JP2009085615A - Shape evaluation method of diffraction grating - Google Patents

Shape evaluation method of diffraction grating Download PDF

Info

Publication number
JP2009085615A
JP2009085615A JP2007251969A JP2007251969A JP2009085615A JP 2009085615 A JP2009085615 A JP 2009085615A JP 2007251969 A JP2007251969 A JP 2007251969A JP 2007251969 A JP2007251969 A JP 2007251969A JP 2009085615 A JP2009085615 A JP 2009085615A
Authority
JP
Japan
Prior art keywords
diffraction grating
shape
phase shift
interference fringe
shape evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007251969A
Other languages
Japanese (ja)
Other versions
JP4985280B2 (en
Inventor
Kenji Hiratsuka
健二 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007251969A priority Critical patent/JP4985280B2/en
Publication of JP2009085615A publication Critical patent/JP2009085615A/en
Application granted granted Critical
Publication of JP4985280B2 publication Critical patent/JP4985280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape evaluation method of a diffraction grating capable of evaluating with high accuracy the shape of the diffraction grating that has a phase shift part. <P>SOLUTION: This shape evaluation method of the diffraction grating having the phase shift part includes an interference fringe detection process for detecting an interference fringe, corresponding to the irregularities of the diffraction grating, and a shape evaluation process for evaluating the shape of the diffraction grating, based on the interference fringe detected in the interference fringe detection process. In the shape evaluation method of the diffraction grating, the interference fringe, corresponding to irregularities of the diffraction grating, is detected, and the shape of the diffraction grating is evaluated based on the interference fringe. Since the interference fringe changes on the phase shift part, in the shape evaluation method of the diffraction grating, the shape of the diffraction grating having the phase shift part can be evaluated with high accuracy. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、位相シフト部を有する回折格子の形状評価方法に関する。   The present invention relates to a method for evaluating the shape of a diffraction grating having a phase shift portion.

分布帰還型半導体レーザの回折格子を作製する際には、まず、半導体基板上に干渉露光法や電子ビーム露光によって回折格子のエッチングマスクパターンを形成し、このマスクを用いてエッチング処理して、半導体基板上に凹凸を形成して回折格子としていた。例えば、光通信で用いる半導体レーザとしては、回折格子の周期は約200nm〜250nmとなっている。   When producing a diffraction grating for a distributed feedback semiconductor laser, first, an etching mask pattern of the diffraction grating is formed on a semiconductor substrate by interference exposure or electron beam exposure, and etching is performed using this mask to obtain a semiconductor. Unevenness was formed on the substrate to form a diffraction grating. For example, as a semiconductor laser used for optical communication, the period of the diffraction grating is about 200 nm to 250 nm.

上記回折格子の周期は、二光束干渉露光法で回折格子を形成した場合には、パターン自体が干渉性を利用した方法であるため、形成される回折格子の周期の寸法精度は非常に高いものとなる。また、ウェハ全面に均一周期の回折格子(均一回折格子)が形成されるため、露光に用いた光源と同じ光源を利用して、回折格子に光を照射すれば、光は回折して、その回折角から容易に回折格子の周期を求めることができる。   When the diffraction grating is formed by the two-beam interference exposure method, the pattern itself is a method that uses coherence, so the dimensional accuracy of the period of the diffraction grating to be formed is very high. It becomes. In addition, since a diffraction grating having a uniform period (uniform diffraction grating) is formed on the entire surface of the wafer, if the same light source as the light source used for exposure is used to irradiate the diffraction grating, the light is diffracted and The period of the diffraction grating can be easily obtained from the diffraction angle.

均一回折格子の半導体レーザでは、チップ出射端面のコーティング膜の反射率を非対称にして単一波長にしているものの、その波長安定性を制御することは非常に困難であり、端面での回折格子の位相によって大きく変動してしまうという問題があった。   In a semiconductor laser with a uniform diffraction grating, the reflectance of the coating film on the chip exit end face is made asymmetrical to a single wavelength, but it is very difficult to control the wavelength stability, and the diffraction grating at the end face is difficult to control. There was a problem that the phase greatly fluctuated.

そこで、回折格子の周期の半分の周期(1/2周期)の位相シフト部を回折格子に導入して、高い波長安定性を実現する技術についての研究が進められている。   Therefore, research is being conducted on a technique for realizing high wavelength stability by introducing a phase shift portion having a half period (1/2 period) of the period of the diffraction grating into the diffraction grating.

上記位相シフト部を導入した回折格子は、干渉露光法で形成することが困難なため、一般に、電子ビーム露光法で形成される。この電子ビーム露光法は、回折格子のパターンを一本一本描画していくものであるため、位相シフト部を容易に形成することができる。   Since it is difficult to form the diffraction grating with the phase shift portion introduced by the interference exposure method, the diffraction grating is generally formed by the electron beam exposure method. In this electron beam exposure method, since the diffraction grating pattern is drawn one by one, the phase shift portion can be easily formed.

この電子ビーム露光法では、回折格子が互いに独立して描画されるため、描画パターンを精度よく評価する技術が求められる。   In this electron beam exposure method, since diffraction gratings are drawn independently of each other, a technique for accurately evaluating a drawing pattern is required.

なお、電子ビーム露光法では、その長い描画時間を短縮する目的で、電子ビーム描画が必要となる領域にのみに回折格子を描画することもおこなわれる。例えば、埋込型半導体レーザにおいては、回折格子の形成が必要な領域の割合は非常に小さく、活性層幅に対応するおよそ1.5μm幅の領域のみである。この場合にも、やはり描画パターンを精度よく評価する技術が求められる。   In the electron beam exposure method, a diffraction grating is drawn only in a region where electron beam drawing is required for the purpose of shortening the long drawing time. For example, in the buried semiconductor laser, the ratio of the region where the diffraction grating needs to be formed is very small, and is only a region having a width of about 1.5 μm corresponding to the active layer width. Also in this case, a technique for accurately evaluating the drawing pattern is required.

以上で説明した電子ビーム露光法で形成した回折格子の周期測定は、二光束干渉露光法で用いるような回折角を測定する方法では、回折光の光強度が小さいために非常に困難である。その上、回折角を測定して回折格子の周期測定をおこなう方法では、位相シフト部の形状検査をすることも非常に困難である。   The period measurement of the diffraction grating formed by the electron beam exposure method described above is very difficult by the method of measuring the diffraction angle used in the two-beam interference exposure method because the light intensity of the diffracted light is small. In addition, in the method of measuring the diffraction angle and measuring the period of the diffraction grating, it is very difficult to inspect the shape of the phase shift portion.

そのため、位相シフト部を有する回折格子の形状評価には、通常、走査型2次電子顕微鏡(SEM)や原子間力顕微鏡などの走査プローブ顕微鏡が用いられている。   Therefore, a scanning probe microscope such as a scanning secondary electron microscope (SEM) or an atomic force microscope is usually used for shape evaluation of a diffraction grating having a phase shift portion.

この出願の関連する先行技術文献としては、次の2件がある。   There are the following two prior art documents related to this application.

(特許文献1:特開平11−26878号公報)
この発明では、光源から照射された光を分岐する半透明鏡と、この半透明鏡によって分岐された光が反射鏡によって反射された光(参照光)と、分岐された他の光が測定すべき回折格子に入射し、回折格子によって反射され、半透明鏡に戻てきた光(測定光)とを干渉させ、位相シフト部で干渉コントラストの周期位相が変化し、このシフト量から位相シフト量を測定する装置、および、方法である。また、測定すべき位相シフトを有する回折格子を形成した基板上に、フォトレジストを塗布し、均一回折格子パターンを重ねて形成し、2層の回折格子から得られるモアレ縞から位相シフト量を測定する方法である。
このような参照光を利用する干渉縞解析は、参照光と測定光の位相差によってコントラストが影響を受けるため、干渉縞の間隔は、試料表面の凹凸の影響を受けてしまう。この影響を小さくするため、照射光の波長を長くすると測定の位置精度が悪くなる。
(Patent Document 1: JP-A-11-26878)
In this invention, the semi-transparent mirror that branches the light emitted from the light source, the light that is branched by the semi-transparent mirror and reflected by the reflecting mirror (reference light), and the other branched light are measured. Interference with the light (measurement light) incident on the power diffraction grating, reflected by the diffraction grating, and returned to the semi-transparent mirror, and the phase phase of the interference contrast changes in the phase shift section. From this shift amount, the phase shift amount Apparatus and method for measuring In addition, a photoresist is applied on a substrate on which a diffraction grating having a phase shift to be measured is formed, and a uniform diffraction grating pattern is formed on top of each other, and a phase shift amount is measured from a moire fringe obtained from a two-layer diffraction grating. It is a method to do.
In such interference fringe analysis using the reference light, the contrast is affected by the phase difference between the reference light and the measurement light, and therefore the interval between the interference fringes is affected by the unevenness of the sample surface. In order to reduce this influence, if the wavelength of irradiation light is lengthened, the positional accuracy of measurement will deteriorate.

(特許文献2:特開2005−10003号公報)
この発明は、あらかじめ変形されるべき材料にSEM観察する上で2次電子発生効率の異なるグリッドパターンを形成し、材料を変形させた後、走査電子顕微鏡観察すると、SEMの走査間隔とグリッドパターンが干渉したため生じるモアレ縞の変形量を測定する。
これは、微小形状の変形を走査型電子顕微鏡で観察するものであり、変形前後の比較に対してのみ有効である。
特開平11−26878号公報 特開2005−10003号公報
(Patent Document 2: Japanese Patent Laid-Open No. 2005-10003)
In the present invention, when a SEM observation is performed on a material to be deformed in advance, a grid pattern having different secondary electron generation efficiency is formed. After the material is deformed, the scanning interval and the grid pattern of the SEM are The amount of moire fringe deformation caused by interference is measured.
This is for observing microscopic deformation with a scanning electron microscope, and is effective only for comparison before and after deformation.
Japanese Patent Laid-Open No. 11-26878 JP 2005-10003 A

しかしながら、上述した回折格子の位相シフトの形状評価方法には、以下に示すような問題があった。すなわち、走査プローブ顕微鏡は、高倍率の観察(例えば、位相シフト部周辺の局所構造の観察)には適しているものの、位相シフト部の構造及び位相シフト部を含む周期構造を同時に観察して、その形状評価を精度良くおこなうことが困難であった。   However, the above-described method for evaluating the shape of the phase shift of the diffraction grating has the following problems. That is, the scanning probe microscope is suitable for high-magnification observation (for example, observation of the local structure around the phase shift portion), but simultaneously observes the structure of the phase shift portion and the periodic structure including the phase shift portion, It was difficult to accurately evaluate the shape.

本発明は、上述の課題を解決するためになされたものであり、位相シフト部を有する回折格子の形状評価を高い精度でおこなうことができる回折格子の形状評価方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a diffraction grating shape evaluation method capable of performing highly accurate shape evaluation of a diffraction grating having a phase shift unit. .

本発明に係る回折格子の形状評価方法は、位相シフト部を有する回折格子の形状評価方法であって、回折格子の凹凸に対応する干渉縞を検出する干渉縞検出工程と、干渉縞検出工程で検出した干渉縞に基づいて、回折格子の形状評価をおこなう形状評価工程とを含む。   The diffraction grating shape evaluation method according to the present invention is a diffraction grating shape evaluation method having a phase shift unit, and includes an interference fringe detection step for detecting interference fringes corresponding to the irregularities of the diffraction grating, and an interference fringe detection step. And a shape evaluation step for evaluating the shape of the diffraction grating based on the detected interference fringes.

この回折格子の形状評価方法においては、回折格子の凹凸に対応する干渉縞を検出して、その干渉縞に基づいて回折格子の形状評価がおこなわれる。この干渉縞は、位相シフト部において変化するため、この回折格子の形状評価方法においては、位相シフト部を有する回折格子の形状評価を高い精度でおこなうことができる。   In this diffraction grating shape evaluation method, interference fringes corresponding to the irregularities of the diffraction grating are detected, and the diffraction grating shape evaluation is performed based on the interference fringes. Since this interference fringe changes in the phase shift part, in this diffraction grating shape evaluation method, the shape evaluation of the diffraction grating having the phase shift part can be performed with high accuracy.

また、干渉縞検出工程の際、走査型電子顕微鏡により干渉縞を検出する態様であってもよい。この場合、干渉縞を用いた広範囲にわたる形状評価ができる上、必要に応じて高倍率の局所観察を同一の装置でおこなうことができる。   Moreover, the aspect which detects an interference fringe with a scanning electron microscope in the case of an interference fringe detection process may be sufficient. In this case, the shape can be evaluated over a wide range using the interference fringes, and if necessary, high-magnification local observation can be performed with the same apparatus.

さらに、干渉縞検出工程の際、走査型電子顕微鏡の走査方向と回折格子の並び方向とを傾ける態様であってもよい。この場合、位相シフト部における干渉縞の変化が顕著になるため、回折格子の形状評価をより容易におこなうことができる。   Furthermore, in the interference fringe detection step, the scanning direction of the scanning electron microscope and the arrangement direction of the diffraction gratings may be inclined. In this case, since the change of the interference fringes in the phase shift portion becomes remarkable, the shape evaluation of the diffraction grating can be performed more easily.

本発明によれば、位相シフト部を有する回折格子の形状評価を高い精度でおこなうことができる回折格子の形状評価方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the shape evaluation method of the diffraction grating which can perform the shape evaluation of the diffraction grating which has a phase shift part with high precision is provided.

以下、添付図面を参照して本発明を実施するにあたり最良と思われる形態について詳細に説明する。なお、同一又は同等の要素については同一の符号を付し、説明が重複する場合にはその説明を省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments that are considered to be the best in carrying out the invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected about the same or equivalent element, and the description is abbreviate | omitted when description overlaps.

発明者らは、分布帰還型半導体レーザの回折格子を、走査型2次電子顕微鏡(SEM)を用いて、複数の異なる倍率で観察したところ、図1に示すような結果を得た。   The inventors observed the diffraction grating of the distributed feedback semiconductor laser using a scanning secondary electron microscope (SEM) at a plurality of different magnifications, and obtained the results shown in FIG.

すなわち、回折格子を直接観察することが可能な高倍率(3000倍、5000倍及び10000倍)においては、回折格子の凹凸の周期に対応する濃淡画像が検出され、それよりも低倍率(500倍、900倍、1000倍、1100倍及び1200倍)においては、回折格子の凹凸の周期とは異なる濃淡画像が検出された。低倍率で検出された濃淡画像は、回折格子の凹凸の周期よりも長い周期であり、縞状を呈している。   That is, at a high magnification (3000 times, 5000 times and 10,000 times) at which the diffraction grating can be directly observed, a grayscale image corresponding to the period of the unevenness of the diffraction grating is detected, and a lower magnification (500 times). , 900 times, 1000 times, 1100 times, and 1200 times), grayscale images different from the period of the unevenness of the diffraction grating were detected. The grayscale image detected at a low magnification has a period longer than the period of unevenness of the diffraction grating, and exhibits a stripe shape.

発明者らは、鋭意研究の末、低倍率で検出された縞状の濃淡画像は、回折格子の周期とSEMの走査周期との干渉の結果に生じる干渉縞であることを見出した(図2参照)。ここで、図2は、均一周期の回折格子における上記干渉縞を示した図である。   As a result of intensive studies, the inventors have found that the striped gray image detected at a low magnification is an interference fringe generated as a result of interference between the period of the diffraction grating and the scanning period of the SEM (FIG. 2). reference). Here, FIG. 2 is a diagram showing the interference fringes in a diffraction grating having a uniform period.

さらに、発明者らは、この干渉縞には、回折格子の周期をY1、SEMの走査周期をY2、干渉縞の周期をY3としたときに、以下に示すような関係式が成り立つことを見出した。
Y1=A×(sin(2π(x+x1)/Λ)+1)
Y2=B×(sin(2π(x+x2)/D)+1)
Y3=C×Y1×Y2
Furthermore, the inventors have found that the interference fringes have the following relational expression when the diffraction grating period is Y1, the SEM scanning period is Y2, and the interference fringe period is Y3. It was.
Y1 = A × (sin (2π (x + x1) / Λ) +1)
Y2 = B × (sin (2π (x + x2) / D) +1)
Y3 = C × Y1 × Y2

ここで、A,B,Cは定数、xは回折格子縞に垂直な方向の座標、x1,x2は定数、Λは回折格子の周期、Dは走査周期である。つまり、SEMのサンプリング間隔を三角関数で近似すると、干渉縞の周期Y3は、回折格子の周期Y1と走査周期Y2とで決まる。そのため、回折格子の周期が変われば、それに伴って干渉縞の周期も変わる。なお、走査周期は、SEMの観察倍率で異なるため、図1に示すように、干渉縞には観察倍率依存性がある。   Here, A, B, and C are constants, x is a coordinate in a direction perpendicular to the diffraction grating stripes, x1 and x2 are constants, Λ is a period of the diffraction grating, and D is a scanning period. That is, when the SEM sampling interval is approximated by a trigonometric function, the interference fringe period Y3 is determined by the diffraction grating period Y1 and the scanning period Y2. Therefore, if the period of the diffraction grating changes, the period of interference fringes also changes accordingly. Since the scanning period varies depending on the observation magnification of the SEM, as shown in FIG. 1, the interference fringes are dependent on the observation magnification.

なお、Y3は、
Y3=C×(cos(2πx(1/Λ−1/D))+1)
と近似することができる。
Y3 is
Y3 = C × (cos (2πx (1 / Λ−1 / D)) + 1)
And can be approximated.

そのため、干渉縞は、図3に示すように回折格子の位相シフト部において変化する。具体的には、位相シフト部のシフト量が1/2周期であれば、その部分において干渉縞も1/2周期だけシフトする(図4参照)。   Therefore, the interference fringes change in the phase shift portion of the diffraction grating as shown in FIG. Specifically, if the shift amount of the phase shift unit is ½ period, the interference fringes are also shifted by ½ period in that portion (see FIG. 4).

従って、以下の手順により、回折格子の形状評価をおこなうことができる。
(干渉縞検出工程)
Accordingly, the shape of the diffraction grating can be evaluated by the following procedure.
(Interference fringe detection process)

まず、回折格子が形成された分布帰還型半導体レーザをSEM内にセットして、低倍率(例えば、500倍)にて回折格子を観察する。すると、上述したように干渉縞の濃淡画像が検出される。図3は、検出される濃淡画像の一例である。
(形状評価工程)
First, a distributed feedback semiconductor laser on which a diffraction grating is formed is set in the SEM, and the diffraction grating is observed at a low magnification (for example, 500 times). Then, as described above, a grayscale image of interference fringes is detected. FIG. 3 is an example of the detected gray image.
(Shape evaluation process)

次に、検出した濃淡画像の干渉縞を利用して、実際に回折格子の形状評価をおこなう。ここで、回折格子の形状評価としては、回折格子の周期性、位相シフト部の有無、位相シフト部のシフト量等が挙げられる。   Next, the shape of the diffraction grating is actually evaluated using the interference fringes of the detected grayscale image. Here, examples of the shape evaluation of the diffraction grating include periodicity of the diffraction grating, presence / absence of the phase shift unit, shift amount of the phase shift unit, and the like.

以上で説明したとおり、本発明の実施形態に係る回折格子の形状評価方法によれば、位相シフト部を有する回折格子の形状評価を高い精度でおこなうことができる。その上、回折格子の均一周期構造の部分の干渉縞を観測した場合には、周期構造のゆらぎの有無を広範囲にわたって容易に検出することもできる。   As described above, according to the diffraction grating shape evaluation method according to the embodiment of the present invention, the shape evaluation of the diffraction grating having the phase shift portion can be performed with high accuracy. In addition, when the interference fringes in the portion of the uniform periodic structure of the diffraction grating are observed, the presence or absence of fluctuations in the periodic structure can be easily detected over a wide range.

発明者らは、さらに研究を進めた結果、SEMの走査方向に対して回折格子の並び方向を傾斜させた場合には、図5に示すように干渉縞が傾斜して、位相シフト部における干渉縞の変化が顕著になることを見出した。つまり、位相シフト部の両側において干渉縞の濃淡コントラストが反転するため、これを利用して位相シフト部のシフト量を高い精度で測定することができる。なお、図5の(a)はSEMの走査方向に対して回折格子の並び方向を1度だけ傾斜させた画像であり、図5の(b)は、SEMの走査方向に対して回折格子の並び方向を5度だけ傾斜させた画像である。この図から明らかなように、傾斜の角度が大きくなるにしたがい、干渉縞の幅が狭くなると共に縞が密に並列するようになる。   As a result of further research, the inventors have found that when the alignment direction of the diffraction gratings is inclined with respect to the scanning direction of the SEM, the interference fringes are inclined as shown in FIG. It was found that the change of the stripes became remarkable. That is, since the contrast of the interference fringes is inverted on both sides of the phase shift unit, the shift amount of the phase shift unit can be measured with high accuracy using this. 5A is an image in which the arrangement direction of the diffraction gratings is inclined by 1 degree with respect to the scanning direction of the SEM, and FIG. 5B is an image of the diffraction gratings with respect to the scanning direction of the SEM. It is an image in which the arrangement direction is inclined by 5 degrees. As is clear from this figure, as the angle of inclination increases, the width of the interference fringes becomes narrower and the fringes come closer to each other.

本発明は上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、干渉縞を検出する装置は、SEMに限定されず、走査イオン顕微鏡(SIM)等であってもよい。   The present invention is not limited to the above embodiment, and various modifications are possible. For example, an apparatus for detecting interference fringes is not limited to an SEM, and may be a scanning ion microscope (SIM) or the like.

本発明の実施形態に係るSEM画像を示した図である。It is the figure which showed the SEM image which concerns on embodiment of this invention. 均一回折格子における干渉縞を示した図である。It is the figure which showed the interference fringe in a uniform diffraction grating. 回折格子の干渉縞の濃淡SEM画像を示した図である。It is the figure which showed the contrast SEM image of the interference fringe of a diffraction grating. 位相シフト部を有する回折格子における干渉縞を示した図である。It is the figure which showed the interference fringe in the diffraction grating which has a phase shift part. 回折格子の干渉縞の濃淡SEM画像を示した図である。It is the figure which showed the contrast SEM image of the interference fringe of a diffraction grating.

Claims (3)

位相シフト部を有する回折格子の形状評価方法であって、
前記回折格子の凹凸に対応する干渉縞を検出する干渉縞検出工程と、
前記干渉縞検出工程で検出した前記干渉縞に基づいて、前記回折格子の形状評価をおこなう形状評価工程と
を含む、回折格子の形状評価方法。
A method for evaluating the shape of a diffraction grating having a phase shift unit,
An interference fringe detection step for detecting interference fringes corresponding to the irregularities of the diffraction grating;
A shape evaluation method for a diffraction grating, comprising: a shape evaluation step for evaluating the shape of the diffraction grating based on the interference fringes detected in the interference fringe detection step.
前記干渉縞検出工程の際、走査型電子顕微鏡により前記干渉縞を検出する、請求項1に記載の回折格子の形状評価方法。   The diffraction grating shape evaluation method according to claim 1, wherein the interference fringes are detected by a scanning electron microscope during the interference fringe detection step. 前記干渉縞検出工程の際、前記走査型電子顕微鏡の走査方向と前記回折格子の並び方向とを傾ける、請求項2に記載の回折格子の形状評価方法。   The diffraction grating shape evaluation method according to claim 2, wherein, in the interference fringe detection step, a scanning direction of the scanning electron microscope and an arrangement direction of the diffraction gratings are inclined.
JP2007251969A 2007-09-27 2007-09-27 Diffraction grating shape evaluation method Expired - Fee Related JP4985280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007251969A JP4985280B2 (en) 2007-09-27 2007-09-27 Diffraction grating shape evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007251969A JP4985280B2 (en) 2007-09-27 2007-09-27 Diffraction grating shape evaluation method

Publications (2)

Publication Number Publication Date
JP2009085615A true JP2009085615A (en) 2009-04-23
JP4985280B2 JP4985280B2 (en) 2012-07-25

Family

ID=40659259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007251969A Expired - Fee Related JP4985280B2 (en) 2007-09-27 2007-09-27 Diffraction grating shape evaluation method

Country Status (1)

Country Link
JP (1) JP4985280B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110308A (en) * 1988-10-20 1990-04-23 Natl Res Inst For Metals Measurement of deformation
JPH07105899A (en) * 1993-10-07 1995-04-21 Jeol Ltd Method for forming sample image
JP2000019316A (en) * 1998-07-07 2000-01-21 Fujitsu Ltd Period measuring method of diffraction grating
JP2000155104A (en) * 1998-11-20 2000-06-06 Natl Res Inst For Metals Deformation measurement method and grid sheet for measuring deformation
JP2005010003A (en) * 2003-06-18 2005-01-13 National Institute For Materials Science Method of measuring residual strain and residual stress in composite material
JP2006318831A (en) * 2005-05-16 2006-11-24 Hitachi High-Technologies Corp Electron beam calibration method and electron beam device
JP2007315877A (en) * 2006-05-25 2007-12-06 National Institute For Materials Science Method for detecting and measuring irregularity in arrangement of minute regular pattern

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110308A (en) * 1988-10-20 1990-04-23 Natl Res Inst For Metals Measurement of deformation
JPH07105899A (en) * 1993-10-07 1995-04-21 Jeol Ltd Method for forming sample image
JP2000019316A (en) * 1998-07-07 2000-01-21 Fujitsu Ltd Period measuring method of diffraction grating
JP2000155104A (en) * 1998-11-20 2000-06-06 Natl Res Inst For Metals Deformation measurement method and grid sheet for measuring deformation
JP2005010003A (en) * 2003-06-18 2005-01-13 National Institute For Materials Science Method of measuring residual strain and residual stress in composite material
JP2006318831A (en) * 2005-05-16 2006-11-24 Hitachi High-Technologies Corp Electron beam calibration method and electron beam device
JP2007315877A (en) * 2006-05-25 2007-12-06 National Institute For Materials Science Method for detecting and measuring irregularity in arrangement of minute regular pattern

Also Published As

Publication number Publication date
JP4985280B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US6699624B2 (en) Grating test patterns and methods for overlay metrology
TWI452441B (en) Measuring method, apparatus and substrate
TWI575334B (en) Inspection method, lithographic apparatus, mask and substrate
KR100860862B1 (en) Position measurement system and lithographic apparatus
Shimizu Laser interference lithography for fabrication of planar scale gratings for optical metrology
TWI588442B (en) Method for controlling a distance between two objects, inspection apparatus and method
Li et al. A two-axis Lloyd's mirror interferometer for fabrication of two-dimensional diffraction gratings
KR20180030163A (en) Inspection apparatus, inspection method and manufacturing method
US20060274325A1 (en) Method of qualifying a diffraction grating and method of manufacturing an optical element
US10788765B2 (en) Method and apparatus for measuring a structure on a substrate
JP2009200466A (en) Inspection method and apparatus, lithographic apparatus, lithography processing cell, and device manufacturing method
JP2007258708A (en) Lithographic apparatus having reduced scribe lane usage for substrate measurement, and device manufacturing method
TW201812245A (en) Measuring method and measuring system for interferometrically measuring the imaging quality of an optical imaging system
TW201120580A (en) Method of determining overlay error and a device manufacturing method
TWI460559B (en) Level sensor arrangement for lithographic apparatus, lithographic apparatus and device manufacturing method
JP2023075123A (en) Alignment method and apparatus
JP4985280B2 (en) Diffraction grating shape evaluation method
TWI616732B (en) An apparatus with a sensor and a method of performing target measurement
Vergeer et al. MAPPER Alignment sensor evaluation on Process Wafers
NL2024394A (en) Alignment method and associated alignment and lithographic apparatuses
US11762305B2 (en) Alignment method
US11927892B2 (en) Alignment method and associated alignment and lithographic apparatuses
JP2019056631A (en) Pase difference measurement device and phase difference measurement method
TIEN High Speed Confocal 3D Profilometer: Design, Development, Experimental Results
JP2020173140A (en) Pattern measurement method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4985280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees