JP2009090164A - Microchip device - Google Patents

Microchip device Download PDF

Info

Publication number
JP2009090164A
JP2009090164A JP2007260680A JP2007260680A JP2009090164A JP 2009090164 A JP2009090164 A JP 2009090164A JP 2007260680 A JP2007260680 A JP 2007260680A JP 2007260680 A JP2007260680 A JP 2007260680A JP 2009090164 A JP2009090164 A JP 2009090164A
Authority
JP
Japan
Prior art keywords
microchip device
flow
liquid
fine
partition member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007260680A
Other languages
Japanese (ja)
Inventor
Yutaka Takahashi
高橋豊
Ken Shinba
榛葉健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CORP U
U Corp
Jeol Ltd
Original Assignee
CORP U
U Corp
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CORP U, U Corp, Jeol Ltd filed Critical CORP U
Priority to JP2007260680A priority Critical patent/JP2009090164A/en
Publication of JP2009090164A publication Critical patent/JP2009090164A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchip device having the high functional liquid-liquid separation performance which has overcome the problems included in conventional techniques. <P>SOLUTION: In the microchip device with a mechanism that two types of immiscible liquids are introduced into a detailed passage via different passages and passed within the detailed passage while forming two-laminar flow in contact with each other via the interface in the detailed passage, and then withdrawn through the different divided passages again, the detailed passage is characterized in that it is formed by bonding a first sheet-like member and a second sheet-like member after drilling a gutter to at least one of them, the hydrophilic chemical treatment is effected to the inner wall of the flowing side of the hydrophilic liquid in the detailed passage and the hydrophobic chemical treatment is effected to the inner wall of the flowing side of the hydrophobic liquid so that two types of liquids flow as the two-laminar flow, and in that a partition member jutted so as to divide the two-laminar flow from both sides along the interface of the two types of liquids is installed to the side walls of the detailed passage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複雑な混合物試料中の微量物質、例えば環境水中の農薬など環境汚染物質や生体試料中の薬物、タンパク質などの抽出・精製操作に広く用いられるマイクロチップデバイスに関する。   The present invention relates to a microchip device that is widely used for extraction and purification operations of trace substances in a complex mixture sample, for example, environmental pollutants such as agricultural chemicals in environmental water, drugs and proteins in biological samples, and the like.

マイクロチップデバイスの微細流路を用いた溶媒抽出技術に関する研究は、比界面積がマクロな系に比べて大きいという利点があることから、以前から盛んに行われている。また、流体力学によると、微細流路を流れる液体はレイノルズ数(慣性力と粘性による摩擦力との比)が小さくなり、慣性作用よりも粘性作用の強い流れとなるため、流れと同じ方向に並行な2層流が形成されやすい。   Research on solvent extraction technology using micro-channels of microchip devices has been actively conducted since it has the advantage that the specific interface area is larger than that of macro systems. In addition, according to fluid dynamics, the liquid flowing through the fine channel has a smaller Reynolds number (ratio of inertia force to frictional force due to viscosity), and the flow is stronger than the inertial action. Two parallel laminar flows are likely to be formed.

このような微細流路内の2層流は、重力の影響をほとんど受けないために、比重の異なる、混ざり合わない2種類(例えば水とエーテル)の液体を横方向に接触させて同方向に流すと、左右に分離された2層流が形成される。   Since the two-layer flow in such a fine channel is hardly affected by gravity, two kinds of liquids having different specific gravity (for example, water and ether) that are not mixed are brought into contact in the horizontal direction in the same direction. When flowing, a two-layer flow separated into left and right is formed.

この時、例えばエーテル中に大量の疎水性夾雑物質と微量の親水性物質(目的物質)が溶解していれば、この目的物質は溶媒の流れに乗りながらエーテル層から水層に界面を移動する。そして、下流で水層とエーテル層を分岐させる流路を設けておけば、目的物質を抽出することが可能になる。   At this time, for example, if a large amount of hydrophobic contaminants and a small amount of hydrophilic substance (target substance) are dissolved in ether, the target substance moves from the ether layer to the aqueous layer while riding on the flow of the solvent. . And if the flow path which branches a water layer and an ether layer downstream is provided, it will become possible to extract a target substance.

微細流路では並行な2層流が形成されやすいと前述したが、溶媒の粘性やチャンネル表面との表面張力などにより、溶媒の種類によっては、安定した2層流が形成されにくい場合がある。たとえば、ジクロロメタン/水、クロロホルム/水、n−へキサン/水などがこの例にあたる。   As described above, it is easy to form a parallel two-layer flow in the fine flow path. However, depending on the type of the solvent, a stable two-layer flow may be difficult to be formed due to the viscosity of the solvent or the surface tension with the channel surface. Examples include dichloromethane / water, chloroform / water, n-hexane / water, and the like.

これまで、微細流路において2層流を安定化させるために、例えば、微細流路の底面に溝状のガイドを設ける方法(特許文献1)や、微細流路の底面に破線状のガイドを設ける方法(特許文献2)や、2枚の基板に深さと幅の異なる溝を作製して各溝の壁面を親水性および疎水性とし、両溝を合わせて流路を形成する方法(特許文献3)などの方法がとられてきた。   Until now, in order to stabilize the two-layer flow in the microchannel, for example, a method of providing a groove-shaped guide on the bottom surface of the microchannel (Patent Document 1), or a broken-line guide on the bottom surface of the microchannel A method of forming a groove (patent document 2) or a method of forming grooves with different depths and widths on two substrates, making the wall surface of each groove hydrophilic and hydrophobic, and forming a flow path by combining both grooves (patent document 2) 3) etc. have been taken.

特開2002−001102号公報Japanese Patent Laid-Open No. 2002-001102 特開2005−034827号公報JP 2005-034827 A 特開2006−075680号公報Japanese Patent Laid-Open No. 2006-075680

しかしながら、特許文献1の方法では、ガイド構造は流路底面のみに作製するため、安定な界面を形成させるには溶媒の組み合わせなどに制限がある。また、流路内壁の化学処理との併用は技術的に困難である。   However, in the method of Patent Document 1, since the guide structure is formed only on the bottom surface of the flow path, there are limitations on combinations of solvents and the like in order to form a stable interface. In addition, it is technically difficult to use the inner wall of the channel together with chemical treatment.

また、特許文献2の方法は、ガイド構造作製の技術的難易度が高く、実用化には適していない上に、ガイドによって液−液接触面積が小さくなるため、抽出効率は低下するという問題がある。   In addition, the method of Patent Document 2 has a high technical difficulty in producing a guide structure and is not suitable for practical use. Further, since the liquid-liquid contact area is reduced by the guide, the extraction efficiency is lowered. is there.

また、特許文献3の方法では、流路内壁の化学的処理は容易であるが,上下流路の断面形状を等しくすると界面を安定化させる効果が低下するため、液−液の流速が等しい時には使い難いという問題がある。   In the method of Patent Document 3, chemical treatment of the inner wall of the flow path is easy. However, if the cross-sectional shapes of the upper and lower flow paths are equal, the effect of stabilizing the interface is reduced, so that the liquid-liquid flow rates are equal. There is a problem that it is difficult to use.

一方、マイクロチップデバイスの基材に目を向けると、プラスチックやガラスが一般的に使われている。ところが、プラスチックは加工性が良いが耐薬品性などに問題がある。また、ガラスは耐薬品性が高いが、加工性はプラスチックより劣るし機械的強度も低いので、実用化を考えると耐久性にやや難がある。   On the other hand, when looking at the substrate of the microchip device, plastic and glass are generally used. However, plastics have good processability but have problems with chemical resistance. Further, glass has high chemical resistance, but its workability is inferior to that of plastic and its mechanical strength is low. Therefore, durability is somewhat difficult in view of practical application.

また、溶媒抽出の効率という観点から見ると、抽出温度は重要な要素であるが、下記に示すように、プラスチックの熱伝導性はガラスや金属に比べると小さいので、外部から温度制御した時の流路内の温度応答性は高くない。   From the viewpoint of the efficiency of solvent extraction, the extraction temperature is an important factor. However, as shown below, the thermal conductivity of plastic is smaller than that of glass or metal. The temperature responsiveness in the flow path is not high.

熱伝導率[cal/cm・s・K]
銅 0.934
アルミ 0.523
ステンレス 0.037
ポリプロピレン 0.33×10−3
ガラス 0.13
また、機械的強度、耐久性、対薬品性、熱伝導性共に高い材質としては金属があるが、加工性が高くないため、マイクロチップデバイスの基材としては殆ど用いられていない。
Thermal conductivity [cal / cm · s · K]
Copper 0.934
Aluminum 0.523
Stainless 0.037
Polypropylene 0.33 × 10 -3
Glass 0.13
In addition, metal is a material having high mechanical strength, durability, chemical resistance, and thermal conductivity, but since it is not highly workable, it is rarely used as a substrate for microchip devices.

本発明の目的は、上述した点に鑑み、ステンレスなどの金属材料に対する高い微細加工技術を駆使し、従来技術の問題点を克服した高機能の液−液分離機能を有するマイクロチップデバイスを提供することにある。   An object of the present invention is to provide a microchip device having a high-function liquid-liquid separation function that overcomes the problems of the prior art by making full use of high micromachining technology for metal materials such as stainless steel in view of the above points. There is.

この目的を達成するため、本発明にかかるマイクロチップデバイスは、
互いに混じり合わない2種類の液体を別々の流路より1つの微細流路に導入し、該微細流路内において界面を介して接する2層流を形成させながら該微細流路内を通過させた後、再び2種類の液体を別々の流路に分けて取り出すように構成したマイクロチップデバイスにおいて、
前記微細流路は、第1の板状部材と第2の板状部材の少なくとも一方に溝を穿設後、両者を張り合わせることによって形成され、該微細流路の親水性液体が流れる側の内壁に親水性化学処理、疎水性液体が流れる側の内壁に疎水性化学処理を施して、2種類の液体が2層流となって流れるように構成するとともに、
前記2種類の液体の界面に沿って両側から2層流を仕切るように張り出した仕切り部材を前記微細流路の側壁に設けたことを特徴としている。
In order to achieve this object, a microchip device according to the present invention includes:
Two kinds of liquids that do not mix with each other are introduced into one fine channel from separate channels, and are passed through the fine channel while forming a two-layer flow in contact with each other through the interface in the fine channel. Later, in the microchip device configured to again take out the two types of liquid into separate flow paths,
The fine channel is formed by forming a groove in at least one of the first plate-like member and the second plate-like member and then bonding them together, and the fine channel on the side where the hydrophilic liquid flows The inner wall is made of hydrophilic chemical treatment, and the inner wall on the side where the hydrophobic liquid flows is subjected to hydrophobic chemical treatment so that two kinds of liquid flow in a two-layer flow,
A partition member protruding so as to partition the two laminar flows from both sides along the interface between the two kinds of liquids is provided on the side wall of the fine channel.

また、前記板状部材は金属製であり、温度制御できることを特徴としている。   The plate-like member is made of metal and can be temperature-controlled.

また、前記疎水性および親水性化学処理は、疎水性または親水性の薄膜をコーティングする方法、または、親水性微粒子または疎水性微粒子を流路に固定する方法であることを特徴としている。   The hydrophobic and hydrophilic chemical treatment is characterized in that it is a method of coating a hydrophobic or hydrophilic thin film, or a method of fixing hydrophilic fine particles or hydrophobic fine particles to a flow path.

また、前記仕切り部材は断面がテーパ状になっていることを特徴としている。   The partition member is characterized in that a cross section is tapered.

また、前記仕切り部材は、付け根部分から界面への張り出しが、前記微細流路の上流側よりも下流側において大きくなっていることを特徴としている。   Further, the partition member is characterized in that the protrusion from the base portion to the interface is larger on the downstream side than on the upstream side of the fine channel.

また、前記仕切り部材の厚みは、前記微細流路の流路深さの30%以下、前記仕切り部材の横幅は、前記微細流路から2種類の液体を別々の流路に分けて取り出すようにした分岐点において、流路幅の少なくとも60%を塞ぐ長さであることを特徴としている。   Further, the thickness of the partition member is 30% or less of the channel depth of the fine channel, and the width of the partition member is so that two kinds of liquids are taken out from the micro channel separately into separate channels. At the branch point, the length is at least 60% of the channel width.

また、前記仕切り部材部分をマイクロチップデバイスから取り外して交換可能な構造とし、前記仕切り部材の張り出しの位置と大きさを、前記2層流の流速に応じて任意に選べるようにしたことを特徴としている。   In addition, the partition member portion can be removed from the microchip device and replaced, and the position and size of the partition member overhang can be arbitrarily selected according to the flow rate of the two-layer flow. Yes.

また、前記仕切り部材は、前記2つの板状部材の接合部に沿って穿設された長溝に嵌合されることによって、前記微細流路の側壁に取り付けられることを特徴としている。   Further, the partition member is attached to a side wall of the fine channel by being fitted into a long groove formed along a joint portion between the two plate-like members.

本発明のマイクロチップデバイスによれば、
互いに混じり合わない2種類の液体を別々の流路より1つの微細流路に導入し、該微細流路内において界面を介して接する2層流を形成させながら該微細流路内を通過させた後、再び2種類の液体を別々の流路に分けて取り出すように構成したマイクロチップデバイスにおいて、
前記微細流路は、第1の板状部材と第2の板状部材の少なくとも一方に溝を穿設後、両者を張り合わせることによって形成され、該微細流路の親水性液体が流れる側の内壁に親水性化学処理、疎水性液体が流れる側の内壁に疎水性化学処理を施して、2種類の液体が2層流となって流れるように構成するとともに、
前記2種類の液体の界面に沿って両側から2層流を仕切るように張り出した仕切り部材を前記微細流路の側壁に設けたので、
ステンレスなどの金属材料に対する高い微細加工技術を駆使し、従来技術の問題点を克服した高機能の液−液分離機能を有するマイクロチップデバイスを提供することが可能になった。
According to the microchip device of the present invention,
Two kinds of liquids that do not mix with each other are introduced into one fine channel from separate channels, and are passed through the fine channel while forming a two-layer flow in contact with each other through the interface in the fine channel. Later, in the microchip device configured to again take out the two types of liquid into separate flow paths,
The fine channel is formed by forming a groove in at least one of the first plate-like member and the second plate-like member and then bonding them together, and the fine channel on the side where the hydrophilic liquid flows The inner wall is made of hydrophilic chemical treatment, and the inner wall on the side where the hydrophobic liquid flows is subjected to hydrophobic chemical treatment so that two kinds of liquid flow in a two-layer flow,
Since the partition member that protrudes so as to partition the two laminar flows from both sides along the interface between the two kinds of liquids is provided on the side wall of the fine channel,
It has become possible to provide a microchip device having a high-performance liquid-liquid separation function that overcomes the problems of the prior art by making full use of high micromachining technology for metal materials such as stainless steel.

以下、図面を参照して、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1および図2は、本発明にかかる新しい液−液分離用マイクロチップデバイスを構成する部品の一実施例である。   FIG. 1 and FIG. 2 show an example of components constituting a new liquid-liquid separation microchip device according to the present invention.

本実施例は、互いに混じり合わない2種類の液体を別々の流路より1つの微細流路に導入し、該微細流路内において界面を介して接する2層流を形成させながら該微細流路内を通過させた後、再び2種類の液体を別々の流路に分けて取り出すように構成されたマイクロチップデバイスである。   In this embodiment, two kinds of liquids that do not mix with each other are introduced into one fine flow path from separate flow paths, and a two-layer flow in contact with each other through the interface is formed in the fine flow path. It is a microchip device configured to take out two kinds of liquids again in separate flow paths after passing through the inside.

0.5〜10mmの厚みのステンレス、銅、アルミなどの金属、最も好ましくはステンレスでできた2枚の金属板1、2に、それぞれ金属板の中心線に沿って直線状にまっすぐ延び、両端が 〕または〔 の形に屈曲した溝3を作製し、金属板1の溝側を下にして、金属板2の溝側の上に載せて張り合わせると、2つの溝の中央部が上下に合わさって1つの直線状微細流路を形成し、直線状微細流路の両端が見かけ上Y字状に分岐するように構成される。   The two metal plates 1 and 2 made of a metal such as stainless steel, copper, and aluminum having a thickness of 0.5 to 10 mm, most preferably stainless steel, extend straight along the center line of the metal plate, respectively. Or [3], the groove 3 bent into the shape of [3] is prepared, and when the groove side of the metal plate 1 is faced down and placed on the groove side of the metal plate 2, the center portions of the two grooves are vertically Together, one linear microchannel is formed, and both ends of the linear microchannel apparently branch in a Y shape.

溝3はウェットエッチング法やドリル加工により作られている。溝の幅は200〜1000μm、溝の深さは50〜250μmである。一方の金属板には、溝表面に疎水性化学処理が施されており、他方の金属板には、溝表面に親水性化学処理が施されている。   The groove 3 is made by wet etching or drilling. The width of the groove is 200 to 1000 μm, and the depth of the groove is 50 to 250 μm. One metal plate is subjected to hydrophobic chemical treatment on the groove surface, and the other metal plate is subjected to hydrophilic chemical treatment on the groove surface.

溝表面における疎水性および親水性化学処理方法には、例えば疎水性または親水性の薄膜をコーティングする方法や、シリカゲルなどの親水性微粒子または疎水性官能基で親水性微粒子の表面を修飾した疎水性微粒子を流路に固定する方法などがある。   Hydrophobic and hydrophilic chemical treatment methods on the groove surface include, for example, a method of coating a hydrophobic or hydrophilic thin film, a hydrophobic fine particle whose surface is modified with hydrophilic fine particles or hydrophobic functional groups such as silica gel There is a method of fixing fine particles in a flow path.

直線状微細流路の流路両側壁(2枚の板状部材の合わせ目部分)には、流れ方向に沿って点線で示した長溝(ザグリ)4が対向して設けられ、その長溝4に嵌合する形で上下の流路を分割するための仕切り板としての役割を果たすエッジを備えた駒部品5が入る構造となっている。各部品の接触部面は全て鏡面に加工されており、上下にネジ等で締め付けることで、流路からの液漏れを防ぐ構造である。   A long groove (counterbore) 4 indicated by a dotted line along the flow direction is provided to face both side walls of the flow path of the straight fine flow path (a joint portion of the two plate-like members). It has a structure in which a piece part 5 having an edge serving as a partition plate for dividing the upper and lower flow paths in a fitting form is inserted. The contact surface of each component is all processed into a mirror surface, and is structured to prevent liquid leakage from the flow path by tightening with screws or the like up and down.

エッジ駒には、流路を流れる試料溶液の流速が速い場合に用いられるものと、流路を流れる試料溶液の流速が遅い場合に用いられるものとがあり、任意に選択して交換することができるようになっている。図2の上側に示すエッジ駒が速い流速用、図2の下側に示すエッジ駒が遅い流速用である。   Edge pieces are used when the flow rate of the sample solution flowing through the flow path is high, and those used when the flow rate of the sample solution flowing through the flow path is low, and can be arbitrarily selected and replaced. It can be done. The edge piece shown on the upper side of FIG. 2 is for a high flow rate, and the edge piece shown on the lower side of FIG. 2 is for a low flow rate.

流速が速い場合、液−液接触時間が短くなるので、混合部からエッジの始まりまでの距離は、遅い流速用のデバイスに比べると長く設定されている。一方、流速が遅い場合、液−液接触時間が長くなるので、混合部からエッジの始まりまでの距離は、速い流速用のデバイスに比べると短く設定されている。   When the flow rate is high, the liquid-liquid contact time is shortened, and therefore the distance from the mixing portion to the beginning of the edge is set longer than that of the device for the slow flow rate. On the other hand, when the flow rate is slow, the liquid-liquid contact time becomes long, so the distance from the mixing portion to the beginning of the edge is set shorter than that of a device for high flow rate.

エッジ駒を組み込んだマイクロチップデバイスの断面図を示したものが図3である。断面Aには、親水性液体が導入される流路の断面a1と疎水性液体が導入される流路の断面a2が現れている。断面Bには、直線部分の流路側壁に嵌合されたエッジ駒部品b1、b2(エッジの張り出しがない部分)の断面が現れている。断面Cには、直線部分の流路側壁に嵌合されたエッジ駒部品c1、c2(エッジが中程度に張り出している部分)の断面が現れている。エッジから上の領域が親水性液体の流れる領域、エッジから下の領域が疎水性液体の流れる領域である。そして、エッジの先端と先端を結ぶ界面付近で両方の液体が接触する。断面Dには、直線部分の流路側壁に嵌合されたエッジ駒部品d1、d2(エッジが大きく張り出している部分)の断面が現れている。液体の分布は、断面Cの場合と同じである。断面Eは断面Aと同じであるので省略した。 FIG. 3 shows a cross-sectional view of a microchip device incorporating an edge piece. In the cross section A, a cross section a 1 of the flow path into which the hydrophilic liquid is introduced and a cross section a 2 of the flow path into which the hydrophobic liquid is introduced appear. In the cross section B, cross sections of the edge piece parts b 1 and b 2 (portions where the edge does not protrude) fitted to the flow path side wall of the straight portion appear. In the cross section C, the cross sections of the edge piece parts c 1 and c 2 (the part where the edge protrudes to the middle) fitted to the flow path side wall of the straight part appear. The region above the edge is the region where the hydrophilic liquid flows, and the region below the edge is the region where the hydrophobic liquid flows. And both liquids contact in the vicinity of the interface which connects the front-end | tip of an edge. In the cross section D, the cross sections of the edge piece parts d 1 and d 2 (parts where the edges protrude greatly) fitted to the flow path side wall of the straight part appear. The distribution of the liquid is the same as in the case of the cross section C. Since section E is the same as section A, it is omitted.

本実施例は、以下のように動作する。まず、図4左側の2つの入り口から、試薬溶液(例えば水溶液)と抽出溶媒(例えばエーテル)を別々に導入する。溝表面を親水性化学処理した側に水溶液、疎水性化学処理した側にエーテルが流れるように初期設定する。尚、試薬溶液の代わりに液体クロマトグラフ装置からの溶離液を直接導入しても良い。   This embodiment operates as follows. First, a reagent solution (for example, an aqueous solution) and an extraction solvent (for example, ether) are separately introduced from the two inlets on the left side of FIG. The groove surface is initially set so that an aqueous solution flows on the side subjected to hydrophilic chemical treatment and ether flows on the side subjected to hydrophobic chemical treatment. Note that an eluent from a liquid chromatograph device may be directly introduced instead of the reagent solution.

2つの溶液は、左から右に微細流路内を流れ、Y字状混合部で接触し、内壁の化学的性質に従って上下に分かれ、直線流路部で層流を形成して流れる。内壁の化学的性質に従って2液が上下に層流を形成して流れている間に、両液層間で液−液抽出が行なわれる。   The two solutions flow from the left to the right in the fine channel, come into contact with the Y-shaped mixing part, are divided into upper and lower parts according to the chemical properties of the inner wall, and flow in a laminar flow in the straight channel. Liquid-liquid extraction is performed between the two liquid layers while the two liquids flow in a laminar flow up and down in accordance with the inner wall chemistry.

直線状微細流路部の途中より、エッジ駒部品により作られた、微細流路を上下に分割する断面がテーパ状のエッジの張り出しによって、2つの層流は液−液界面が物理的に分離され、下流のY字状流路でそれぞれ分かれて回収される。   The liquid-liquid interface is physically separated from the two laminar flows by the protrusion of the edge that has a taper-shaped cross-section that divides the micro-channel vertically from the middle of the straight micro-channel part. And separately collected in the downstream Y-shaped flow path.

エッジは、付け根部分から界面への張り出しが、前記直線状微細流路の上流側よりも下流側において大きくなっている。エッジの厚みは、最大で流路深さの30%とし、エッジ長さは、流路分岐点では流路幅の少なくとも60%を塞ぐサイズとする。   The protrusion of the edge from the base portion to the interface is larger on the downstream side than the upstream side of the linear microchannel. The edge has a maximum thickness of 30% of the channel depth, and the edge length is sized to block at least 60% of the channel width at the channel branch point.

本実施例は、液−液抽出効率を制御することを目的として、マイクロチップデバイスにペルチェ素子などの温度制御素子6を組み込んだときのデバイスデザインである。図5に示すように、温度制御素子6は、液−液抽出を行なう直線流路部の両側に沿って配置され、抽出部の温度を所望の温度に制御する。   The present embodiment is a device design when a temperature control element 6 such as a Peltier element is incorporated in a microchip device for the purpose of controlling the liquid-liquid extraction efficiency. As shown in FIG. 5, the temperature control element 6 is disposed along both sides of the straight flow path portion that performs liquid-liquid extraction, and controls the temperature of the extraction portion to a desired temperature.

尚、本マイクロチップデバイスの素材にステンレス、銅、アルミなどの金属板を使用する理由の1つは、抽出効率を左右する要素の1つである温度に対して、応答性の高い(熱伝導率の高い)材質を使用したいという要請によるものである。   One of the reasons for using a metal plate such as stainless steel, copper, or aluminum as the material of this microchip device is that it is highly responsive to the temperature, which is one of the factors affecting the extraction efficiency (heat conduction). This is due to a request to use a material with a high rate.

液-液抽出装置に広く利用できる。   Widely used in liquid-liquid extraction equipment.

本発明にかかるマイクロチップデバイス部品の一実施例を示す図である。It is a figure which shows one Example of the microchip device component concerning this invention. 本発明にかかるマイクロチップデバイス部品の別の実施例を示す図である。It is a figure which shows another Example of the microchip device component concerning this invention. 本発明にかかるマイクロチップデバイスの断面図を示す図である。It is a figure which shows sectional drawing of the microchip device concerning this invention. 本発明にかかるマイクロチップデバイスの一実施例を示す図である。It is a figure which shows one Example of the microchip device concerning this invention. 本発明にかかるマイクロチップデバイスの別の実施例を示す図である。It is a figure which shows another Example of the microchip device concerning this invention.

符号の説明Explanation of symbols

1、2:金属板、3:溝、4:長溝、5:駒部品、6:温度制御素子、a1、a2:流路、b1、b2、c1、c2、d1、d2:エッジ駒 1, 2: metal plate, 3: groove, 4: long groove, 5: piece part, 6: temperature control element, a 1 , a 2 : flow path, b 1 , b 2 , c 1 , c 2 , d 1 , d 2 : Edge piece

Claims (8)

互いに混じり合わない2種類の液体を別々の流路より1つの微細流路に導入し、該微細流路内において界面を介して接する2層流を形成させながら該微細流路内を通過させた後、再び2種類の液体を別々の流路に分けて取り出すように構成したマイクロチップデバイスにおいて、
前記微細流路は、第1の板状部材と第2の板状部材の少なくとも一方に溝を穿設後、両者を張り合わせることによって形成され、該微細流路の親水性液体が流れる側の内壁に親水性化学処理、疎水性液体が流れる側の内壁に疎水性化学処理を施して、2種類の液体が2層流となって流れるように構成するとともに、
前記2種類の液体の界面に沿って両側から2層流を仕切るように張り出した仕切り部材を前記微細流路の側壁に設けたことを特徴とするマイクロチップデバイス。
Two kinds of liquids that do not mix with each other are introduced into one fine channel from separate channels, and are passed through the fine channel while forming a two-layer flow in contact with each other through the interface in the fine channel. Later, in the microchip device configured to again take out the two types of liquid into separate flow paths,
The fine channel is formed by forming a groove in at least one of the first plate-like member and the second plate-like member and then bonding them together, and the fine channel on the side where the hydrophilic liquid flows The inner wall is made of hydrophilic chemical treatment, and the inner wall on the side where the hydrophobic liquid flows is subjected to hydrophobic chemical treatment so that two kinds of liquid flow in a two-layer flow,
A microchip device characterized in that a partition member extending so as to partition a two-layer flow from both sides along an interface between the two kinds of liquids is provided on a side wall of the fine channel.
前記板状部材は金属製であり、温度制御できることを特徴とする請求項1記載のマイクロチップデバイス。 2. The microchip device according to claim 1, wherein the plate-like member is made of metal and can be controlled in temperature. 前記疎水性および親水性化学処理は、疎水性または親水性の薄膜をコーティングする方法、または、親水性微粒子または疎水性微粒子を流路に固定する方法であることを特徴とする請求項1記載のマイクロチップデバイス。 The hydrophobic and hydrophilic chemical treatment is a method of coating a hydrophobic or hydrophilic thin film, or a method of fixing hydrophilic fine particles or hydrophobic fine particles to a flow path. Microchip device. 前記仕切り部材は断面がテーパ状になっていることを特徴とする請求項1記載のマイクロチップデバイス。 The microchip device according to claim 1, wherein the partition member has a tapered cross section. 前記仕切り部材は、付け根部分から界面への張り出しが、前記微細流路の上流側よりも下流側において大きくなっていることを特徴とする請求項1記載のマイクロチップデバイス。 2. The microchip device according to claim 1, wherein the partition member has an overhang from the base portion to the interface that is larger on the downstream side than on the upstream side of the fine channel. 前記仕切り部材の厚みは、前記微細流路の流路深さの30%以下、前記仕切り部材の横幅は、前記微細流路から2種類の液体を別々の流路に分けて取り出すようにした分岐点において、流路幅の少なくとも60%を塞ぐ長さであることを特徴とする請求項1記載のマイクロチップデバイス。 The partition member has a thickness of 30% or less of the flow path depth of the fine flow path, and the horizontal width of the partition member is a branch that separates two kinds of liquid from the fine flow path into separate flow paths. 2. The microchip device according to claim 1, wherein the microchip device has a length that covers at least 60% of the flow path width. 前記仕切り部材部分をマイクロチップデバイスから取り外して交換可能な構造とし、前記仕切り部材の張り出しの位置と大きさを、前記2層流の流速に応じて任意に選べるようにしたことを特徴とする請求項1記載のマイクロチップデバイス。 The partition member portion is configured to be removable from the microchip device and replaceable, and the position and size of the overhang of the partition member can be arbitrarily selected according to the flow velocity of the two-layer flow. Item 2. The microchip device according to Item 1. 前記仕切り部材は、前記2つの板状部材の接合部に沿って穿設された長溝に嵌合されることによって、前記微細流路の側壁に取り付けられることを特徴とする請求項1記載のマイクロチップデバイス。 2. The micro of claim 1, wherein the partition member is attached to a side wall of the fine flow path by being fitted into a long groove formed along a joint portion of the two plate-like members. Chip device.
JP2007260680A 2007-10-04 2007-10-04 Microchip device Pending JP2009090164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007260680A JP2009090164A (en) 2007-10-04 2007-10-04 Microchip device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260680A JP2009090164A (en) 2007-10-04 2007-10-04 Microchip device

Publications (1)

Publication Number Publication Date
JP2009090164A true JP2009090164A (en) 2009-04-30

Family

ID=40662700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007260680A Pending JP2009090164A (en) 2007-10-04 2007-10-04 Microchip device

Country Status (1)

Country Link
JP (1) JP2009090164A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173051A (en) * 2010-02-23 2011-09-08 Tokyo Institute Of Technology Microfluid device
WO2012046389A1 (en) * 2010-10-04 2012-04-12 株式会社神戸製鋼所 Flow path structure
CN109967146A (en) * 2019-04-16 2019-07-05 中国工程物理研究院材料研究所 A kind of micro-fluidic laminar flow chip and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187684A (en) * 2004-12-28 2006-07-20 Fuji Xerox Co Ltd Microfluid device
JP2006272231A (en) * 2005-03-30 2006-10-12 Hitachi Ltd Microchannel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187684A (en) * 2004-12-28 2006-07-20 Fuji Xerox Co Ltd Microfluid device
JP2006272231A (en) * 2005-03-30 2006-10-12 Hitachi Ltd Microchannel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173051A (en) * 2010-02-23 2011-09-08 Tokyo Institute Of Technology Microfluid device
WO2012046389A1 (en) * 2010-10-04 2012-04-12 株式会社神戸製鋼所 Flow path structure
JP2012076034A (en) * 2010-10-04 2012-04-19 Kobe Steel Ltd Flow path structure
US8920020B2 (en) 2010-10-04 2014-12-30 Kobe Steel, Ltd. Flow passage structure
CN109967146A (en) * 2019-04-16 2019-07-05 中国工程物理研究院材料研究所 A kind of micro-fluidic laminar flow chip and preparation method thereof

Similar Documents

Publication Publication Date Title
Takagi et al. Continuous particle separation in a microchannel having asymmetrically arranged multiple branches
Atencia et al. Controlled microfluidic interfaces
Lee et al. The hydrodynamic focusing effect inside rectangular microchannels
Zhao et al. Control and applications of immiscible liquids in microchannels
Yamada et al. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics
EP2139597B1 (en) Micromachined electrowetting microfluidic valve
Tan et al. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system
Garstecki et al. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up
Sim et al. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels
Ducrée et al. The centrifugal microfluidic Bio-Disk platform
Jeon et al. Ion concentration polarization-based continuous separation device using electrical repulsion in the depletion region
Cho et al. Concentration and binary separation of micro particles for droplet-based digital microfluidics
Sai et al. Continuous separation of particles using a microfluidic device equipped with flow rate control valves
Tripathi et al. Blood plasma separation in elevated dimension T-shaped microchannel
Prabhakar et al. A novel, compact and efficient microchannel arrangement with multiple hydrodynamic effects for blood plasma separation
JP5065803B2 (en) Micro liquid weighing apparatus, microchip having the same, and liquid measuring method
Greenwood et al. Sample manipulation in micro total analytical systems
US7892434B2 (en) Microfluidic production of monodispersed submicron emulsion through filtration and sorting of satellite drops
Sivasamy et al. Reliable addition of reagents into microfluidic droplets
Shahriari et al. Flow regime mapping of high inertial gas–liquid droplet microflows in flow-focusing geometries
Jeon et al. Continuous particle separation using pressure-driven flow-induced miniaturizing free-flow electrophoresis (PDF-induced μ-FFE)
JP2008175812A (en) Microfluidic device and analyzing device using the same
JP2007216123A (en) Micro-channel chip
Zhou et al. Acoustic bubble enhanced pinched flow fractionation for microparticle separation
US20060204400A1 (en) Process for separation of dispersions and an apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100820

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110928

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A02 Decision of refusal

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A02