JP2009090198A - Method for fixing carbon dioxide - Google Patents

Method for fixing carbon dioxide Download PDF

Info

Publication number
JP2009090198A
JP2009090198A JP2007262456A JP2007262456A JP2009090198A JP 2009090198 A JP2009090198 A JP 2009090198A JP 2007262456 A JP2007262456 A JP 2007262456A JP 2007262456 A JP2007262456 A JP 2007262456A JP 2009090198 A JP2009090198 A JP 2009090198A
Authority
JP
Japan
Prior art keywords
carbon dioxide
exhaust gas
wet
sand
regenerated sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007262456A
Other languages
Japanese (ja)
Inventor
Toshibumi Kikuchi
俊文 菊地
Yasuhiro Kuroda
泰弘 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2007262456A priority Critical patent/JP2009090198A/en
Publication of JP2009090198A publication Critical patent/JP2009090198A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To early realize fixing of carbon dioxide in an exhaust gas accompanied by waste heat by using regenerated sand of waste concrete. <P>SOLUTION: The regenerated sand 4 prepared by crushing waste concrete is accumulated inside a building, its surface is sprinkled and agitated with water in a state of accumulation, and the whole of the regenerated sand 4 of a predetermined thickness is turned wet of about 10-15% in a moisture content. The regenerated sand 4 is dried by feeding the exhaust gas accompanied by waste heat to the wet regenerated sand 4 through an exhaust gas feed system with a pipe installed below an accumulating place. Then carbon dioxide in the exhaust gas is fixed into the regenerated sand 4 by repeating an alternative processes comprising water feed, regenerating sand agitation and exhaust gas feed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は二酸化炭素の固定化方法に係り、特に二酸化炭素を含む燃焼排気ガスの排熱を利用して、鉄筋コンクリート建物等を解体した際に発生した廃材コンクリートから再生された砕石中に、前記燃焼排気ガス中の二酸化炭素を固定化するようにした二酸化炭素の固定化方法に関する。   The present invention relates to a method for immobilizing carbon dioxide, and in particular, using the exhaust heat of combustion exhaust gas containing carbon dioxide, the crushed stone regenerated from waste concrete generated when demolishing reinforced concrete buildings and the like, the combustion The present invention relates to a carbon dioxide immobilization method for immobilizing carbon dioxide in exhaust gas.

地球温暖化ガスの代表とされている二酸化炭素の排出量を削減するための一技術分野として、二酸化炭素の固定化技術が種々提案されている。   Various carbon dioxide immobilization techniques have been proposed as one technical field for reducing carbon dioxide emissions, which are representative of global warming gases.

たとえば、ゼオライトの有するカチオン交換性を利用して、コンクリート再生材料中に含まれるアルカリ土類イオンと、炭酸イオンとの反応を促進し、安定したアルカリ土類炭酸塩(たとえばCaCO3)等を生成して、二酸化炭素の固定化を図る技術が提案されている(非特許文献1)。 For example, by utilizing the cation exchange properties of zeolite, the reaction between alkaline earth ions contained in recycled concrete material and carbonate ions is promoted to produce stable alkaline earth carbonates (for example, CaCO 3 ). A technique for fixing carbon dioxide has been proposed (Non-Patent Document 1).

また、他の研究報告レベルの先行技術として、廃セメント微粉末のスラリー中に二酸化炭素ガスを吹き込み、水中にセメント成分中のカルシウム成分を抽出後、炭酸カルシウムとして取り出す技術が開示されている(非特許文献2)。   Further, as a prior art at another research report level, a technique is disclosed in which carbon dioxide gas is blown into a slurry of waste cement fine powder, the calcium component in the cement component is extracted into water, and then extracted as calcium carbonate (non- Patent Document 2).

他方の見地から、工業プロセスで発生した排ガス(燃焼排気ガス)中の二酸化炭素(CO2)を工業的に除去する方法に利用するCO2吸収材として、スラグやコンクリートを利用する提案されている(特許文献1)
財団法人建設経済研究所(RICE)化学研究グループ,“ゼオライトの有する交換性Caイオンを利用したCO2固定化・有効利用技術の開発”,[online],2002年,[平成19年4月25日]<URL:http://www.rite.or.jp/Japanese/kenki/koubo/seika/gaiyou/7eoraito.htm> 飯塚淳他3名,「廃コンクリートを用いた新規な二酸化炭素固定プロセス」,化学工学論文集,化学工学論文集,第28巻,第5号(2002年刊行) 特開2006−75717公報参照。
From the other point of view, it has been proposed to use slag or concrete as a CO 2 absorbent for use in industrially removing carbon dioxide (CO 2 ) in exhaust gas (combustion exhaust gas) generated in an industrial process. (Patent Document 1)
Research Institute of Construction Economics (RICE), “Development of CO2 fixation and effective utilization technology using exchangeable Ca ions in zeolite”, [online], 2002, April 25, 2007 ] <URL: http://www.rite.or.jp/Japanese/kenki/koubo/seika/gaiyou/7eoraito.htm> Atsushi Iizuka and three others, “A novel carbon dioxide fixation process using waste concrete”, Chemical Engineering Papers, Chemical Engineering Papers, Vol. 28, No. 5 (2002) See JP-A-2006-75717.

ところで、非特許文献1に開示された技術では、廃コンクリート中に含有するアルカリ土類イオンを取り出し、天然鉱物であるゼオライトと有するイオン交換性を利用して、水溶液加圧容器内で二酸化炭素の固定化を図ることが前提となっている。そのための加圧、撹拌作業が可能なプラントを必要とする上、排ガスとしての二酸化炭素の導入経路を設ける必要がある。これに対して、非特許文献2に開示されたプロセスでは、ゼオライト等のイオン交換性材料を用いる必要がないが、排ガスとして回収された二酸化炭素を加圧して高圧雰囲気を形成し、その状況下で廃コンクリート中のカルシウム分をカルシウムイオンとして抽出し、さらに水溶液相のみを取り出し、大気圧まで減圧して炭酸カルシウムを得る。このため、装置として高圧力調整が可能なプラントを要する。   By the way, in the technique disclosed in Non-Patent Document 1, the alkaline earth ions contained in the waste concrete are taken out, and the ion exchange property with zeolite, which is a natural mineral, is used, and the carbon dioxide in the aqueous solution pressure vessel is used. It is premised on fixing. Therefore, it is necessary to provide a plant capable of pressurization and stirring, and to provide an introduction path for carbon dioxide as exhaust gas. On the other hand, in the process disclosed in Non-Patent Document 2, it is not necessary to use an ion exchange material such as zeolite, but a high-pressure atmosphere is formed by pressurizing carbon dioxide recovered as an exhaust gas. Then, the calcium content in the waste concrete is extracted as calcium ions, and only the aqueous phase is taken out and reduced to atmospheric pressure to obtain calcium carbonate. For this reason, the plant which can adjust high pressure as an apparatus is required.

特許文献1に開示された発明は、本来、鉄鋼製造プロセスでの適用を想定したCO2の除去方法であるため、鉄鋼製造時に発生する各種スラグを主材料として、それにコンクリート等を混合し、所定の湿度を保持した湿空雰囲気の湿空養生下に置くことで、材料に水和膨張を発生させてCO2を固定化することを企図している。また、特許文献1に開示された発明は、これらの材料を湿潤化することで、CO2吸収の効果が高められる点を特徴としている。この点で、本出願の発明者らと、一部、共通の技術的特徴を見出している。 Since the invention disclosed in Patent Document 1 is originally a CO 2 removal method that is assumed to be applied in a steel production process, various slags generated during steel production are used as a main material, and concrete or the like is mixed therewith. It is intended to immobilize CO 2 by generating hydration expansion in the material by placing it under a wet air curing in a wet air atmosphere in which the humidity is maintained. The invention disclosed in Patent Document 1 is characterized in that the effect of CO 2 absorption can be enhanced by wetting these materials. In this respect, the present inventors have found some common technical features with the inventors of the present application.

本出願の発明者らは、既に、上述の湿潤状態に加え、これらの材料を乾燥状態におく乾湿状態の繰り返し環境下において、CO2吸収が大きく促進されるとの知見を得ている。その知見を踏まえ、本発明の目的は上述した従来の技術では、長期の材料暴露が必要であったという問題点を解消し、排熱を伴う燃焼排気ガスとの接触により、所定の乾湿状態の繰り返し環境の促進を図り、廃コンクリートから再生された砂に、排気ガス中の二酸化炭素を固定化させるようにした、二酸化炭素の固定化方法を提供することにある。 The inventors of the present application have already obtained knowledge that CO 2 absorption is greatly promoted in a wet and dry repeated environment in which these materials are kept in a dry state in addition to the wet state described above. Based on this knowledge, the object of the present invention is to solve the problem that long-term material exposure was necessary in the above-described conventional technology, and by contact with combustion exhaust gas accompanied by exhaust heat, a predetermined dry and wet state is achieved. An object of the present invention is to provide a method for immobilizing carbon dioxide by repeatedly promoting the environment and immobilizing carbon dioxide in exhaust gas on sand regenerated from waste concrete.

[CO2の固定化のための促進プロセス]
発明者等は、二酸化炭素の固定化において、固定化材料としての廃コンクリートからの再生材料を、通常の通風乾燥状態に置くよりも、乾燥状態と湿潤状態とを交互に発生させるようにすることで、炭酸塩化させるプロセスを早めることができ、その実現のためには、材料を集積保管する際の、材料の乾湿状態の繰り返し条件を適切に設定することの重要性を認識している。
[Promoting process for CO 2 fixation]
The inventors of the present invention have made it possible to alternately generate a dry state and a wet state in the fixation of carbon dioxide, rather than placing the recycled material from waste concrete as the fixing material in a normal ventilation drying state. Thus, the carbonation process can be accelerated, and in order to realize the process, the importance of appropriately setting the repeated conditions of the wet and dry conditions of the material when accumulating and storing the material is recognized.

また、排熱を伴う排気ガスでは排熱からの熱供給により、湿潤状態にある材料の乾燥促進を実現することができる。そこで、乾湿状態の繰り返しの促進に排熱を利用することにより、従来の大気中の二酸化炭素の固定化に比べて、排気ガス中の二酸化炭素の固定化の方が高い効果を上げることが確認された。本発明は、排熱を伴う排ガス中の二酸化炭素の固定化を、廃コンクリートの再生材料等を用いて早期に実現できるという促進プロセスの考え方に基づいている。   Further, with exhaust gas accompanied by exhaust heat, drying of a wet material can be promoted by supplying heat from the exhaust heat. Therefore, by using exhaust heat to promote repeated wet and dry conditions, it is confirmed that the fixation of carbon dioxide in exhaust gas is more effective than the conventional fixation of carbon dioxide in the atmosphere. It was done. The present invention is based on the concept of an acceleration process in which the fixation of carbon dioxide in exhaust gas accompanied by exhaust heat can be realized at an early stage by using a recycled concrete material of waste concrete.

本発明は、上述の知見に基づき、廃コンクリートを破砕して得た材料を集積し、水分供給して撹拌することで湿潤状態とし、該湿潤状態の材料に、排熱を伴う排気ガスを供給し、前記材料を乾燥させ、再度水分供給・材料撹拌と排ガス供給とからなる交互工程を繰り返すことで、前記材料中に前記排気ガス中の二酸化炭素を取り込み固定化させることを特徴とする。   Based on the above-mentioned knowledge, the present invention accumulates materials obtained by crushing waste concrete, and supplies moisture to a wet state by supplying and stirring, and supplies exhaust gas accompanied by exhaust heat to the wet material. Then, the material is dried, and the alternating process consisting of water supply / material stirring and exhaust gas supply is repeated again, whereby carbon dioxide in the exhaust gas is taken into the material and fixed.

前記材料は、再生砂とすることが好ましい。   The material is preferably recycled sand.

前記材料を集積した状態で表面に散水して撹拌し、所定層厚の材料を湿潤状態とすることが工程上、好ましい。   In the process, it is preferable to sprinkle and stir the surface of the material in a state where the material is accumulated to make the material having a predetermined layer thickness wet.

前記湿潤状態の材料の含水率を10〜15%にすることが好ましい。   The moisture content of the wet material is preferably 10 to 15%.

前記材料は、二酸化炭素を固定化した後に再生砂として用いることが好ましい。   The material is preferably used as reclaimed sand after carbon dioxide is immobilized.

前記材料は、六価クロム溶出抑制処理工程を含むことが好ましい。   The material preferably includes a hexavalent chromium elution suppression treatment step.

本発明によれば、排熱を伴う燃焼排気ガス中の二酸化炭素を、早期に廃コンクリートから得られた再生砂中に固定化することができるという効果を奏する。   According to the present invention, there is an effect that carbon dioxide in combustion exhaust gas accompanied by exhaust heat can be fixed in recycled sand obtained from waste concrete at an early stage.

以下、本発明による二酸化炭素の固定化方法の実施するための最良の形態として、以下の実施例について添付図面を参照して説明する。   Hereinafter, as the best mode for carrying out the method for immobilizing carbon dioxide according to the present invention, the following examples will be described with reference to the accompanying drawings.

[再生砂による二酸化炭素の固定化]
本発明では、二酸化炭素の固定化材料として再生砂を用いた。この再生砂は建築物等を破砕して発生した廃コンクリートを、さらにクラッシャ設備で破砕したもので、本実施例では、粒度調整された再生砂を使用した。各種再生砂のうち、好適な再生砂として、比表面積が大きく、セメント水和物の含有量の多いRC10−0(呼び名)を用いて二酸化炭素の固定化を行なうこととした。
[Immobilization of carbon dioxide with recycled sand]
In the present invention, recycled sand is used as a carbon dioxide fixing material. This reclaimed sand is obtained by crushing waste concrete generated by crushing a building or the like with a crusher facility. In this example, regenerated sand whose particle size was adjusted was used. Among various types of reclaimed sand, carbon dioxide was fixed using RC10-0 (nominal name) having a large specific surface area and a high cement hydrate content as suitable reclaimed sand.

図1各図は、再生砂の二酸化炭素固定化を行うための材料集積場1の一例を示した模式図である。図1(a)に示したように、材料集積場1は、降雨による影響を避ける屋根2が架設され、かつ固定化材料4(本実施例ではRC10−0)を平面状に撒き出して所定高さに集積した状態で、粒状体からなる固定化材料の暴露面積を大きく確保できるような、所定の平面積を有する固定化材集積エリア3を有する屋内施設からなる。天井部には、固定化材集積エリア3に合わせて散水管を縦横に配管した散水施設5が設けられている。これにより、集積した固定化材料4の表面に満遍なくシャワー散水が行えるようになっている。
一方、固定化材集積エリア3の下方にはエリア3と同面積のピットが構築されている。このピット6内には所定間隔をあけて中間柱7が立設され、中間柱7に支持されるように、所定の目合いのエクスパンドメタル製のグレーチング(すのこ)床面8が、ピット6を覆うように敷設されている。そしてこのグレーチング床面8上に、固定化材料4としての再生砂が堆積されるようになっている。さらにピット6内には、図1(b)に示した平面図のように、複数本の排気ガス配管10が建物の入口から出口方向に沿って、並列して配管されている。各配管10の上面には、ガス噴出孔11が所定ピッチをあけて形成され、図1(a)に模式的に示した排ガス供給系統15からブロア16を介して所定圧で供給された排ガスが、同図に示したように、上向きにエキスパンドメタル床面8に向けて噴出できるようになっている。
1 is a schematic diagram showing an example of a material accumulation field 1 for fixing carbon dioxide of recycled sand. As shown in FIG. 1 (a), the material accumulation field 1 is provided with a roof 2 that avoids the influence of rainfall, and a fixed material 4 (RC10-0 in the present embodiment) is sprinkled in a planar shape to be predetermined. It is an indoor facility having an immobilizing material accumulation area 3 having a predetermined flat area so that a large exposed area of the immobilizing material made of granular materials can be secured in a state of being accumulated at a height. On the ceiling, a watering facility 5 in which watering pipes are vertically and horizontally arranged in accordance with the fixing material accumulation area 3 is provided. Thereby, shower watering can be performed evenly on the surface of the accumulated fixing material 4.
On the other hand, a pit having the same area as the area 3 is constructed below the immobilization material accumulation area 3. In this pit 6, an intermediate pillar 7 is erected at a predetermined interval, and an expanded metal grating floor surface 8 having a predetermined scale is supported by the intermediate pillar 7 so that the pit 6 It is laid to cover. And the reclaimed sand as the immobilizing material 4 is deposited on the grating floor 8. Further, in the pit 6, as shown in the plan view of FIG. 1B, a plurality of exhaust gas pipes 10 are piped in parallel along the direction from the entrance to the exit of the building. Gas ejection holes 11 are formed on the upper surface of each pipe 10 at a predetermined pitch, and exhaust gas supplied at a predetermined pressure from the exhaust gas supply system 15 schematically shown in FIG. As shown in the figure, it can be ejected upward toward the expanded metal floor 8.

なお、本実施例では、材料4の撹拌、堆積、及び材料4の出荷側への移動のために、材料4上をクローラ走行可能な搬土重機(図示せず)が配備されているが、材料処理工程を定常的に行う施設であれば、材料4の集積範囲をレール等にガイドされて走行可能な撹拌、搬送装置を定置することも可能である。   In the present embodiment, for the stirring and deposition of the material 4 and the movement of the material 4 to the shipping side, a carry heavy machine (not shown) capable of crawling on the material 4 is provided. If it is a facility that regularly performs the material processing step, it is also possible to place a stirring / conveying device that can travel while the accumulation range of the material 4 is guided by a rail or the like.

ここで、材料集積場1への二酸化炭素を含む排ガスの供給経路および材料集積場1内における配管例について説明する。図1に示したように、本実施例では、この材料集積場1外に設置された燃焼施設20から排出された燃焼排気ガスは、まず公知のバグフィルタ等の微粒子捕集部材21を通過させ、窒素酸化物(NOx)、硫化物(SOx)を除去する。そして二酸化炭素を含む排気ガスを材料集積場1の固定化材集積エリア3下のピット6内に敷設された配管10に送気する。その際、供給系統15の経路上に、公知のブロア16を設置し、各配管10に供給する排ガスが噴出孔11から、所定圧力で上方のエキスパンドメタル床面8に向けて噴出させることで、堆積状態の砕石4間の噛み合いの空隙を上方に向けて通過できるようにすることが好ましい。 Here, a supply path of exhaust gas containing carbon dioxide to the material accumulation field 1 and an example of piping in the material accumulation field 1 will be described. As shown in FIG. 1, in this embodiment, the combustion exhaust gas discharged from the combustion facility 20 installed outside the material accumulation field 1 is first passed through a particulate collection member 21 such as a known bag filter. Nitrogen oxide (NO x ) and sulfide (SO x ) are removed. Then, the exhaust gas containing carbon dioxide is sent to a pipe 10 laid in the pit 6 below the fixing material accumulation area 3 of the material accumulation field 1. At that time, by installing a known blower 16 on the path of the supply system 15, the exhaust gas supplied to each pipe 10 is ejected from the ejection hole 11 toward the upper expanded metal floor 8 at a predetermined pressure, It is preferable to allow the gap between the crushed stones 4 in the accumulated state to pass upward.

以下、固定化材料4としての再生砂を用いた二酸化炭素の固定化工程について、図1各図,図2を参照して説明する。再生砂(以下、単に材料4と記す。)は、ダンプトラック等で集積場1内に搬入されるが、図1(a)に示したように、撒き出された後に所定厚さに敷きならされ、天井部に設置された散水施設5により、材料4の表面に満遍なく散水し、さらに所定層厚を掘り返すような撹拌を行い、堆積した内部も湿潤状態となるようにする。このときの材料の管理含水率としては、散水時の含水率として10%程度を想定している。材料集積場1内において、所定厚の部分を、堆積材料上を走行可能は搬土重機あるいは、定置式の搬土装置を用いて撹拌して堆積した材料4内を均質な湿潤状態とする。そして、湿潤状態にある材料4の下方のピット6側から、配管10を通じて所定の噴出圧で排ガスを供給する。すると、二酸化炭素を含み、乾燥状態にある排ガスが堆積状態にある材料4の空隙を通過する。その時の排ガスの温度は100℃以下であるが、できるだけ高温であることが好ましい。これにより、堆積した内部にわたって湿潤状態にある材料4の乾燥を促進することができる。なお、排ガス供給系統15を通過する排熱温度を制御するために、系統15内に図示しない温度調整装置を設けることで、適温の排気ガスを湿潤状態の材料4に送気することが好ましい。   Hereinafter, the carbon dioxide immobilization process using the regenerated sand as the immobilization material 4 will be described with reference to FIG. 1 and FIG. Recycled sand (hereinafter simply referred to as “material 4”) is carried into the dump 1 by a dump truck or the like, but if it is laid out to a predetermined thickness after being squeezed out as shown in FIG. Then, the sprinkling facility 5 installed on the ceiling part uniformly sprinkles the surface of the material 4 and further performs stirring so as to dig a predetermined layer thickness so that the deposited interior is also wet. As a management moisture content of the material at this time, about 10% is assumed as a moisture content at the time of watering. In the material accumulation field 1, a portion having a predetermined thickness is allowed to travel on the deposited material, and the material 4 deposited by stirring using a heavy-duty heavy machine or a stationary type soil-carrying apparatus is brought into a homogeneous wet state. Then, exhaust gas is supplied at a predetermined jet pressure through the pipe 10 from the pit 6 side below the material 4 in a wet state. Then, the exhaust gas in the dry state containing carbon dioxide passes through the voids of the material 4 in the deposited state. The temperature of the exhaust gas at that time is 100 ° C. or lower, but is preferably as high as possible. Thereby, drying of the material 4 which is in a wet state over the deposited inside can be promoted. In order to control the exhaust heat temperature that passes through the exhaust gas supply system 15, it is preferable to provide a temperature adjusting device (not shown) in the system 15 so that the exhaust gas at an appropriate temperature is supplied to the wet material 4.

そして、ある程度の時間、排ガスを送気することで堆積した内部にわたり、材料4全体が乾燥したことを確認する。排ガス供給を停止し、再度散水〜材料撹拌を行い、堆積した材料4全体の湿潤化を図る。そして、上記工程を繰り返すように、排ガスを湿潤状態の材料4にピット6側から満遍なく供給することにより、再度乾燥させる。このようにして排ガスの排熱を用いて乾湿状態を促進して行う方法を、2〜3日間で30回程度行う。この乾湿状態の繰り返し工程において、湿潤状態を作る撹拌時に、材料4を材料集積場1内の搬出側に移動させ、その一部をエリア4外に取り出すとともに、順次新しい材料4を、材料集積エリア3に投入して堆積させることで、連続的に材料4の供給を行うことが好ましい。   Then, it is confirmed that the entire material 4 has been dried over the interior deposited by supplying exhaust gas for a certain period of time. The exhaust gas supply is stopped, and water spraying to material stirring is performed again to wet the deposited material 4 as a whole. And it is made to dry again by supplying exhaust gas uniformly from the pit 6 side to the wet material 4 so that the said process may be repeated. In this way, the method of promoting the wet and dry state using exhaust heat of exhaust gas is performed about 30 times in 2 to 3 days. In the repetitive process of the wet and dry states, the material 4 is moved to the carry-out side in the material accumulation field 1 during stirring to create a wet state, a part of the material 4 is taken out of the area 4, and new materials 4 are sequentially added to the material accumulation area. It is preferable that the material 4 is continuously supplied by charging the material 3 and depositing.

なお、上述の乾湿の工程の繰り返し回数程度(30回)の促進化で達成される二酸化炭素固定化量は、出願人がすでに提案している、大気中の二酸化炭素の固定化のために、堆積された材料の湿潤状態と乾燥状態とを繰り返す工程を約2〜3ヶ月程度継続して材料暴露させる方法によって固定化できる二酸化炭素量に匹敵することが確認できた。   In addition, the amount of carbon dioxide immobilization achieved by promoting the number of repetitions of the above-described wet and dry processes (30 times) is the same as that already proposed by the applicant for immobilizing carbon dioxide in the atmosphere. It was confirmed that the process of repeating the wet and dry conditions of the deposited material was comparable to the amount of carbon dioxide that could be fixed by the method of exposing the material continuously for about 2 to 3 months.

また、所定の二酸化炭素量の固定化を行った後の材料4は、安定化が図られた後、材料集積場1から搬出され、材料4の当初の用途である再生砂として再調製することで、埋め戻し材としての所定の用途に利用することができる。なお、この材料4が、曝気状態で使用される場合、あるいは当初からCr(VI)溶出量が土壌環境基準を上回っていることが判明している場合には、材料集積場1に搬入された後に、還元剤などとの混和によりCr(VI)溶出抑制対策を施すのがよい。   In addition, the material 4 after fixing a predetermined amount of carbon dioxide is stabilized and then transported from the material accumulation place 1 and re-prepared as recycled sand which is the original use of the material 4. Thus, it can be used for a predetermined application as a backfill material. In addition, when this material 4 is used in the aerated state, or when it is known from the beginning that the amount of Cr (VI) elution exceeds the soil environment standard, it was carried into the material accumulation site 1. Later, Cr (VI) elution control measures should be taken by mixing with a reducing agent.

本発明の二酸化炭素の固定化工程を実施可能な材料集積場の一例を示した説明図。Explanatory drawing which showed an example of the material accumulation place which can implement the fixing process of the carbon dioxide of this invention. 再生砂による二酸化炭素の固定化工程を示したフローチャート。The flowchart which showed the fixation process of the carbon dioxide by regenerated sand.

符号の説明Explanation of symbols

1 材料集積場
2 屋根
3 材料集積エリア
4 固定化材料(再生砂)
5 散水施設
6 ピット
8 グレーチング床面
10 排ガス配管
15 排ガス供給系統
16 微粒子捕集部材(バグフィルタ))
20 燃焼装置
1 Material accumulation area 2 Roof 3 Material accumulation area 4 Immobilized material (recycled sand)
5 Water sprinkling facility 6 Pit 8 Grating floor 10 Exhaust gas piping 15 Exhaust gas supply system 16 Particulate collecting member (bug filter))
20 Combustion device

Claims (6)

廃コンクリートを破砕して得た材料を集積し、水分供給して撹拌することで湿潤状態とし、該湿潤状態の材料に、排熱を伴う排気ガスを供給して前記材料を乾燥させ、再度水分供給・材料撹拌と排ガス供給とからなる交互工程を繰り返すことで、前記材料中に前記排気ガス中の二酸化炭素を固定化させることを特徴とする二酸化炭素の固定化方法。   The material obtained by crushing the waste concrete is collected, supplied with moisture and stirred to be in a wet state, exhaust gas accompanied by exhaust heat is supplied to the wet state material, the material is dried, and moisture is supplied again. A carbon dioxide immobilization method characterized by immobilizing carbon dioxide in the exhaust gas in the material by repeating an alternating process comprising supply / material agitation and exhaust gas supply. 前記材料は、再生砂であることを特徴とする請求項1に記載の二酸化炭素の固定化方法。   The method for fixing carbon dioxide according to claim 1, wherein the material is recycled sand. 前記材料を集積した状態で表面に散水して撹拌し、所定層厚の材料全体を湿潤状態とする請求項1または請求項2に記載の二酸化炭素の固定化方法。   The method for immobilizing carbon dioxide according to claim 1 or 2, wherein the material is accumulated and sprinkled on the surface and stirred to wet the entire material having a predetermined layer thickness. 前記湿潤状態の材料の含水率を10〜15%にしたことを特徴とする請求項1乃至請求項3のいずれか1項に記載の二酸化炭素の固定化方法。   The method for immobilizing carbon dioxide according to any one of claims 1 to 3, wherein the moisture content of the wet material is 10 to 15%. 前記材料は、二酸化炭素を固定化した後に再生砂として用いられることを特徴とする請求項2に記載の二酸化炭素の固定化方法。   The method for fixing carbon dioxide according to claim 2, wherein the material is used as regenerated sand after carbon dioxide is fixed. 前記材料は、六価クロム溶出抑制処理工程を含むことを特徴とする請求項2に記載の二酸化炭素の固定化方法。   The method for immobilizing carbon dioxide according to claim 2, wherein the material includes a hexavalent chromium elution suppression treatment step.
JP2007262456A 2007-10-05 2007-10-05 Method for fixing carbon dioxide Pending JP2009090198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007262456A JP2009090198A (en) 2007-10-05 2007-10-05 Method for fixing carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007262456A JP2009090198A (en) 2007-10-05 2007-10-05 Method for fixing carbon dioxide

Publications (1)

Publication Number Publication Date
JP2009090198A true JP2009090198A (en) 2009-04-30

Family

ID=40662730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262456A Pending JP2009090198A (en) 2007-10-05 2007-10-05 Method for fixing carbon dioxide

Country Status (1)

Country Link
JP (1) JP2009090198A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224231A (en) * 2012-04-20 2013-10-31 Kobe Steel Ltd Method for modifying slag material surface
JP2013224230A (en) * 2012-04-20 2013-10-31 Kobe Steel Ltd Method for modifying slag material surface
WO2020166176A1 (en) 2019-02-14 2020-08-20 太平洋セメント株式会社 Carbon dioxide fixation method
WO2020166174A1 (en) 2019-02-14 2020-08-20 太平洋セメント株式会社 Carbon dioxide fixation method
CN112191093A (en) * 2020-04-03 2021-01-08 太平洋水泥株式会社 Method and device for fixing carbon dioxide by cement-based material
JP2021138574A (en) * 2020-03-05 2021-09-16 太平洋セメント株式会社 Producing method of cement mixture, mixed cement and carbon dioxide adsorbent
CN113842768A (en) * 2021-11-17 2021-12-28 重庆市畜牧科学院 Carbon dioxide treatment method
JP7121866B1 (en) 2022-03-15 2022-08-18 日本コンクリート工業株式会社 Carbon dioxide fixation device and carbon dioxide fixation method
CN116689459A (en) * 2023-07-24 2023-09-05 三碳(安徽)科技研究院有限公司 Solid waste treatment method for absorbing carbon dioxide and belt type solid waste treatment equipment
JP7562459B2 (en) 2021-03-22 2024-10-07 太平洋セメント株式会社 Carbon dioxide fixation device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224231A (en) * 2012-04-20 2013-10-31 Kobe Steel Ltd Method for modifying slag material surface
JP2013224230A (en) * 2012-04-20 2013-10-31 Kobe Steel Ltd Method for modifying slag material surface
KR20210126098A (en) 2019-02-14 2021-10-19 다이헤이요 세멘토 가부시키가이샤 Method of immobilization of carbon dioxide
US11878268B2 (en) 2019-02-14 2024-01-23 Taiheiyo Cement Corporation Carbon dioxide fixation method
JP2020131076A (en) * 2019-02-14 2020-08-31 太平洋セメント株式会社 Immobilization method of carbon dioxide
KR20210124465A (en) 2019-02-14 2021-10-14 다이헤이요 세멘토 가부시키가이샤 Method of immobilization of carbon dioxide
WO2020166176A1 (en) 2019-02-14 2020-08-20 太平洋セメント株式会社 Carbon dioxide fixation method
WO2020166174A1 (en) 2019-02-14 2020-08-20 太平洋セメント株式会社 Carbon dioxide fixation method
JP2021138574A (en) * 2020-03-05 2021-09-16 太平洋セメント株式会社 Producing method of cement mixture, mixed cement and carbon dioxide adsorbent
JP7450409B2 (en) 2020-03-05 2024-03-15 太平洋セメント株式会社 Method for producing cement mixture, mixed cement and carbon dioxide adsorbent
CN112191093A (en) * 2020-04-03 2021-01-08 太平洋水泥株式会社 Method and device for fixing carbon dioxide by cement-based material
JP7562459B2 (en) 2021-03-22 2024-10-07 太平洋セメント株式会社 Carbon dioxide fixation device
CN113842768A (en) * 2021-11-17 2021-12-28 重庆市畜牧科学院 Carbon dioxide treatment method
JP2023135146A (en) * 2022-03-15 2023-09-28 日本コンクリート工業株式会社 Carbon dioxide immobilization device and carbon dioxide immobilization method
JP7121866B1 (en) 2022-03-15 2022-08-18 日本コンクリート工業株式会社 Carbon dioxide fixation device and carbon dioxide fixation method
CN116689459A (en) * 2023-07-24 2023-09-05 三碳(安徽)科技研究院有限公司 Solid waste treatment method for absorbing carbon dioxide and belt type solid waste treatment equipment

Similar Documents

Publication Publication Date Title
JP2009090198A (en) Method for fixing carbon dioxide
Hanifa et al. A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies
Ho et al. CO2 utilization via direct aqueous carbonation of synthesized concrete fines under atmospheric pressure
Pu et al. Accelerated carbonation treatment of recycled concrete aggregates using flue gas: A comparative study towards performance improvement
Siriruang et al. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete
Viet et al. The use of fly ashes from waste-to-energy processes as mineral CO2 sequesters and supplementary cementitious materials
JP2009028581A (en) Method of fixing carbon dioxide
Huntzinger et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation
US20240208833A1 (en) Methods and systems for utilizing calcium compound from calcined limestone
EP3581257A1 (en) Method using recycled concrete fines for co2/sox removal from exhaust gas
US20230107410A1 (en) Methods and systems for treatment of lime to form vaterite
WO2009024826A1 (en) Production of secondary aggregates
JP3828897B2 (en) Method for stabilizing steelmaking slag and stabilized steelmaking slag
JP5008507B2 (en) Dust collector having powder mixing processing means and powder mixing processing method
Liu et al. Utilization of waste concrete powder with different particle size as absorbents for SO2 reduction
Trung et al. Effects of sample crumbling and particle size on accelerated carbonation of alkaline construction sludge treated with paper-sludge ash-based stabilizers
Wei et al. CO2 sequestration exploration utilizing converter slag and cold-rolling waste water: The effect of carbonation parameters
Preetham et al. Vehicular soot for improvement of chemical stability of cement composites towards acid rain and sewage like atmospheres
JP5081380B2 (en) Heat regeneration method of waste gypsum using asphalt plant
Grosso et al. Literature review on the assessment of the carbonation potential of lime in different markets and beyond
JP4362494B2 (en) Granulation method of powdered slag
JP2006255705A (en) Manufacturing method of solidifying carbonic acid
WO2022256456A1 (en) Methods for reactivating passivated mineral residues
JP3999520B2 (en) Aggregate regeneration method and apparatus
JP2005305297A (en) Insolubilization and solidification system for heavy metal polluted soil