 20 is made of aluminum, which is a kind of metal material, and has a rectangular tube shape. The design portion 10 is made of a hard foamed urethane resin material. On the surface of the design part 10, unevenness of wood grain is formed. The core part 20 is embedded in the design part 10. The linear expansion coefficient of aluminum is about 23 × 10 −6 / ° C., and the linear expansion coefficient of the foamed resin made of the hard foamed urethane resin material is about 60 × 10 −6 / ° C. Therefore, the linear expansion coefficient of the core part 20 is smaller than the linear expansion coefficient of the design part 10.

実施例1の成形部材1の外形寸法は、幅40mm、厚さ35mm、長さ3000mmである。意匠部10の肉厚は10mmである。芯部20は、成形部材1の全長(長手方向の全長)にわたって延在する。芯部20の肉厚は1mmである。   The outer dimensions of the molded member 1 of Example 1 are a width of 40 mm, a thickness of 35 mm, and a length of 3000 mm. The thickness of the design part 10 is 10 mm. The core 20 extends over the entire length of the molded member 1 (the total length in the longitudinal direction). The thickness of the core part 20 is 1 mm.

実施例1の成形部材1は、予め押し出し成形した芯部20をインサート材とし、芯部20の外側に意匠部10をインサート成形(加圧発泡成形)することで得られた。   The molded member 1 of Example 1 was obtained by insert molding (pressure foam molding) the design portion 10 on the outer side of the core portion 20 using the core portion 20 that was previously extruded and formed as an insert material.

実施例1の成形部材1は、図2に示すように、突き合わせ結合することで他の実施例1の成形部材1に組み付けることができる。突き合わせ結合には、図2に示す結合部材30と固定ネジ40とを用いた。結合部材30は、成形部材1とは別体であり、かつ、その外径が芯部20の内径よりも小さい。固定ネジ40は、成形部材1および結合部材30とは別体である。実施例1では、結合部材30としてアルミニウム製の角筒を用いた。なお、この結合部材30の肉厚は芯部20の肉厚よりも厚肉であった。   As shown in FIG. 2, the molded member 1 according to the first embodiment can be assembled to the molded member 1 according to another embodiment 1 by butt bonding. For the butt connection, the connecting member 30 and the fixing screw 40 shown in FIG. 2 were used. The coupling member 30 is separate from the molded member 1 and has an outer diameter smaller than the inner diameter of the core portion 20. The fixing screw 40 is a separate body from the molding member 1 and the coupling member 30. In Example 1, a square tube made of aluminum was used as the coupling member 30. Note that the thickness of the coupling member 30 was thicker than the thickness of the core portion 20.

まず、一方の成形部材1aの芯部20に結合部材30の一端部を挿入し、他の成形部材1bの芯部20に結合部材30の他端部を挿入した。次いで、意匠部10から結合部材30に向けて固定ネジ40をねじ込み、2つの成形部材1a、1bと結合部材30とを固定ネジ40で固着した。固定ネジ40は、それぞれの成形部材1a、1bについて、長手方向の2カ所にねじ込んだ。結合部材30はアルミニウム製であるため、容易にネジ固定できた。また、このとき固定ネジ40は、成形部材1の一つの面にだけねじ込んだ。このため、成形部材1の表面(意匠部10の表面)には、固定ネジ40がねじ込まれていない面(図2中下側の面、以下、意匠面13と呼ぶ)が存在する。この意匠面13を構造物の表側に配置すれば、意匠性を損なうことなく、複数の成形部材1を構造物に組み付けることができる。さらに、意匠部10のなかで固定ネジ40をねじ込む面(図2中上側の面、以下、取り付け面14と呼ぶ)には、固定ネジ40用の取り付け孔15が形成されている。このため、固定ネジ40のネジ頭は、取り付け孔15に入り込んだ。よって、実施例1の成形部材1a、1bは、取り付け面14から見た場合の意匠性にも優れる。   First, one end portion of the coupling member 30 was inserted into the core portion 20 of one molding member 1a, and the other end portion of the coupling member 30 was inserted into the core portion 20 of the other molding member 1b. Next, the fixing screw 40 was screwed from the design portion 10 toward the coupling member 30, and the two molded members 1 a and 1 b and the coupling member 30 were fixed with the fixing screw 40. The fixing screws 40 were screwed into two places in the longitudinal direction for the respective molded members 1a and 1b. Since the coupling member 30 is made of aluminum, it can be easily fixed with screws. At this time, the fixing screw 40 is screwed into only one surface of the molded member 1. For this reason, on the surface of the molded member 1 (the surface of the design portion 10), there is a surface (the lower surface in FIG. 2, hereinafter referred to as the design surface 13) to which the fixing screw 40 is not screwed. If this design surface 13 is arranged on the front side of the structure, the plurality of molded members 1 can be assembled to the structure without impairing the design. Further, a mounting hole 15 for the fixing screw 40 is formed in a surface (the upper surface in FIG. 2, hereinafter referred to as the mounting surface 14) into which the fixing screw 40 is screwed in the design portion 10. For this reason, the screw head of the fixing screw 40 has entered the mounting hole 15. Therefore, the molded members 1a and 1b of Example 1 are also excellent in design when viewed from the mounting surface 14.

なお、結合部材30としては筒状などの中空状をなすものを用いても良いし、中状、板状などの中実状をなすものを用いても良い。さらに、結合部材30の材料はアルミニウムに限定されない。また、成形部材1と結合部材30とを固着する方法はネジ止めに限定されない。例えば、接着や溶着などの方法で成形部材1と結合部材30とを固着しても良い。   In addition, as the coupling member 30, a hollow member such as a cylinder may be used, or a solid member such as a middle member or a plate member may be used. Furthermore, the material of the coupling member 30 is not limited to aluminum. Further, the method for fixing the molding member 1 and the coupling member 30 is not limited to screwing. For example, the molding member 1 and the coupling member 30 may be fixed by a method such as adhesion or welding.

実施例1の成形部材1における芯部20の線膨張係数は、意匠部10の線膨張係数よりも小さい。このため、芯部20は加熱・冷却されても変形し難く、芯部20を一体に持つ実施例1の成形部材1もまた加熱・冷却されても変形し難い。また、芯部20は筒状をなすため、軽量でありかつ強度に優れる。よって実施例1の成形部材1もまた軽量でありかつ強度に優れる。   The linear expansion coefficient of the core part 20 in the molded member 1 of Example 1 is smaller than the linear expansion coefficient of the design part 10. For this reason, even if the core part 20 is heated and cooled, it is hard to deform | transform, and even if the molded member 1 of Example 1 which has the core part 20 integrally is also heated and cooled, it is hard to deform | transform. Moreover, since the core part 20 makes a cylinder shape, it is lightweight and excellent in strength. Therefore, the molded member 1 of Example 1 is also lightweight and excellent in strength.

さらに、芯部20が筒状(中空状)をなし、かつ、意匠部10が多孔体状(中空状)をなすため、実施例1の成形部材1は断熱性に優れ、昇温および降温し難い。このため、実施例1の成形部材1は加熱・冷却され難く、また、加熱・冷却されても変形し難い。さらに、実施例1の成形部材1は、芯部20および意匠部10が中空状をなすために、芯部20および意匠部10に要する材料コストを低減でき、安価に製造できる利点もある。   Furthermore, since the core portion 20 has a cylindrical shape (hollow shape) and the design portion 10 has a porous shape (hollow shape), the molded member 1 of Example 1 has excellent heat insulation properties, and is heated and cooled. hard. For this reason, the molded member 1 of Example 1 is not easily heated and cooled, and is not easily deformed even when heated and cooled. Furthermore, since the core part 20 and the design part 10 are hollow, the molded member 1 of Example 1 has an advantage that the material cost required for the core part 20 and the design part 10 can be reduced and can be manufactured at low cost.

実施例1の成形部材1を、その表面温度(すなわち意匠部10表面の温度)が80℃になるまで加熱した。このとき、芯部20内部の任意の位置における温度は56℃であった。この結果を基に算出した実施例1の成形部材1全体の実装線膨張係数は、約13.5×10-6/℃であった。これは、芯部20の材料であるアルミニウムの線膨張係数(約23×10-6/℃)よりも小さい。この結果から、実施例1の成形部材1は、硬質発泡ウレタン樹脂材料からなる意匠層を持つことで、その線膨張係数を芯部20の線膨張係数よりも小さくできることがわかる。これは、上述したように、発泡樹脂材料からなる意匠層が断熱材として働くことに起因すると考えられる。参考までに、実施例1の成形部材1と同じ寸法であり意匠部10のみからなる成形部材(すなわち従来の成形部材)の線膨張係数は、約60×10-6/℃であった。 The molded member 1 of Example 1 was heated until its surface temperature (that is, the temperature of the design portion 10 surface) reached 80 ° C. At this time, the temperature at an arbitrary position inside the core portion 20 was 56 ° C. The mounting linear expansion coefficient of the entire molded member 1 of Example 1 calculated based on this result was about 13.5 × 10 −6 / ° C. This is smaller than the linear expansion coefficient (about 23 × 10 −6 / ° C.) of aluminum which is the material of the core part 20. From this result, it can be seen that the molded member 1 of Example 1 can have a linear expansion coefficient smaller than the linear expansion coefficient of the core portion 20 by having a design layer made of a hard foamed urethane resin material. As described above, this is considered due to the fact that the design layer made of the foamed resin material works as a heat insulating material. For reference, the linear expansion coefficient of a molded member having the same dimensions as the molded member 1 of Example 1 and including only the design portion 10 (that is, a conventional molded member) was about 60 × 10 −6 / ° C.

実施例1の成形部材1における芯部20は筒状をなすため、芯部20に電線等を通すこともできる。この場合には、実施例1の成形部材1に照明器具やスピーカなどを一体的に取り付けることができる。   Since the core part 20 in the molded member 1 of Example 1 has a cylindrical shape, an electric wire or the like can be passed through the core part 20. In this case, a lighting fixture, a speaker, etc. can be integrally attached to the molding member 1 of the first embodiment.

(実施例2)
実施例2の成形部材は、意匠部の形状以外は実施例1の成形部材と同じである。実施例2の成形部材1を模式的に表す斜視図を図3に示す。
(Example 2)
The molded member of Example 2 is the same as the molded member of Example 1 except for the shape of the design portion. A perspective view schematically showing the molded member 1 of Example 2 is shown in FIG.

実施例2の成形部材1は、意匠部10を厚肉にし、かつ、意匠部10に肉厚の大きい部分と小さい部分とを設けて、意匠部10をうねり形状にした例である。図3に示すように、意匠部10をうねり形状にすることで、天然木材の丸太のような意匠を成形部材1に付与できる。実施例2の成形部材1は、天井梁等に好適に利用できる。   The molded member 1 of Example 2 is an example in which the design portion 10 is made thick, and the design portion 10 is provided with a thick portion and a small portion so that the design portion 10 has a wavy shape. As shown in FIG. 3, a design such as a natural wood log can be imparted to the molded member 1 by forming the design portion 10 in a wavy shape. The molded member 1 of Example 2 can be suitably used for a ceiling beam or the like.

なお、実施例2の成形部材1における意匠部10は、硬質発泡ウレタン樹脂材料からなる。硬質発泡ウレタン樹脂材料は熱硬化性樹脂であるため、肉厚差の大きい意匠部10を成形する際にも、変形やヒケを生じ難い。よって、意匠部10の形状を種々に設計できる利点がある。   In addition, the design part 10 in the molded member 1 of Example 2 consists of hard foaming urethane resin materials. Since the hard foamed urethane resin material is a thermosetting resin, deformation and sink marks are unlikely to occur even when the design portion 10 having a large thickness difference is formed. Therefore, there exists an advantage which can design the shape of the design part 10 variously.

また、実施例2の成形部材1における芯部20は筒状であるため、実施例1と同様に、図略の結合部材や固定ネジ等を用いて2つの成形部材1を強固に組み付けることができる。   Further, since the core portion 20 in the molded member 1 of the second embodiment is cylindrical, the two molded members 1 can be firmly assembled using a coupling member, a fixing screw, etc. (not shown) as in the first embodiment. it can.

(実施例3)
実施例3の成形部材は、端部の形状以外は実施例1の成形部材と同じである。実施例3の成形部材同士を組み付けている様子を模式的に表す要部拡大斜視図を図4に示す。
(Example 3)
The molded member of Example 3 is the same as the molded member of Example 1 except for the shape of the end portion. The principal part expansion perspective view which represents a mode that the shaping | molding members of Example 3 are assembled | attached is shown in FIG.

図4に示すように、実施例3の成形部材1の端部11a、11bは半割状をなす。実施例3の成形部材1a、1bを互いに組み付ける際には、一方の成形部材1aの端部11aと他方の成形部材1bの端部11bとを対面させ、2つの成形部材1a、1bの芯部20に図略の結合部材30を挿入するとともに、固定ネジ40によって、結合部材30と芯部20と意匠部10とを固着する。このため、実施例3の成形部材1aは、実施例1の成形部材と同様に、他の成形部材1bと強固に一体化できる。   As shown in FIG. 4, the end portions 11 a and 11 b of the molded member 1 of Example 3 are halved. When the molded members 1a and 1b of Example 3 are assembled together, the end 11a of one molded member 1a and the end 11b of the other molded member 1b face each other, and the cores of the two molded members 1a and 1b. A coupling member 30 (not shown) is inserted into 20, and the coupling member 30, the core portion 20, and the design portion 10 are fixed by a fixing screw 40. For this reason, the molding member 1a of Example 3 can be firmly integrated with the other molding member 1b, similarly to the molding member of Example 1.

なお、実施例3の成形部材1a、1bの端部11a、11bは半割状をなすため、この端部11a、11bにおける芯部20は、筒が長手方向に分割された形状(湾曲板状)をなす。しかし、芯部20のなかで成形部材1a、1bの端部11a、11b以外の部分に埋設されている部分は筒状をなすため、芯部20は全体として筒状をなす。このため、実施例3の成形部材1a、1bにおける芯部20は、全体として、強度に優れる。   In addition, since the end portions 11a and 11b of the molded members 1a and 1b of Example 3 are halved, the core portion 20 at the end portions 11a and 11b has a shape (curved plate shape) obtained by dividing the cylinder in the longitudinal direction. ). However, since the portions embedded in the portions other than the end portions 11a and 11b of the molded members 1a and 1b in the core portion 20 have a cylindrical shape, the core portion 20 has a cylindrical shape as a whole. For this reason, the core part 20 in the molded members 1a and 1b of Example 3 is excellent in strength as a whole.

また、成形部材1a、1bの端部を半割状にすることで、一方の成形部材1aと他方の成形部材1bとの接触面積が大きくなるため、太い(長手方向に直行する方向の断面積が大きい)成形部材1a、1bを安定に組み付けることができる。   Moreover, since the contact area between one molding member 1a and the other molding member 1b is increased by making the ends of the molding members 1a and 1b into a half, the cross-sectional area in the direction perpendicular to the longitudinal direction is large. The molding members 1a and 1b can be assembled stably.

(実施例4)
実施例4の成形部材は、板状をなすことと、芯部にリブ状の突起が形成されていること以外は実施例1の成形部材と同じである。実施例4の成形部材を模式的に表す要部拡大斜視図を図5に示す。
Example 4
The molded member of Example 4 is the same as the molded member of Example 1 except that it has a plate shape and rib-shaped protrusions are formed on the core. The principal part expansion perspective view which represents typically the shaping | molding member of Example 4 is shown in FIG.

実施例4の成形部材1は、幅90mm、長さ3000mm、厚さ20mmの平板状をなす。芯部20はアルミニウム製であり、長手方向に延びるリブ21を持つ角筒状(JIS−A6030Sの規格による形状)をなす。実施例4の成形部材1は、芯部20がリブ21を持つために、強度に優れる。成形部材1を幅広の板状に形成する場合、芯部20を扁平な筒状に形成することで成形部材1全体の強度を高め得るが、このとき、芯部20には強度に優れる部分と、比較的強度に劣る部分とがでる。すなわち、扁平な筒状の芯部20において、幅方向(長手方向に直行する方向、図5中の幅方向)の中央部分は、幅方向の端部分に比べて強度に劣る。しかし、実施例4の成形部材1における芯部20は、リブ21を持つために、扁平な筒状をなすにもかかわらず強度に優れる。よって、実施例4の成形部材もまた、強度に優れる。   The molded member 1 of Example 4 has a flat plate shape with a width of 90 mm, a length of 3000 mm, and a thickness of 20 mm. The core part 20 is made of aluminum and has a rectangular tube shape (a shape according to the standard of JIS-A6030S) having ribs 21 extending in the longitudinal direction. The molded member 1 of Example 4 is excellent in strength because the core portion 20 has the ribs 21. When the molding member 1 is formed in a wide plate shape, the strength of the entire molding member 1 can be increased by forming the core portion 20 in a flat cylindrical shape. At this time, the core portion 20 includes a portion having excellent strength. Some parts are relatively inferior in strength. That is, in the flat cylindrical core portion 20, the central portion in the width direction (the direction perpendicular to the longitudinal direction, the width direction in FIG. 5) is inferior in strength to the end portion in the width direction. However, since the core part 20 in the molded member 1 of Example 4 has the ribs 21, it is excellent in strength despite having a flat cylindrical shape. Therefore, the molded member of Example 4 is also excellent in strength.

さらに、リブ21がない芯部20は、意匠部10の幅方向の端部を固定し難い。したがってこの場合には、成形部材1が温度上昇すると、意匠部10の幅方向の中央部分と幅方向の端部との膨張量(または収縮量)に差が生じる可能性がある。しかし、芯部20にリブ21を設けることで、意匠部10の全体を芯部20によって安定に固定できる。さらに、成形部材1を他の成形部材や相手材に固定ネジや釘などで固定する際には、芯部20に大きな荷重が加わるが、芯部20にリブ21を設けることで、この荷重をリブ21に分散できる利点がある。このため、実施例4の成形部材は、取り付け強度に優れる。   Furthermore, the core part 20 without the ribs 21 is difficult to fix the end part in the width direction of the design part 10. Therefore, in this case, when the temperature of the molded member 1 rises, there is a possibility that a difference occurs in the expansion amount (or contraction amount) between the central portion in the width direction of the design portion 10 and the end portion in the width direction. However, by providing the ribs 21 on the core part 20, the entire design part 10 can be stably fixed by the core part 20. Further, when the molded member 1 is fixed to another molded member or a mating member with a fixing screw or a nail, a large load is applied to the core portion 20. By providing the rib 21 on the core portion 20, this load can be reduced. There exists an advantage which can be disperse | distributed to the rib 21. FIG. For this reason, the molded member of Example 4 is excellent in attachment strength.

(実施例5)
実施例5の成形部材は、2つの芯部を持つこと、および芯部の材料として繊維強化樹脂材料を用いたこと以外は、実施例4の成形部材と同じである。実施例5の成形部材は、上記(1)、(3)、(4)を備える。実施例5の成形部材を模式的に表す要部拡大斜視図を図6に示す。
(Example 5)
The molded member of Example 5 is the same as the molded member of Example 4 except that it has two core parts and a fiber reinforced resin material is used as the core part material. The molded member of Example 5 includes the above (1), (3), and (4). The principal part expansion perspective view which represents typically the shaping | molding member of Example 5 is shown in FIG.

実施例5の成形部材1は板状をなす。実施例5の成形部材1は2つの芯部20a、20bを持つ。2つの芯部20a、20bは成形部材1の幅方向に配列し、長手方向に延びる。また、2つの芯部20a、20bは略同形状である。実施例5の成形部材1における意匠部10は、硬質発泡ウレタン樹脂材料からなる。芯部20a、20bは、ガラス繊維とエポキシ樹脂とを材料とする繊維強化樹脂材料からなる。実施例5の成形部材1における意匠部10の線膨張係数は約60×10-6/℃であり、芯部20a、20bの線膨張係数は、約7×10-6/℃である。このため、芯部20a、20bの線膨張係数は意匠部10の線膨張係数よりも小さい。 The molded member 1 of Example 5 has a plate shape. The molded member 1 of Example 5 has two core parts 20a and 20b. The two core portions 20a and 20b are arranged in the width direction of the molding member 1 and extend in the longitudinal direction. The two core portions 20a and 20b have substantially the same shape. The design part 10 in the molded member 1 of Example 5 is made of a hard foamed urethane resin material. The core parts 20a and 20b are made of a fiber reinforced resin material made of glass fiber and epoxy resin. The linear expansion coefficient of the design portion 10 in the molded member 1 of Example 5 is about 60 × 10 −6 / ° C., and the linear expansion coefficients of the core portions 20 a and 20 b are about 7 × 10 −6 / ° C. For this reason, the linear expansion coefficient of core part 20a, 20b is smaller than the linear expansion coefficient of the design part 10. FIG.

実施例5の成形部材1は、芯部20a、20bが繊維強化樹脂材料からなるため、加熱・冷却しても変形し難く、軽量であり、使用環境の自由度に優れ、かつ安価に製造できる。   Since the core parts 20a and 20b are made of a fiber reinforced resin material, the molded member 1 of Example 5 is difficult to be deformed even when heated and cooled, is lightweight, has excellent flexibility in use environment, and can be manufactured at low cost. .

さらに、実施例5の成形部材1は、幅方向に配列し長手方向に延びる2つの芯部20a、20bを持つために、強度に優れる芯部20a、20bを成形部材1の幅方向の全体にわたって配置できる。このため、実施例5の成形部材1は、より一層強度に優れる。   Furthermore, since the molding member 1 of Example 5 has the two core portions 20a and 20b arranged in the width direction and extending in the longitudinal direction, the core portions 20a and 20b having excellent strength are provided over the entire width direction of the molding member 1. Can be placed. For this reason, the molded member 1 of Example 5 is further excellent in strength.

なお、実施例5の成形部材1は、2つの芯部20a、20bを持つが、本発明の成形部材1は図7に示すように3以上の芯部(20a、20b、20c、20d)を持っても良い。また、本発明の成形部材が複数の芯部を持つ場合、各芯部は互いに平行に延びなくても良い。さらに、各芯部は長手方向以外の方向に延びても良い。例えば各芯部は、幅方向に延び長手方向に配列しても良い。何れの場合にも、各芯部は成形部材の全体(またはほぼ全体)にわたって分散配置するのがよい。   In addition, although the shaping | molding member 1 of Example 5 has two core part 20a, 20b, as shown in FIG. 7, the shaping | molding member 1 of this invention has three or more core parts (20a, 20b, 20c, 20d). You may have it. Moreover, when the shaping | molding member of this invention has a some core part, each core part does not need to extend mutually parallel. Furthermore, each core part may extend in directions other than the longitudinal direction. For example, the cores may extend in the width direction and be arranged in the longitudinal direction. In any case, it is preferable that the cores are distributed over the entire (or almost the entire) molded member.

(実施例6)
実施例6の成形部材は、芯部の形状以外は実施例5の成形部材と同じである。実施例6の成形部材における芯部を模式的に表す断面図を図8に示す。
(Example 6)
The molded member of Example 6 is the same as the molded member of Example 5 except for the shape of the core. FIG. 8 shows a cross-sectional view schematically showing the core part in the molded member of Example 6. As shown in FIG.

図8(a)に示すように、実施例6の成形部材1における芯部20は、2つの分体20a、20bが一体化してなる。詳しくは、図8(b)に示すように、芯部20の分体20a、20bは、芯部20を成形部材1の長手方向に2分割した形状をなす。また、2つの分体20a、20bは、互いに係合する。2つの分体20a、20bは、別体で成形した後に組み付けて一体化する。   As shown to Fig.8 (a), the core part 20 in the shaping | molding member 1 of Example 6 has two division bodies 20a and 20b integrated. Specifically, as shown in FIG. 8B, the split bodies 20 a and 20 b of the core portion 20 have a shape obtained by dividing the core portion 20 into two in the longitudinal direction of the molding member 1. The two halves 20a and 20b engage with each other. The two halves 20a and 20b are assembled and integrated after being molded separately.

実施例6の成形部材1における芯部20は、複数の分体20a、20bからなるため、複雑な形状にできる利点がある。また、筒状をなし扁平かつ幅広の芯部20を容易に形成できる利点もある。   Since the core part 20 in the molded member 1 of Example 6 is composed of a plurality of split bodies 20a and 20b, there is an advantage that it can be formed into a complicated shape. In addition, there is an advantage that a flat and wide core portion 20 can be easily formed.

なお、実施例6の成形部材1における芯部20は、成形部材1の長手方向に分割した2つの分体からなるが、3以上の分体からなっても良い。さらに、芯部20は、成形部材1の長手方向と直行する方向に分割した複数の分体からなっても良い。さらに、芯部20が成形部材1の長さ方向に分割した複数の分体からなる場合には、図9に示すように、芯部20の内部にリブ21等を形成することができる。この場合には、芯部20の強度がより一層向上する。   In addition, although the core part 20 in the shaping | molding member 1 of Example 6 consists of two divisions divided | segmented into the longitudinal direction of the shaping | molding member 1, it may consist of three or more divisions. Furthermore, the core part 20 may be composed of a plurality of segments divided in a direction perpendicular to the longitudinal direction of the molded member 1. Furthermore, when the core part 20 is composed of a plurality of divisions divided in the length direction of the molded member 1, ribs 21 and the like can be formed inside the core part 20 as shown in FIG. 9. In this case, the strength of the core part 20 is further improved.

さらに、実施例1〜6の成形部材1を他の成形部材や相手材に組み付ける際に、芯部20の内外を空気が流通するようにすると、成形部材1の温度上昇を抑制でき、温度上昇に起因する成形部材1の変形をより一層抑制できる。これは、筒状をなす芯部20の内外を流通する空気によって成形部材1が空冷されるためである。この場合、芯部20が縦方向に延在するように成形部材1を組み付けると、煙突効果によって芯部20の内外を流通する空気の量を多くできるため、成形部材1の温度上昇をより一層抑制できる。   Furthermore, when assembling the molding member 1 of Examples 1 to 6 to another molding member or a counterpart material, if the air flows inside and outside the core portion 20, the temperature rise of the molding member 1 can be suppressed, and the temperature rises. The deformation of the molded member 1 due to the above can be further suppressed. This is because the molded member 1 is air-cooled by the air flowing inside and outside the cylindrical core portion 20. In this case, when the molding member 1 is assembled so that the core portion 20 extends in the vertical direction, the amount of air flowing through the inside and outside of the core portion 20 can be increased by the chimney effect, so that the temperature rise of the molding member 1 is further increased. Can be suppressed.

ところで、成形部材の端部を他部材(所謂エンドキャップ)で覆う場合がある。板状の芯部102を持つ従来の成形部材100にエンドキャップ500を組み付ける場合には、図16に示すようにエンドキャップ500を接着剤600によって成形部材100の端部に接着したり、図17に示すように帽子状のエンドキャップ500を成形部材100の端部に被せる必要があった。図16に示すようにエンドキャップ500を成形部材100の端部に接着する場合には、エンドキャップ500が成形部材100の端部から剥がれ易い問題があった。また、図17に示すように帽子状のエンドキャップ500を成形部材100の端部に被せる場合には、成形部材100のなかでエンドキャップ500で覆われる部分が大きくなるため、成形部材100の意匠性が損なわれる問題があった。また、この場合には、エンドキャップ500の外周面と成形部材100の外周面との間に段差Lが生じることによっても、成形部材100の意匠性が損なわれる問題があった。さらに、この段差を小さくするためにエンドキャップ500の肉厚を小さくすると、エンドキャップ500の強度が低下する問題があった。   By the way, the end of the molded member may be covered with another member (so-called end cap). When the end cap 500 is assembled to the conventional molded member 100 having the plate-shaped core portion 102, the end cap 500 is adhered to the end of the molded member 100 with an adhesive 600 as shown in FIG. It was necessary to cover the end of the molded member 100 with a cap-shaped end cap 500 as shown in FIG. As shown in FIG. 16, when the end cap 500 is bonded to the end portion of the molding member 100, there is a problem that the end cap 500 is easily peeled off from the end portion of the molding member 100. In addition, when the cap-shaped end cap 500 is placed on the end of the molded member 100 as shown in FIG. 17, the portion of the molded member 100 that is covered with the end cap 500 becomes larger. There was a problem that the property was impaired. Further, in this case, there is a problem in that the design of the molded member 100 is impaired by the step L being generated between the outer peripheral surface of the end cap 500 and the outer peripheral surface of the molded member 100. Further, if the thickness of the end cap 500 is reduced in order to reduce this step, there is a problem that the strength of the end cap 500 is lowered.

実施例1〜6の成形部材1によると、芯部20が筒状をなすため、エンドキャップ5を成形部材1に容易かつ強固に組み付け得る。すなわち、図10に示すように、実施例1〜6の成形部材1に組み付けるエンドキャップ5に、芯部20の内部形状に対応する形状の突部51を設け、この突部51を芯部20に挿入すれば、エンドキャップ5を成形部材1に容易に組み付けることができる。また、エンドキャップ5の突部51を固定ネジ41などで芯部20に固定すれば、エンドキャップ5を成形部材1にさらに安定に組み付け得る。   According to the molded member 1 of Examples 1 to 6, the core 20 has a cylindrical shape, so that the end cap 5 can be easily and firmly assembled to the molded member 1. That is, as shown in FIG. 10, a protrusion 51 having a shape corresponding to the internal shape of the core portion 20 is provided on the end cap 5 assembled to the molded member 1 of Examples 1 to 6, and the protrusion 51 is connected to the core portion 20. The end cap 5 can be easily assembled to the molded member 1. Further, if the protruding portion 51 of the end cap 5 is fixed to the core portion 20 with a fixing screw 41 or the like, the end cap 5 can be more stably assembled to the molded member 1.

実施例1の成形部材を模式的に表す一部切り欠き斜視図である。FIG. 3 is a partially cutaway perspective view schematically showing a molded member of Example 1. 実施例1の成形部材同士を組み付けている様子を模式的に表す断面図である。It is sectional drawing which represents typically a mode that the shaping | molding members of Example 1 are assembled | attached. 実施例2の成形部材を模式的に表す斜視図である。FIG. 6 is a perspective view schematically showing a molded member of Example 2. 実施例3の成形部材同士を組み付けている様子を模式的に表す要部拡大斜視図である。It is a principal part expansion perspective view which represents a mode that the shaping | molding members of Example 3 are assembled | attached typically. 実施例4の成形部材を模式的に表す要部拡大斜視図である。FIG. 6 is an enlarged perspective view of a main part schematically showing a molded member of Example 4. 実施例5の成形部材を模式的に表す要部拡大斜視図である。FIG. 10 is an enlarged perspective view of a main part schematically showing a molded member of Example 5. 本発明の成形部材の他の例を模式的に表す要部拡大斜視図である。It is a principal part expansion perspective view which represents typically the other example of the shaping | molding member of this invention. 実施例6の成形部材における芯部を模式的に表す断面図である。10 is a cross-sectional view schematically showing a core part in a molded member of Example 6. FIG. 本発明の成形部材における芯部の他の例を模式的に表す断面図である。It is sectional drawing which represents typically the other example of the core part in the shaping | molding member of this invention. 本発明の成形部材にエンドキャップを組み付けている様子を模式的に表す説明図である。It is explanatory drawing which represents a mode that the end cap is assembled | attached to the shaping | molding member of this invention typically. 従来の成形部材を相手材に組み付けている様子を模式的に表す説明図である。It is explanatory drawing which represents a mode that the conventional shaping | molding member is assembled | attached to the other party material typically. 従来の成形部材を相手材に組み付けている様子を模式的に表す説明図である。It is explanatory drawing which represents a mode that the conventional shaping | molding member is assembled | attached to the other party material typically. 従来の成形部材を相手材に組み付けている様子を模式的に表す説明図である。It is explanatory drawing which represents a mode that the conventional shaping | molding member is assembled | attached to the other party material typically. 従来の成形部材を相手材に組み付けている様子を模式的に表す説明図である。It is explanatory drawing which represents a mode that the conventional shaping | molding member is assembled | attached to the other party material typically. 従来の成形部材を相手材に組み付けている様子を模式的に表す説明図である。It is explanatory drawing which represents a mode that the conventional shaping | molding member is assembled | attached to the other party material typically. 従来の成形部材にエンドキャップを組み付けている様子を模式的に表す説明図である。It is explanatory drawing which represents a mode that the end cap is assembled | attached to the conventional shaping | molding member typically. 従来の成形部材にエンドキャップを組み付けている様子を模式的に表す説明図である。It is explanatory drawing which represents a mode that the end cap is assembled | attached to the conventional shaping | molding member typically.

符号の説明Explanation of symbols

1、1a、1b:成形部材
10:意匠部
20、20a、20b:芯部
1, 1a, 1b: Molding member 10: Design part 20, 20a, 20b: Core part

Claims (5)

樹脂材料からなる意匠部と、該意匠部に埋設されている芯部と、を持ち、
該芯部は、筒状をなし、
該芯部の強度は、該意匠部の強度よりも大きく、
該芯部の線膨張係数は、該意匠部の線膨張係数よりも小さく、
該意匠部と該芯部とは一体成形されてなることを特徴とする成形部材。
Having a design part made of a resin material and a core part embedded in the design part,
The core portion has a cylindrical shape,
The strength of the core is greater than the strength of the design portion,
The linear expansion coefficient of the core part is smaller than the linear expansion coefficient of the design part,
The molded part, wherein the design part and the core part are integrally molded.
前記意匠部は、発泡樹脂材料からなる請求項1に記載の成形部材。   The molded part according to claim 1, wherein the design portion is made of a foamed resin material. 前記芯部は、金属材料からなる請求項1または請求項2に記載の成形部材。   The molded member according to claim 1, wherein the core portion is made of a metal material. 前記芯部は、繊維強化樹脂材料からなる請求項1または請求項2に記載の成形部材。   The molded member according to claim 1, wherein the core portion is made of a fiber reinforced resin material. 前記芯部の線膨張係数は25×10-6/℃以下である請求項1〜請求項4の何れか一つに記載の成形部材。 5. The molded member according to claim 1, wherein the core has a linear expansion coefficient of 25 × 10 −6 / ° C. or less.
JP2007264594A 2007-10-10 2007-10-10 Molded member Active JP5270899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007264594A JP5270899B2 (en) 2007-10-10 2007-10-10 Molded member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264594A JP5270899B2 (en) 2007-10-10 2007-10-10 Molded member

Publications (2)

Publication Number Publication Date
JP2009090576A true JP2009090576A (en) 2009-04-30
JP5270899B2 JP5270899B2 (en) 2013-08-21

Family

ID=40663047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264594A Active JP5270899B2 (en) 2007-10-10 2007-10-10 Molded member

Country Status (1)

Country Link
JP (1) JP5270899B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620329U (en) * 1979-07-23 1981-02-23
JPH04356566A (en) * 1990-06-08 1992-12-10 Somar Corp Foamable powder coating composition and article coated with resin foam
JPH06143443A (en) * 1992-11-04 1994-05-24 Sekisui Chem Co Ltd Manufacture of composite pipe
JPH06316033A (en) * 1993-05-06 1994-11-15 Sekisui Chem Co Ltd Composite tube
JP3013744U (en) * 1995-01-19 1995-07-18 三菱化学エムケーブイ株式会社 Composite material
JP3014382U (en) * 1995-02-06 1995-08-08 三菱化学エムケーブイ株式会社 Composite material
JPH08290509A (en) * 1995-04-20 1996-11-05 Nippon Steel Corp Warmth-sensitive coated steel pipe
JP2002059509A (en) * 2000-08-22 2002-02-26 Yokohama Rubber Co Ltd:The Structure of laminate and method for manufacturing the same
JP2003227583A (en) * 2002-02-01 2003-08-15 Reiko Udagawa Piping
JP2005144896A (en) * 2003-11-17 2005-06-09 Asahi Glass Matex Co Ltd Molding and its manufacturing method
JP2007100961A (en) * 2006-10-17 2007-04-19 Nippon Unicar Co Ltd Foaming polyethylene coated metallic pipe
JP2007196545A (en) * 2006-01-27 2007-08-09 Nissan Motor Co Ltd Metal-resin composite structure and its manufacturing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620329U (en) * 1979-07-23 1981-02-23
JPH04356566A (en) * 1990-06-08 1992-12-10 Somar Corp Foamable powder coating composition and article coated with resin foam
JPH06143443A (en) * 1992-11-04 1994-05-24 Sekisui Chem Co Ltd Manufacture of composite pipe
JPH06316033A (en) * 1993-05-06 1994-11-15 Sekisui Chem Co Ltd Composite tube
JP3013744U (en) * 1995-01-19 1995-07-18 三菱化学エムケーブイ株式会社 Composite material
JP3014382U (en) * 1995-02-06 1995-08-08 三菱化学エムケーブイ株式会社 Composite material
JPH08290509A (en) * 1995-04-20 1996-11-05 Nippon Steel Corp Warmth-sensitive coated steel pipe
JP2002059509A (en) * 2000-08-22 2002-02-26 Yokohama Rubber Co Ltd:The Structure of laminate and method for manufacturing the same
JP2003227583A (en) * 2002-02-01 2003-08-15 Reiko Udagawa Piping
JP2005144896A (en) * 2003-11-17 2005-06-09 Asahi Glass Matex Co Ltd Molding and its manufacturing method
JP2007196545A (en) * 2006-01-27 2007-08-09 Nissan Motor Co Ltd Metal-resin composite structure and its manufacturing method
JP2007100961A (en) * 2006-10-17 2007-04-19 Nippon Unicar Co Ltd Foaming polyethylene coated metallic pipe

Also Published As

Publication number Publication date
JP5270899B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
ES2375366T3 (en) SANDWICH TYPE ELEMENT.
US4578303A (en) Fiber compound structural component and method for making such a component
TWI433774B (en) Panel structure
KR20080092499A (en) Deck fastener
KR20070029137A (en) Heat insulation panel serving also as mold form, and outer heat insulation structure
CN101858134B (en) Composite veneer
CN103587159A (en) Honeycomb sandwich panel and making method thereof
JP4607952B2 (en) Hose joint
JP5270899B2 (en) Molded member
CN111270829A (en) Splicing piece for floor
US20220080698A1 (en) Insulated building studs and methods of manufacture
JP4038497B2 (en) Thermal insulation panel
US7208063B2 (en) Double walled structural reinforcement
CN109177428B (en) Manufacturing method of composite board
CN112832453A (en) FRP (fiber reinforced Plastic) reinforced wood-plastic composite material bearing plate
KR101804841B1 (en) Insulation panel assembly for water tank with polyethylene double frame
US20100021686A1 (en) Sandwich panel
JP2008230032A (en) Structural material and its manufacturing method
KR100535659B1 (en) Complex material panel combining plastic hollow panel surface with processed lumber
CN214195054U (en) Prefabricated clamp core is connecting piece and heat preservation wall for heat preservation wall
CN219491694U (en) Assembled building templates and template subassembly
JPS60199149A (en) Panel for building outer wall
JP2019072904A (en) Honeycomb core and honeycomb panel
CN212336613U (en) Splicing piece for floor
JP2007138493A (en) Lightweight heat insulation fireproof panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5270899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250