JP2009090235A - Catalyst material for purification of exhaust gas ingredient and particulate filter equipped with the catalyst material - Google Patents

Catalyst material for purification of exhaust gas ingredient and particulate filter equipped with the catalyst material Download PDF

Info

Publication number
JP2009090235A
JP2009090235A JP2007264450A JP2007264450A JP2009090235A JP 2009090235 A JP2009090235 A JP 2009090235A JP 2007264450 A JP2007264450 A JP 2007264450A JP 2007264450 A JP2007264450 A JP 2007264450A JP 2009090235 A JP2009090235 A JP 2009090235A
Authority
JP
Japan
Prior art keywords
exhaust gas
composite oxide
particles
mol
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007264450A
Other languages
Japanese (ja)
Other versions
JP5029273B2 (en
Inventor
Kenji Suzuki
研二 鈴木
Koichiro Harada
浩一郎 原田
Keiji Yamada
啓司 山田
Kenji Okamoto
謙治 岡本
Akihide Takami
明秀 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007264450A priority Critical patent/JP5029273B2/en
Priority to EP08164498.1A priority patent/EP2055365B1/en
Priority to US12/243,439 priority patent/US20090099012A1/en
Publication of JP2009090235A publication Critical patent/JP2009090235A/en
Application granted granted Critical
Publication of JP5029273B2 publication Critical patent/JP5029273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the performance of purifying exhaust gas ingredients, including HCs, CO and particulates, and the heat resistance of the performance. <P>SOLUTION: A catalyst metal is supported by a support material in which primary particles of activated alumina and those of a composite oxide containing Ce, Zr and a rare earth metal R other than Ce are mixed to form secondary particles. The primary particles of the composite oxide contain CeO<SB>2</SB>at a ratio of 20-60 mol%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排ガス成分浄化用触媒材及び同触媒材付パティキュレートフィルタに関する。     The present invention relates to an exhaust gas component purification catalyst material and a particulate filter with the catalyst material.

軽油を主成分とする燃料を用いるディーゼルエンジンや、ガソリンを主成分とする燃料を用いて希薄燃焼させるガソリンエンジンでは、その排ガス中にHC(炭化水素)、CO及びNOx(窒素酸化物)の他にパティキュレート(パティキュレートマターPM;炭素粒子を含む浮遊粒子状物質)が含まれていることが知られている。そこで、このパティキュレートの大気中への排出を抑制するために、このパティキュレートを捕集するフィルタをエンジンの排ガス通路に配置することがなされている。しかし、このフィルタのパティキュレート堆積量が多くなると、エンジン出力や燃費の低下を招くことから、堆積したパティキュレートを適宜燃焼させてフィルタから除去する必要がある。     In diesel engines that use light oil-based fuels and gasoline engines that burn leanly using gasoline-based fuels, in addition to HC (hydrocarbon), CO, and NOx (nitrogen oxides) Are known to contain particulates (particulate matter PM; suspended particulate matter containing carbon particles). Therefore, in order to suppress discharge of the particulates into the atmosphere, a filter for collecting the particulates is disposed in the exhaust gas passage of the engine. However, if the particulate accumulation amount of this filter increases, engine output and fuel consumption are reduced. Therefore, it is necessary to combust the accumulated particulate matter and remove it from the filter.

上記パティキュレートの燃焼を効率的に行なわせる(パティキュレートが比較的低温で着火し、且つその燃焼を短時間で完了させる)ために、フィルタ本体の排ガス通路壁面に、触媒金属を担持したアルミナを含有する触媒層を形成することが行なわれている。このPt担持アルミナはHC、COの浄化に有効であるだけでなく、パティキュレートの燃焼にも有効であるが、近年は更に効率的にパティキュレートを燃焼させるフィルタ用触媒材が開発されている。     In order to efficiently perform the combustion of the particulates (the particulates ignite at a relatively low temperature and complete the combustion in a short time), an alumina carrying a catalyst metal is disposed on the wall of the exhaust gas passage of the filter body. Formation of the catalyst layer containing is performed. This Pt-supported alumina is not only effective for purifying HC and CO, but also effective for burning particulates. In recent years, filter catalyst materials for burning particulates more efficiently have been developed.

例えば特許文献1には、Pr、Nd及びLaから選ばれる希土類金属RとCeとZrとの複合酸化物にPt等の触媒金属を担持させた触媒材をフィルタに用いることが記載されている。この複合酸化物における上記Rの含有率は2mol%以上11mol%以下が好ましいとされている。このような複合酸化物はCeを含有するため酸素吸蔵放出能を有し、該複合酸化物が放出する酸素がパティキュレートの着火・燃焼を促進する。     For example, Patent Document 1 describes that a catalyst material in which a catalytic metal such as Pt is supported on a composite oxide of a rare earth metal R selected from Pr, Nd, and La, Ce, and Zr is used for a filter. The content of R in the composite oxide is preferably 2 mol% or more and 11 mol% or less. Since such a complex oxide contains Ce, it has an oxygen storage / release capability, and oxygen released from the complex oxide promotes ignition and combustion of particulates.

特許文献2には、Yb、Nd及びScから選ばれる希土類金属RとZrとの複合酸化物ZrRO粒子(R含有率は最大18mol%)と、Sm及びGdから選ばれる希土類金属MとCeとの複合酸化物CeMO粒子とを含有し、それら複合酸化物粒子に触媒金属を担持させた触媒材をフィルタに用いることが記載されている。上記ZrRO粒子は酸素イオン伝導性を有し、活性酸素を放出するが、その酸素放出メカニズムは特許文献1に示されるようなCeZr系複合酸化物とは異なる。     Patent Document 2 discloses a composite oxide ZrRO particle of R and Zr selected from Yb, Nd and Sc (R content is 18 mol% at the maximum), and a rare earth metal M and Ce selected from Sm and Gd. It is described that a catalyst material containing composite oxide CeMO particles and having a catalyst metal supported on the composite oxide particles is used for a filter. The ZrRO particles have oxygen ion conductivity and release active oxygen, but the oxygen release mechanism is different from that of CeZr-based composite oxide as disclosed in Patent Document 1.

すなわち、CeZr系複合酸化物は、高い酸素吸蔵能力を有し、Ceイオンの価数変化により活性な酸素を放出する。一方、ZrRO粒子は、酸素イオン伝導性、所謂、酸素ポンプ機能を有するものであって、当該粒子表面に酸素濃度の高い部分と低い部分とが存在するときに、酸素濃度の高い部分から低い部分へ酸素イオンを輸送して活性酸素として放出する。     That is, the CeZr-based composite oxide has a high oxygen storage capacity and releases active oxygen due to a change in the valence of Ce ions. On the other hand, ZrRO particles have oxygen ion conductivity, so-called oxygen pumping function, and when there are a high oxygen concentration portion and a low oxygen concentration portion on the particle surface, the low oxygen oxygen concentration portion to the low oxygen concentration portion. Oxygen ions are transported to and released as active oxygen.

従って、上記ZrRO粒子の場合、その表面にパティキュレートを燃焼させる小さな火種ができ、その火種部位が酸素不足状態になると、別の酸素濃度が高い部分から酸素が輸送されてくるため、燃焼が継続されて当該火種から燃焼領域が周囲に広がり易くなる。     Therefore, in the case of the above ZrRO particles, a small fire type that burns particulates can be formed on the surface, and when the fire type part is in an oxygen-deficient state, oxygen is transported from another part having a high oxygen concentration, and thus combustion continues. As a result, the combustion region easily spreads from the fire type.

また、特許文献3には、上述の如き酸素イオン伝導性を有するZrROとアルミナとを含み且つそれらに触媒貴金属を担持させてなる触媒材をフィルタに用いることが記載されている。     Patent Document 3 describes that a catalyst material containing ZrRO and alumina having oxygen ion conductivity as described above and having a catalyst noble metal supported thereon is used for the filter.

また、特許文献4には排ガス成分浄化用触媒材の製法が記載されている。それは、硝酸Al水溶液と硝酸La水溶液との混合液にアンモニア水を過剰に添加することにより、AlとLaとを含む第1水酸化物を沈殿させ、次いで硝酸Ce水溶液と硝酸Zr水溶液との混合液を添加することにより、CeとZrとを含む第2水酸化物を上記第1水酸化物の沈殿物上に析出させ、得られた沈殿物の濾過、乾燥及び焼成を行なうというものである。この製法によれば、Laを含有する活性アルミナ粒子がコアとなり、その表面が全面にわたってシェル材としてのCeZr複合酸化物で覆われた触媒材が得られる。
特開2006−326573号公報 特開2007−54713号公報 特開2007−83224号公報 特開2007−98200号公報
Patent Document 4 describes a method for producing an exhaust gas component purification catalyst material. That is, by adding ammonia water excessively to a mixed solution of an aqueous solution of Al nitrate and an aqueous solution of La nitrate, the first hydroxide containing Al and La is precipitated, and then mixing of an aqueous solution of Ce nitrate and an aqueous solution of Zr nitrate By adding a liquid, a second hydroxide containing Ce and Zr is deposited on the precipitate of the first hydroxide, and the resulting precipitate is filtered, dried and fired. . According to this production method, a catalyst material in which activated alumina particles containing La serve as a core and the entire surface is covered with a CeZr composite oxide as a shell material can be obtained.
JP 2006-326573 A JP 2007-54713 A JP 2007-83224 A JP 2007-98200 A

上述の酸素吸蔵能を有するCeZr系複合酸化物粒子や、酸素イオン伝導性を有するZr系複合酸化物粒子は、HCやCOの酸化浄化を促進し、また、フィルタに堆積したパティキュレートの着火・燃焼を促進するものの、次の問題がある。     The CeZr-based composite oxide particles having the above-described oxygen storage capacity and the Zr-based composite oxide particles having oxygen ion conductivity promote the oxidative purification of HC and CO, and also ignite particulates deposited on the filter. Although it promotes combustion, it has the following problems.

すなわち、これら複合酸化物粒子は、Ce、Zr等の金属イオンを含む酸性溶液に塩基性溶液を添加混合し、得られた沈殿物を乾燥・焼成するという共沈法で得ることができる。この場合、沈殿物の焼成によって複合酸化物の一次粒子ができ、その一次粒子がさらに凝集・成長して二次粒子となっている。このような複合酸化物二次粒子は、高温の排気ガスに晒されると、さらに凝集・粒成長し、その表面積が小さくなる。そのことによって、粒子内部への排ガスの拡散が円滑に進まなくなり、さらには触媒金属が粒子内部に埋没し或いは凝集して、HC、COの浄化性能、並びにパティキュレート燃焼性能が低下する。     That is, these composite oxide particles can be obtained by a coprecipitation method in which a basic solution is added to and mixed with an acidic solution containing metal ions such as Ce and Zr, and the resulting precipitate is dried and fired. In this case, primary particles of the composite oxide are formed by firing the precipitate, and the primary particles are further aggregated and grown into secondary particles. When such composite oxide secondary particles are exposed to high-temperature exhaust gas, they are further agglomerated and grain-grown and their surface area is reduced. As a result, the diffusion of the exhaust gas into the particles does not proceed smoothly, and the catalytic metal is buried or agglomerated inside the particles, thereby reducing the HC and CO purification performance and the particulate combustion performance.

また、酸素吸蔵能を有するCeZr系複合酸化物粒子の場合は、主としてその粒子表面部分で酸素の吸蔵・放出が行なわれ、粒子内部は酸素の吸蔵・放出に殆ど関与しないところ、その粒径が大きくなると、酸素の吸蔵・放出に利用されない内部容積が大きくなり、それだけ酸素の吸蔵・放出効率が低下する。     In addition, in the case of CeZr-based composite oxide particles having oxygen storage capacity, oxygen is stored / released mainly on the surface of the particle, and the inside of the particle hardly participates in storage / release of oxygen. When it becomes larger, the internal volume that is not used for oxygen storage / release increases, and the oxygen storage / release efficiency decreases accordingly.

また、酸素イオン伝導性を有するZr系複合酸化物粒子の場合も、その粒径が大きくなると、酸素イオンが酸素濃度の高い粒子表面部から酸素濃度の低い粒子表面部まで粒子内部を伝導する距離が長くなり、また、粒子内部の酸素濃度勾配も小さくなるため、酸素イオン伝導性が低下し、粒子内部から供給される酸素が減少する。     Also, in the case of Zr-based composite oxide particles having oxygen ion conductivity, when the particle size becomes large, the distance that oxygen ions conduct inside the particle from the particle surface portion having a high oxygen concentration to the particle surface portion having a low oxygen concentration. And the oxygen concentration gradient inside the particle is also reduced, so that the oxygen ion conductivity is lowered and the oxygen supplied from the inside of the particle is reduced.

一方、特許文献4に記載されている触媒材の場合、シェル材となるCeZr複合酸化物粒子の粒径は比較的小さいものになるが、コア材である活性アルミナ粒子の粒径も小さい(大きくても0.05μm程度である。)。これは、AlとLaとを含む水酸化物の沈殿粒子が活性アルミナ一次粒子の前駆体となるところ、その一次粒子前駆体である沈殿粒子上にCeとZrとを含む水酸化物(CeZr複合酸化物前駆体)が析出して該沈殿粒子を覆うため、活性アルミナの一次粒子同士の凝集がCeZr複合酸化物によって妨げられることによる。     On the other hand, in the case of the catalyst material described in Patent Document 4, the particle size of the CeZr composite oxide particles serving as the shell material is relatively small, but the particle size of the activated alumina particles serving as the core material is also small (largely). Even about 0.05 μm). This is because when the precipitated particles of hydroxide containing Al and La become the precursor of activated alumina primary particles, the hydroxide containing Ce and Zr (CeZr composite) on the precipitated particles which are the primary particle precursors. This is because the aggregation of primary particles of activated alumina is hindered by the CeZr composite oxide because the oxide precursor) is deposited and covers the precipitated particles.

その結果、活性アルミナ粒子は、その表面がCeZr複合酸化物粒子によって全面的に覆われた状態になり、触媒金属はCeZr複合酸化物には担持されても、コアになっている活性アルミナ粒子には殆ど担持されなくなる。そのため、活性アルミナ粒子が触媒金属を高分散に担持させるサポート材として有効に活用されず、高い触媒活性を期待することができない。また、触媒粒子(活性アルミナ粒子の表面がCeZr複合酸化物で覆われてなるもの)同士は、互いに同じ組成のCeZr複合酸化物で接触した状態になるため、高温の排ガスに晒されたとき、凝集して粒成長し易く、その活性の低下を招くという問題もある。     As a result, the surface of the activated alumina particles is entirely covered with the CeZr composite oxide particles, and the catalyst metal is supported on the core of the activated alumina particles even if supported by the CeZr composite oxide. Is hardly carried. For this reason, the activated alumina particles are not effectively used as a support material for supporting the catalyst metal in a highly dispersed state, and high catalytic activity cannot be expected. Moreover, since the catalyst particles (the surfaces of the activated alumina particles covered with CeZr composite oxide) are in contact with each other with CeZr composite oxide having the same composition, when exposed to high-temperature exhaust gas, There is also a problem that the particles tend to aggregate and grow easily, leading to a decrease in their activity.

そこで、本発明は、活性アルミナとCeZr系複合酸化物とを組み合わせてなる触媒材に関し、排ガス成分(HC、CO、パティキュレート等)の浄化性能の向上を図るとともに、その耐熱性の向上を図ることを課題とする。     Accordingly, the present invention relates to a catalyst material comprising a combination of activated alumina and CeZr-based composite oxide, and aims to improve the purification performance of exhaust gas components (HC, CO, particulates, etc.) and to improve its heat resistance. This is the issue.

本発明は、上記課題を解決するために、活性アルミナとCeZr系複合酸化物とが互いに一次粒子同士で混ざり合って二次粒子を形成するようにした。     In the present invention, in order to solve the above problems, the activated alumina and the CeZr-based composite oxide are mixed with each other to form secondary particles.

すなわち、本発明は、活性アルミナの一次粒子と、Ce、Zr、及びCe以外の希土類金属Rを含有する複合酸化物の一次粒子とが互いに混ざり合って二次粒子を形成するように凝集してなり、
上記複合酸化物の一次粒子にはCeOが20mol%以上60mol%以下の割合で含まれていることを特徴とする排ガス成分浄化用触媒材である。
That is, the present invention aggregates so that primary particles of activated alumina and primary particles of complex oxide containing rare earth metal R other than Ce, Zr, and Ce are mixed with each other to form secondary particles. Become
The primary particle of the composite oxide contains CeO 2 at a ratio of 20 mol% to 60 mol%, which is an exhaust gas component purification catalyst material.

このように活性アルミナの一次粒子と複合酸化物の一次粒子とが混ざり合って二次粒子を形成しているから、高温の排ガスに晒されたときに、活性アルミナ粒子同士が凝集して粒成長することが複合酸化物粒子によって妨げられ、また、複合酸化物粒子同士が凝集して粒成長することが活性アルミナ粒子によって妨げられる。     In this way, primary particles of activated alumina and primary particles of composite oxide are mixed to form secondary particles, so that when exposed to high temperature exhaust gas, activated alumina particles aggregate to form a particle. This is hindered by the composite oxide particles, and the composite alumina particles are prevented from agglomerating and growing to be activated by the activated alumina particles.

そうして、複合酸化物粒子は、一次粒子であってその粒径が小さく、従って、その比表面積が大きいから、酸素の吸蔵・放出効率が高い。この複合酸化物粒子は、酸素過剰状態(リーン状態)と酸素不足状態(リッチ状態)とを繰り返す三元触媒に用いられる場合は、リーン状態では酸素を吸蔵し、リッチ状態では酸素を放出するとされているが、リーン状態でも粒子内部に酸素を取り込む一方で、粒子内部から活性な酸素を放出する働き「酸素交換反応(酸素置換反応)」を有する(本出願人による特開2007−190460号公報参照)。従って、酸素過剰のガス雰囲気においても、当該複合酸化物粒子がCeイオンの価数変化により活性な酸素を放出するため、HCやCOの酸化促進、パティキュレートの燃焼促進に有利になる。     Thus, the composite oxide particle is a primary particle and has a small particle size, and therefore has a large specific surface area, and therefore has a high oxygen storage / release efficiency. When this composite oxide particle is used in a three-way catalyst that repeats an oxygen-excess state (lean state) and an oxygen-deficient state (rich state), it is assumed that oxygen is occluded in the lean state and oxygen is released in the rich state. However, it has an “oxygen exchange reaction (oxygen substitution reaction)” that releases active oxygen from the inside of the particle while incorporating oxygen into the particle even in the lean state (Japanese Patent Application Laid-Open No. 2007-190460 by the present applicant). reference). Therefore, even in an oxygen-excess gas atmosphere, the composite oxide particles release active oxygen due to a change in the valence of Ce ions, which is advantageous for promoting the oxidation of HC and CO and promoting the combustion of particulates.

加えて、活性アルミナ粒子が上記複合酸化物粒子と混ざり合って当該二次粒子の表面に露出しているから、本発明に係る触媒材に触媒金属を担持させると、その触媒金属は、上記複合酸化物粒子だけでなく、活性アルミナ粒子にも担持される。従って、比表面積の大きな活性アルミナ粒子が触媒金属を高分散に担持するサポート材として有効に働き、この活性アルミナ粒子に担持された触媒金属を利用して排ガス中のHC及びCOの酸化、並びにNOのNOへの酸化を図ることができる。しかも、かかる排ガス成分の酸化反応によって発生する熱が上記パティキュレートの燃焼を促進するとともに、上記NOはパティキュレートを効率良く燃焼させる酸化剤となる。また、上記複合酸化物粒子における酸素の吸蔵・放出の促進に触媒金属が有効に働くとともに、該複合酸化物粒子から放出される活性酸素が当該触媒金属によるHCやCOの酸化、パティキュレートの燃焼に効率良く利用されることになる。 In addition, since the activated alumina particles are mixed with the composite oxide particles and exposed on the surfaces of the secondary particles, when the catalyst metal is supported on the catalyst material according to the present invention, the catalyst metal is Not only oxide particles but also activated alumina particles are supported. Therefore, the activated alumina particles having a large specific surface area effectively function as a support material for supporting the catalyst metal in a highly dispersed state. The catalyst metal supported on the activated alumina particles is used to oxidize HC and CO in the exhaust gas, and NO. Can be oxidized to NO 2 . Moreover, the heat generated by the oxidation reaction of the exhaust gas component promotes the combustion of the particulates, and the NO 2 becomes an oxidizing agent that efficiently burns the particulates. In addition, the catalytic metal effectively works to promote the occlusion / release of oxygen in the composite oxide particles, and the active oxygen released from the composite oxide particles causes oxidation of HC and CO by the catalyst metal, and combustion of particulates. Will be used efficiently.

上記複合酸化物粒子にはCeOが20mol%以上60mol%以下の割合で含まれていることが好ましい。これにより、低温でのHC浄化性やCO浄化性を確保しながら、高いパティキュレートの燃焼性を得ることができる。より好ましいCeO比率は20mol%以上45mol%以下である。これにより、低温でのHC浄化性やCO浄化性を高める上で有利になる。 The composite oxide particles preferably contain CeO 2 at a ratio of 20 mol% to 60 mol%. Thereby, high flammability of particulates can be obtained while securing HC purification and CO purification at low temperatures. A more preferable CeO 2 ratio is 20 mol% or more and 45 mol% or less. This is advantageous in improving the HC purification performance and CO purification performance at low temperatures.

上記複合酸化物粒子が含有する希土類金属Rとしては、La、Nd、Pr、Sm、Gd、Y等を採用することができるが、なかでも、Nd、La、Pr及びYから選ばれる少なくとも一種を採用することがパティキュレートの燃焼性を高める上で好ましい。     As the rare earth metal R contained in the composite oxide particles, La, Nd, Pr, Sm, Gd, Y and the like can be adopted, and among them, at least one selected from Nd, La, Pr and Y is used. It is preferable to employ it in order to increase the combustibility of the particulates.

上記活性アルミナ粒子と複合酸化物粒子との合計量に占める該複合酸化物粒子の割合は10質量%以上75質量%以下であることが好ましい。HCやCOの低温浄化性を確保しながら、高いパティキュレートの燃焼性を得ることができる。より好ましい複合酸化物粒子の割合は25質量%以上50質量%以下である。     The ratio of the composite oxide particles to the total amount of the activated alumina particles and the composite oxide particles is preferably 10% by mass or more and 75% by mass or less. It is possible to obtain high particulate combustibility while ensuring low temperature purification of HC and CO. A more preferable ratio of the composite oxide particles is 25% by mass or more and 50% by mass or less.

上記排ガス成分浄化用触媒材をパティキュレートフィルタに利用する場合、エンジンから排出されるパティキュレートを捕集するフィルタ本体の排ガス通路壁面に触媒層を形成し、この触媒層に上記排ガス成分浄化用触媒材を含ませるようにすればよい。これにより、排ガス中のHC、COの浄化を図りながら、フィルタ本体に堆積するパティキュレートを効率良く燃焼除去することができる。     When the exhaust gas component purification catalyst material is used in a particulate filter, a catalyst layer is formed on the exhaust gas passage wall surface of the filter body that collects particulates discharged from the engine, and the exhaust gas component purification catalyst is formed on the catalyst layer. The material may be included. Thereby, the particulates deposited on the filter body can be efficiently burned and removed while purifying HC and CO in the exhaust gas.

その場合、触媒金属としてはPtを採用することが好ましい。すなわち、活性アルミナ粒子にPtを担持させると、排ガス中のNOのNOへの酸化に有利になり、このNOを酸化剤としてパティキュレートを効率良く燃焼させることができる。 In that case, it is preferable to employ Pt as the catalyst metal. That is, when the supported Pt on activated alumina particles, be advantageous to the oxidation of NO to NO 2 in the exhaust gas, the NO 2 can be efficiently burn the particulates as an oxidizing agent.

以上のように本発明によれば、活性アルミナの一次粒子と、Ce、Zr、及びCe以外の希土類金属Rを含有する複合酸化物の一次粒子とが互いに混ざり合って二次粒子を形成し、上記複合酸化物の一次粒子にはCeOが20mol%以上60mol%以下の割合で含まれているから、複合酸化物粒子の酸素吸蔵放出効率が高くなるとともに、活性アルミナ粒子が触媒金属を高分散に担持するサポート材として有効に働き、パティキュレートの燃焼促進、並びにHC、COの酸化浄化の促進に有利になるとともに、耐熱性の向上が図れる。 As described above, according to the present invention, primary particles of activated alumina and primary particles of composite oxide containing rare earth metal R other than Ce, Zr, and Ce are mixed with each other to form secondary particles, Since the primary particles of the composite oxide contain CeO 2 in a proportion of 20 mol% or more and 60 mol% or less, the oxygen storage efficiency of the composite oxide particles is increased and the active alumina particles are highly dispersed in the catalyst metal. It effectively works as a support material supported on the metal, which is advantageous for promoting combustion of particulates and for promoting oxidative purification of HC and CO and improving heat resistance.

以下、本発明の実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。     Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

図1において、1はエンジンの排ガス通路11に配置されたパティキュレートフィルタ(以下、単に「フィルタ」という。)である。フィルタ1よりも排ガス流の上流側の排ガス通路11には、活性アルミナ等のサポート材にPt、Pd等に代表される触媒金属を担持した酸化触媒(図示省略)を配置することができる。このような酸化触媒をフィルタ1の上流側に配置するときは、該酸化触媒によって排ガス中のHC、COが酸化され、その酸化燃焼熱でフィルタ1に流入する排ガス温度が高められる。また、NOがNOに酸化され、該NOがフィルタ1にパティキュレートを燃焼させる酸化剤として供給されることになる。 In FIG. 1, reference numeral 1 denotes a particulate filter (hereinafter simply referred to as “filter”) disposed in an exhaust gas passage 11 of an engine. In the exhaust gas passage 11 on the upstream side of the exhaust gas flow from the filter 1, an oxidation catalyst (not shown) in which a catalytic metal typified by Pt, Pd or the like is supported on a support material such as activated alumina can be disposed. When such an oxidation catalyst is arranged on the upstream side of the filter 1, HC and CO in the exhaust gas are oxidized by the oxidation catalyst, and the temperature of the exhaust gas flowing into the filter 1 is increased by the oxidation combustion heat. Further, NO is oxidized to NO 2, the NO 2 is to be supplied as an oxidizing agent for burning particulates to the filter 1.

図2及び図3にフィルタ1を模式的に示すように、このフィルタ1は、ハニカム構造をなしており、互いに平行に延びる多数の排ガス通路2,3を備えている。すなわち、フィルタ1は、下流端が栓4により閉塞された排ガス流入路2と、上流端が栓4により閉塞された排ガス流出路3とが交互に設けられ、排ガス流入路2と排ガス流出路3とは薄肉の隔壁5を介して隔てられている。なお、図2においてハッチングを付した部分は排ガス流出路3の上流端の栓4を示している。     As schematically shown in FIGS. 2 and 3, the filter 1 has a honeycomb structure and includes a large number of exhaust gas passages 2 and 3 extending in parallel with each other. That is, in the filter 1, the exhaust gas inflow passage 2 whose downstream end is closed by the plug 4 and the exhaust gas outflow passage 3 whose upstream end is closed by the plug 4 are alternately provided. Is separated by a thin partition wall 5. In FIG. 2, the hatched portion indicates the plug 4 at the upstream end of the exhaust gas outflow passage 3.

フィルタ1は、上記隔壁5を含むフィルタ本体がコージェライト、SiC、Si、サイアロンのような無機多孔質材料から形成されており、排ガス流入路2内に流入した排ガスは図3において矢印で示したように周囲の隔壁5を通って隣接する排ガス流出路3内に流出する。すなわち、図4に示すように、隔壁5は排ガス流入路2と排ガス流出路3とを連通する微細な細孔(排ガス通路)6を有し、この細孔6を排ガスが通る。そして、パティキュレートは、主に排ガス流入路2と細孔6の壁面に捕捉され堆積する。 In the filter 1, the filter body including the partition wall 5 is formed of an inorganic porous material such as cordierite, SiC, Si 3 N 4 , sialon, and the exhaust gas flowing into the exhaust gas inflow passage 2 is indicated by an arrow in FIG. As shown in Fig. 5, the gas flows out through the surrounding partition wall 5 into the adjacent exhaust gas outflow passage 3. That is, as shown in FIG. 4, the partition wall 5 has fine pores (exhaust gas passages) 6 that connect the exhaust gas inflow passage 2 and the exhaust gas outflow passage 3, and the exhaust gas passes through the pores 6. The particulates are trapped and deposited mainly on the wall surfaces of the exhaust gas inflow passage 2 and the pores 6.

上記フィルタ1のフィルタ本体の上記排ガス通路(排ガス流入路2、排ガス流出路3及び細孔6)の壁面には触媒層7が形成されている。なお、排ガス流出路3の壁面に触媒層を形成することは必ずしも要しない。     A catalyst layer 7 is formed on the wall surface of the exhaust gas passage (exhaust gas inflow path 2, exhaust gas outflow path 3 and pore 6) of the filter body of the filter 1. It is not always necessary to form a catalyst layer on the wall surface of the exhaust gas outflow passage 3.

本発明の一つ特徴は、上記触媒層7が、図5に模式的に示す触媒粒子(触媒材)を含有することである。すなわち、この触媒粒子は、活性アルミナの一次粒子(並行斜線を付した粒子;Al)と、Ce、Zr、及びCe以外の希土類金属Rを含有するCeZr系複合酸化物の一次粒子(白丸の粒子;CeZrRO)とが互いに混ざり合って二次粒子を形成するように凝集してなり、活性アルミナの一次粒子(Al)及びCeZr複合酸化物の一次粒子(CeZrRO)各々に触媒金属としてPt(黒丸で表している。)が担持されている。活性アルミナの一次粒子の平均粒径は1nm〜100nmであり、CeZr系複合酸化物の一次粒子の平均粒径は5nm〜100nmである。 One feature of the present invention is that the catalyst layer 7 contains catalyst particles (catalyst material) schematically shown in FIG. That is, the catalyst particles include primary particles of activated alumina (particles with parallel oblique lines; Al 2 O 3 ) and primary particles of CeZr-based composite oxide containing rare earth metal R other than Ce, Zr, and Ce ( The white circle particles (CeZrRO) are mixed with each other to form secondary particles, and the primary particles of activated alumina (Al 2 O 3 ) and the primary particles of CeZr composite oxide (CeZrRO) are catalyzed. Pt (represented by black circles) is supported as a metal. The average particle diameter of primary particles of activated alumina is 1 nm to 100 nm, and the average particle diameter of primary particles of CeZr-based composite oxide is 5 nm to 100 nm.

<触媒材の調製法>
本発明に係る排ガス成分浄化用触媒材は、以下の方法によって調製することができる。
<Preparation method of catalyst material>
The exhaust gas component purification catalyst material according to the present invention can be prepared by the following method.

−活性アルミナ粒子前駆体の調製−
Alイオン及びLaイオンを含む酸性溶液を調製する。Al源としては硝酸アルミニウム九水和物を、La源としては硝酸ランタン六水和物を、それぞれ採用することができる。Al源及びLa源各々の所定量と水とを混合して原料溶液(酸性)とする。
-Preparation of activated alumina particle precursor-
An acidic solution containing Al ions and La ions is prepared. Aluminum nitrate nonahydrate can be used as the Al source, and lanthanum nitrate hexahydrate can be used as the La source. A predetermined amount of each of the Al source and La source and water are mixed to obtain a raw material solution (acidic).

上記原料溶液に塩基性溶液を添加混合して、活性アルミナ一次粒子の前駆体であるAl及びLaの複合水酸化物の沈殿粒子を生成する。この場合、原料溶液を室温で約1時間攪拌した後、これに塩基性溶液として例えば濃度7%程度のアンモニア水を添加すればよい。苛性ソーダ水溶液など他の塩基性溶液を採用することもできる。     A basic solution is added to and mixed with the raw material solution to produce precipitated particles of composite hydroxides of Al and La, which are precursors of activated alumina primary particles. In this case, after stirring the raw material solution at room temperature for about 1 hour, an aqueous ammonia having a concentration of, for example, about 7% may be added thereto as a basic solution. Other basic solutions such as aqueous caustic soda can also be employed.

−CeZr系複合酸化物粒子前駆体の調製−
Ceイオン、Zrイオン、並びにCe以外の希土類金属Rのイオンを含む酸性溶液を調製する。Ce源としては硝酸セリウム(III)六水和物を、Zr源としてはオキシ硝酸ジルコニウム二水和物を、それぞれ採用することができる。Ce以外の希土類金属R源としては、Nd、La、Pr、Y等の硝酸塩を採用することができる。これらCe源、Zr源及びR源各々の所定量と水とを混合して原料溶液(酸性)とする。
-Preparation of CeZr-based composite oxide particle precursor-
An acidic solution containing Ce ions, Zr ions, and ions of rare earth metal R other than Ce is prepared. Cerium (III) nitrate hexahydrate can be used as the Ce source, and zirconium oxynitrate dihydrate can be used as the Zr source. As the rare earth metal R source other than Ce, nitrates such as Nd, La, Pr, and Y can be employed. A predetermined amount of each of these Ce source, Zr source and R source and water are mixed to obtain a raw material solution (acidic).

上記原料溶液に塩基性溶液を添加混合して、CeZr系複合酸化物一次粒子の前駆体であるCe、Zr及びRの複合水酸化物の沈殿粒子を生成する。この場合、原料溶液を室温で約1時間攪拌した後、これに塩基性溶液として例えば濃度7%程度のアンモニア水を添加すればよい。苛性ソーダ水溶液など他の塩基性溶液を採用することもできる。     A basic solution is added to and mixed with the raw material solution to produce precipitated particles of Ce, Zr, and R composite hydroxides that are precursors of CeZr-based composite oxide primary particles. In this case, after stirring the raw material solution at room temperature for about 1 hour, an aqueous ammonia having a concentration of, for example, about 7% may be added thereto as a basic solution. Other basic solutions such as aqueous caustic soda can also be employed.

−活性アルミナ粒子前駆体とCeZr系複合酸化物粒子前駆体の混合−
上記各工程で得られた活性アルミナ粒子前駆体とCeZr系複合酸化物粒子前駆体とを混合する。すなわち、上記活性アルミナ粒子前駆体の沈殿物を含有する溶液とCeZr系複合酸化物粒子前駆体の沈殿物を含有する溶液とを混合する。その際、各溶液のpHは互いに同一になるように調整しておく。
-Mixing of activated alumina particle precursor and CeZr composite oxide particle precursor-
The activated alumina particle precursor obtained in each of the above steps and the CeZr composite oxide particle precursor are mixed. That is, a solution containing the activated alumina particle precursor precipitate and a solution containing the CeZr-based composite oxide particle precursor precipitate are mixed. At that time, the pH of each solution is adjusted to be the same.

−水洗・脱水−
上記活性アルミナ粒子前駆体及びCeZr系複合酸化物粒子前駆体の沈殿物を含む混合溶液を遠心分離器にかけて上澄み液を除去する。この上澄み液を除去した沈殿脱水物にさらにイオン交換水を加えて攪拌し再び遠心分離器にかける(脱水する)、という水洗・脱水操作を必要回数繰り返す。当該水洗・脱水操作により、余剰塩基性溶液が除去される。
-Washing and dehydration-
The mixed solution containing the activated alumina particle precursor and the precipitate of the CeZr-based composite oxide particle precursor is centrifuged to remove the supernatant. The water washing and dehydration operation of adding ion-exchanged water to the precipitated dehydrated product from which the supernatant has been removed, stirring, and re-centrifuged (dehydrated) is repeated as many times as necessary. The excess basic solution is removed by the washing / dehydrating operation.

−乾燥・焼成−
上記沈殿脱水物を乾燥させた後、焼成し、粉砕する。乾燥は、例えば大気雰囲気において100℃〜250℃程度の温度に所定時間保持することによって行なうことができる。また、焼成は、例えば大気雰囲気において400℃〜600℃程度の温度に数時間保持することによって行なうことができる。これにより、Laを含有する活性アルミナの一次粒子と、Ce、Zr及び希土類金属Rを含有するCeZr系複合酸化物の一次粒子とが互いに混ざり合って二次粒子を形成するように凝集してなるサポート材粉末が得られる。
-Drying and firing-
The precipitate dehydrated product is dried, fired and pulverized. Drying can be performed, for example, by holding at a temperature of about 100 ° C. to 250 ° C. for a predetermined time in an air atmosphere. Moreover, baking can be performed by hold | maintaining at the temperature of about 400 to 600 degreeC for several hours, for example in an atmospheric condition. Thereby, the primary particles of activated alumina containing La and the primary particles of CeZr-based composite oxide containing Ce, Zr and rare earth metal R are agglomerated so as to form secondary particles. Support material powder is obtained.

−触媒金属の担持−
得られたサポート材粉末に触媒金属イオンを含有する触媒金属溶液を添加混合し、蒸発乾固させた後、粉砕する。これにより、図5に示す触媒粒子よりなる触媒材が得られる。触媒金属溶液としては、ジニトロジアミン白金硝酸溶液や硝酸パラジウム水溶液等の貴金属溶液を採用することができる。サポート材粉末に触媒金属溶液を含浸させ、乾燥・焼成するようにしてもよい。
-Catalytic metal support-
A catalyst metal solution containing catalyst metal ions is added to and mixed with the obtained support material powder, evaporated to dryness, and then pulverized. Thereby, the catalyst material which consists of a catalyst particle shown in FIG. 5 is obtained. As the catalytic metal solution, a noble metal solution such as a dinitrodiamine platinum nitric acid solution or a palladium nitrate aqueous solution can be employed. The support material powder may be impregnated with the catalyst metal solution, dried and fired.

[好適な触媒材について]
以下、上記CeZr系複合酸化物粒子、並びに触媒粒子の好ましい組成等について、パティキュレートとしてカーボンを採用したカーボン燃焼性能試験及び排ガス(HC,CO)浄化性能試験に基いて説明する。
[Suitable catalyst material]
Hereinafter, preferred compositions of the CeZr-based composite oxide particles and catalyst particles will be described based on a carbon combustion performance test and an exhaust gas (HC, CO) purification performance test using carbon as a particulate.

<CeZr系複合酸化物粒子について>
−供試材の調製−
CeZr系複合酸化物(CeZrRO)における希土類金属Rの種類及び配合比率を変えた種々の複合酸化物粉末を調製した。CeOとZrOのモル比は1:3とした。各複合酸化物粉末にジニトロジアミン白金硝酸溶液及びイオン交換水を混合して蒸発乾固を行ない、十分に乾燥させた後、500℃×2時間(大気中)で焼成することにより、Ptを担持させた各触媒材を調製した。但し、これら触媒材には活性アルミナは含まれていない。
<About CeZr-based composite oxide particles>
-Preparation of test material-
Various composite oxide powders were prepared by changing the kind and blending ratio of the rare earth metal R in the CeZr composite oxide (CeZrRO). The molar ratio of CeO 2 and ZrO 2 was 1: 3. Each composite oxide powder is mixed with dinitrodiamineplatinum nitrate solution and ion-exchanged water, evaporated to dryness, dried sufficiently, and then fired at 500 ° C for 2 hours (in air) to support Pt. Each catalyst material was prepared. However, these catalyst materials do not contain activated alumina.

得られた各触媒材を、バインダー及びイオン交換水と混合してスラリーとし、SiC製フィルタ担体(フィルタ本体,容量;25mL,セル壁厚;12mil(304.8×10−3mm)、300cpsi(1平方インチ(635.16mm)当たりのセル数;300))にコーティングした後、乾燥させ、大気雰囲気において500℃の温度に2時間保持する焼成を行なうことにより、各供試材(触媒付パティキュレートフィルタ)を得た。フィルタ1L当たりのCeZr系複合酸化物粉末の担持量は50g/Lとし、Pt担持量は0.5g/Lにした。そうして、各供試材に大気雰囲気において800℃の温度に24時間保持する熱エージング処理を行なった。 Each obtained catalyst material was mixed with a binder and ion-exchanged water to form a slurry, and a SiC filter carrier (filter body, capacity: 25 mL, cell wall thickness: 12 mil (304.8 × 10 −3 mm), 300 cpsi ( After coating to 300 cells) per square inch (635.16 mm 2 ), drying and firing for 2 hours at 500 ° C. in an air atmosphere, each test material (with catalyst) A particulate filter) was obtained. The amount of CeZr-based composite oxide powder supported per liter of filter was 50 g / L, and the amount of Pt supported was 0.5 g / L. Then, each sample material was subjected to a thermal aging treatment in which it was kept at a temperature of 800 ° C. for 24 hours in an air atmosphere.

次いで、フィルタ1L当たり10g相当量のカーボン(カーボンブラック)に10mLのイオン交換水を加え、スターラーを用いて5分間攪拌することにより、カーボンを水中に十分に分散させた。このカーボン分散液に各供試材の一端面を浸すと同時に、他端面よりアスピレータによる吸引を行なった。この吸引によって除去できない水分を、上記一端面からのエアブローにより除去し、次いで供試材を乾燥器に入れ150℃の温度に2時間保持して乾燥させた。これにより、カーボンを供試材フィルタの排ガス通路壁面に堆積させた。     Next, 10 mL of ion-exchanged water was added to an amount of carbon (carbon black) equivalent to 10 g per liter of filter, and the carbon was sufficiently dispersed in water by stirring for 5 minutes using a stirrer. At the same time as immersing one end face of each specimen in this carbon dispersion, suction was performed from the other end face by an aspirator. Moisture that could not be removed by this suction was removed by air blowing from the one end face, and then the specimen was placed in a dryer and kept at a temperature of 150 ° C. for 2 hours for drying. Thereby, carbon was deposited on the exhaust gas passage wall surface of the test material filter.

−カーボン燃焼性能試験−
供試材を固定床模擬ガス流通反応装置に取り付け、模擬排ガス(O;10%,NO;300ppm,HO;10%,残N)を空間速度80000/hで供試材に流し、且つ供試材入口ガス温度を15℃/分の速度で上昇させていき、該温度が590℃に達した時点のカーボン燃焼速度を測定した。この場合、カーボン燃焼速度は、カーボンの燃焼によって生成するCO及びCO量に基いて次式により算出した。
カーボン燃焼速度(g/hr)
={ガス流速(L/hr)×[(CO+CO)濃度(ppm)/(1×10)]}×12(g/mol)/22.4(L/mol)
-Carbon combustion performance test-
The test material was attached to the fixed bed simulated gas flow reactor, and the simulated exhaust gas (O 2 ; 10%, NO; 300 ppm, H 2 O; 10%, remaining N 2 ) was passed through the test material at a space velocity of 80000 / h. The sample gas inlet gas temperature was increased at a rate of 15 ° C./min, and the carbon combustion rate when the temperature reached 590 ° C. was measured. In this case, the carbon burning rate was calculated by the following equation based on the amount of CO and CO 2 generated by burning carbon.
Carbon burning rate (g / hr)
= {Gas flow rate (L / hr) x [(CO + CO 2 ) concentration (ppm) / (1 x 10 6 )]} x 12 (g / mol) /22.4 (L / mol)

結果を図6に示す。図6の横軸はCeZr系複合酸化物における希土類金属Rの酸化物R−Oの比率(mol%)を示す。     The results are shown in FIG. The horizontal axis of FIG. 6 shows the ratio (mol%) of the rare earth metal R oxide R—O in the CeZr-based composite oxide.

同図によれば、Prの場合はその酸化物としての比率が0.3mol%以上2mol%以下の少量であるときに比較的大きなカーボン燃焼速度が得られ、他の希土類金属Nd、La及びYの場合は酸化物としての比率が1mol%以上7mol%以下ないしは6mol%以下において比較的大きなカーボン燃焼速度が得られることがわかる。また、当該4種類の希土類金属のなかでは、Ndを採用することがカーボン燃焼性の向上に最も有利であり、Nd比率を4mol%にすることが好ましいということができる。 According to the figure, in the case of Pr, a relatively large carbon burning rate is obtained when the ratio of the oxide is a small amount of 0.3 mol% or more and 2 mol% or less, and other rare earth metals Nd, La and Y In this case, it can be seen that a relatively large carbon burning rate can be obtained when the ratio as an oxide is 1 mol% or more and 7 mol% or less or 6 mol% or less. In addition, among the four types of rare earth metals, it is most advantageous to adopt Nd for improving the carbon combustibility, and it is preferable to set the Nd 2 O 3 ratio to 4 mol%.

<触媒粒子の好ましい組成等>
−供試材の調製−
上述の触媒粒子の調製法により、CeZr系複合酸化物一次粒子中のCeO比率(CeO/CeZrROのmol%)、並びに活性アルミナ粒子(La比率;5mol%)とCeZr系複合酸化物粒子との合計量に占める該CeZr系複合酸化物粒子の割合(以下、これを「CeZrRO比率」という。)が相異なる実施例の各触媒材を調製した。CeZr系複合酸化物粒子の希土類金属RとしてはNdを採用し、そのNd比率は4mol%に固定した。また、触媒金属Ptの担持には蒸発乾固法を採用した。
<Preferred composition of catalyst particles>
-Preparation of test material-
According to the above-mentioned method for preparing catalyst particles, the CeO 2 ratio (mol% of CeO 2 / CeZrRO) in the CeZr-based composite oxide primary particles, and the activated alumina particles (La 2 O 3 ratio: 5 mol%) and the CeZr-based composite oxidation Each catalyst material of the Example from which the ratio (henceforth "CeZrRO ratio") of this CeZr-type complex oxide particle which occupies for the total amount with a product particle differs was prepared. Nd was adopted as the rare earth metal R of the CeZr-based composite oxide particles, and the Nd 2 O 3 ratio was fixed at 4 mol%. Further, the evaporation to dryness method was adopted for supporting the catalyst metal Pt.

また、比較例触媒材として、CeO比率が相異なるCeZr系複合酸化物二次粒子(Nd比率;4mol%)を共沈法によって調製し、これを同じく共沈法で調製したLa含有活性アルミナ二次粒子(La比率;5mol%)と適宜の比率で物理的に混合してサポート材粉末とし、これに蒸発乾固法によってPtを担持させた。 Further, as a comparative example catalyst material, CeZr-based composite oxide secondary particles (Nd 2 O 3 ratio; 4 mol%) having different CeO 2 ratios were prepared by a coprecipitation method, which was also prepared by the coprecipitation method. It was physically mixed with the contained activated alumina secondary particles (La 2 O 3 ratio; 5 mol%) at an appropriate ratio to obtain a support material powder, and Pt was supported thereon by evaporation to dryness.

先に説明した供試材の調製法により、実施例及び比較例の各触媒材をSiC製フィルタ担体(容量;25mL,セル壁厚;12mil、セル数;300cpsi)にコーティングすることにより、各供試材(触媒付パティキュレートフィルタ)を得た。フィルタ1L当たりの触媒材の担持量は50g/Lとし、Pt担持量は1.0g/Lにした。次いで、各供試材に大気雰囲気において800℃の温度に24時間保持する熱エージング処理を行なった。     By coating the catalyst materials of Examples and Comparative Examples on SiC filter carriers (capacity: 25 mL, cell wall thickness: 12 mil, cell number: 300 cpsi) according to the preparation method of the test material described above, each sample was prepared. A sample (particulate filter with catalyst) was obtained. The amount of catalyst material supported per liter of filter was 50 g / L, and the amount of Pt supported was 1.0 g / L. Subsequently, each sample material was subjected to a heat aging treatment in which it was kept at a temperature of 800 ° C. for 24 hours in an air atmosphere.

−カーボン燃焼性能の評価−
上記実施例及び比較例の各供試材について、フィルタ1L当たり10g相当量のカーボン(カーボンブラック)を排ガス通路壁面に堆積させた後、上述のカーボン燃焼性能試験により、温度590℃でのカーボン燃焼速度を測定した。実施例の結果を表1に、比較例の結果を表2に示す。
-Evaluation of carbon combustion performance-
For each sample material of the above Examples and Comparative Examples, carbon (carbon black) equivalent to 10 g per 1 L of filter was deposited on the wall surface of the exhaust gas passage, and then carbon combustion at a temperature of 590 ° C. was performed by the above-described carbon combustion performance test. The speed was measured. Table 1 shows the results of the examples and Table 2 shows the results of the comparative examples.

以下では、表1及び表2の各実施例及び各比較例を、CeO比率の番号(No)を十の位におき、CeZrRO比率の番号(No)を一の位においた2桁の番号で特定する(例えば、CeO比率が45mol%(比率番号3)でありCeZrRO比率が25質量%(比率番号2)である実施例は「実施例32」と称する。)。この点は後述の表3及び表4も同じである。 In the following, each of the examples and comparative examples in Tables 1 and 2 is a two-digit number in which the CeO 2 ratio number (No) is placed at the tens place and the CeZrRO ratio number (No) is placed at the first place. (For example, an example in which the CeO 2 ratio is 45 mol% (ratio number 3) and the CeZrRO ratio is 25% by mass (ratio number 2) is referred to as “Example 32”). This also applies to Tables 3 and 4 described later.

Figure 2009090235
Figure 2009090235

Figure 2009090235
Figure 2009090235

表1及び表2によれば、CeO比率が10mol%及び80mol%のときが例外になっているが、他のCeO比率及びCeZrRO比率では実施例の方が比較例よりもカーボン燃焼速度が大きくなっている。この結果は、実施例の場合、活性アルミナとCeZr系複合酸化物とが粒径の小さな一次粒子の状態で混ざり合って二次粒子となっていることから、CeZr系複合酸化物の酸素吸蔵放出能が高くなっていること、並びに触媒材の耐熱性が高くなっていることによると考えられる。特に実施例32(CeO比率45mol%,CeZrRO比率25質量%)が良い結果を示している。 According to Table 1 and Table 2, the exception is when the CeO 2 ratio is 10 mol% and 80 mol%. However, in the other CeO 2 ratio and CeZrRO ratio, the carbon burning rate is higher in the example than in the comparative example. It is getting bigger. As a result, in the case of the example, the activated alumina and the CeZr-based composite oxide are mixed in the form of primary particles having a small particle size to form secondary particles. This is considered to be due to the higher performance and the higher heat resistance of the catalyst material. In particular, Example 32 (CeO 2 ratio 45 mol%, CeZrRO ratio 25 mass%) shows good results.

そこで、CeZrRO比率を25質量%に固定してCeO比率を変化させた実施例12,22,32,42,52及び比較例12,22,32,42,52のカーボン燃焼速度をグラフにした(図7)。また、CeO比率を45mol%に固定してCeZrRO比率を変化させた実施例31〜35及び比較例31〜35のカーボン燃焼速度をグラフにした(図8)。なお、図7のグラフ中の、特性線の種別を示すウィンド部に記載した「25質量%」はCeZrRO比率を示し、図8のグラフ中の、特性線の種別を示すウィンド部に記載した「45mol%」はCeO比率を示す。この点は後述の図9,10も同じである。 Therefore, the carbon combustion rates of Examples 12, 22, 32, 42, and 52 and Comparative Examples 12, 22, 32, 42, and 52 in which the CeO 2 ratio was changed while fixing the CeZrRO ratio to 25% by mass were graphed. (FIG. 7). Further, the carbon combustion rates of Examples 31 to 35 and Comparative Examples 31 to 35 in which the CeZrRO ratio was changed while fixing the CeO 2 ratio to 45 mol% were graphed (FIG. 8). In the graph of FIG. 7, “25 mass%” described in the window portion indicating the type of characteristic line indicates the CeZrRO ratio, and is described in the window portion indicating the type of characteristic line in the graph of FIG. 8. “45 mol%” indicates the CeO 2 ratio. This also applies to FIGS. 9 and 10 described later.

図7によれば、CeO比率が20mol%以上60mol%以下では実施例の方が比較例よりもカーボン燃焼速度が大きく、特に20mol%以上45mol%以下において、実施例及び比較例のカーボン燃焼速度に比較的大きな差が出ることがわかる。 According to FIG. 7, when the CeO 2 ratio is 20 mol% or more and 60 mol% or less, the carbon burning rate in the example is larger than that in the comparative example, and particularly in the case of 20 mol% or more and 45 mol% or less, the carbon burning rate of the example and the comparative example. It can be seen that there is a relatively large difference.

図8によれば、CeZrRO比率が10質量%以上90質量%以下において実施例の方が比較例よりもカーボン燃焼速度が大きく、特に10質量%以上75質量%以下において比較的大きなカーボン燃焼速度が得られることがわかる。     According to FIG. 8, when the CeZrRO ratio is 10% by mass or more and 90% by mass or less, the example has a higher carbon combustion rate than the comparative example, and particularly when the CeZrRO ratio is 10% by mass or more and 75% by mass or less, It turns out that it is obtained.

−排ガス浄化のライトオフ特性の評価−
上記実施例及び比較例の各供試材について、上記カーボン燃焼性能試験の場合とは異なり、カーボンブラックを堆積させることなく、排ガス中のHC及びCOの浄化に関するライトオフ特性を調べた。すなわち、各供試材を模擬ガス流通反応装置にセットし、模擬排ガス(O;10%,HO;10%,NO;100ppm,C;200ppmC,CO;400ppm,残N)を空間速度50000/hで供試材に流し、且つ供試材入口ガス温度を15℃/分の速度で上昇させていった。そして、供試材下流で検出されるガスの各成分(HC、CO)濃度が、供試材に流入するガスの各成分(HC、CO)濃度の半分になった時点(すなわち浄化率が50%になった時点)の供試材入口ガス温度T50(℃)を求めた。実施例の結果を表3に、比較例の結果を表4に示す。
-Evaluation of light-off characteristics of exhaust gas purification-
Unlike the case of the above-described carbon combustion performance test, the light-off characteristics regarding the purification of HC and CO in the exhaust gas were examined for each of the test materials of the above Examples and Comparative Examples without depositing carbon black. That is, each test material was set in a simulated gas flow reactor, and simulated exhaust gas (O 2 ; 10%, H 2 O; 10%, NO; 100 ppm, C 3 H 6 ; 200 ppm C, CO; 400 ppm, remaining N 2 ) Was passed through the specimen at a space velocity of 50000 / h, and the specimen inlet gas temperature was increased at a rate of 15 ° C./min. Then, when the concentration of each component (HC, CO) of the gas detected downstream of the sample material becomes half of the concentration of each component (HC, CO) of the gas flowing into the sample material (that is, the purification rate is 50). The gas inlet gas temperature T50 (° C.) at the time when the sample gas was% was obtained. Table 3 shows the results of the examples and Table 4 shows the results of the comparative examples.

Figure 2009090235
Figure 2009090235

Figure 2009090235
Figure 2009090235

表3及び表4によれば、CeO比率が10mol%及び80mol%のとき、並びに実施例41のCOが例外になっているが、他のCeO比率及びCeZrRO比率では実施例の方が比較例よりもライトオフ温度が低くなっている。この結果も、実施例触媒材では、比較例触媒材に比べて、酸素吸蔵放出能が高くなり、また、耐熱性が高くなっているためと認められる。 According to Tables 3 and 4, when the CeO 2 ratio is 10 mol% and 80 mol%, and the CO of Example 41 is an exception, the Examples are compared with other CeO 2 ratios and CeZrRO ratios. The light-off temperature is lower than the example. This result is also recognized because the example catalyst material has higher oxygen storage / release capability and higher heat resistance than the comparative example catalyst material.

CeZrRO比率を25質量%に固定してCeO比率を変化させた実施例12,22,32,42,52及び比較例12,22,32,42,52のライトオフ温度のグラフを図9に示し、CeO比率を45mol%に固定してCeZrRO比率を変化させた実施例31〜35及び比較例31〜35のライトオフ温度のグラフを図10に示す。 FIG. 9 is a graph of the light-off temperature of Examples 12, 22, 32, 42, 52 and Comparative Examples 12, 22, 32, 42, 52 in which the CeO 2 ratio was changed while the CeZrRO ratio was fixed at 25 mass%. FIG. 10 shows a graph of light-off temperatures of Examples 31 to 35 and Comparative Examples 31 to 35 in which the CeZrRO ratio was changed while fixing the CeO 2 ratio to 45 mol%.

図9によれば、HC及びCOのいずれに関しても、CeO比率が20mol%以上60mol%以下では実施例の方が比較例よりもライトオフ温度が低くなっており、特に20mol%以上45mol%以下において、ライトオフ温度が低くなることがわかる。 According to FIG. 9, for both HC and CO, when the CeO 2 ratio is 20 mol% or more and 60 mol% or less, the example has a lower light-off temperature than the comparative example, and in particular, 20 mol% or more and 45 mol% or less. It can be seen that the light-off temperature decreases.

図10によれば、CeZrRO比率が10質量%以上90質量%以下において実施例の方が比較例よりもライトオフ温度が低く、特に10質量%以上75質量%以下において比較的低いライトオフ温度になることがわかる。     According to FIG. 10, when the CeZrRO ratio is 10% by mass or more and 90% by mass or less, the example has a lower light-off temperature than the comparative example, and particularly when the CeZrRO ratio is 10% by mass or more and 75% by mass or less. I understand that

上記実施形態は本発明に係る触媒材をパティキュレートフィルタに採用しているが、当該触媒材は、HC、CO及びNOxの浄化を目的とし、パティキュレートの捕集を目的としない排ガス浄化用触媒にも利用することができる。     In the above embodiment, the catalyst material according to the present invention is employed in the particulate filter. However, the catalyst material is intended to purify HC, CO and NOx, and does not aim to collect particulates. Can also be used.

パティキュレートフィルタをエンジンの排ガス通路に配置した状態を示す図である。It is a figure which shows the state which has arrange | positioned the particulate filter in the exhaust gas path of an engine. パティキュレートフィルタを模式的に示す正面図である。It is a front view which shows a particulate filter typically. パティキュレートフィルタを模式的に示す縦断面図である。It is a longitudinal section showing a particulate filter typically. パティキュレートフィルタの排気ガス流入路と排気ガス流出路とを隔てる壁を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the wall which separates the exhaust-gas inflow path and exhaust-gas outflow path of a particulate filter. 本発明に係る触媒粒子を模式的に示す図である。It is a figure which shows typically the catalyst particle which concerns on this invention. CeZr系複合酸化物における希土類金属R酸化物の比率とカーボン燃焼速度との関係を示すグラフ図である。It is a graph which shows the relationship between the ratio of the rare earth metal R oxide in CeZr type complex oxide, and a carbon combustion rate. 実施例及び比較例のCeO比率とカーボン燃焼速度との関係を示すグラフ図である。Is a graph showing the relationship between the CeO 2 ratio and the carbon burning rates of Examples and Comparative Examples. 実施例及び比較例のCeZrRO比率とカーボン燃焼速度との関係を示すグラフ図である。It is a graph which shows the relationship between the CeZrRO ratio of an Example and a comparative example, and a carbon combustion rate. 実施例及び比較例のCeO比率とライトオフ温度との関係を示すグラフ図である。Is a graph showing the relationship between the CeO 2 ratio and the light-off temperature of the examples and comparative examples. 実施例及び比較例のCeZrRO比率とライトオフ温度との関係を示すグラフ図である。It is a graph which shows the relationship between the CeZrRO ratio of an Example and a comparative example, and light-off temperature.

符号の説明Explanation of symbols

1 パティキュレートフィルタ
2 排ガス流入路(排ガス通路)
3 排ガス流出路(排ガス通路)
4 栓
5 隔壁
6 細孔通路(排ガス通路)
7 触媒層
1 Particulate filter 2 Exhaust gas inflow passage (exhaust gas passage)
3 Exhaust gas outflow passage (exhaust gas passage)
4 Plug 5 Bulkhead 6 Pore passage (exhaust gas passage)
7 Catalyst layer

Claims (6)

活性アルミナの一次粒子と、Ce、Zr、及びCe以外の希土類金属Rを含有する複合酸化物の一次粒子とが互いに混ざり合って二次粒子を形成するように凝集してなり、
上記複合酸化物の一次粒子にはCeOが20mol%以上60mol%以下の割合で含まれていることを特徴とする排ガス成分浄化用触媒材。
The primary particles of activated alumina and the primary particles of the composite oxide containing rare earth metal R other than Ce, Zr, and Ce are mixed together to form secondary particles,
A catalyst material for exhaust gas component purification, wherein the primary particles of the composite oxide contain CeO 2 in a proportion of 20 mol% to 60 mol%.
請求項1において、
上記活性アルミナ一次粒子と複合酸化物一次粒子との合計量に占める該複合酸化物一次粒子の割合が10質量%以上75質量%以下であることを特徴とする排ガス成分浄化用触媒材。
In claim 1,
A catalyst material for exhaust gas component purification, wherein a ratio of the composite oxide primary particles to a total amount of the activated alumina primary particles and the composite oxide primary particles is 10% by mass or more and 75% by mass or less.
請求項1又は請求項2において、
上記複合酸化物の一次粒子にはCeOが20mol%以上45mol%以下の割合で含まれていることを特徴とする排ガス成分浄化用触媒材。
In claim 1 or claim 2,
A catalyst material for exhaust gas component purification, wherein the primary particles of the composite oxide contain CeO 2 in a proportion of 20 mol% to 45 mol%.
請求項1乃至請求項3のいずれか一において、
上記希土類金属Rが、Nd、La、Pr及びYから選ばれる少なくとも一種であることを特徴とする排ガス成分浄化用触媒材。
In any one of Claim 1 thru | or 3,
The exhaust gas component purification catalyst material, wherein the rare earth metal R is at least one selected from Nd, La, Pr and Y.
エンジンから排出されるパティキュレートを捕集するフィルタ本体の排ガス通路壁面に触媒層が形成されているパティキュレートフィルタであって、
上記触媒層に請求項1乃至請求項4のいずれか一に記載された排ガス成分浄化用触媒材が含まれていることを特徴とするパティキュレートフィルタ。
A particulate filter in which a catalyst layer is formed on an exhaust gas passage wall surface of a filter body that collects particulates discharged from an engine,
A particulate filter comprising the catalyst layer containing the exhaust gas component purification catalyst material according to any one of claims 1 to 4.
請求項5において、
上記排ガス成分浄化用触媒材は、上記二次粒子に触媒金属としてPtが担持されていることを特徴とするパティキュレートフィルタ。
In claim 5,
The particulate filter, wherein the exhaust gas component purification catalyst material has Pt supported on the secondary particles as a catalyst metal.
JP2007264450A 2007-10-10 2007-10-10 Particulate filter Expired - Fee Related JP5029273B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007264450A JP5029273B2 (en) 2007-10-10 2007-10-10 Particulate filter
EP08164498.1A EP2055365B1 (en) 2007-10-10 2008-09-17 Catalyst-supported particulate filter
US12/243,439 US20090099012A1 (en) 2007-10-10 2008-10-01 Catalyst-supported particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264450A JP5029273B2 (en) 2007-10-10 2007-10-10 Particulate filter

Publications (2)

Publication Number Publication Date
JP2009090235A true JP2009090235A (en) 2009-04-30
JP5029273B2 JP5029273B2 (en) 2012-09-19

Family

ID=40662766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264450A Expired - Fee Related JP5029273B2 (en) 2007-10-10 2007-10-10 Particulate filter

Country Status (1)

Country Link
JP (1) JP5029273B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101843A (en) * 2009-11-10 2011-05-26 Mazda Motor Corp Exhaust gas purifying catalyst
WO2011070439A1 (en) 2009-12-08 2011-06-16 Toyota Jidosha Kabushiki Kaisha Method of synthesizing metal composite oxide and metal composite oxide obtained by same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JPH10202101A (en) * 1997-01-27 1998-08-04 Toyota Central Res & Dev Lab Inc Composite oxide-carrying catalyst support
JP2002331238A (en) * 2000-07-27 2002-11-19 Toyota Central Res & Dev Lab Inc Composite oxide, method for manufacturing the same, exhaust gas cleaning catalyst and method for manufacturing the same
JP2002361090A (en) * 2001-06-12 2002-12-17 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2006326573A (en) * 2005-04-27 2006-12-07 Mazda Motor Corp Diesel particulate filter
JP2007000773A (en) * 2005-06-23 2007-01-11 Toyota Motor Corp Catalyst carrier and its manufacturing method, and catalyst for cleaning exhaust gas
JP2007083224A (en) * 2005-08-23 2007-04-05 Mazda Motor Corp Diesel particulate filter
JP2007098200A (en) * 2005-09-30 2007-04-19 Mazda Motor Corp Exhaust gas purification catalyst and manufacturing method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JPH10202101A (en) * 1997-01-27 1998-08-04 Toyota Central Res & Dev Lab Inc Composite oxide-carrying catalyst support
JP2002331238A (en) * 2000-07-27 2002-11-19 Toyota Central Res & Dev Lab Inc Composite oxide, method for manufacturing the same, exhaust gas cleaning catalyst and method for manufacturing the same
JP2002361090A (en) * 2001-06-12 2002-12-17 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2006326573A (en) * 2005-04-27 2006-12-07 Mazda Motor Corp Diesel particulate filter
JP2007000773A (en) * 2005-06-23 2007-01-11 Toyota Motor Corp Catalyst carrier and its manufacturing method, and catalyst for cleaning exhaust gas
JP2007083224A (en) * 2005-08-23 2007-04-05 Mazda Motor Corp Diesel particulate filter
JP2007098200A (en) * 2005-09-30 2007-04-19 Mazda Motor Corp Exhaust gas purification catalyst and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101843A (en) * 2009-11-10 2011-05-26 Mazda Motor Corp Exhaust gas purifying catalyst
WO2011070439A1 (en) 2009-12-08 2011-06-16 Toyota Jidosha Kabushiki Kaisha Method of synthesizing metal composite oxide and metal composite oxide obtained by same
KR101378470B1 (en) * 2009-12-08 2014-03-27 도요타 지도샤(주) Method of synthesizing metal composite oxide and metal composite oxide obtained by same
US9126846B2 (en) 2009-12-08 2015-09-08 Toyota Jidosha Kabushiki Kaisha Method of synthesizing metal composite oxide and metal composite oxide obtained by same

Also Published As

Publication number Publication date
JP5029273B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
EP1967263B1 (en) Catalytic Material And Catalyst For Purifying Exhaust Gas Component
JP4849034B2 (en) Particulate filter with catalyst
JP4618046B2 (en) Diesel particulate filter
US8187548B2 (en) Catalyst-supported particulate filter
US20090099012A1 (en) Catalyst-supported particulate
JP5023969B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP4985423B2 (en) Exhaust gas component purification catalyst material and exhaust gas component purification catalyst
JP5023968B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP4985299B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5954159B2 (en) Particulate filter with catalyst
JP4978581B2 (en) Particulate filter
JP5991162B2 (en) Particulate filter with catalyst
JP5023950B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP4858394B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5834925B2 (en) Particulate filter with catalyst
JP2014100662A (en) Particulate filter with catalyst
JP5954031B2 (en) Particulate matter combustion catalyst
JP6627813B2 (en) Method for producing particulate filter with catalyst
JP5029273B2 (en) Particulate filter
JP5034871B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP6194699B2 (en) Manufacturing method of particulate filter with catalyst
JP5939140B2 (en) Particulate filter with catalyst
JP5949520B2 (en) Particulate filter with catalyst
JP5942812B2 (en) Particulate filter with catalyst
JP5549453B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5029273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees