JP2009085559A - Melting furnace - Google Patents

Melting furnace Download PDF

Info

Publication number
JP2009085559A
JP2009085559A JP2007259242A JP2007259242A JP2009085559A JP 2009085559 A JP2009085559 A JP 2009085559A JP 2007259242 A JP2007259242 A JP 2007259242A JP 2007259242 A JP2007259242 A JP 2007259242A JP 2009085559 A JP2009085559 A JP 2009085559A
Authority
JP
Japan
Prior art keywords
furnace
wall
slag
heat
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007259242A
Other languages
Japanese (ja)
Other versions
JP5265168B2 (en
Inventor
Atsushi Sato
佐藤  淳
Toshimasa Shirai
利昌 白井
Yasunori Terabe
保典 寺部
Yoshinori Terasawa
良則 寺澤
Shizuo Yasuda
静生 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental Engineering Co Ltd
Priority to JP2007259242A priority Critical patent/JP5265168B2/en
Publication of JP2009085559A publication Critical patent/JP2009085559A/en
Application granted granted Critical
Publication of JP5265168B2 publication Critical patent/JP5265168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a melting furnace not closing a cinder notch by solidification of slag in the vicinity of the cinder notch and capable of preventing corrosion of and damage to a water cooled-pipe, in a short period of time, provided inside of a furnace wall made of refractory material and positioned in a part where a slag self coat layer cannot be formed or is less likely to be formed and within a range directly exposed to high-temperature exhaust gas. <P>SOLUTION: An ash melting furnace heats and melts ash introduced into the furnace by an inflammable gas swirl flow, and the heated and melted ash is discharged from the cinder notch formed in a furnace bottom. In the ash melting furnace, a metal water channel composed of a water pipe or a jacket is provided within the furnace wall of the ash melting furnace, and a melted slag layer is formed on the side of a furnace inner wall. A flame burner is provided below the cinder notch to heat the cinder notch and a fireproofing wall on the side of the lower surface of the furnace bottom around the cinder notch, and also the metal water channel extends to the periphery of the cinder notch in the furnace bottom to absorb heat from the furnace bottom and stimulate formation of the slag layer on the surface of the furnace bottom. Further, a heat resisting protective layer formed by overlaying or thermal spraying is provided on the part of the water channel, facing the side of the lower surface of the furnace bottom. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、灰を加熱溶融してスラグ化する溶融炉に関し、特に、炉壁内に埋設した水流路の短期間での腐食、損傷を防止することを可能とした溶融炉に関する。   The present invention relates to a melting furnace that heats and melts ash to form slag, and more particularly to a melting furnace that can prevent corrosion and damage in a short period of a water flow channel embedded in a furnace wall.

従来より、都市ごみを始めとして不燃ごみ、焼却残渣、汚泥、埋立ごみ等の廃棄物まで幅広く処理できる装置としてガス化溶融装置が知られている。ガス化溶融装置は、廃棄物を熱分解してガス化するガス化炉と、該ガス化炉の下流側に設けられ、ガス化炉にて生成された熱分解ガスを高温燃焼し、ガス中の灰分を溶融スラグ化する溶融炉と、該溶融炉から排出される排ガスを燃焼する二次燃焼室とを備えており、廃棄物の資源化、減容化及び無害化を図るために、溶融炉からスラグを取り出して路盤材等の土木資材として再利用したり、二次燃焼室から排出される排ガスから廃熱を回収して発電を行うなどしている。   Conventionally, a gasification and melting apparatus is known as an apparatus that can treat a wide range of wastes such as municipal waste, non-combustible waste, incineration residue, sludge, and landfill waste. The gasification and melting apparatus is provided with a gasification furnace for thermally decomposing waste to gasify and a pyrolysis gas generated in the gasification furnace at a downstream side of the gasification furnace, It has a melting furnace that melts ash content into slag and a secondary combustion chamber that combusts exhaust gas discharged from the melting furnace. In order to reduce the waste resources, reduce the volume and make them harmless, The slag is taken out from the furnace and reused as civil engineering materials such as roadbed materials, or waste heat is recovered from the exhaust gas discharged from the secondary combustion chamber to generate electricity.

ガス化溶融装置に用いられる溶融炉では、高温の溶融スラグが炉壁を損傷させるため、炉壁を損傷から保護する必要がある。そのため、炉壁を保護するために、耐火材からなる炉壁の内部又は外側に冷却手段を設け、該冷却手段により炉壁の表面(炉の内周表面)に固相スラグを付着せしめ、固相スラグによるスラグ層を形成することにより炉壁の耐火材を溶融スラグによる侵食から保護することが考えられる。
このような技術の一例を図7及び図8に示す。図7は溶融炉の断面図であり、図8は図7におけるB部拡大図である。図示しないガス化炉で廃棄物をガス化することで生成される熱分解ガスは、溶融炉1の熱分解ガスバーナ2へ導入される。該熱分解ガスバーナ2で、熱分解ガスは燃焼空気と混合されて炉内に導入され、旋回流を形成する。溶融炉1では、熱分解ガスと燃焼空気の混合ガスが燃焼することにより炉内温度が1300〜1500℃に維持され、熱分解ガス中の灰分が溶融、スラグ化される。溶融したスラグは、溶融炉1の内壁面に付着、流下し、炉底部のスラグ出滓口6から排出される。また、溶融炉1の内壁は、水冷管5を埋設した水冷構造としており、水冷により冷却・固化したスラグのセルフコート層9を炉内壁面に形成することにより、炉壁の耐火材の侵食を防止するようにしている。さらに、溶融炉1の内壁を水冷構造とすることでスラグ出滓口6付近にスラグが固化し、スラグ出滓口6が閉塞することを防止するために、スラグ出滓口6に向けて火炎を噴出し1300℃以上の高温として、スラグ出滓口6付近に付着した固相スラグを溶融・除去するスラグカットバーナ8が設けられている。
In a melting furnace used in a gasification melting apparatus, high-temperature molten slag damages the furnace wall, and thus it is necessary to protect the furnace wall from damage. Therefore, in order to protect the furnace wall, a cooling means is provided inside or outside the furnace wall made of a refractory material, and solid phase slag is adhered to the surface of the furnace wall (the inner peripheral surface of the furnace) by the cooling means. It may be possible to protect the refractory material on the furnace wall from erosion by molten slag by forming a slag layer of phase slag.
An example of such a technique is shown in FIGS. FIG. 7 is a sectional view of the melting furnace, and FIG. 8 is an enlarged view of a portion B in FIG. Pyrolysis gas generated by gasifying waste in a gasification furnace (not shown) is introduced into the pyrolysis gas burner 2 of the melting furnace 1. In the pyrolysis gas burner 2, the pyrolysis gas is mixed with combustion air and introduced into the furnace to form a swirling flow. In the melting furnace 1, the temperature inside the furnace is maintained at 1300 to 1500 ° C. by burning a mixed gas of pyrolysis gas and combustion air, and the ash content in the pyrolysis gas is melted and slagged. The molten slag adheres and flows down on the inner wall surface of the melting furnace 1 and is discharged from the slag outlet 6 at the bottom of the furnace. Moreover, the inner wall of the melting furnace 1 has a water-cooled structure in which a water-cooled tube 5 is embedded. By forming a self-coating layer 9 of slag cooled and solidified by water cooling on the inner wall of the furnace, the refractory material on the furnace wall is eroded. I try to prevent it. Furthermore, by making the inner wall of the melting furnace 1 into a water-cooled structure, in order to prevent the slag from solidifying near the slag outlet 6 and blocking the slag outlet 6, a flame is directed toward the slag outlet 6. The slag cut burner 8 is provided for melting and removing the solid phase slag adhering to the vicinity of the slag outlet 6 at a high temperature of 1300 ° C. or more.

しかしながら、図7、図8に示した技術では、炉底の下面側10では、溶融スラグの流れがないためにスラグコート層9が形成されず、しかも前記スラグカットバーナ8によって1300℃以上の高温雰囲気に曝されることとなる。このように1300℃以上の高温雰囲気に炉壁を形成する耐火材が曝されることで、耐火材が亀裂、剥離、脱落等する可能性がある。さらに、耐火材が亀裂、剥離、脱落等すると、炉壁内に設けた水冷管5が高温雰囲気に曝露され、水冷管が後述する理由により、短期間で腐食、損傷してしまうおそれがある。
通常、水冷管表面は40〜50℃程度であり、高くても70〜80℃である。従って、高温雰囲気下で溶融炉1で発生する排ガスと水冷管5が直接接触すると水冷管5表面に凝縮水が生じ、該凝縮水に排ガス中の例えば塩化水素、SOx、NOxといった酸性ガスが溶け込むことで、酸性溶液となり水冷管5を腐食、損傷させる。
However, in the technique shown in FIGS. 7 and 8, the slag coat layer 9 is not formed on the lower surface side 10 of the furnace bottom because there is no flow of molten slag, and the slag cut burner 8 has a high temperature of 1300 ° C. or higher. You will be exposed to the atmosphere. Thus, when the refractory material forming the furnace wall is exposed to a high temperature atmosphere of 1300 ° C. or higher, the refractory material may be cracked, peeled off or dropped off. Furthermore, if the refractory material cracks, peels, drops off, etc., the water-cooled tube 5 provided in the furnace wall is exposed to a high-temperature atmosphere, and the water-cooled tube may be corroded and damaged in a short period of time for the reason described later.
Usually, the surface of the water-cooled tube is about 40 to 50 ° C, and at most 70 to 80 ° C. Therefore, when the exhaust gas generated in the melting furnace 1 and the water-cooled tube 5 come into direct contact with each other in a high temperature atmosphere, condensed water is generated on the surface of the water-cooled tube 5, and acidic gas such as hydrogen chloride, SOx, NOx in the exhaust gas dissolves in the condensed water. As a result, it becomes an acidic solution and corrodes and damages the water-cooled tube 5.

また、固相スラグによるスラグ層を形成することにより炉壁の耐火材を溶融スラグによる侵食から保護する技術として、例えば特許文献1に、炉壁内に所定の炉壁温度を保つ吸熱装置を具備し、該吸熱装置による吸熱量を所定の範囲に保つことで、炉壁表面に形成された固相スラグの厚さを均一に制御し、該固相スラグによって炉壁の耐火材を溶融スラグによる侵食から保護することができる溶融炉が開示されており、吸熱装置としては炉壁内に埋設した水冷管が例示されている。   Further, as a technique for protecting a refractory material on a furnace wall from erosion by molten slag by forming a slag layer of solid phase slag, for example, Patent Document 1 includes a heat absorption device that maintains a predetermined furnace wall temperature in the furnace wall. In addition, by maintaining the amount of heat absorbed by the heat absorption device within a predetermined range, the thickness of the solid phase slag formed on the surface of the furnace wall is uniformly controlled, and the refractory material on the furnace wall is made of molten slag by the solid phase slag. A melting furnace capable of protecting against erosion is disclosed, and a water-cooled tube embedded in the furnace wall is exemplified as the heat absorption device.

実公平7−29381号公報No. 7-29381

しかしながら、特許文献1に開示された溶融炉では、炉底部には水冷管が埋設されていないため、炉底部にはスラグのセルフコート層が形成されず、炉底部における耐火材の溶融スラグによる侵食からの保護が充分とはいえない。また、スラグカットバーナを設けていないため、スラグ出滓口近傍でスラグが固化した場合に除去することが困難であり、仮にスラグカットバーナを設けた場合は、図7、図8に一例を示した技術と同様炉底部の下面側で耐火材が亀裂、剥離、脱落等する可能性がある。
従って、本発明はかかる従来技術の問題に鑑み、出滓口近傍でスラグが固化して出滓口を閉塞することなく、さらにスラグのセルフコート層が出来ない又は出来難い箇所であり、高温の排ガスに直接曝露される範囲に位置する耐火材からなる炉壁内部の水冷管の短期間での腐食、損傷を防止することができる溶融炉を提供することを目的とする。
However, in the melting furnace disclosed in Patent Document 1, since a water-cooled tube is not buried in the bottom of the furnace, a slag self-coat layer is not formed in the bottom of the furnace, and the refractory material is eroded by molten slag in the bottom of the furnace. Protection from is not enough. In addition, since no slag cut burner is provided, it is difficult to remove when the slag solidifies in the vicinity of the slag outlet. If a slag cut burner is provided, an example is shown in FIGS. As with the previous technology, there is a possibility that the refractory material will crack, peel off or fall off on the lower surface side of the bottom of the furnace.
Therefore, in view of the problems of the prior art, the present invention is a place where the slag solidifies in the vicinity of the tapping outlet and does not close the tapping outlet, and the self-coating layer of the slag cannot be or is difficult to be produced. An object of the present invention is to provide a melting furnace capable of preventing corrosion and damage in a short period of a water-cooled tube inside a furnace wall made of a refractory material located in a range directly exposed to exhaust gas.

上記課題を解決するため本発明においては、炉内に導入された灰を、可燃性ガスの旋回流により加熱溶融し、炉底に設けた出滓口より排出する灰溶融炉であって、該灰溶融炉の炉壁に水管若しくはジャケットよりなる金属製水流路を内設して、炉内壁側に溶融スラグ層を形成する灰溶融炉において、前記出滓口下方に火炎バーナを配し、出滓口及びその周囲の炉底の下面側の耐火壁を加熱するとともに、前記金属製水流路を、炉底の出滓口周囲まで延在して、炉底よりの吸熱を図り、炉底表面へのスラグ層の形成を促し、更に、前記水流路の炉底の下面側に面する部位に、肉盛溶接若しくは溶射によって形成される耐熱保護層を設けたことを特徴とする。   In order to solve the above problems, in the present invention, the ash introduced into the furnace is heated and melted by a swirling flow of combustible gas, and is discharged from a tap outlet provided in the furnace bottom, In an ash melting furnace in which a metal water flow path consisting of a water pipe or jacket is installed in the furnace wall of the ash melting furnace and a molten slag layer is formed on the furnace inner wall side, a flame burner is disposed below the outlet, While heating the refractory wall on the lower surface side of the bottom and the furnace bottom around it, the metal water flow path extends to the vicinity of the outlet at the bottom of the furnace to absorb heat from the bottom of the furnace. Further, it is characterized in that a heat-resistant protective layer formed by overlay welding or thermal spraying is provided at a portion facing the lower surface side of the furnace bottom of the water flow path.

本発明によれば、前記出滓口下方に火炎バーナを配し、出滓口及びその周囲の炉底の下面側の耐火壁を加熱することで、出滓口付近に付着した固相スラグを溶融・除去することができるため、出滓口を閉塞することを防止することができる。また、金属製水流路を、炉底の出滓口周囲まで延在して、炉底よりの吸熱を図り、炉底表面へのスラグ層の形成を促すことで、該スラグ層により炉底表面の保護が可能となる。更に、前記水流路の炉底の下面側に面する部位に、肉盛溶接若しくは溶射によって形成される耐熱保護層を設けることで、溶融炉の炉底の下面側を形成する耐火材が損傷し、水流路の炉底の下面側が直接高温雰囲気に晒されることがあっても、前記耐熱保護層によって水流路が保護されるため、水流路の短期間での腐食、損傷を防止することができる。   According to the present invention, a flame burner is disposed below the tap outlet, and the fire wall on the lower surface side of the tap bottom and the surrounding furnace bottom is heated, so that the solid phase slag adhering to the vicinity of the tap outlet is reduced. Since it can be melted and removed, it is possible to prevent the taphole from being blocked. In addition, the metal water flow path extends to the vicinity of the outlet at the bottom of the furnace, absorbs heat from the bottom of the furnace, and promotes the formation of a slag layer on the surface of the furnace bottom. Can be protected. Furthermore, by providing a heat-resistant protective layer formed by build-up welding or thermal spraying on a portion of the water flow channel facing the bottom side of the furnace bottom, the refractory material forming the bottom side of the bottom of the melting furnace is damaged. Even if the lower surface side of the bottom of the water channel is directly exposed to a high-temperature atmosphere, the heat channel is protected by the heat-resistant protective layer, so that corrosion and damage of the water channel can be prevented in a short period of time. .

さらに、前記保護層形成範囲が、前記火炎バーナの熱伝播により、耐火材が損傷する惧れのある1100℃以上の範囲であることを特徴とする。
これにより、火炎バーナの熱伝播によっても耐火材が損傷する惧れのある範囲の水流路の短期間での腐食、損傷を防止することができるとともに、火炎バーナの熱伝播によって耐火材が損傷する惧れのある温度未満の範囲にまで保護層を形成しないため、保護層形成にかかるコストを最小限に抑えることができる。
Furthermore, the protective layer formation range is a range of 1100 ° C. or more in which the refractory material may be damaged by heat propagation of the flame burner.
As a result, it is possible to prevent short-term corrosion and damage of the water flow path in a range where the refractory material may be damaged by the heat propagation of the flame burner, and the refractory material is damaged by the heat propagation of the flame burner. Since the protective layer is not formed up to a temperature range below a certain temperature, the cost for forming the protective layer can be minimized.

さらに、炉底周囲より下方に向け延在される熱遮蔽壁を備え、前記火炎バーナを、前記熱遮蔽壁に取り付けるとともに、前記保護層形成範囲が、前記熱遮蔽壁の垂直上方延長空間内であることを特徴とする。
熱遮蔽壁を設け、火炎バーナを熱遮蔽壁に取り付けることで、火炎バーナによる熱が熱遮蔽壁外に伝播しないため、保護層を熱遮蔽壁の垂直上方延長空間内に取り付けることで、火炎バーナの熱伝播によって耐火材が損傷する惧れのある範囲の水流路の短期間での腐食、損傷を防止することができる。なお、前記保護層は前記熱遮蔽壁外壁の垂直上方延長空間内に取り付けてもよいが、熱遮蔽壁内壁の垂直上方延長空間内に取り付ければ充分である。また、熱遮蔽壁は前記スラグ出滓口から排出されたスラグの流路を兼ねることができる。
Furthermore, a heat shield wall extending downward from the periphery of the furnace bottom is provided, and the flame burner is attached to the heat shield wall, and the protective layer forming range is within a vertically upward extension space of the heat shield wall. It is characterized by being.
By providing a heat shield wall and attaching the flame burner to the heat shield wall, heat from the flame burner does not propagate outside the heat shield wall. Therefore, by attaching a protective layer in the vertical extension space of the heat shield wall, the flame burner It is possible to prevent corrosion and damage in a short period of the water flow path in a range where the refractory material is likely to be damaged by heat propagation. The protective layer may be attached in the vertically upward extension space of the outer wall of the heat shield wall, but it is sufficient if it is attached in the vertically upward extension space of the inner wall of the heat shield wall. Further, the heat shielding wall can also serve as a flow path for the slag discharged from the slag outlet.

さらに、前記水流路は、耐火材に向けて延在する支持部材を備え、該支持部材に前記保護層が形成されていることを特徴とする。
耐火材に向けて延在する支持部材を設けることで、耐火材の脱落を防止することができ、さらに支持部材に保護層を形成することで耐火材が損傷した場合においても支持部材の短期間での腐食、損傷を防止することができる。
Further, the water flow path includes a support member extending toward the refractory material, and the protective layer is formed on the support member.
By providing a support member that extends toward the refractory material, it is possible to prevent the refractory material from falling off, and even if the refractory material is damaged by forming a protective layer on the support member, the support member is short-term Corrosion and damage can be prevented.

さらに、前記火炎バーナ又は加熱溶融による熱伝播によって耐火材が損傷する惧れがある1100℃以上の範囲であり、前記水流路の出滓口側に面する部位に、肉盛溶接若しくは溶射によって形成される耐熱保護層を設けたことを特徴とする。
即ち、出滓口近傍の水流路であり、出滓口に面する部位は水流路上部にも耐熱保護層を設けるということである。
出滓口部分は、全面にスラグ流路を形成しないために、スラグのセルフコーティング層が安定して形成されにくい。そのために、出滓口を形成する耐火材が損傷し、水流路の炉底の下面側が直接高温雰囲気に晒されることがあっても、前記耐熱保護層によって水流路が保護されるため、水流路の短期間での腐食、損傷を防止することができる。
Further, the refractory material may be damaged by heat propagation due to the flame burner or heat melting, and it is in a range of 1100 ° C. or higher, and is formed by overlay welding or thermal spraying on a portion facing the outlet side of the water flow path. The heat-resistant protective layer is provided.
That is, it is a water flow path in the vicinity of the tap opening, and the portion facing the tap opening is provided with a heat-resistant protective layer on the upper part of the water flow path.
Since the slag flow path is not formed on the entire surface of the taphole portion, it is difficult to stably form the slag self-coating layer. Therefore, even if the refractory material forming the tap hole is damaged and the lower surface side of the furnace bottom of the water channel may be directly exposed to a high temperature atmosphere, the water channel is protected by the heat-resistant protective layer. It is possible to prevent corrosion and damage in a short period of time.

さらに、前記出滓口周囲の炉底部上面側に堰を設けるとともに、該堰内に水管若しくはジャケットよりなる金属製水流路を内設し、前記堰内の水流路の堰外方に面する部位に、肉盛溶接若しくは溶射によって形成される耐熱保護層を設けたことを特徴とする。
堰部分は、出滓口部分と同様に全面にスラグ流路を形成しないために、スラグのセルフコーティング層が安定して形成されにくいが、耐熱保護層を設けることで水流路の短期間での腐食、損傷を防止することができる。
Further, a weir is provided on the upper surface side of the furnace bottom around the tap hole, and a metallic water flow path including a water pipe or a jacket is provided in the weir, and the water flow path in the weir faces the outside of the weir. And a heat-resistant protective layer formed by overlay welding or thermal spraying.
Since the slag channel does not form a slag channel on the entire surface like the tap port part, the slag self-coating layer is difficult to be stably formed, but by providing a heat-resistant protective layer, the slag channel can be formed in a short period of time. Corrosion and damage can be prevented.

さらに、前記肉盛溶接又は溶射によって形成される保護層は、ニッケル基合金を用いて形成されることを特徴とする。耐食性の高いニッケル基合金を用いて保護層を形成することで、溶融炉の壁面を形成する耐火材が損傷し、水流路の炉底の下面側が直接高温雰囲気に晒されることがあった場合の保護層による水流路を保護できる期間の長期化が可能となる。   Furthermore, the protective layer formed by overlay welding or thermal spraying is formed using a nickel-based alloy. When a protective layer is formed using a nickel-based alloy with high corrosion resistance, the refractory material that forms the wall of the melting furnace is damaged, and the bottom surface of the bottom of the water channel may be directly exposed to a high-temperature atmosphere. The period during which the water flow path can be protected by the protective layer can be extended.

以上記載のごとく本発明によれば、出滓口近傍でスラグが固化して出滓口を閉塞することなく、さらにスラグのセルフコート層が出来ない又は出来難い箇所であり、高温の排ガスに直接曝露される範囲に位置する耐火材からなる炉壁内部の水冷管の短期間での腐食、損傷を防止することができる。   As described above, according to the present invention, the slag solidifies in the vicinity of the tap outlet and does not close the tap outlet, and further, a self-coat layer of the slag cannot be formed or is difficult to be produced, and directly to the high-temperature exhaust gas. Corrosion and damage of water-cooled tubes inside the furnace wall made of refractory material located in the exposed range can be prevented in a short period of time.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本実施例1に係る溶融炉を示す側断面図、図2は図1におけるA部拡大図である。また図3は炉壁3の部分断面図であり、図4は炉壁3の別の例の部分断面図であり、図5は図2と別の例の図1におけるA部拡大図である。
図1〜図5を用いて、本実施例1に関する溶融炉の構成について説明する。
溶融炉1は、略円筒状の炉壁3と、炉壁3下部に設けられたスラグを排出するスラグ出滓口6と、を有し、炉壁上部にはガス排出口が設けられている。スラグ出滓口6は炉底の中央付近に設けられ、炉底はスラグ出滓口6に向けて下向きに傾斜されている。また、炉壁3には一又は複数の熱分解ガスバーナ2が取り付けられている。
1 is a side sectional view showing a melting furnace according to the first embodiment, and FIG. 2 is an enlarged view of a portion A in FIG. 3 is a partial cross-sectional view of the furnace wall 3, FIG. 4 is a partial cross-sectional view of another example of the furnace wall 3, and FIG. 5 is an enlarged view of a portion A in FIG. 1 of another example of FIG. .
The structure of the melting furnace relating to the first embodiment will be described with reference to FIGS.
The melting furnace 1 has a substantially cylindrical furnace wall 3 and a slag outlet 6 for discharging slag provided at the lower part of the furnace wall 3, and a gas outlet is provided at the upper part of the furnace wall. . The slag outlet 6 is provided near the center of the furnace bottom, and the furnace bottom is inclined downward toward the slag outlet 6. One or more pyrolysis gas burners 2 are attached to the furnace wall 3.

炉壁3は、図3に示したように水冷管5を埋設した水冷構造としており、炉内壁側から順にCr含有耐火キャスタブル31、水冷管5、断熱キャスタブル32、ケーシング33で構成されている。尚、水冷管5間を平面状フィン51で連結した水冷壁構造としている。さらに水冷管5に耐火キャスタブル31、断熱キャスタブル32を支持するためのアンカー34が設けられている。
図6を用いて、水冷管に構成について説明する。図6に水冷管5のみを取り出した概略図を示した。図6(A)及び(B)は溶融炉の側部の円筒部に位置する壁部内の水冷管の概略図の例である。図6(A)の例では、円筒部では螺旋状に水冷管を巻いており、図6(B)の例では円筒部で水冷管が壁内で往復しながら下方から上方へ水冷管内を水が流通するように構成されている。前記円筒部に位置する水冷管は、前記図6(A)、(B)に示した構成だけでなく、他の構成でもよく、また例えば図6(A)に示した構成の水冷管を上下方向に複数層設ける等、複数の構成を組み合わせてもよい。水冷管の外径、水冷管間の距離等は限定されるものではないが、本実施例においては円筒部に位置する水冷管は外径を48.6mm、水冷管間は約70mmとしている。水冷管と水冷管の間が広すぎると、冷却効果の小さい部分にはスラグのセルフコート層が出来難く、侵食されて、炉壁に穴があいてしまう可能性があるためで、従って水冷管間は70mm以上間隔をあけることは好ましくない。また、図6(C)は溶融炉底部に位置する壁部内の水冷管の概略図であり、該炉底部では渦巻き状に内側から外側に向かって水冷管を巻いている。炉底部に位置する水冷管は、本実施例においては外径を27.2mm、水冷管間は約20mmとしている。炉底部は、前記円筒部と比較すると、炉壁が侵食されやすい状況にあるため、スラグのセルフコート層をより形成しやすくするため円筒部よりも水冷管間の距離を短くしている。
なお、炉壁3は、図3、図6に示した水冷管5及びフィン51に替えて、図4に示したように水冷ジャケット50を用いた水冷構造としてもよい。
As shown in FIG. 3, the furnace wall 3 has a water-cooling structure in which a water-cooled pipe 5 is embedded, and is composed of a Cr-containing refractory castable 31, a water-cooled pipe 5, a heat-insulating castable 32, and a casing 33 in order from the furnace inner wall side. In addition, it is set as the water cooling wall structure which connected between the water cooling pipes 5 by the planar fin 51. FIG. Further, an anchor 34 for supporting the fireproof castable 31 and the heat insulating castable 32 is provided on the water-cooled pipe 5.
The configuration of the water-cooled tube will be described with reference to FIG. FIG. 6 shows a schematic diagram in which only the water-cooled tube 5 is taken out. 6 (A) and 6 (B) are examples of schematic views of water-cooled tubes in the wall portion located in the cylindrical portion of the side portion of the melting furnace. In the example of FIG. 6 (A), the water-cooled tube is wound spirally in the cylindrical portion, and in the example of FIG. 6 (B), the water-cooled tube reciprocates in the wall in the cylindrical portion, Is configured to circulate. The water cooling pipe located in the cylindrical portion may have other configurations in addition to the configuration shown in FIGS. 6A and 6B. For example, the water cooling tube having the configuration shown in FIG. A plurality of configurations may be combined, such as providing a plurality of layers in the direction. The outer diameter of the water-cooled tubes, the distance between the water-cooled tubes, etc. are not limited, but in this embodiment, the water-cooled tubes located in the cylindrical portion have an outer diameter of 48.6 mm and the distance between the water-cooled tubes is about 70 mm. If the space between the water-cooled tube and the water-cooled tube is too wide, it is difficult to form a self-coating layer of slag in the part where the cooling effect is small, and it may be eroded and there will be holes in the furnace wall. It is not preferable to leave a gap of 70 mm or more. FIG. 6C is a schematic view of a water-cooled tube in the wall located at the bottom of the melting furnace, and the water-cooled tube is wound from the inside to the outside in a spiral shape at the bottom of the furnace. In this embodiment, the water-cooled tubes located at the bottom of the furnace have an outer diameter of 27.2 mm and a space between the water-cooled tubes of about 20 mm. Since the furnace bottom portion is more easily eroded than the cylindrical portion, the distance between the water-cooled tubes is made shorter than the cylindrical portion in order to make it easier to form a slag self-coat layer.
The furnace wall 3 may have a water cooling structure using a water cooling jacket 50 as shown in FIG. 4 in place of the water cooling tubes 5 and the fins 51 shown in FIGS.

また、炉底周囲より下方に向けて延在する熱遮蔽壁4が設けられており、該熱遮蔽壁4には前記スラグ出滓口6及びその周囲の炉底の下面側を1300℃以上の高温で加熱することができるガスバーナが設けられている。尚、熱遮蔽壁4内にできる空間はスラグ出滓口6から排出されたスラグの流路として利用される。   Further, a heat shielding wall 4 extending downward from the periphery of the furnace bottom is provided, and the heat shielding wall 4 has the slag outlet 6 and the lower surface side of the surrounding furnace bottom at 1300 ° C. or higher. A gas burner that can be heated at high temperatures is provided. The space formed in the heat shielding wall 4 is used as a flow path for the slag discharged from the slag outlet 6.

更に、本発明に特徴的な構成として、図2に示すように炉底部の下面側に面し、熱遮蔽壁4の内壁4aの垂直上方延長空間内の範囲に位置する水冷管5の下側面及びアンカー34の全面に、肉盛溶接によって形成される保護層である肉盛形成物7を設けるとともに、出滓口に最も近い水冷管は上部の出滓口に対する面にも肉盛形成物7を設けている。また、出滓口周囲の炉底部上面側には堰35が設けられており、該堰35も炉壁3と同様に水冷管5を埋設した水冷構造としている。さらに前記堰35内に位置する水冷管5の堰外方に向いた面及びアンカーの全面にも肉盛溶接によって形成される保護層である肉盛形成物7を設けている。
また、前記のように炉壁3を水冷間5及びフィン51に替えて水冷ジャケット50を用いた水冷構造とした場合も同様であり、図5に示すように炉底部の下面側に面し、熱遮断壁4の垂直上方延長空間内の範囲に位置する水冷ジャケット50の下面側及びアンカー34の全面に、肉盛溶接によって形成される保護層である肉盛形成物を設ける。
尚、水冷管、水冷ジャケット何れの例においても、肉盛形成物7に替えて溶射によって形成される保護層である溶射形成物を設けてもよい。また、肉盛形成物7又は溶射形成物は、熱遮蔽壁4の外壁4aの垂直上方延長空間内の範囲に位置する水冷管5又は水冷ジャケット50の下側面及びアンカー34の全面にまで範囲を広げて設けてもよい。
肉盛形成物7又は溶射形成物には、耐食性の高い合金を用いることが好ましく、特にニッケル基合金を用いるとよい。
さらに、水流路の配置は図2及び図5に断面図を示した水冷管又は水冷ジャケットの2形態に限定されるものではなく、炉底表面へスラグのセルフコート層ができる配置であれば、どのような配置形態であってもよい。
Further, as a characteristic configuration of the present invention, as shown in FIG. 2, the lower surface of the water-cooled tube 5 that faces the lower surface side of the furnace bottom and is located in a range in the vertically upward extension space of the inner wall 4 a of the heat shielding wall 4. And the build-up formation 7 which is a protective layer formed by build-up welding is provided on the entire surface of the anchor 34, and the water-cooled tube closest to the tap opening is also formed on the surface of the upper tap-out opening 7. Is provided. Further, a weir 35 is provided on the upper surface side of the bottom of the furnace around the taphole, and the weir 35 has a water cooling structure in which a water cooling pipe 5 is embedded in the same manner as the furnace wall 3. Further, a build-up product 7 which is a protective layer formed by build-up welding is also provided on the surface of the water-cooled pipe 5 located inside the weir 35 and facing the outside of the weir and the entire surface of the anchor.
The same applies to the case where the furnace wall 3 has a water-cooling structure using the water-cooling jacket 50 instead of the water-cooling space 5 and the fins 51 as described above, and faces the lower surface side of the furnace bottom as shown in FIG. A build-up product, which is a protective layer formed by build-up welding, is provided on the lower surface side of the water-cooling jacket 50 and the entire surface of the anchor 34 that are located within the vertical upper extension space of the heat shield wall 4.
Note that, in any example of the water-cooled tube and the water-cooled jacket, a thermal spray formed product that is a protective layer formed by thermal spraying may be provided instead of the build-up product 7. Further, the build-up product 7 or the spray-formed product has a range extending to the lower surface of the water-cooled pipe 5 or the water-cooled jacket 50 and the entire surface of the anchor 34 which are located in the range in the vertically extended space of the outer wall 4 a of the heat shielding wall 4. You may spread and provide.
It is preferable to use an alloy having high corrosion resistance for the build-up product 7 or the spray-formed product, and it is particularly preferable to use a nickel-based alloy.
Furthermore, the arrangement of the water flow path is not limited to the two forms of the water-cooled pipe or the water-cooled jacket shown in the cross-sectional views in FIG. 2 and FIG. 5, and if the arrangement can form a self-coat layer of slag on the furnace bottom surface, Any arrangement is possible.

次に、以上のように構成された溶融炉1の動作について説明する。
図示しないガス化炉で廃棄物をガス化することで生成され、灰分を含んだ熱分解ガスは、溶融炉1の熱分解ガスバーナ2へ導入される。そして、該熱分解ガスバーナ2で、熱分解ガスは燃焼空気とともに溶融炉1内に供給される。溶融炉1内に供給された熱分解ガスは、熱分解ガスバーナ2より溶融炉1内のガス旋回流により形成される仮想円の接線方向に噴出されることにより溶融炉1内で旋回流を形成しながら燃焼する。溶融炉1内では、熱分解ガスと燃焼空気の混合ガスが燃焼することにより炉内温度が1300〜1500℃に維持され、熱分解ガス中の灰分が溶融、スラグ化される。灰分がスラグ化して生成された溶融スラグは、前記溶融炉1内の旋回流の遠心力により溶融炉1の内壁面に略均一に付着し、一部は前記水冷管5の水冷により冷却・固化されてスラグのセルフコート層を形成し、炉壁を溶融スラグによる侵食から保護する。一方、残部は溶融スラグとして重力により炉内壁を流下し、堰35を経て炉底部のスラグ出滓口6から排出される。
Next, operation | movement of the melting furnace 1 comprised as mentioned above is demonstrated.
A pyrolysis gas generated by gasifying waste in a gasification furnace (not shown) and containing ash is introduced into the pyrolysis gas burner 2 of the melting furnace 1. The pyrolysis gas is supplied into the melting furnace 1 together with combustion air by the pyrolysis gas burner 2. The pyrolysis gas supplied into the melting furnace 1 is ejected from the pyrolysis gas burner 2 in the tangential direction of the virtual circle formed by the gas swirling flow in the melting furnace 1 to form a swirling flow in the melting furnace 1. Burn while. In the melting furnace 1, the temperature inside the furnace is maintained at 1300 to 1500 ° C. by burning the mixed gas of pyrolysis gas and combustion air, and the ash content in the pyrolysis gas is melted and slagged. The molten slag produced by ash slag is deposited almost uniformly on the inner wall surface of the melting furnace 1 by the centrifugal force of the swirling flow in the melting furnace 1, and a part thereof is cooled and solidified by water cooling of the water-cooled pipe 5. In this way, a slag self-coat layer is formed to protect the furnace wall from erosion by molten slag. On the other hand, the remaining part flows down the furnace inner wall by gravity as molten slag, and is discharged from the slag outlet 6 at the bottom of the furnace through the weir 35.

また、炉底の傾斜部を構成する炉壁にも水冷管5が内設されているため、流下している溶融スラグの一部が水冷管5の水冷により冷却・固化されて炉底表面にもスラグコート層が形成される。炉底の傾斜部を構成する炉壁にも水冷管5を内設しているため、水冷管5による水冷で、スラグ出滓口6近傍でスラグが固着して出滓口6が閉塞する可能性があるが、必要に応じてスラグカットバーナ8によりスラグ出滓口6及びその周囲の炉底の下面側を1300℃以上に加熱することで出滓口6の閉塞を防止している。   Further, since the water cooling pipe 5 is also provided in the furnace wall constituting the inclined portion of the furnace bottom, a part of the flowing molten slag is cooled and solidified by the water cooling of the water cooling pipe 5 to be formed on the furnace bottom surface. A slag coat layer is also formed. Since the water cooling pipe 5 is also provided in the furnace wall constituting the inclined portion of the furnace bottom, the water cooling by the water cooling pipe 5 can fix the slag near the slag outlet 6 and close the outlet 6. However, if necessary, the slag tap outlet 6 and the lower surface side of the surrounding furnace bottom are heated to 1300 ° C. or higher by the slag cut burner 8 to prevent the tap outlet 6 from being blocked.

また、炉底の下面側は、前記溶融スラグの流れがないため、スラグのセルフコート層が形成されない。従って、前記スラグカットバーナ8によって、スラグ出滓口6及びその周囲の炉底の下面側を1300℃以上に加熱することで、炉底の下面側の耐火材が亀裂、剥離、脱落等する可能性がある。しかし、炉底部の下面側に面し、熱遮蔽壁4の内壁4aの垂直上方延長空間内の範囲に位置する水冷管5の下側面及びアンカー34の全面に、肉盛溶接によって形成される保護層である肉盛形成物7を設けているため、耐火材が亀裂、剥離、脱落等した場合であっても、水冷管5及びアンカー34は肉盛形成物7で保護されているため、1300℃以上の高温と水冷管5又はアンカー34が直接接することはなく、水冷管5及びアンカー34の短期間での腐食、損傷を防ぐことができる。
また、堰35及び出滓口6部分は、全面にスラグ流路を形成しないために、スラグのセルフコーティング層が安定して形成されにくい。さらに堰35は溶融炉1内であり、出滓口6は前記スラグカットバーナによって加熱されるため、表面の耐火材が亀裂、剥離、脱落等する可能性があるが、炉底の下面側と同様に肉盛形成物7を設けているため、水冷管5及びアンカー34の短期間での腐食、損傷を防ぐことができる。
なお、熱遮断壁4の垂直上方延長空間外の範囲については、耐火材にスラグカットバーナ8による熱が伝播しないため、水冷管5の下側面及びアンカー34の全面に、肉盛形成物7を設ける必要はない。
また、溶融炉1内壁側は、1300〜1500℃という高温雰囲気下ではあるが、前述の通りスラグのセルフコート層を形成し、耐火材を保護しているため、肉盛形成物7を設ける必要はない。
Further, since there is no flow of the molten slag on the lower surface side of the furnace bottom, a slag self-coat layer is not formed. Therefore, by heating the slag outlet 6 and the lower surface side of the furnace bottom around the slag cut burner 8 to 1300 ° C. or higher, the refractory material on the lower surface side of the furnace bottom can be cracked, peeled off or dropped off. There is sex. However, the protection that is formed by overlay welding on the lower surface of the water-cooled pipe 5 and the entire surface of the anchor 34 that faces the lower surface side of the furnace bottom and is located in the vertical upper extension space of the inner wall 4a of the heat shielding wall 4. Since the build-up product 7 as a layer is provided, the water-cooled tube 5 and the anchor 34 are protected by the build-up product 7 even when the refractory material is cracked, peeled, dropped off, etc. The water-cooled tube 5 or the anchor 34 is not in direct contact with the high temperature of more than 0 ° C., and the water-cooled tube 5 and the anchor 34 can be prevented from being corroded and damaged in a short period of time.
Moreover, since the slag flow path is not formed on the entire surface of the dam 35 and the outlet port 6, the slag self-coating layer is hardly formed stably. Furthermore, since the weir 35 is in the melting furnace 1 and the outlet 6 is heated by the slag cut burner, the refractory material on the surface may be cracked, peeled off, dropped off, etc. Similarly, since the build-up product 7 is provided, corrosion and damage of the water-cooled tube 5 and the anchor 34 in a short period can be prevented.
In addition, in the range outside the vertical upper extension space of the heat shield wall 4, heat from the slag cut burner 8 does not propagate to the refractory material, so that the overlay formation 7 is placed on the lower surface of the water-cooled pipe 5 and the entire surface of the anchor 34. There is no need to provide it.
Further, the inner wall side of the melting furnace 1 is in a high temperature atmosphere of 1300 to 1500 ° C. However, as described above, the slag self-coat layer is formed and the refractory material is protected, so it is necessary to provide the overlay formation 7 There is no.

前述の図1〜図3で説明した本実施例における溶融炉と、図7で説明した従来技術における溶融炉を3ヶ月間運転し、その結果を比較した。
1、炉内壁部
本実施例、従来技術とも水冷管の腐食、損傷なし。
2、熱遮断壁の垂直上方延長空間内の炉底下側面
本実施例においては、水冷管の腐食、損傷なし。
従来技術においては、水冷管が露出し、腐食損傷が見られた。
The melting furnace in the present embodiment described in FIGS. 1 to 3 described above and the melting furnace in the prior art described in FIG. 7 were operated for 3 months, and the results were compared.
1. Furnace wall part No corrosion or damage of water-cooled tube in this example and conventional technology.
2. Furnace bottom side in vertical extension space of heat barrier wall In this example, there is no corrosion or damage to the water-cooled pipe.
In the prior art, water-cooled tubes were exposed and corrosion damage was observed.

炉内壁部は1300℃以上の高温雰囲気下ではあるが、本実施例、従来技術ともスラグのセルフコート層によって保護されるため水冷管の損傷は見られなかった。
熱遮断壁の垂直上方延長空間内の炉底下側面については、従来技術ではスラグカットバーナによって1300℃以上に熱せられて水冷管が露出し、腐食損傷が見られたが、本実施例においては肉盛形成物によって保護されるため水冷管の腐食損傷は見られなかった。
Although the inner wall of the furnace was in a high temperature atmosphere of 1300 ° C. or higher, the water-cooled tube was not damaged because it was protected by the self-coating layer of slag in both of the present example and the prior art.
In the conventional technology, the bottom surface of the furnace bottom in the vertical extension space of the thermal barrier wall was heated to 1300 ° C or higher by a slag cut burner, and the water-cooled tube was exposed to cause corrosion damage. Corrosion damage of the water-cooled tube was not observed because it was protected by the deposit.

出滓口近傍でスラグが固化して出滓口を閉塞することなく、さらにスラグのセルフコート層が出来ない又は出来難い箇所であり、高温の排ガスに直接曝露される範囲に位置する耐火材からなる炉壁内部の水冷管の短期間での腐食、損傷を防止する溶融炉として用いることができる。   From a refractory material located in the range where slag solidifies in the vicinity of the tap and the tap is not blocked, and the self-coat layer of the slag cannot be or is difficult to make and is directly exposed to high-temperature exhaust gas. It can be used as a melting furnace that prevents corrosion and damage of water-cooled tubes inside the furnace wall in a short period of time.

実施例1に係る溶融炉を示す側断面図である。1 is a side sectional view showing a melting furnace according to Embodiment 1. FIG. 図1におけるA部拡大図である。It is the A section enlarged view in FIG. 炉壁の部分断面図である。It is a fragmentary sectional view of a furnace wall. 炉壁の別の例の部分断面図である。It is a fragmentary sectional view of another example of a furnace wall. 別の例の図1におけるA部拡大図である。It is the A section enlarged view in FIG. 1 of another example. 水冷管5のみを取り出した概略図である。It is the schematic which took out only the water cooling tube 5. FIG. 従来技術に係る溶融炉の断面図である。It is sectional drawing of the melting furnace which concerns on a prior art. 図7におけるB部拡大図である。It is the B section enlarged view in FIG.

符号の説明Explanation of symbols

1 溶融炉
2 熱分解ガスバーナ
3 炉壁
4 熱遮蔽壁
5 水冷管
6 スラグ出滓口
7 肉盛形成物
8 スラグカットバーナ(火炎バーナ)
9 スラグセルフコート層
10 炉底の下面側
31 耐火キャスタブル
32 断熱キャスタブル
50 水冷ジャケット
DESCRIPTION OF SYMBOLS 1 Melting furnace 2 Pyrolysis gas burner 3 Furnace wall 4 Heat shielding wall 5 Water-cooled pipe 6 Slag outlet 7 Overlay formation 8 Slag cut burner (flame burner)
9 Slag self-coat layer 10 Lower side of furnace bottom 31 Fireproof castable 32 Insulated castable 50 Water-cooled jacket

Claims (7)

炉内に導入された灰を、可燃性ガスの旋回流により加熱溶融し、炉底に設けた出滓口より排出する灰溶融炉であって、該灰溶融炉の炉壁に水管若しくはジャケットよりなる金属製水流路を内設して、炉内壁側に固相スラグ層を形成する灰溶融炉において、
前記出滓口下方に火炎バーナを配し、出滓口及びその周囲の炉底の下面側の耐火壁を加熱するとともに、
前記金属製水流路を、炉底の出滓口周囲まで延在して、炉底よりの吸熱を図り、炉底表面へのスラグ層の形成を促し、
更に、前記水流路の炉底の下面側に面する部位に、肉盛溶接若しくは溶射によって形成される耐熱保護層を設けたことを特徴とする灰溶融炉。
An ash melting furnace in which the ash introduced into the furnace is heated and melted by a swirling flow of combustible gas and discharged from a tap provided at the bottom of the furnace, and a water pipe or jacket is provided on the furnace wall of the ash melting furnace In the ash melting furnace in which a metal water flow path is formed and a solid phase slag layer is formed on the inner wall side of the furnace,
While arranging a flame burner below the tap outlet, heating the tap wall and the fire wall on the lower surface side of the surrounding furnace bottom,
Extending the metal water flow path to the vicinity of the outlet at the bottom of the furnace, to absorb heat from the bottom of the furnace, and promote the formation of a slag layer on the furnace bottom surface,
Furthermore, a heat-resistant protective layer formed by overlay welding or thermal spraying is provided on a portion of the water flow channel facing the lower surface side of the furnace bottom.
前記保護層形成範囲が、前記火炎バーナの熱伝播により、耐火材が損傷する惧れのある1100℃以上の範囲であることを特徴とする請求項1記載の灰溶融炉。   2. The ash melting furnace according to claim 1, wherein the protective layer formation range is a range of 1100 ° C. or more at which the refractory material may be damaged by heat propagation of the flame burner. 炉底周囲より下方に向け延在される熱遮蔽壁を備え、
前記火炎バーナを、前記熱遮蔽壁に取り付けるとともに、
前記保護層形成範囲が、前記熱遮蔽壁の垂直上方延長空間内であることを特徴とする請求項1記載の灰溶融炉。
A heat shielding wall extending downward from the periphery of the furnace bottom;
While attaching the flame burner to the heat shield wall,
The ash melting furnace according to claim 1, wherein the protective layer forming range is in a vertically upward extension space of the heat shielding wall.
前記水流路は、耐火材に向けて延在する支持部材を備え、
該支持部材に前記保護層が形成されていることを特徴とする請求項1記載の灰溶融炉。
The water flow path includes a support member extending toward the refractory material,
The ash melting furnace according to claim 1, wherein the protective layer is formed on the support member.
前記火炎バーナ又は加熱溶融による熱伝播によって耐火材が損傷する惧れがある1100℃以上の範囲であり、前記水流路の出滓口側に面する部位に、肉盛溶接若しくは溶射によって形成される耐熱保護層を設けたことを特徴とする請求項1記載の灰溶融炉。   The refractory material may be damaged by heat propagation due to the flame burner or heating and melting, and is formed by overlay welding or thermal spraying at a portion facing the outlet side of the water flow path, which is likely to be damaged. The ash melting furnace according to claim 1, further comprising a heat-resistant protective layer. 前記出滓口周囲の炉底部上面側に堰を設けるとともに、該堰内に水管若しくはジャケットよりなる金属製水流路を内設し、
前記堰内の水流路の堰外方に面する部位に、肉盛溶接若しくは溶射によって形成される耐熱保護層を設けたことを特徴とする請求項1記載の灰溶融炉。
A dam is provided on the upper side of the furnace bottom around the taphole, and a metal water flow path comprising a water pipe or a jacket is provided in the dam.
2. An ash melting furnace according to claim 1, wherein a heat-resistant protective layer formed by overlay welding or thermal spraying is provided at a portion of the water flow path in the weir facing the outside of the weir.
前記肉盛溶接又は溶射によって形成される保護層は、ニッケル基合金を用いて形成されることを特徴とする請求項1〜6何れかに記載の灰溶融炉。
The ash melting furnace according to claim 1, wherein the protective layer formed by overlay welding or thermal spraying is formed using a nickel-based alloy.
JP2007259242A 2007-10-02 2007-10-02 Melting furnace Active JP5265168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259242A JP5265168B2 (en) 2007-10-02 2007-10-02 Melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259242A JP5265168B2 (en) 2007-10-02 2007-10-02 Melting furnace

Publications (2)

Publication Number Publication Date
JP2009085559A true JP2009085559A (en) 2009-04-23
JP5265168B2 JP5265168B2 (en) 2013-08-14

Family

ID=40659213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259242A Active JP5265168B2 (en) 2007-10-02 2007-10-02 Melting furnace

Country Status (1)

Country Link
JP (1) JP5265168B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047359A (en) * 2010-08-24 2012-03-08 Tsukishima Kankyo Engineering Ltd Incinerated ash melting furnace
WO2012127562A1 (en) * 2011-03-18 2012-09-27 三菱重工環境・化学エンジニアリング株式会社 Combustion device
JP2014509932A (en) * 2011-02-21 2014-04-24 エルピー アミナ エルエルシー Cyclone reactor and method for producing usable by-products using a cyclone reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387192U (en) * 1989-12-20 1991-09-04
JPH0626636A (en) * 1992-07-07 1994-02-04 Mitsubishi Heavy Ind Ltd Molten slag discharge structure of coal gasifying furnace
JPH0729381Y2 (en) * 1989-01-23 1995-07-05 三菱重工業株式会社 Melting furnace
JPH0821688A (en) * 1993-08-02 1996-01-23 Kurosaki Refract Co Ltd Refractory wall buidling method using stud group on water tube wall
JP2003207101A (en) * 2001-11-08 2003-07-25 Mitsubishi Heavy Ind Ltd Water pipe protecting refractory structure and its constructing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729381Y2 (en) * 1989-01-23 1995-07-05 三菱重工業株式会社 Melting furnace
JPH0387192U (en) * 1989-12-20 1991-09-04
JPH0626636A (en) * 1992-07-07 1994-02-04 Mitsubishi Heavy Ind Ltd Molten slag discharge structure of coal gasifying furnace
JPH0821688A (en) * 1993-08-02 1996-01-23 Kurosaki Refract Co Ltd Refractory wall buidling method using stud group on water tube wall
JP2003207101A (en) * 2001-11-08 2003-07-25 Mitsubishi Heavy Ind Ltd Water pipe protecting refractory structure and its constructing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047359A (en) * 2010-08-24 2012-03-08 Tsukishima Kankyo Engineering Ltd Incinerated ash melting furnace
JP2014509932A (en) * 2011-02-21 2014-04-24 エルピー アミナ エルエルシー Cyclone reactor and method for producing usable by-products using a cyclone reactor
WO2012127562A1 (en) * 2011-03-18 2012-09-27 三菱重工環境・化学エンジニアリング株式会社 Combustion device
JP5611448B2 (en) * 2011-03-18 2014-10-22 三菱重工環境・化学エンジニアリング株式会社 Combustion device
EA025685B1 (en) * 2011-03-18 2017-01-30 Мицубиси Хэви Индастриз Инвайронментал Энд Кемикал Инджиниринг Ко., Лтд. Combustion device
US9765962B2 (en) 2011-03-18 2017-09-19 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Combustion device

Also Published As

Publication number Publication date
JP5265168B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP4933442B2 (en) Fuel gasifier
JPH0363407A (en) Combustion chamber of at least partially combustible matter and method of combustion
JP5265168B2 (en) Melting furnace
ES2694416T3 (en) Initiation of a foundry process
JP2007248007A (en) Waste melting treatment device
RU2507239C2 (en) Slag runner in burners for protection from settling slag
JP3390648B2 (en) Furnace wall structure of electric melting furnace and furnace body cooling method
JP2001108381A (en) Hot air heater
JP4073916B2 (en) Melting furnace
JP2009216341A (en) Operating method for melting rotary kiln, and temperature measuring device for molten material
CN103820162A (en) Arrangement mode and installation device of split type burner
KR20140056528A (en) Burner system for gasification equipment using slag tap
JPH11108343A (en) Furnace wall-cooling structure of electric melting furnace
JP5162285B2 (en) Gasification melting method and gasification melting apparatus
JP2006153408A (en) Induction heating melting furnace
JP2006292180A (en) Slag discharge mechanism
JP3904379B2 (en) Dust discharge device for secondary combustion chamber
JP7017290B2 (en) Corrosion resistant furnace wall member
JP3542263B2 (en) Furnace wall structure of electric melting furnace
JPH09217920A (en) Combustion melting furnace and waste disposing device
JP7016292B2 (en) Secondary combustion furnace and its operation method
JP2001241625A (en) Incineration melting treatment device and method for radioactive waste
JP2004150755A (en) Ash melting furnace
JP2006162130A (en) Erosion preventive method of crucible for melting waste
JP5016471B2 (en) Melting furnace

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20101001

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5265168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250