JP2009087583A - Power supply device for vehicle - Google Patents

Power supply device for vehicle Download PDF

Info

Publication number
JP2009087583A
JP2009087583A JP2007252609A JP2007252609A JP2009087583A JP 2009087583 A JP2009087583 A JP 2009087583A JP 2007252609 A JP2007252609 A JP 2007252609A JP 2007252609 A JP2007252609 A JP 2007252609A JP 2009087583 A JP2009087583 A JP 2009087583A
Authority
JP
Japan
Prior art keywords
region
temperature
temperature sensor
power supply
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007252609A
Other languages
Japanese (ja)
Other versions
JP5196936B2 (en
Inventor
Wataru Okada
渉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007252609A priority Critical patent/JP5196936B2/en
Publication of JP2009087583A publication Critical patent/JP2009087583A/en
Application granted granted Critical
Publication of JP5196936B2 publication Critical patent/JP5196936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To protect a battery from high temperature and low temperature by detecting the highest temperature and the lowest temperature of a battery block with a small number of temperature sensors in a forced ventilation state and a forced ventilation stopped state. <P>SOLUTION: A power supply device for a vehicle has a battery block 4 formed by stacking a plurality of square battery cells 1 through a separator 2 in a blast gap 3 forming state, and controls current of the battery by detecting the temperature of the square battery cells 1 with a plurality of temperature sensors 6. The power supply device detects the highest temperature and the lowest temperature of the square battery cells 1 constituting the battery block 4 in a forced ventilation state of a forced ventilator 7 and a forced ventilation stopped state with a first temperature sensor 6A arranged in a first region S1 becoming the lowest pressure, a third temperature sensor 6C arranged in a third region S3 becoming the highest pressure, and a second temperature sensor 6B arranged in a second region S2 becoming the intermediate pressure of the first region S1 and the third region S3 while the forced ventilator 7 forcedly sends cooling gas to the blast gap 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主としてハイブリッドカー等の電動車両に搭載されて、車両を走行させるモータに電力を供給する車両用の電源装置に関し、とくに電池を強制冷却する車両用の電源装置に関する。   The present invention relates to a vehicle power supply device that is mounted on an electric vehicle such as a hybrid car and supplies electric power to a motor that drives the vehicle, and more particularly to a vehicle power supply device that forcibly cools a battery.

車両用の電源装置は、多数の電池セルを直列に接続して出力電圧を高く、出力電力を大きくしている。この電源装置は、大電流で充放電されるので電池の温度が上昇する。また、極めて高温な環境でも使用されることから、電池を強制冷却する必要がある。現在のハイブリッドカーに搭載される電源装置は、電池の間に送風ダクトを設けて、ここに強制送風して電池を冷却している。この構造の電源装置は、多数の電池セルに強制送風して冷却するので、電池セルに温度差ができる。電池セルは、異常に温度が高くなり、あるいは低い状態では電流を制限する必要がある。とくに、リチウムイオン電池は、異常な低温で充放電されると金属リチウムが発生してセパレータを破損する確率が高くなるので、低温環境では電流を少なく制限している。また、電池セルが異常な高温になって電池に弊害を与えるので電流を制限し、あるいは遮断するように制御している。車両用の電源装置は、全ての電池セルの温度を均一にできないので、複数の電池セルを直列に接続して電池モジュールとして、各々の電池モジュールに温度センサを配設している。(特許文献1参照)
特開平11−111349号公報
A power supply device for a vehicle has a large number of battery cells connected in series to increase output voltage and output power. Since this power supply device is charged and discharged with a large current, the temperature of the battery rises. Further, since the battery is used even in an extremely high temperature environment, it is necessary to forcibly cool the battery. The power supply device mounted on the current hybrid car is provided with a blower duct between the batteries, forcibly blows air here to cool the battery. Since the power supply device having this structure is cooled by forcibly blowing a large number of battery cells, there is a temperature difference between the battery cells. Battery cells need to limit current when the temperature is abnormally high or low. In particular, when lithium ion batteries are charged and discharged at an abnormally low temperature, metallic lithium is generated and the probability of damaging the separator increases. Therefore, the current is limited to a low level in a low temperature environment. In addition, since the battery cell becomes abnormally high and causes harmful effects on the battery, the current is controlled to be limited or cut off. Since the power supply device for vehicles cannot make the temperature of all the battery cells uniform, a plurality of battery cells are connected in series to form a battery module, and a temperature sensor is provided in each battery module. (See Patent Document 1)
JP-A-11-111349

各々の電池モジュールに温度センサを配設する車両用の電源装置は、電池モジュールの最高温度と最低温度を検出できる。しかしながら、車両用の電源装置は、多数の電池モジュールを直列に接続して出力電圧を高くしているので、この構造では温度センサの数が極めて多く、部品コストと製造コストが高価になる欠点がある。   A vehicle power supply device in which a temperature sensor is provided in each battery module can detect the maximum temperature and the minimum temperature of the battery module. However, since the power supply device for a vehicle has a high output voltage by connecting a large number of battery modules in series, this structure has the disadvantage that the number of temperature sensors is extremely large, and the component cost and the manufacturing cost are high. is there.

本発明は、この欠点を解決することを目的に開発されたものである。本発明の重要な目的は、強制送風する状態と強制送風を停止する両方の状態において、電池ブロックの最高温度と最低温度を少数の温度センサで検出して電池を高温と低温から保護できる車両用の電源装置を提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is for a vehicle that can protect the battery from high and low temperatures by detecting the maximum and minimum temperatures of the battery block with a small number of temperature sensors in both the forced air blowing state and the forced air blowing stopped state. It is to provide a power supply apparatus.

本発明の請求項1の車両用の電源装置は、複数の角形電池セル1をセパレータ2を介して送風隙間3を設ける状態で積層してなる電池ブロック4と、この電池ブロック4の対向位置に設けられて、冷却気体を送風隙間3に強制送風する送風ダクト5と、電池ブロック4を構成している複数の角形電池セル1の温度を検出する複数の温度センサ6と、この温度センサ6が検出する角形電池セル1の温度にコントロールされて、送風ダクト5を介して各々の送風隙間3に分岐して冷却気体を送風する強制送風機7と、温度センサ6で検出される角形電池セル1の温度で電池の電流を制御する制御回路8とを備える。電源装置は、強制送風機7が冷却気体を電池ブロック4の送風隙間3に強制送風する状態で、最低圧力となる第1の領域S1と、最高圧力となる第3の領域S3と、第1の領域S1と第3の領域S3の中間の圧力となる第2の領域S2に温度センサ6を配設している。この電源装置は、第1の領域S1に配設される第1の温度センサ6Aと、第2の領域S2に配設される第2の温度センサ6Bと、第3の領域S3に配設される第3の温度センサ6Cでもって、強制送風機7が強制送風する状態と、強制送風を停止する状態とで電池ブロック4を構成する角形電池セル1の最高温度と最低温度を検出する。   A power supply device for a vehicle according to claim 1 of the present invention includes a battery block 4 in which a plurality of rectangular battery cells 1 are stacked with a blower gap 3 provided via a separator 2, and a position opposite to the battery block 4. The air duct 5 that is provided and forcibly blows the cooling gas into the air gap 3, the plurality of temperature sensors 6 that detect the temperatures of the plurality of rectangular battery cells 1 constituting the battery block 4, and the temperature sensor 6 The temperature of the rectangular battery cell 1 detected by the temperature sensor 6 is controlled by the temperature of the rectangular battery cell 1 detected by the temperature sensor 6. And a control circuit 8 for controlling the battery current by temperature. In the state where the forced air blower 7 forcibly blows the cooling gas into the air gap 3 of the battery block 4, the power supply device includes a first region S 1 that is the lowest pressure, a third region S 3 that is the highest pressure, The temperature sensor 6 is disposed in the second region S2 that is at an intermediate pressure between the region S1 and the third region S3. This power supply device is disposed in the first temperature sensor 6A disposed in the first region S1, the second temperature sensor 6B disposed in the second region S2, and the third region S3. With the third temperature sensor 6 </ b> C, the maximum temperature and the minimum temperature of the rectangular battery cell 1 constituting the battery block 4 are detected in a state where the forced blower 7 is forced to blow and a state where the forced blow is stopped.

本発明の請求項2の車両用の電源装置は、複数の角形電池セル1をセパレータ2を介して送風隙間3を設ける状態で積層してなる電池ブロック4と、この電池ブロック4の対向位置に設けられて、冷却気体を送風隙間3に強制送風する送風ダクト5と、電池ブロック4を構成している複数の角形電池セル1の温度を検出する複数の温度センサ6と、この温度センサ6が検出する角形電池セル1の温度にコントロールされて、送風ダクト5を介して各々の送風隙間3に分岐して冷却気体を送風する強制送風機7と、温度センサ6で検出される角形電池セル1の温度で電池の電流を制御する制御回路8とを備える。電池ブロック4は、第1の領域S1と第2の領域S2と第3の領域S3に分割しており、第1の領域S1には第1の温度センサ6Aを、第2の領域S2には第2の温度センサ6Bを、第3の領域S3には第3の温度センサ6Cを配設している。この電源装置は、第1の領域S1と第2の領域S2と第3の領域S3を、強制送風機7が冷却気体を強制送風する状態と、強制送風を停止する状態で、最高温度と最低温度となる領域として、強制送風機7を運転し、また停止する状態で、温度センサ6が最高温度と最低温度を検出する。   The power supply device for a vehicle according to claim 2 of the present invention includes a battery block 4 formed by laminating a plurality of rectangular battery cells 1 in a state in which a ventilation gap 3 is provided via a separator 2, and a position opposite to the battery block 4. The air duct 5 that is provided and forcibly blows the cooling gas into the air gap 3, the plurality of temperature sensors 6 that detect the temperatures of the plurality of rectangular battery cells 1 constituting the battery block 4, and the temperature sensor 6 The temperature of the rectangular battery cell 1 detected by the temperature sensor 6 is controlled by the temperature of the square battery cell 1 detected by the temperature sensor 6. And a control circuit 8 for controlling the battery current by temperature. The battery block 4 is divided into a first region S1, a second region S2, and a third region S3. The first region S1 has a first temperature sensor 6A, and the second region S2 has a second region S2. The second temperature sensor 6B is disposed, and the third temperature sensor 6C is disposed in the third region S3. This power supply device has a maximum temperature and a minimum temperature in a state in which the forced blower 7 forcibly blows the cooling gas and a state in which the forced blower is stopped in the first region S1, the second region S2, and the third region S3. The temperature sensor 6 detects the maximum temperature and the minimum temperature in a state where the forced blower 7 is operated and stopped as the region to be.

本発明の請求項3の車両用の電源装置は、第1の領域S1と第3の領域S3を電池ブロック4の両端部として、第2の領域S2を電池ブロック4の中間部としている。   The power supply device for a vehicle according to claim 3 of the present invention uses the first region S1 and the third region S3 as both end portions of the battery block 4 and the second region S2 as an intermediate portion of the battery block 4.

本発明の請求項4の車両用の電源装置は、温度センサ6を角形電池セル1の上部に熱結合して配設している。さらに、本発明の請求項5の車両用の電源装置は、温度センサ6を角形電池セル1の出力端子10に熱結合して固定している。さらにまた、本発明の請求項6の車両用の電源装置は、温度センサ6を角形電池セル1の下部に熱結合して配設している。   According to a fourth aspect of the present invention, the temperature sensor 6 is thermally coupled to the upper portion of the rectangular battery cell 1. Further, in the vehicle power supply device according to claim 5 of the present invention, the temperature sensor 6 is thermally coupled to the output terminal 10 of the rectangular battery cell 1 and fixed. Furthermore, in the vehicle power supply device according to claim 6 of the present invention, the temperature sensor 6 is thermally coupled to the lower part of the rectangular battery cell 1.

さらに、本発明の請求項7の車両用の電源装置は、温度センサ6を角形電池セル1の上下の中間部に熱結合して配設している。さらにまた、本発明の請求項8の車両用の電源装置は、第2の領域S2に配設される温度センサ6を角形電池セル1の上下の中間部に熱結合して配設している。   Furthermore, in the vehicle power supply device according to claim 7 of the present invention, the temperature sensor 6 is thermally coupled to the upper and lower intermediate portions of the rectangular battery cell 1. Furthermore, in the power supply device for a vehicle according to claim 8 of the present invention, the temperature sensor 6 disposed in the second region S2 is thermally coupled to the upper and lower intermediate portions of the rectangular battery cell 1 and disposed. .

さらに、本発明の請求項9の車両用の電源装置は、第1の領域S1と第3の領域S3に配設される温度センサ6を、角形電池セル1の上部又は下部に熱結合して配設している。   Further, in the vehicle power supply device according to claim 9 of the present invention, the temperature sensor 6 disposed in the first region S1 and the third region S3 is thermally coupled to the upper portion or the lower portion of the rectangular battery cell 1. It is arranged.

さらに、本発明の請求項10の車両用の電源装置は、角形電池セル1をリチウムイオン電池としている。   Furthermore, in the vehicle power supply device according to claim 10 of the present invention, the rectangular battery cell 1 is a lithium ion battery.

本発明の車両用の電源装置は、強制送風する状態と強制送風を停止する両方の状態において、電池ブロックの最高温度と最低温度を少数の温度センサで検出して電池を高温と低温から保護できる特徴がある。本発明の請求項1の電源装置は、複数の角形電池セルをセパレータで送風隙間ができるように積層して電池ブロックとし、強制送風機が冷却気体を送風隙間に強制送風する状態で、最低圧力となる第1の領域と、最高圧力となる第3の領域と、第1の領域と第3の領域の中間の圧力となる第2の領域に温度センサを配設して、第1の領域に配設される第1の温度センサと、第2の領域に配設される第2の温度センサと、第3の領域に配設される第3の温度センサで角形電池セルの温度を検出する。この電源装置は、強制送風する状態で第1の温度センサが最低温度を検出し、第2の温度センサと第3の温度センサのいずれかが最高温度を検出する。また、強制送風を停止する状態では、第1の温度センサと第3の温度センサのいずれかが最低温度を検出して、第2の温度センサが最高温度を検出する。したがって、この電源装置は、第1の温度センサと第2の温度センサと第3の温度センサからなる3領域に配設する温度センサでもって、強制送風する状態における最高温度及び最低温度と、強制送風を停止する状態における最高温度及び最低温度からなる4カ所の温度を検出できる。   The power supply device for a vehicle of the present invention can protect the battery from high and low temperatures by detecting the maximum temperature and the minimum temperature of the battery block with a small number of temperature sensors in both the forced air blowing state and the forced air blowing stopped state. There are features. A power supply device according to claim 1 of the present invention is a battery block in which a plurality of rectangular battery cells are stacked so as to form a ventilation gap with a separator, and a forced blower forcibly blows cooling gas into the ventilation gap. Temperature sensors are disposed in the first region, the third region that is the highest pressure, and the second region that is the intermediate pressure between the first region and the third region. The temperature of the prismatic battery cell is detected by the first temperature sensor disposed, the second temperature sensor disposed in the second region, and the third temperature sensor disposed in the third region. . In the power supply device, the first temperature sensor detects the lowest temperature while the forced air is blown, and one of the second temperature sensor and the third temperature sensor detects the highest temperature. In a state where forced air blowing is stopped, either the first temperature sensor or the third temperature sensor detects the lowest temperature, and the second temperature sensor detects the highest temperature. Therefore, this power supply device is provided with a temperature sensor disposed in three regions including the first temperature sensor, the second temperature sensor, and the third temperature sensor. It is possible to detect four temperatures consisting of a maximum temperature and a minimum temperature in a state where the air blowing is stopped.

また、本発明の請求項2の車両用の電源装置は、温度センサを電池ブロックの第1の領域と第2の領域と第3の領域とに配設して、第1の領域と第2の領域と第3の領域を、強制送風機が冷却気体を強制送風する状態と、強制送風を停止する状態で、最高温度と最低温度となる領域とするので、強制送風機を運転し、また停止する状態で、第1の温度センサと第2の温度センサと第3の温度センサでもって、強制送風における最高温度及び最低温度と、強制送風を停止する状態における最高温度及び最低温度を検出できる。   According to a second aspect of the present invention, there is provided a power supply device for a vehicle, wherein the temperature sensor is disposed in the first region, the second region, and the third region of the battery block. Since the forced blower forcibly blows the cooling gas and the forced blower are stopped, the region and the third region are the regions where the maximum temperature and the minimum temperature are reached. Therefore, the forced blower is operated and stopped. In the state, the first temperature sensor, the second temperature sensor, and the third temperature sensor can detect the maximum temperature and the minimum temperature in forced air blowing, and the maximum temperature and the minimum temperature in a state where forced air blowing is stopped.

さらに、本発明の請求項3の車両用の電源装置は、第1の領域と第3の領域を電池ブロックの両端部とし、第2の領域を電池ブロックの中間部とする。この電源装置は、電池ブロックの両端部と中間部とに温度センサを配設して、強制送風する状態とこれを停止する状態の両方において、最高温度と最低温度を検出できる。   In the vehicle power supply device according to claim 3 of the present invention, the first region and the third region are both ends of the battery block, and the second region is an intermediate portion of the battery block. This power supply device can detect the maximum temperature and the minimum temperature in both the forced air blowing state and the state in which the temperature sensor is disposed at both ends and the intermediate portion of the battery block.

さらに、本発明の請求項4の車両用の電源装置は、温度センサを角形電池セルの上部に熱結合して配設し、また、請求項5の車両用の電源装置は、温度センサを角形電池セルの出力端子に熱結合して固定し、さらにまた、請求項6の車両用の電源装置は、温度センサを角形電池セルの下部に熱結合して配設している。このように、角形電池セルの上部または下部、あるいは出力端子に熱結合して配設される温度センサは、冷却気体の影響を受けないので、角形電池セルの温度を正確に検出できる。このため、電池ブロックに強制送風する状態においても、最高温度や最低温度を正確に検出できる。   Further, in the vehicle power supply device according to claim 4 of the present invention, the temperature sensor is thermally coupled to the upper portion of the square battery cell, and the vehicle power supply device according to claim 5 is provided with the temperature sensor as a square shape. Further, the power supply device for a vehicle according to claim 6 is provided by thermally coupling a temperature sensor to a lower portion of the rectangular battery cell. As described above, the temperature sensor disposed by being thermally coupled to the upper part or the lower part of the prismatic battery cell or the output terminal is not affected by the cooling gas, so that the temperature of the prismatic battery cell can be accurately detected. For this reason, the maximum temperature and the minimum temperature can be accurately detected even in a state where forced air is blown to the battery block.

とくに、本発明の請求項6の車両用の電源装置は、角形電池セルの出力端子に温度センサを固定するので、簡単かつ容易に、角形電池セルに熱結合して固定しながら、角形電池セルの温度を正確に検出できる特徴がある。それは、この温度センサが、角形電池セルの内部で電極に接続される出力端子を介して電池の温度を検出するからである。   In particular, the power supply device for a vehicle according to claim 6 of the present invention fixes the temperature sensor to the output terminal of the prismatic battery cell, so that the prismatic battery cell can be easily and easily thermally coupled to the prismatic battery cell. There is a feature that can accurately detect the temperature. This is because the temperature sensor detects the temperature of the battery via an output terminal connected to the electrode inside the rectangular battery cell.

さらに、本発明の請求項7の車両用の電源装置は、温度センサを角形電池セルの上下の中間部に熱結合して配設している。この構造は、送風隙間を利用して、極めて簡単に温度センサを定位置に配置できる。とくに、本発明の請求項8の車両用の電源装置は、第2の領域に配設される温度センサを、角形電池セルの上下の中間部に熱結合して配設しているので、強制送風を停止する状態で温度が高くなる第2の領域における最高温度を正確に検出できる。   Further, in the power supply device for a vehicle according to claim 7 of the present invention, the temperature sensor is thermally coupled to the upper and lower intermediate portions of the rectangular battery cell. In this structure, the temperature sensor can be arranged at a fixed position very easily using the air gap. In particular, in the power supply device for a vehicle according to claim 8 of the present invention, the temperature sensor disposed in the second region is thermally coupled to the upper and lower middle portions of the rectangular battery cell. It is possible to accurately detect the maximum temperature in the second region where the temperature becomes high in a state where the air blowing is stopped.

さらに、本発明の請求項9の車両用の電源装置は、第1の領域と第3の領域に配設される温度センサを、角形電池セルの上部又は下部に熱結合して配設しているので、強制送風する状態で最高温度又は最低温度となる第1の領域又は第3の領域における温度を正確に検出できる。   Furthermore, in the vehicle power supply device according to claim 9 of the present invention, the temperature sensors disposed in the first region and the third region are thermally coupled to the upper or lower portion of the rectangular battery cell. Therefore, it is possible to accurately detect the temperature in the first region or the third region that is the highest temperature or the lowest temperature in the state of forced air blowing.

本発明の請求項10の車両用の電源装置は、角形電池セルをリチウムイオン電池としている。この電源装置は、リチウムイオン電池である角形電池セルが異常な低温や異常な高温となるのを確実に検出して、リチウムイオン電池を低温と高温から保護できる。   According to a tenth aspect of the present invention, the prismatic battery cell is a lithium ion battery. This power supply device can reliably detect that a rectangular battery cell, which is a lithium ion battery, has an abnormally low temperature or an abnormally high temperature, and can protect the lithium ion battery from a low temperature and a high temperature.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための車両用の電源装置を例示するものであって、本発明は車両用の電源装置を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a vehicle power supply device for embodying the technical idea of the present invention, and the present invention does not specify the vehicle power supply device as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, for easy understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図1の斜視図と図2の平面図に示す車両用の電源装置は、主として、エンジンとモータの両方で走行するハイブリッドカーや、モータのみで走行する電気自動車などの電動車両の電源に最適である。ただし、ハイブリッドカーや電気自動車以外の車両にも使用される。   The power supply device for a vehicle shown in the perspective view of FIG. 1 and the plan view of FIG. 2 is most suitable for the power source of an electric vehicle such as a hybrid car that runs with both an engine and a motor and an electric vehicle that runs with only a motor. is there. However, it is also used for vehicles other than hybrid cars and electric cars.

図1と図2に示す電源装置は、複数の角形電池セル1をセパレータ2を介して送風隙間3を設ける状態で積層している電池ブロック4と、この電池ブロック4の対向位置に設けられて、冷却気体を送風隙間3に強制送風する送風ダクト5と、電池ブロック4を構成している複数の角形電池セル1の温度を検出する複数の温度センサ6と、この温度センサ6が検出する角形電池セル1の温度にコントロールされて、送風ダクト5を介して各々の送風隙間3に分岐して冷却気体を送風する強制送風機7と、温度センサ6で検出される角形電池セル1の温度で電池の電流を制御する制御回路8とを備える。   The power supply device shown in FIG. 1 and FIG. 2 is provided at a position opposite to the battery block 4 in which a plurality of rectangular battery cells 1 are stacked in a state where a ventilation gap 3 is provided via a separator 2. The air duct 5 that forcibly blows the cooling gas into the air gap 3, the plurality of temperature sensors 6 that detect the temperatures of the plurality of rectangular battery cells 1 constituting the battery block 4, and the square that the temperature sensor 6 detects. The battery is controlled by the temperature of the battery cell 1 and is branched to each of the air gaps 3 through the air duct 5 to blow the cooling gas, and the temperature of the rectangular battery cell 1 detected by the temperature sensor 6. And a control circuit 8 for controlling the current.

角形電池セル1は、幅よりも薄い薄型の角形電池で、互いに平行な姿勢としてセパレータ2を挟んで積層している。図の角形電池セル1は、上面の両端部に正負の出力端子10を突出させて固定している。出力端子10を突出させる位置は、正極と負極が左右対称となる位置としている。これにより、角形電池セル1を裏返して重ねると、正極と負極とを重ね合わせることができ、直列接続を容易に行える。出力端子10は、それぞれ断面L字状に折曲され、さらに折曲部には連結穴(図示せず)を開口しており、この連結穴に連結ボルト11を挿通して互いに積層される折曲部を連結している。とくに、正負の出力端子10は、図に示すように互いに逆方向に折曲されると共に、互いに隣接する電池セル同士では、正負の出力端子10が交互に逆向きに折曲されている。これらの出力端子10は、隣接する角形電池セル1の間で、直接接続可能な大きさ及び形状に形成している。これにより、隣接する電池間で正極と負極を直接接続して、複数の電池を直列に接続している。ただ、出力端子は、金属板のバスバーを接続して、隣接する角形電池セルを直列に接続することもできる。以上のように、角形電池セル1を直列に接続する電源装置は、出力電圧を高くして出力を大きくできる。ただし、電源装置は、角形電池セルを並列と直列に接続することもできる。   The prismatic battery cell 1 is a thin prismatic battery that is thinner than the width, and is stacked with a separator 2 sandwiched between them in a parallel posture. In the illustrated rectangular battery cell 1, positive and negative output terminals 10 are projected and fixed at both end portions of the upper surface. The position where the output terminal 10 is projected is a position where the positive electrode and the negative electrode are symmetrical. Thereby, if the square battery cell 1 is turned upside down, the positive electrode and the negative electrode can be overlapped, and series connection can be easily performed. Each of the output terminals 10 is bent in an L-shaped cross section, and a connecting hole (not shown) is opened in the bent portion, and the connecting bolts 11 are inserted into the connecting holes and stacked together. The music parts are connected. In particular, the positive and negative output terminals 10 are bent in opposite directions as shown in the figure, and the positive and negative output terminals 10 are alternately bent in opposite directions between adjacent battery cells. These output terminals 10 are formed in a size and shape that can be directly connected between adjacent rectangular battery cells 1. Thereby, a positive electrode and a negative electrode are directly connected between adjacent batteries, and a plurality of batteries are connected in series. However, the output terminal can be connected to a series of adjacent rectangular battery cells by connecting a metal plate bus bar. As described above, the power supply device in which the rectangular battery cells 1 are connected in series can increase the output voltage and increase the output. However, the power supply device can also connect the square battery cells in parallel and in series.

図の電源装置は、複数の角形電池セル1を、間に送風隙間3ができるように積層して電池ブロック4としている。この電池ブロック4は、角形電池セル1の間に、セパレータ2を挟んで送風隙間3を設けている。セパレータ2は、互いに隣接する角形電池セル1を一定の間隔に保持して、送風隙間3を設ける。図のセパレータ2は、両面に溝のある形状としてセパレータ2と角形電池セル1との境界に送風隙間3を設けている。図の電池ブロック4は、左右の両側に一対の送風ダクト5を設けている。送風ダクト5は、流入ダクト5Aと排出ダクト5Bからなる。流入ダクト5Aと排出ダクト5Bは、互いに反対側に設けられて、冷却気体を流入ダクト5Aから送風隙間3に、送風隙間3から排出ダクト5Bに送風して、角形電池セル1を冷却する。図の電池ブロック4は、流入ダクト5Aと排出ダクト5Bを両側に設けているので、送風隙間3を水平方向に伸びるように設けている。冷却気体は、送風隙間3に水平方向に送風されて、角形電池セル1を冷却する。ただし、本発明の電源装置は、送風隙間を上下方向に伸びるように設けて、一対の送風ダクトを電池ブロックの上下の対向面に設けることもできる。   In the illustrated power supply apparatus, a plurality of rectangular battery cells 1 are stacked so as to have a ventilation gap 3 therebetween to form a battery block 4. In the battery block 4, the air gap 3 is provided between the rectangular battery cells 1 with the separator 2 interposed therebetween. The separator 2 holds the rectangular battery cells 1 adjacent to each other at a constant interval, and provides a blower gap 3. The separator 2 in the figure is provided with a ventilation gap 3 at the boundary between the separator 2 and the rectangular battery cell 1 as a shape having grooves on both sides. The battery block 4 shown in the figure has a pair of air ducts 5 on the left and right sides. The air duct 5 includes an inflow duct 5A and an exhaust duct 5B. The inflow duct 5 </ b> A and the exhaust duct 5 </ b> B are provided on the opposite sides to cool the prismatic battery cell 1 by sending cooling gas from the inflow duct 5 </ b> A to the blower gap 3 and from the blower gap 3 to the discharge duct 5 </ b> B. In the illustrated battery block 4, the inflow duct 5 </ b> A and the exhaust duct 5 </ b> B are provided on both sides, so that the air blowing gap 3 is provided so as to extend in the horizontal direction. The cooling gas is blown horizontally in the blowing gap 3 to cool the rectangular battery cell 1. However, the power supply apparatus of this invention can also provide a ventilation gap so that it may extend in an up-down direction, and can provide a pair of ventilation duct in the upper and lower opposing surface of a battery block.

温度センサ6は、電池ブロック4を構成する角形電池セル1の温度を検出する。温度センサ6は、サーミスタ等の温度で電気抵抗が変化する素子である。温度センサ6は、電池ブロック4が強制送風される状態と、強制送風されない状態とで最高温度と最低温度を検出する。電池ブロック4は、強制送風する状態と強制送風を停止する状態とで、最高温度と最低温度となる領域が異なる。したがって、強制送風する状態と強制送風を停止する状態で、最高温度と最低温度を検出するためには、4個の温度センサ6を必要とする。ただ、本発明の電源装置は、第1の温度センサ6Aと第2の温度センサ6Bと第3の温度センサ6Cでもって、強制送風する状態としない状態の両方で、最高温度と最低温度の両方を検出する。   The temperature sensor 6 detects the temperature of the rectangular battery cell 1 constituting the battery block 4. The temperature sensor 6 is an element such as a thermistor whose electrical resistance changes with temperature. The temperature sensor 6 detects the maximum temperature and the minimum temperature in a state where the battery block 4 is forcedly blown and a state where the battery block 4 is not forcedly blown. In the battery block 4, the regions where the maximum temperature and the minimum temperature are different are different depending on whether the forced air blowing is performed or the forced air blowing is stopped. Therefore, four temperature sensors 6 are required to detect the maximum temperature and the minimum temperature in a state where forced air is blown and a state where forced air is stopped. However, the power supply device according to the present invention has both the maximum temperature and the minimum temperature in both the forced air blowing state and the non-forced state with the first temperature sensor 6A, the second temperature sensor 6B, and the third temperature sensor 6C. Is detected.

このことを実現するために、図1と図2の電源装置は、電池ブロック4の送風隙間3に強制送風する状態で、最低圧力となる第1の領域S1と、最高圧力となる第3の領域S3と、第1の領域S1と第3の領域の中間の圧力となる第2の領域S2に温度センサ6を配設している。第1の領域S1に配設される第1の温度センサ6Aと、第2の領域S2に配設される第2の温度センサ6Bと、第3の領域S3に配設される第3の温度センサ6Cは、強制送風する状態と、強制送風を停止する状態とで電池ブロック4の最高温度と最低温度を検出する。図の電源装置は、電池ブロック4の両側に、流入ダクト5Aと排出ダクト5Bからなる一対の送風ダクト5を設けている。流入ダクト5Aと排出ダクト5Bには複数の送風隙間3が並列に連結される。したがって、流入ダクト5Aに送風される冷却気体は、複数の送風隙間3に分岐して送風され、送風ダクト5から排出ダクト5Bに送風される。この電源装置は、第1の領域S1と第3の領域S3が電池ブロック4の両端部となり、第2の領域S2が電池ブロック4の中間部となる。したがって、電池ブロック4の両端部に第1の温度センサ6Aと第3の温度センサ6Cを配設して、電池ブロック4の中間部に第2の温度センサ6Bを配設している。   In order to realize this, the power supply device shown in FIGS. 1 and 2 is configured to forcibly blow air to the air gap 3 of the battery block 4 and the first region S1 that is the lowest pressure and the third pressure that is the highest pressure. The temperature sensor 6 is disposed in the region S3 and the second region S2 that is at a pressure intermediate between the first region S1 and the third region. The first temperature sensor 6A disposed in the first region S1, the second temperature sensor 6B disposed in the second region S2, and the third temperature disposed in the third region S3. The sensor 6C detects the maximum temperature and the minimum temperature of the battery block 4 in a state where forced air blowing is performed and a state where forced air blowing is stopped. The power supply device shown in the figure has a pair of air ducts 5 including an inflow duct 5 </ b> A and an exhaust duct 5 </ b> B on both sides of the battery block 4. A plurality of air gaps 3 are connected in parallel to the inflow duct 5A and the exhaust duct 5B. Therefore, the cooling gas blown to the inflow duct 5A is branched into the plurality of blow gaps 3 and blown, and blown from the blow duct 5 to the discharge duct 5B. In the power supply device, the first region S1 and the third region S3 are both end portions of the battery block 4, and the second region S2 is an intermediate portion of the battery block 4. Therefore, the first temperature sensor 6 </ b> A and the third temperature sensor 6 </ b> C are disposed at both ends of the battery block 4, and the second temperature sensor 6 </ b> B is disposed at the intermediate portion of the battery block 4.

図3は、図1と図2に示すように、電池ブロック4であって、19個の角形電池セル1に強制送風する状態の温度分布(曲線A)と、強制送風を停止する状態における電池ブロック4の温度分布(曲線B)と、強制送風する状態における送風隙間3の圧力分布(曲線C)を示すグラフである。ただし、このグラフは、図2に示す電池ブロック4の中心線mの位置の温度と圧力を示している。図3の曲線Cで示すように、電池ブロック4に強制送風する状態では、風上側の圧力が最低圧力となり、風下側の圧力が最高圧力となり、中間部が中間の圧力となる。したがって、この電池ブロック4は、最低圧力となる風上側の端部が第1の領域S1、最高圧力となる風下側の端部が第3の領域S3、その中間部が第2の領域S2となる。したがって、風上側の端部である第1の領域S1には第1の温度センサ6Aが配設され、風下側の端部である第3の領域S3には第3の温度センサ6Cが配設され、中間の領域にある第2の領域S2には第2の温度センサ6Bが配設される。   FIG. 3 shows a battery block 4 as shown in FIGS. 1 and 2, and a temperature distribution (curve A) in a state where forced air is sent to 19 rectangular battery cells 1, and a battery in a state where forced air is stopped. It is a graph which shows the temperature distribution (curve B) of the block 4, and the pressure distribution (curve C) of the ventilation gap 3 in the state which carries out forced ventilation. However, this graph shows the temperature and pressure at the position of the center line m of the battery block 4 shown in FIG. As shown by the curve C in FIG. 3, in the state where forced air is blown to the battery block 4, the pressure on the windward side is the lowest pressure, the pressure on the leeward side is the highest pressure, and the intermediate portion is the intermediate pressure. Therefore, in this battery block 4, the end on the leeward side where the lowest pressure is reached is the first region S1, the end on the leeward side where the highest pressure is reached is the third region S3, and the middle part is the second region S2. Become. Accordingly, the first temperature sensor 6A is disposed in the first region S1 that is the end portion on the leeward side, and the third temperature sensor 6C is disposed in the third region S3 that is the end portion on the leeward side. The second temperature sensor 6B is disposed in the second region S2 in the middle region.

電池ブロックは、全体を第1の領域と第2の領域と第3の領域に分割し、第1の領域には第1の温度センサを、第2の領域には第2の温度センサを、第3の領域には第3の温度センサを配設し、さらに、第1の領域と第2の領域と第3の領域を、強制送風機が冷却気体を強制送風する状態と、強制送風を停止する状態で、最高温度と最低温度となる領域として、強制送風機を運転し、また停止する状態で、温度センサが最高温度と最低温度を検出することもできる。図1と図2の電源装置は、強制送風する状態では、一方の端部が最低温度となって、他端が最高温度となり、また強制送風しない状態では、両端部が最低温度となって、中間が最高温度となるので、電池ブロック4の両端部を第1の領域S1と第3の領域S3とし、中間を第2の領域S2として第1の領域S1と第2の領域S2と第3の領域S3に各々温度センサ6を配設して、強制送風する状態と、強制送風を停止する両方の状態で、電池ブロック4の最高温度と最低温度を検出できる。   The battery block is divided into a first area, a second area, and a third area as a whole, the first temperature sensor in the first area, the second temperature sensor in the second area, A third temperature sensor is disposed in the third region, and the forced air blower is stopped in the first region, the second region, and the third region. In such a state, the temperature sensor can detect the maximum temperature and the minimum temperature in a state where the forced blower is operated and stopped as a region where the maximum temperature and the minimum temperature are obtained. In the state where the power supply device of FIGS. 1 and 2 is forcibly ventilated, one end is at the lowest temperature, the other end is at the highest temperature, and in the state where no forced air is blown, both ends are at the lowest temperature, Since the middle is the maximum temperature, both end portions of the battery block 4 are defined as the first region S1 and the third region S3, and the middle is defined as the second region S2, and the first region S1, the second region S2, and the third region The temperature sensors 6 are provided in each of the regions S3, and the maximum temperature and the minimum temperature of the battery block 4 can be detected in both the forced air blowing state and the forced air blowing stopped state.

電池ブロック4の第1の領域S1と第2の領域S2と第3の領域S3に配設される温度センサ6は、角形電池セル1の上部と、下部と、上下の中間部と、出力端子10のいずれかの部位に熱結合して固定される。図4と図5は、角形電池セル1の上部に温度センサ6を配設する構造を示している。この構造は、セパレータ2に温度センサ6を挿入する挿入口12を開口している。挿入口12は、上面から斜めに傾斜して開口される。セパレータ2は、角形電池セル1をより広い面積で冷却できるように、できる限り上部まで送風隙間3を設けている。したがって、セパレータ2の上縁部にあって、互いに接触して積層される上の積層部13は、上下幅が狭くなる。この積層部13に傾斜して挿入口12を設けて挿入口12を長くできる。長い挿入口12に挿入される温度センサ6は、角形電池セル1の温度を正確に検出しながら、挿入口12にしっかりと確実に固定される。さらに、サーミスタなどの温度センサ6は、金属筒14に入れて挿入口12に挿入される。この温度センサ6は、熱伝導に優れた金属筒14を介して角形電池セル1の温度を速やかに検出する。挿入口12に挿入された金属筒14は、絶縁材のセパレータ2で角形電池セル1から絶縁される。角形電池セル1の上部に熱結合して配設される温度センサ6は、冷却気体の影響を受けず、角形電池セル1の温度を正確に検出する。したがって、この固定構造は、強制送風する状態で、最高温度又は最低温度となる電池ブロック4の第1の領域S1、又は、第3の領域S3に温度センサ6を配置するのに適している。   The temperature sensor 6 disposed in the first region S1, the second region S2, and the third region S3 of the battery block 4 includes an upper portion, a lower portion, upper and lower intermediate portions of the rectangular battery cell 1, and an output terminal. It is fixed by thermal bonding to any one of the ten sites. 4 and 5 show a structure in which the temperature sensor 6 is disposed on the upper part of the prismatic battery cell 1. In this structure, an insertion port 12 for inserting the temperature sensor 6 into the separator 2 is opened. The insertion port 12 is opened obliquely from the upper surface. The separator 2 is provided with the air gap 3 as far as possible so that the prismatic battery cell 1 can be cooled in a wider area. Therefore, the upper stacked portion 13 which is in the upper edge portion of the separator 2 and is stacked in contact with each other has a narrow vertical width. The insertion port 12 can be lengthened by providing the insertion port 12 in an inclined manner in the laminated portion 13. The temperature sensor 6 inserted into the long insertion slot 12 is firmly and securely fixed to the insertion slot 12 while accurately detecting the temperature of the prismatic battery cell 1. Further, the temperature sensor 6 such as a thermistor is inserted into the insertion port 12 in a metal cylinder 14. The temperature sensor 6 quickly detects the temperature of the prismatic battery cell 1 through the metal cylinder 14 excellent in heat conduction. The metal cylinder 14 inserted into the insertion port 12 is insulated from the rectangular battery cell 1 by the insulating separator 2. The temperature sensor 6 that is thermally coupled to the upper portion of the prismatic battery cell 1 is not affected by the cooling gas and accurately detects the temperature of the prismatic battery cell 1. Therefore, this fixed structure is suitable for disposing the temperature sensor 6 in the first region S1 or the third region S3 of the battery block 4 that has the highest temperature or the lowest temperature in a state where forced air is blown.

図6と図7は、電池ブロック4の底部に温度センサ6を配設する固定構造を示している。この構造は、互いに接触状態で積層されるセパレータ2の底の積層部13にスリット15を設けている。このスリット15に温度センサ6とリード線9を案内している。さらに、温度センサ6を角形電池セル1の底面に接触させる接触穴16をスリット15に連通して設けている。接触穴16は上方に開口されて、スリット15に案内される温度センサ6を角形電池セル1の底面に接触状態で熱結合させる。図のスリット15は、接触穴16を上下に貫通して設けている。さらに、温度センサ6はリード線9の部分よりも太くしている先端の感温部6aを接触穴16に入れている。この構造は、温度センサ6を位置ずれしないように、定位置に配置させる。スリット15は、リード線9を電池ブロック4の縦方向に引き出すように、積層方向に延びるように設けている。角形電池セル1の底部に温度センサ6を配設する構造は、冷却気体の影響を受けず、角形電池セル1の温度を正確に検出する。したがって、この固定構造も、強制送風する状態で最高温度又は最低温度となる電池ブロック4の第1の領域S1、又は、第3の領域S3に温度センサ6を配置するのに適している。   6 and 7 show a fixing structure in which the temperature sensor 6 is disposed at the bottom of the battery block 4. In this structure, a slit 15 is provided in the stacked portion 13 at the bottom of the separator 2 stacked in contact with each other. The temperature sensor 6 and the lead wire 9 are guided to the slit 15. Furthermore, a contact hole 16 is provided in communication with the slit 15 so that the temperature sensor 6 contacts the bottom surface of the rectangular battery cell 1. The contact hole 16 is opened upward to thermally couple the temperature sensor 6 guided by the slit 15 to the bottom surface of the prismatic battery cell 1 in a contact state. The slit 15 in the figure is provided through the contact hole 16 vertically. Further, the temperature sensor 6 has a temperature-sensing portion 6 a at the tip that is thicker than the lead wire 9 inserted in the contact hole 16. In this structure, the temperature sensor 6 is arranged at a fixed position so as not to be displaced. The slit 15 is provided so as to extend in the stacking direction so that the lead wire 9 is drawn out in the vertical direction of the battery block 4. The structure in which the temperature sensor 6 is arranged at the bottom of the prismatic battery cell 1 accurately detects the temperature of the prismatic battery cell 1 without being affected by the cooling gas. Therefore, this fixed structure is also suitable for disposing the temperature sensor 6 in the first region S1 or the third region S3 of the battery block 4 that has the highest temperature or the lowest temperature in a state where forced air is blown.

さらに、図8と図9は、電池ブロック4の上下の中間部に温度センサ6を配設する構造を示している。この構造は、送風隙間3に温度センサ6を挿入している。温度センサ6は、先端の感温部6aを角形電池セル1の表面に接触して熱結合される。リード線9は、送風隙間3から外部に引き出される。この構造は、送風隙間3を利用して温度センサ6を定位置に配置するので、セパレータ2に特別な加工をすることなく、温度センサ6を熱結合して配置できる。角形電池セル1は、強制送風を停止する状態で温度が高くなるので、この構造は、強制送風を停止する状態で最高温度となる第2の領域S2に温度センサ6を配置するのに適している。   8 and 9 show a structure in which the temperature sensor 6 is disposed in the upper and lower intermediate portions of the battery block 4. In this structure, a temperature sensor 6 is inserted into the air blowing gap 3. The temperature sensor 6 is thermally coupled by bringing the temperature sensing portion 6 a at the tip into contact with the surface of the rectangular battery cell 1. The lead wire 9 is drawn out from the ventilation gap 3 to the outside. Since this structure arrange | positions the temperature sensor 6 in a fixed position using the ventilation gap 3, the temperature sensor 6 can be thermally coupled and arrange | positioned, without carrying out the special process to the separator 2. FIG. Since the temperature of the prismatic battery cell 1 is increased in a state where forced air blowing is stopped, this structure is suitable for disposing the temperature sensor 6 in the second region S2 where the maximum temperature is obtained in the state where forced air blowing is stopped. Yes.

さらに、図10は、角形電池セル1の出力端子10に熱結合して温度センサ6を固定する構造を示している。この固定構造は、出力端子10にネジ止めされる金属リング17に連結している。金属リング17は、出力端子10に固定される連結ボルト11に積層されて、一緒にネジ止めされる。この固定構造は、温度センサ6を簡単かつ容易に熱結合して固定しながら、角形電池セル1の温度を正確に検出でき、また、角形電池セル1に確実に固定できる特徴がある。角形電池セル1の出力端子10は、内部で電極に接続しているので、電池の内部発熱を効率よく熱伝導する。したがって、出力端子10に固定される温度センサ6は、角形電池セル1の温度を速やかに正確に検出できる。また、この取付構造は、冷却気体の影響を受けないことから、第1の領域S1と第2の領域S2と第3の領域S3に固定される全ての温度センサ6の取り付けに利用できる。   Further, FIG. 10 shows a structure in which the temperature sensor 6 is fixed by being thermally coupled to the output terminal 10 of the rectangular battery cell 1. This fixing structure is connected to a metal ring 17 that is screwed to the output terminal 10. The metal ring 17 is laminated on the connecting bolt 11 fixed to the output terminal 10 and screwed together. This fixing structure is characterized in that the temperature of the prismatic battery cell 1 can be accurately detected while the temperature sensor 6 is simply and easily thermally coupled and fixed, and can be securely fixed to the prismatic battery cell 1. Since the output terminal 10 of the rectangular battery cell 1 is connected to the electrode inside, the internal heat generation of the battery is efficiently conducted. Therefore, the temperature sensor 6 fixed to the output terminal 10 can quickly and accurately detect the temperature of the rectangular battery cell 1. Further, since this mounting structure is not affected by the cooling gas, it can be used for mounting all the temperature sensors 6 fixed to the first region S1, the second region S2, and the third region S3.

強制送風機7は、送風ダクト5に連結される。図の電源装置は、流入ダクト5Aに強制送風機7を連結している。したがって、強制送風機7は、流入ダクト5Aに冷却気体を強制送風する。この電源装置は、強制送風機7→流入ダクト5A→送風隙間3→排出ダクト5Bに冷却気体を送風して、角形電池セル1を冷却する。ただし、強制送風機は、排出ダクトに連結することもできる。この強制送風機は、排出ダクトから冷却気体を強制的に吸入して排気する。したがって、この電源装置は、冷却気体を、流入ダクト→送風隙間→排出ダクト→強制送風機に送風して、角形電池セルを冷却する。送風される冷却気体は空気であるが、空気に代わって窒素や炭酸ガスなどの不活性ガスを送風することもできる。冷却気体を不活性ガスとする電源装置は、冷却気体を循環して、角形電池セルを冷却する。循環される不活性ガスは、流路の途中に配設している冷却用の熱交換器で冷却されて、流入ダクト→送風隙間→排出ダクト→強制送風機に循環されて、角形電池セルを冷却する。   The forced blower 7 is connected to the blower duct 5. In the illustrated power supply apparatus, a forced blower 7 is connected to the inflow duct 5A. Therefore, the forced blower 7 forcibly blows the cooling gas to the inflow duct 5A. The power supply device cools the prismatic battery cell 1 by sending cooling gas to the forced blower 7 → the inflow duct 5 </ b> A → the air gap 3 → the discharge duct 5 </ b> B. However, the forced blower can also be connected to the discharge duct. The forced blower forcibly sucks and exhausts the cooling gas from the discharge duct. Therefore, this power supply device cools the rectangular battery cells by sending the cooling gas to the inflow duct → the ventilation gap → the discharge duct → the forced blower. The cooling gas to be blown is air, but an inert gas such as nitrogen or carbon dioxide can be blown instead of air. The power supply device using the cooling gas as an inert gas circulates the cooling gas to cool the rectangular battery cells. The circulated inert gas is cooled by a cooling heat exchanger disposed in the middle of the flow path, and circulated through the inflow duct → the air gap → the exhaust duct → the forced air fan to cool the square battery cell. To do.

強制送風機7は、モータ7Aで回転されるファン7Bを備え、モータ7Aの運転は制御回路8に制御される。制御回路8は、温度センサ6の信号で強制送風機7のモータ7Aの運転を制御する。制御回路8は、温度センサ6が検出する最高温度が設定温度よりも高くなると、強制送風機7のモータ7Aを運転して、送風隙間3に冷却気体を強制送風する。最高温度が設定温度よりも低くなると、モータ7Aの運転を停止する。さらに、制御回路8は、温度センサ6の検出温度によって、モータ7Aに供給する電力をコントロールして、角形電池セル1を所定の温度範囲に制御することもできる。たとえば、温度センサ6の検出温度が高くなるとモータ7Aに供給する電力を次第に大きくして、強制送風機7が送風する風量を多くし、検出温度が低くなるとモータ7Aの供給電力を小さくして、設定された温度範囲に制御することもできる。   The forced blower 7 includes a fan 7B rotated by a motor 7A, and the operation of the motor 7A is controlled by the control circuit 8. The control circuit 8 controls the operation of the motor 7 </ b> A of the forced blower 7 with a signal from the temperature sensor 6. When the maximum temperature detected by the temperature sensor 6 becomes higher than the set temperature, the control circuit 8 operates the motor 7 </ b> A of the forced blower 7 to forcibly blow the cooling gas into the blower gap 3. When the maximum temperature becomes lower than the set temperature, the operation of the motor 7A is stopped. Furthermore, the control circuit 8 can also control the electric power supplied to the motor 7A by the temperature detected by the temperature sensor 6 to control the rectangular battery cell 1 to a predetermined temperature range. For example, the power supplied to the motor 7A is gradually increased when the detected temperature of the temperature sensor 6 is increased, the amount of air blown by the forced blower 7 is increased, and the power supplied to the motor 7A is decreased when the detected temperature is decreased. It is also possible to control the temperature range.

さらに、制御回路8は、温度センサ6で検出される最高温度と最低温度で角形電池セル1の電流をコントロールする。最高温度が設定温度よりも高くなり、あるいは最低温度よりも低くなると、角形電池セル1に流す最大電流を制限し、あるいは遮断する。角形電池セル1の温度が異常に高く、あるいは低い状態における大電流が電池を著しく劣化させるからである。   Further, the control circuit 8 controls the current of the prismatic battery cell 1 at the highest temperature and the lowest temperature detected by the temperature sensor 6. When the maximum temperature is higher than the set temperature or lower than the minimum temperature, the maximum current flowing through the rectangular battery cell 1 is limited or cut off. This is because a large current when the temperature of the prismatic battery cell 1 is abnormally high or low significantly deteriorates the battery.

本発明の一実施例にかかる車両用の電源装置の斜視図である。It is a perspective view of the power supply device for vehicles concerning one example of the present invention. 図1に示す車両用の電源装置の平面図である。It is a top view of the power supply device for vehicles shown in FIG. 電池ブロックの温度分布と送風隙間の圧力分布を示すグラフである。It is a graph which shows the temperature distribution of a battery block, and the pressure distribution of a ventilation gap. 電池ブロックの上部に温度センサを配設する状態を示す断面斜視図である。It is a cross-sectional perspective view which shows the state which arrange | positions the temperature sensor in the upper part of a battery block. 図4に示す温度センサの配設構造を示す拡大断面斜視図である。FIG. 5 is an enlarged cross-sectional perspective view showing the arrangement structure of the temperature sensor shown in FIG. 4. 電池ブロックの下部に温度センサを配設する状態を底面図である。It is a bottom view which shows the state which arrange | positions a temperature sensor in the lower part of a battery block. 電池ブロックの下部に温度センサを配設する状態を一部拡大断面図である。It is a partial expanded sectional view in the state where a temperature sensor is arranged in the lower part of a battery block. 電池ブロックの上下の中間部に温度センサを配設する状態を示す断面斜視図である。It is a cross-sectional perspective view which shows the state which arrange | positions a temperature sensor in the intermediate part of the upper and lower sides of a battery block. 図8に示す電池ブロックの側面図である。It is a side view of the battery block shown in FIG. 角形電池セルの出力端子に温度センサを固定する構造を示す斜視図である。It is a perspective view which shows the structure which fixes a temperature sensor to the output terminal of a square battery cell.

符号の説明Explanation of symbols

1…角形電池セル
2…セパレータ
3…送風隙間
4…電池ブロック
5…送風ダクト 5A…流入ダクト
5B…排出ダクト
6…温度センサ 6A…第1の温度センサ
6B…第2の温度センサ
6C…第3の温度センサ
6a…感温部
7…強制送風機 7A…モータ
7B…ファン
8…制御回路
9…リード線
10…出力端子
11…連結ボルト
12…挿入口
13…積層部
14…金属筒
15…スリット
16…接触穴
17…金属リング
DESCRIPTION OF SYMBOLS 1 ... Square battery cell 2 ... Separator 3 ... Air blowing gap 4 ... Battery block 5 ... Air duct 5A ... Inflow duct
5B ... Exhaust duct 6 ... Temperature sensor 6A ... First temperature sensor
6B ... Second temperature sensor
6C ... Third temperature sensor
6a ... temperature sensing part 7 ... forced air blower 7A ... motor
7B ... Fan 8 ... Control circuit 9 ... Lead wire 10 ... Output terminal 11 ... Connecting bolt 12 ... Insertion port 13 ... Laminated portion 14 ... Metal cylinder 15 ... Slit 16 ... Contact hole 17 ... Metal ring

Claims (10)

複数の角形電池セル(1)をセパレータ(2)を介して送風隙間(3)を設ける状態で積層してなる電池ブロック(4)と、この電池ブロック(4)の対向位置に設けられて、冷却気体を送風隙間(3)に強制送風する送風ダクト(5)と、前記電池ブロック(4)を構成している複数の角形電池セル(1)の温度を検出する複数の温度センサ(6)と、この温度センサ(6)が検出する角形電池セル(1)の温度にコントロールされて前記送風ダクト(5)を介して各々の送風隙間(3)に分岐して冷却気体を送風する強制送風機(7)と、前記温度センサ(6)で検出される角形電池セル(1)の温度で電池の電流を制御する制御回路(8)とを備える車両用の電源装置であって、
強制送風機(7)が冷却気体を電池ブロック(4)の送風隙間(3)に強制送風する状態で、最低圧力となる第1の領域S1と、最高圧力となる第3の領域S3と、第1の領域S1と第3の領域S3の中間の圧力となる第2の領域S2に温度センサ(6)を配設しており、第1の領域S1に配設される第1の温度センサ(6A)と、第2の領域S2に配設される第2の温度センサ(6B)と、第3の領域S3に配設される第3の温度センサ(6C)でもって、強制送風機(7)が強制送風する状態と、強制送風を停止する状態とで電池ブロック(4)を構成する角形電池セル(1)の最高温度と最低温度を検出するようにしてなる車両用の電源装置。
A battery block (4) formed by stacking a plurality of rectangular battery cells (1) in a state of providing a ventilation gap (3) through a separator (2), and provided at a position opposite to the battery block (4), A plurality of temperature sensors (6) for detecting the temperature of a plurality of prismatic battery cells (1) constituting the battery block (4) and a blower duct (5) forcibly blowing cooling gas into the blower gap (3) And a forced blower that blows cooling gas by branching into the respective air gaps (3) via the air duct (5) controlled by the temperature of the rectangular battery cell (1) detected by the temperature sensor (6) (7) and a power supply device for a vehicle comprising a control circuit (8) for controlling the battery current at the temperature of the rectangular battery cell (1) detected by the temperature sensor (6),
In the state where the forced blower (7) forcibly blows the cooling gas into the blower gap (3) of the battery block (4), the first region S1 that is the lowest pressure, the third region S3 that is the highest pressure, The temperature sensor (6) is disposed in the second region S2 where the pressure is intermediate between the first region S1 and the third region S3, and the first temperature sensor ( 6A), a second temperature sensor (6B) disposed in the second region S2, and a third temperature sensor (6C) disposed in the third region S3, the forced blower (7) A vehicle power supply device configured to detect the maximum temperature and the minimum temperature of the prismatic battery cells (1) constituting the battery block (4) in a state in which the forced air blowing is stopped and a state in which the forced air blowing is stopped.
複数の角形電池セル(1)をセパレータ(2)を介して送風隙間(3)を設ける状態で積層してなる電池ブロック(4)と、この電池ブロック(4)の対向位置に設けられて、冷却気体を送風隙間(3)に強制送風する送風ダクト(5)と、前記電池ブロック(4)を構成している複数の角形電池セル(1)の温度を検出する複数の温度センサ(6)と、この温度センサ(6)が検出する角形電池セル(1)の温度にコントロールされて送風ダクト(5)を介して各々の送風隙間(3)に分岐して冷却気体を送風する強制送風機(7)と、前記温度センサ(6)で検出される角形電池セル(1)の温度で電池の電流を制御する制御回路(8)とを備える車両用の電源装置であって、
前記電池ブロック(4)が、第1の領域S1と第2の領域S2と第3の領域S3に分割しており、第1の領域S1には第1の温度センサ(6A)を、第2の領域S2には第2の温度センサ(6B)を、第3の領域S3には第3の温度センサ(6C)を配設しており、第1の領域S1と第2の領域S2と第3の領域S3を、強制送風機(7)が冷却気体を強制送風する状態と、強制送風を停止する状態で、最高温度と最低温度となる領域として、強制送風機(7)を運転し、また停止する状態で、温度センサ(6)が最高温度と最低温度を検出するようにしてなる車両用の電源装置。
A battery block (4) formed by stacking a plurality of rectangular battery cells (1) in a state of providing a ventilation gap (3) through a separator (2), and provided at a position opposite to the battery block (4), A plurality of temperature sensors (6) for detecting the temperature of a plurality of prismatic battery cells (1) constituting the battery block (4) and a blower duct (5) forcibly blowing cooling gas into the blower gap (3) And a forced blower that blows cooling gas by branching to each air gap (3) via the air duct (5) under control of the temperature of the rectangular battery cell (1) detected by the temperature sensor (6). 7) and a power supply device for a vehicle comprising a control circuit (8) for controlling the battery current at the temperature of the rectangular battery cell (1) detected by the temperature sensor (6),
The battery block (4) is divided into a first region S1, a second region S2, and a third region S3. In the first region S1, a first temperature sensor (6A) is connected to a second region. The second temperature sensor (6B) is disposed in the region S2, and the third temperature sensor (6C) is disposed in the third region S3. The first region S1, the second region S2, and the second region S3 are disposed. The forced blower (7) is operated and stopped as a region where the maximum temperature and the minimum temperature are reached in the state S3 of 3 where the forced blower (7) forcibly blows the cooling gas and the forced blower is stopped. In such a state, the vehicle power supply device is configured such that the temperature sensor (6) detects the maximum temperature and the minimum temperature.
第1の領域S1と第3の領域S3が電池ブロック(4)の両端部であって、第2の領域S2が電池ブロック(4)の中間部である請求項1又は2に記載される車両用の電源装置。   The vehicle according to claim 1 or 2, wherein the first region S1 and the third region S3 are both ends of the battery block (4), and the second region S2 is an intermediate portion of the battery block (4). Power supply. 前記温度センサ(6)が角形電池セル(1)の上部に熱結合して配設されてなる請求項1又は2に記載される車両用の電源装置。   The power supply device for vehicles according to claim 1 or 2, wherein the temperature sensor (6) is thermally coupled to an upper portion of the rectangular battery cell (1). 前記温度センサ(6)が角形電池セル(1)の出力端子(10)に熱結合して固定されてなる請求項1又は2に記載される車両用の電源装置。   The power supply device for a vehicle according to claim 1 or 2, wherein the temperature sensor (6) is thermally coupled and fixed to an output terminal (10) of the rectangular battery cell (1). 前記温度センサ(6)が角形電池セル(1)の下部に熱結合して配設されてなる請求項1又は2に記載される車両用の電源装置。   The power supply device for a vehicle according to claim 1 or 2, wherein the temperature sensor (6) is thermally coupled to a lower portion of the square battery cell (1). 前記温度センサ(6)が角形電池セル(1)の上下の中間部に熱結合して配設されてなる請求項1又は2に記載される車両用の電源装置。   The power supply device for vehicles according to claim 1 or 2, wherein the temperature sensor (6) is thermally coupled to upper and lower intermediate portions of the rectangular battery cell (1). 前記第2の領域S2に配設される温度センサ(6)が角形電池セル(1)の上下の中間部に熱結合して配設されてなる請求項7に記載される車両用の電源装置。   The power supply device for a vehicle according to claim 7, wherein the temperature sensor (6) disposed in the second region S2 is thermally coupled to the upper and lower intermediate portions of the rectangular battery cell (1). . 前記第1の領域S1と第3の領域S3に配設される温度センサ(6)が、角形電池セル(1)の上部又は下部に熱結合して配設されてなる請求項1又は2に記載される車両用の電源装置。   The temperature sensor (6) disposed in the first region (S1) and the third region (S3) is thermally coupled to an upper portion or a lower portion of the prismatic battery cell (1). The vehicle power supply described. 前記角形電池セル(1)がリチウムイオン電池である請求項1又は2に記載される車両用の電源装置。   The vehicle power supply device according to claim 1 or 2, wherein the rectangular battery cell (1) is a lithium ion battery.
JP2007252609A 2007-09-27 2007-09-27 Power supply for vehicle Active JP5196936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252609A JP5196936B2 (en) 2007-09-27 2007-09-27 Power supply for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252609A JP5196936B2 (en) 2007-09-27 2007-09-27 Power supply for vehicle

Publications (2)

Publication Number Publication Date
JP2009087583A true JP2009087583A (en) 2009-04-23
JP5196936B2 JP5196936B2 (en) 2013-05-15

Family

ID=40660769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252609A Active JP5196936B2 (en) 2007-09-27 2007-09-27 Power supply for vehicle

Country Status (1)

Country Link
JP (1) JP5196936B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119937A (en) * 2007-11-12 2009-06-04 Honda Motor Co Ltd Battery cooling device for vehicle
JP2010262870A (en) * 2009-05-08 2010-11-18 Sanyo Electric Co Ltd Battery system
JP2010287550A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Vehicular battery pack, vehicle equipped with this, and separator for battery pack
US7905308B2 (en) 2007-11-12 2011-03-15 Honda Motor Co., Ltd. Vehicle battery cooling device
EP2315302A1 (en) * 2009-10-20 2011-04-27 Mann + Hummel GmbH Temperature sensor mounting arrangement for a battery frame assembly
EP2317584A1 (en) * 2009-10-29 2011-05-04 Hitachi Ltd. Battery power source
CN101624017B (en) * 2009-08-13 2011-06-15 顾金华 System for managing continuous status of batteries of electric motorcar
JP2011129429A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Condition discrimination system of power storage element
WO2011034324A3 (en) * 2009-09-15 2011-09-01 주식회사 엘지화학 Battery module having a temperature sensor installed thereon, and medium or large battery pack including same
JP2012064357A (en) * 2010-09-14 2012-03-29 Honda Motor Co Ltd Battery module
JP2012064358A (en) * 2010-09-14 2012-03-29 Honda Motor Co Ltd Battery module
JP2013143295A (en) * 2012-01-11 2013-07-22 Kawasaki Heavy Ind Ltd Battery system
DE102012217248A1 (en) * 2012-09-25 2014-03-27 Zf Friedrichshafen Ag Arrangement for securing electric energy storage module in hybrid car, has cells and cooling elements that are connected together and secured to supporting frame for vehicle-mounted connection, via coolant distributor profiles
WO2014122905A1 (en) * 2013-02-06 2014-08-14 三洋電機株式会社 Battery system
JP2014186793A (en) * 2013-03-21 2014-10-02 Toyota Industries Corp Battery pack
JP2014191953A (en) * 2013-03-27 2014-10-06 Auto Network Gijutsu Kenkyusho:Kk Wiring module
WO2015022792A1 (en) * 2013-08-12 2015-02-19 住友電気工業株式会社 Lithium ion secondary battery, charge and discharge system, and charging method
CN105074959A (en) * 2013-03-27 2015-11-18 株式会社自动网络技术研究所 Wiring module
JP2016192353A (en) * 2015-03-31 2016-11-10 日立工機株式会社 Battery pack
JPWO2017051515A1 (en) * 2015-09-25 2018-07-12 三洋電機株式会社 Battery system temperature detection method
CN109565087A (en) * 2016-08-30 2019-04-02 三洋电机株式会社 Managing device and accumulating system
JP2020149931A (en) * 2019-03-15 2020-09-17 ビークルエナジージャパン株式会社 Battery pack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346923A (en) * 2002-05-22 2003-12-05 Matsushita Electric Ind Co Ltd Cooling device of battery pack and secondary battery
JP2004311290A (en) * 2003-04-09 2004-11-04 Toyota Motor Corp Temperature difference reduction device for battery pack, and battery pack
JP2006109542A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Power unit for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346923A (en) * 2002-05-22 2003-12-05 Matsushita Electric Ind Co Ltd Cooling device of battery pack and secondary battery
JP2004311290A (en) * 2003-04-09 2004-11-04 Toyota Motor Corp Temperature difference reduction device for battery pack, and battery pack
JP2006109542A (en) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd Power unit for vehicle

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500345B2 (en) * 2007-11-12 2010-07-14 本田技研工業株式会社 Battery cooling device for vehicle
US7905308B2 (en) 2007-11-12 2011-03-15 Honda Motor Co., Ltd. Vehicle battery cooling device
JP2009119937A (en) * 2007-11-12 2009-06-04 Honda Motor Co Ltd Battery cooling device for vehicle
JP2010262870A (en) * 2009-05-08 2010-11-18 Sanyo Electric Co Ltd Battery system
JP2010287550A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Vehicular battery pack, vehicle equipped with this, and separator for battery pack
CN101624017B (en) * 2009-08-13 2011-06-15 顾金华 System for managing continuous status of batteries of electric motorcar
US20120088135A1 (en) * 2009-09-15 2012-04-12 Lg Chem, Ltd. Battery module having temperature sensor and battery pack employed with the same
US9735451B2 (en) 2009-09-15 2017-08-15 Lg Chem, Ltd. Battery module having temperature sensor and battery pack employed with the same
WO2011034324A3 (en) * 2009-09-15 2011-09-01 주식회사 엘지화학 Battery module having a temperature sensor installed thereon, and medium or large battery pack including same
EP2315302A1 (en) * 2009-10-20 2011-04-27 Mann + Hummel GmbH Temperature sensor mounting arrangement for a battery frame assembly
US8363425B2 (en) 2009-10-20 2013-01-29 Mann + Hummel Gmbh Temperature sensor mounting arrangement for a battery frame assembly
US20110104533A1 (en) * 2009-10-29 2011-05-05 Hitachi, Ltd. Battery Power Source
EP2317584A1 (en) * 2009-10-29 2011-05-04 Hitachi Ltd. Battery power source
JP2011129429A (en) * 2009-12-18 2011-06-30 Toyota Motor Corp Condition discrimination system of power storage element
JP2012064357A (en) * 2010-09-14 2012-03-29 Honda Motor Co Ltd Battery module
JP2012064358A (en) * 2010-09-14 2012-03-29 Honda Motor Co Ltd Battery module
JP2013143295A (en) * 2012-01-11 2013-07-22 Kawasaki Heavy Ind Ltd Battery system
DE102012217248A1 (en) * 2012-09-25 2014-03-27 Zf Friedrichshafen Ag Arrangement for securing electric energy storage module in hybrid car, has cells and cooling elements that are connected together and secured to supporting frame for vehicle-mounted connection, via coolant distributor profiles
WO2014122905A1 (en) * 2013-02-06 2014-08-14 三洋電機株式会社 Battery system
US9917336B2 (en) 2013-02-06 2018-03-13 Sanyo Electric Co., Ltd. Battery system
JP2014186793A (en) * 2013-03-21 2014-10-02 Toyota Industries Corp Battery pack
JP2014191953A (en) * 2013-03-27 2014-10-06 Auto Network Gijutsu Kenkyusho:Kk Wiring module
CN105074959A (en) * 2013-03-27 2015-11-18 株式会社自动网络技术研究所 Wiring module
CN105074964A (en) * 2013-03-27 2015-11-18 株式会社自动网络技术研究所 Wiring module
WO2015022792A1 (en) * 2013-08-12 2015-02-19 住友電気工業株式会社 Lithium ion secondary battery, charge and discharge system, and charging method
JP2016192353A (en) * 2015-03-31 2016-11-10 日立工機株式会社 Battery pack
JPWO2017051515A1 (en) * 2015-09-25 2018-07-12 三洋電機株式会社 Battery system temperature detection method
CN109565087A (en) * 2016-08-30 2019-04-02 三洋电机株式会社 Managing device and accumulating system
JP2020149931A (en) * 2019-03-15 2020-09-17 ビークルエナジージャパン株式会社 Battery pack
JP7053524B2 (en) 2019-03-15 2022-04-12 ビークルエナジージャパン株式会社 Battery pack

Also Published As

Publication number Publication date
JP5196936B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5196936B2 (en) Power supply for vehicle
JP5646039B2 (en) Battery module voltage detection assembly and battery module employing the same
JP6540628B2 (en) Battery pack
JP5305780B2 (en) Battery pack for vehicles
JP4504936B2 (en) Battery module
US7112387B2 (en) Battery power supply device
KR101324409B1 (en) Battery pack device
US20060060236A1 (en) System for controlling temperature of a secondary battery module
US20160111762A1 (en) Electrical storage apparatus
JP5784137B2 (en) Electrochemical energy storage device with a device for detecting the temperature of the energy storage device
KR101689220B1 (en) Battery module having groove
JP2008258027A (en) Collective battery
KR20120073195A (en) Battery module, battery system and electrically driven vehicle
JP6497585B2 (en) Power supply
JP2018519651A (en) Battery module with structure in which terminal plate and BMS are directly connected
KR20150094030A (en) Battery pack
JP5772885B2 (en) Battery system
US9112249B2 (en) Power source apparatus having cooling path and gas discharge path
JP2011023179A (en) Battery pack, vehicle equipped therewith, and bus bar for battery pack
KR101562712B1 (en) Battery arrangement for using in a motor vehicle
KR101522164B1 (en) Battery Pack Containing Peltier Element for Controlling Temperature
JP2015032429A (en) Battery cooling device
JP2006127920A (en) Power supply device
JP2008270122A (en) Power source device for vehicle
JP2011253746A (en) Storage battery module and storage battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5196936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3