JP2009084685A - Warm working method of magnesium alloy, magnesium alloy for warm working and method for manufacturing the same - Google Patents

Warm working method of magnesium alloy, magnesium alloy for warm working and method for manufacturing the same Download PDF

Info

Publication number
JP2009084685A
JP2009084685A JP2008206493A JP2008206493A JP2009084685A JP 2009084685 A JP2009084685 A JP 2009084685A JP 2008206493 A JP2008206493 A JP 2008206493A JP 2008206493 A JP2008206493 A JP 2008206493A JP 2009084685 A JP2009084685 A JP 2009084685A
Authority
JP
Japan
Prior art keywords
magnesium alloy
alloy
warm working
magnesium
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008206493A
Other languages
Japanese (ja)
Other versions
JP5376488B2 (en
Inventor
Hidetoshi Somekawa
英俊 染川
Singh Alok
アロック シン
Toshimoto Mukai
敏司 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008206493A priority Critical patent/JP5376488B2/en
Publication of JP2009084685A publication Critical patent/JP2009084685A/en
Application granted granted Critical
Publication of JP5376488B2 publication Critical patent/JP5376488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimum warm working method of a magnesium alloy utilizing superplasticity, to provide a magnesium alloy suitable for the warm working method utilizing the superplasticity, and to provide a method for manufacturing the same. <P>SOLUTION: In the warm working method of the magnesium alloy, the magnesium alloy has a quasicrystal phase, and the warm working temperature and strain rate are set such that A in the formula is >1.8×10<SP>6</SP>and <7.2×10<SP>6</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マグネシウム合金の温間加工方法及び温間加工用マグネシウム合金とその製造方法に関し、超塑性利用の温間加工に関するものである。 The present invention relates to a magnesium alloy warm working method, a warm working magnesium alloy and a manufacturing method thereof, and relates to warm working using superplasticity.

マグネシウムは軽量で豊富な資源から様々な分野で使用が期待されている。しかし、その結晶構造に起因して、室温では塑性加工能が非常に乏しい。超塑性挙動は、水飴のように数百%以上の巨大な変形を示すことから、マグネシウム合金のような難加工性材料の成形能改善に非常に有効な手段であると考えられている。
一方で、超塑性は、比較的高い温度域で発現するため、初期組織を維持することが難しい(特に巨大粒成長がおこる)。そのため、複合材添加や析出粒子を粒界ピンニング粒子として利用し、組織の安定化を図るが、超塑性変形応答に大きく影響を及ぼす。(これらの粒子は、超塑性変形時に付随調整機構で作用する転位活動のパイルアップ源として作用し、延性を阻害するキャビティ発生の起点となる。)
これらについて先行技術は以下のようなものが知られている。
特許文献1に示されたのは、Mg−Zn−Y合金の準結晶分散による高強度マグネシウム合金の製造方法である。(申請範囲:Mg−1〜10at.%Zn−0.1〜3at.%Y)鋳造法により試料を作成し、その後、溶融温度の約1/2以上の温度でひずみ加工を施し、準結晶分散相を作成する。
超塑性挙動は、数ミクロン程度の微細結晶粒が、粒界すべりをおこすことにより発現する。しかし加工温度が高い場合、加工途中で再結晶が容易に進行し、微細結晶組織を得ることが困難であり、破断伸び数百%の様な超塑性挙動を得ることは難しい。また、先行特許では希土類元素の添加溶質原子はイットリウムに限られ、その他の希土類元素に関する記載はない。
特許文献2、3に示されたのは、Mg−Zn−Y系合金の準結晶分散による高強度マグネシウム合金の製造方法である。(申請範囲:Mg−1.5〜10at.%Zn−0.125〜3.3at.%Y)鋳造法により試料を作成し、温間加工と熱処理により準結晶粒子相とその近似結晶相を晶出させ、高強度・高クリープ特性を示すマグネシウム合金を開発している。
超塑性挙動は、粒界すべりの発現に起因している。しかし、これらの特許では、温間加工と熱処理により、母相と非整合界面を示すMg−Znからなる粒子を析出させている。
この粒子は、粒界ピンニング粒子として作用し、粒界すべりを抑制し、クリープ特性の改善を図っているので、超塑性の発現は抑制されている。(仮に超塑性が発現しても延性を阻害するキャビティ発生の起点となる)また、先行特許では希土類元素の添加溶質原子はイットリウムに限られ、その他の希土類元素に関する記載はない。
特許文献4に示されているのは、鋳造マグネシウム合金に0.4以上の予歪みを加え、その後、温間ひずみ加工を施す製造方法である(希土類金属は使用していない)。温間加工前に予歪みを加え、均一な析出核形成サイトを導入する。そのため、微細なマグネシウム母相に微細分散粒子相を形成することが可能で超塑性現象の発現が期待できる。しかし、形成する析出粒子の界面は母相に対して非整合であるため、超塑性変形時に付随調整機構で作用する転位活動のパイルアップ源として作用し、キャビティ発生の起点となる。そのため、超塑性を利用した温間加工時の応力は、析出粒子のない超塑性マグネシウム合金と比較して大きく、成型時の金型などの損失を速くすることが予測される。また、延性を低下することも予測される。
特開2002−309332 特開2005−113234 特開2005−113235 特開2003−277899
Magnesium is expected to be used in various fields because of its light weight and abundant resources. However, due to its crystal structure, plastic working ability is very poor at room temperature. The superplastic behavior shows a huge deformation of several hundred% or more like water tanks, and is considered to be a very effective means for improving the formability of difficult-to-work materials such as magnesium alloys.
On the other hand, since superplasticity is manifested in a relatively high temperature range, it is difficult to maintain the initial structure (particularly, giant grain growth occurs). Therefore, composite addition and precipitation particles are used as grain boundary pinning particles to stabilize the structure, but this greatly affects the superplastic deformation response. (These particles act as pile-up sources of dislocation activity that act by an accompanying adjustment mechanism during superplastic deformation, and are the starting point for the generation of cavities that inhibit ductility.)
For these, the following prior arts are known.
Patent Document 1 shows a method for producing a high-strength magnesium alloy by quasicrystal dispersion of an Mg—Zn—Y alloy. (Application range: Mg-1 to 10 at.% Zn—0.1 to 3 at.% Y) A sample is prepared by a casting method, and then subjected to strain processing at a temperature of about 1/2 or more of the melting temperature to produce a quasicrystal. Create a dispersed phase.
Superplastic behavior is manifested when fine crystal grains of about several microns cause grain boundary sliding. However, when the processing temperature is high, recrystallization proceeds easily during the processing, it is difficult to obtain a fine crystal structure, and it is difficult to obtain a superplastic behavior such as several hundred% of elongation at break. Further, in the prior patent, the additive solute atoms of rare earth elements are limited to yttrium, and there is no description regarding other rare earth elements.
Patent Documents 2 and 3 show a method for producing a high-strength magnesium alloy by quasicrystal dispersion of an Mg—Zn—Y alloy. (Application range: Mg-1.5 to 10 at.% Zn-0.125 to 3.3 at.% Y) A sample is prepared by a casting method, and a quasicrystalline particle phase and its approximate crystal phase are obtained by warm working and heat treatment. We are developing magnesium alloys that crystallize and show high strength and high creep properties.
Superplastic behavior is due to the occurrence of grain boundary sliding. However, in these patents, particles made of Mg—Zn exhibiting a mismatched interface with the parent phase are precipitated by warm working and heat treatment.
This particle acts as a grain boundary pinning particle, suppresses grain boundary sliding, and improves creep characteristics, so that the development of superplasticity is suppressed. (Even if superplasticity appears, it becomes a starting point of cavity generation that inhibits ductility.) In addition, in the prior patent, the solute atoms of rare earth elements are limited to yttrium, and there is no description about other rare earth elements.
Patent Document 4 shows a manufacturing method in which a pre-strain of 0.4 or more is applied to a cast magnesium alloy and then warm strain processing is performed (rare earth metal is not used). Pre-strain is applied before warm working to introduce uniform precipitation nucleation sites. For this reason, it is possible to form a finely dispersed particle phase in a fine magnesium matrix and to expect the appearance of a superplastic phenomenon. However, since the interface of the formed precipitation particles is inconsistent with the parent phase, it acts as a pile-up source of dislocation activity that acts by the accompanying adjustment mechanism during superplastic deformation, and becomes the starting point of cavity generation. Therefore, the stress at the time of warm working using superplasticity is larger than that of the superplastic magnesium alloy without precipitated particles, and it is predicted that the loss of the mold during molding will be accelerated. It is also predicted that ductility will be reduced.
JP 2002-309332 A JP 2005-113234 A JP 2005-113235 A JP 2003-277899 A

本発明は、このような実情に鑑み、超塑性を利用したマクネシウム合金の最適な温間加工方法と、超塑性を利用した温間加工方法に適したマグネシウム合金およびその製造方法を提供することを目的とする。   In view of such circumstances, the present invention provides an optimum warm working method for a magnesium alloy utilizing superplasticity, a magnesium alloy suitable for a warm working method utilizing superplasticity, and a method for producing the same. Objective.

本発明は、上記課題を解決するため以下の発明を提供するものである。
発明1はマグネシウム合金の温間加工方法であって、前記マグネシウム合金が準結晶相を有し、下記式1のAが、1.8×10超7.2×10未満となるように加工温度とひずみ速度を設定することを特徴とする。
(式1)
The present invention provides the following inventions in order to solve the above problems.
Invention 1 is a method for warm working of a magnesium alloy, wherein the magnesium alloy has a quasicrystalline phase, and A in the following formula 1 is more than 1.8 × 10 6 and less than 7.2 × 10 6. It is characterized by setting the processing temperature and strain rate.
(Formula 1)

発明2は、発明1の温間加工方法において、前記マグネシウム合金が、Mg−Zn−RE系合金(RE:希土類金属)であることを特徴とする。
発明3は、温間加工用のマグネシウム合金であって、そのマグネシウム母相の結晶粒径が15μm以下で、平均粒子径が2μm以下の準結晶相を有し、次の一般式(3)を満たす組成を有することを特徴とする。
(式3)
Mg{100−(y+x)}ZnRE…………(3)
0.2≦x≦1.5、5x≦y≦7x、xとyは原子%、
REはHo、Y、Gd、Tb、Dy、Erのいずれか一種の希土類元素。
Invention 2 is the warm working method of Invention 1, wherein the magnesium alloy is an Mg—Zn—RE alloy (RE: rare earth metal).
Invention 3 is a magnesium alloy for warm working, the magnesium matrix has a quasicrystalline phase with a crystal grain size of 15 μm or less and an average particle size of 2 μm or less, and the following general formula (3): It has the composition which satisfy | fills.
(Formula 3)
Mg {100- (y + x)} Zn y RE x (3)
0.2 ≦ x ≦ 1.5, 5x ≦ y ≦ 7x, x and y are atomic%,
RE is a rare earth element of any one of Ho, Y, Gd, Tb, Dy, and Er.

発明4は、発明3のマグネシウム合金の製造方法であって、前記式(3)示す組成を有する母合金を460℃以下で4時間以上均質化処理を行い、次に200〜300℃で15〜90分間保持した後に、加工比8:1〜400:1で強ひずみ加工を施すことを特徴とする。   Invention 4 is a method for producing a magnesium alloy of Invention 3, wherein the mother alloy having the composition represented by the formula (3) is homogenized at 460 ° C. or less for 4 hours or more, and then at 200 to 300 ° C. for 15 to 15 hours. After holding for 90 minutes, strong strain processing is performed at a processing ratio of 8: 1 to 400: 1.

準結晶相は並進秩序性がなく、母相に対して非常に良いつながり(整合界面)を示すため、粒界安定化粒子として作用しつつも、超塑性変形に影響を及ぼさない利点がある。そのため、超塑性を利用した成形を付与した場合、従来の析出粒子分散超塑性材料よりも低い加工力で成形が可能である。その具体例を実施例1と図12に示す。ひずみ速度を一定とすると、準結晶粒子ではなく一般的な析出粒子が分散するマグネシウム合金の変形応力は、準結晶粒子が分散するMg−Zn−RE合金の変形応力より大きな値を示すことが分かる。また、図11から希土類元素を添加したMg−Zn−RE合金の超塑性挙動(特に破断伸び)は、Mg−Zn合金より優れ、準結晶相の分散は、超塑性挙動の発現に有効であることが分かる。
発明1と2では、このような準結晶相の利点を生かしながら、変質を招くことなくマグネシウム合金の超塑性を利用して加工を実現する方法である。この例は、実施例2と図13から明らかである。すなわち、本発明の超塑性が発現する条件内で成形加工した後の試料と、超塑性成形加工前(熱処理のみ)の試料の室温機械的特性を比較すると、強度・延性の特性の劣化が観察されないことが分かる。
発明3のマグネシウム合金は、請求項1又は2は無論のこと、これとは少々条件が外れた場合でも、準結晶相の利点を生かしながら、変質を招くことなくマグネシウム合金の超塑性を利用して加工できるものである。
また発明4は、前記発明2のマグネシウム合金を製造する方法を提供するものである。
Since the quasicrystalline phase has no translational order and exhibits a very good connection (matching interface) to the parent phase, there is an advantage that it does not affect superplastic deformation while acting as a grain boundary stabilizing particle. Therefore, when molding using superplasticity is applied, molding can be performed with a lower processing force than conventional precipitated particle-dispersed superplastic materials. A specific example is shown in Example 1 and FIG. When the strain rate is constant, it can be seen that the deformation stress of the magnesium alloy in which the general precipitated particles are dispersed instead of the quasicrystalline particles shows a larger value than the deformation stress of the Mg-Zn-RE alloy in which the quasicrystalline particles are dispersed. . Further, from FIG. 11, the superplastic behavior (particularly, elongation at break) of the Mg—Zn—RE alloy to which the rare earth element is added is superior to that of the Mg—Zn alloy, and the dispersion of the quasicrystalline phase is effective for the development of the superplastic behavior. I understand that.
In inventions 1 and 2, it is a method of realizing processing by utilizing the superplasticity of a magnesium alloy without causing alteration while taking advantage of such a quasicrystalline phase. This example is clear from Example 2 and FIG. In other words, when the room temperature mechanical properties of the sample after the forming process under the condition that the superplasticity of the present invention is developed and the sample before the superplastic forming process (only heat treatment) are compared, the deterioration of the strength and ductility characteristics is observed. I understand that it is not done.
The magnesium alloy of the invention 3 uses the superplasticity of the magnesium alloy without causing alteration while taking advantage of the quasicrystalline phase even if the conditions are slightly different from those of claim 1 or 2. Can be processed.
The invention 4 provides a method for producing the magnesium alloy of the invention 2.

本発明のマグネシウム合金の温間加工方法は、マグネシウム合金が準結晶相を有し、下記(式1)のAが、1.8×10超7.2×10未満となるように加工温度とひずみ速度を設定するものである。
(式1)
The magnesium alloy warm working method of the present invention is such that the magnesium alloy has a quasicrystalline phase and A in the following (formula 1) is more than 1.8 × 10 6 and less than 7.2 × 10 6. Sets temperature and strain rate.
(Formula 1)

本発明の実施例1や図11で示すように、準結晶粒子相がマグネシウム母相に分散するMg−Zn−RE合金では、超塑性挙動を示す。また、Y,Gd,Tb,Dy,Er,Hoのいずれか一種類の希土類元素と亜鉛を下記の組成範囲内であれば、準結晶相がマグネシウム母相に分散することが組織観察結果:図1〜図6から明らかである。
(式3)
Mg{100−(y+x)}ZnyREx
の組成式で、0.2≦x≦1.5、5x≦y≦7xで示される組成であること。
ただし、xとyは原子%
また、超塑性挙動を示すには、マグネシウム母相の大きさが微細(結晶粒径が15μm以下)であることは必須条件である。そのため、鋳造法により作製した試料に、460℃以下で4時間以上の条件で均質化処理を施し、ついで200〜300℃に15〜90分間保持した後、同温度において加工比8:1〜400:1で強ひずみ加工を施す。強ひずみ加工法は、押出や圧延などマグネシウム合金の展伸化に有効であれば何でも良い。
As shown in Example 1 of the present invention and FIG. 11, the Mg—Zn—RE alloy in which the quasicrystalline particle phase is dispersed in the magnesium matrix shows superplastic behavior. In addition, if the rare earth element of any one of Y, Gd, Tb, Dy, Er, and Ho and zinc are within the following composition range, the quasicrystalline phase is dispersed in the magnesium matrix. 1 to 6 are clear.
(Formula 3)
Mg {100- (y + x)} ZnyREx
In the composition formula, 0.2 ≦ x ≦ 1.5, 5x ≦ y ≦ 7x.
Where x and y are atomic%
In order to show superplastic behavior, it is an essential condition that the size of the magnesium matrix is fine (the crystal grain size is 15 μm or less). Therefore, the sample produced by the casting method is homogenized at 460 ° C. or lower for 4 hours or longer, then held at 200 to 300 ° C. for 15 to 90 minutes, and then processed at a processing ratio of 8: 1 to 400 at the same temperature. : 1 to give strong strain processing. The strong strain processing method may be anything as long as it is effective for extending the magnesium alloy, such as extrusion or rolling.

商用純マグネシウム(純度99.95%)に、3原子%亜鉛と0.5原子%ホロミウムを溶解鋳造し、母合金を準備した。
表1の実験No.2は、母合金を400℃(50℃単位、以下同じ)にて24時間炉中保持し、均質化処理を行った。炉から取出した後、水焼き入れを行うことで、組織を凍結した。その後、機械加工により、直径40mmの押出ビレットを作成した。ビレットを200℃に昇温させた後、1/2時間保持し、18:1の押出比で温間押出を施し、押出材を得た。
また、透過型電子顕微鏡を用いた組織観察の結果、平均結晶粒径は2μm以下(図1(a)参照)で、100nm程度のMgZnHoの組成からなる準結晶相(図1(b)参照)の組織が形成され、マグネシウム母相に対して整合な界面を示すことを確認した。実験方法ならびに組織観察の結果を表1にまとめる。
その他の希土類元素:Y,Gd,Tb,Er,Dyも実施例1と同じ手法で作成した。すなわち、商用純マグネシウム(純度99.95%)に、3原子%の亜鉛と0.5原子%の各種希土類元素を溶解鋳造し、母合金を準備した。その後、母合金を400℃にて24時間炉中保持し、均質化処理を行い、水焼き入れを行うことで組織を凍結した。その後、機械加工により押出ビレットを作成し、ビレットを200℃昇温させた後、1/2時間保持し、18:1の押出比で温間押出を施し、押出材を得た。Mg−Zn−RE合金押出材の透過型電子顕微鏡を用いた組織観察の結果を図2〜図6に示す。添加した希土類元素の種類に関係なく、図1と同じ組織形態、すなわち母相の平均結晶粒径:2μm以下で、100nm程度のMgZnREの組成からなる準結晶相が母相に分散することを確認した。
一方で、希土類元素を含まないMg−Zn合金を、均質化処理条件以外、すべて同じ手法で作成した。均質化処理は、希土類元素を含有しないため、300℃、48時間の条件で実施した。図7にMg−Zn合金押出材の透過型電子顕微鏡を用いた組織観察の結果を示す。希土類元素を含まないため、準結晶相は存在せず、Mg−Znからなるb相のみが、マグネシウム母相内に分散していることを確認した。
各試料の組成分析は、ICP発光分光分析法を用いて調査した。
3 atomic% zinc and 0.5 atomic% holmium were melt cast in commercial pure magnesium (purity 99.95%) to prepare a master alloy.
Experiment No. 1 in Table 1 In No. 2, the mother alloy was held in a furnace at 400 ° C. (in units of 50 ° C., hereinafter the same) for 24 hours, and homogenized. After removal from the furnace, the tissue was frozen by water quenching. Thereafter, an extruded billet having a diameter of 40 mm was prepared by machining. After raising the billet to 200 ° C., the billet was held for 1/2 hour and subjected to warm extrusion at an extrusion ratio of 18: 1 to obtain an extruded material.
Also, transmission electron microscopy structure observation results with an average grain size 2μm or less (see FIG. 1 (a)), the quasi-crystal phase having a composition of 100nm approximately Mg 3 Zn 6 Ho (FIG. 1 ( It was confirmed that the structure of (b)) was formed and showed a consistent interface with the magnesium matrix. The experimental method and the results of the tissue observation are summarized in Table 1.
Other rare earth elements: Y, Gd, Tb, Er, and Dy were prepared by the same method as in Example 1. That is, 3 atomic% zinc and 0.5 atomic% of various rare earth elements were melt cast in commercial pure magnesium (purity 99.95%) to prepare a master alloy. Thereafter, the mother alloy was held in a furnace at 400 ° C. for 24 hours, homogenized, and quenched by water quenching. Thereafter, an extruded billet was prepared by machining, and the billet was heated at 200 ° C., then held for 1/2 hour, and subjected to warm extrusion at an extrusion ratio of 18: 1 to obtain an extruded material. The result of the structure observation using the transmission electron microscope of Mg-Zn-RE alloy extruded material is shown in FIGS. Regardless of the kind of rare earth element added, the same morphological form as in FIG. 1, that is, the average crystal grain size of the mother phase: 2 μm or less, and a quasicrystalline phase consisting of a composition of Mg 3 Zn 6 RE of about 100 nm is dispersed in the mother phase Confirmed to do.
On the other hand, Mg—Zn alloys containing no rare earth elements were all produced by the same method except for the homogenization treatment conditions. The homogenization treatment was carried out under conditions of 300 ° C. and 48 hours because it did not contain rare earth elements. FIG. 7 shows the result of the structure observation of the Mg—Zn alloy extruded material using a transmission electron microscope. Since no rare earth element was contained, there was no quasicrystalline phase, and it was confirmed that only the b phase composed of Mg—Zn was dispersed in the magnesium matrix.
The composition analysis of each sample was investigated using ICP emission spectroscopy.

また、Mg−3at.%Zn−0.5at.%Ho合金の高温引張り試験結果得られた測定値を表2にしめす。Ho以外のMg−Zn−RE合金、Mg−Zn合金の高温引張り試験結果から得られた測定値は表3に示す。
Mg-3at. % Zn-0.5 at. Table 2 shows the measured values obtained as a result of the high-temperature tensile test of the% Ho alloy. Table 3 shows measured values obtained from the results of high-temperature tensile tests of Mg—Zn—RE alloys and Mg—Zn alloys other than Ho.

Mg-Zn-Ho押出材から平行部直径2.5mm、長さ5.0mmを示す引張試験片を採取した。それらの試験片を用い、温度200〜350℃、ひずみ速度1×10−5〜10−2−1の範囲内で高温引張試験を実施した。
典型的な真応力−真ひずみ曲線を図8に示す。引張試験時のひずみ速度が遅いほど、大きな伸びが得られることが分かる。
真ひずみが0.1に到達した時の真応力を流動応力とし、各温度における、流動応力−ひずみ速度、ならびに破断伸び−ひずみ速度の関係を図9と表2に示す。図9(a)のひずみ速度感受性指数:m値(m=1/n、nは応力指数)が0.5を示す場合、一般的に、超塑性挙動であると言われている。これをもとに、超塑性挙動が発現した条件を白抜きで示す。
図9(b)より、超塑性挙動が発現した条件下では、大きな伸びが得られ、温度:200℃、ひずみ速度:1×10−5−1の条件下で最大伸びを示したことが分かる。その時の外観写真を図10に示す。
RE = Ho以外のMg−Zn−RE合金押出材およびMg−Zn合金押出材も上記手法と同様に高温引張試験を行った。ただし、引張試験温度は200℃のみである。図11に、流動応力−ひずみ速度、ならびに破断伸び−ひずみ速度の関係を示す。Mg−Zn−Ho合金押出材の結果と同様、ひずみ速度感受性指数:m値が0.5を示す条件が存在し、超塑性挙動の発現が確認できる。また、ひずみ速度:1×10−5〜10−3−1の範囲内では、巨大な延びを示すことが確認できる。一方、準結晶相が存在しないMg−Zn合金では、m値が小さく、Mg−Zn−RE合金の伸びと比べて小さいことが分かる。特に、その傾向は、ひずみ速度:1×10−5〜10−3−1では顕著である。そのため、準結晶相の分散は、巨大な延性を示す超塑性挙動を発現するために有効であることが示唆される。
A tensile test piece having a parallel part diameter of 2.5 mm and a length of 5.0 mm was collected from the extruded Mg-Zn-Ho material. Using these test pieces, a high-temperature tensile test was performed within a range of a temperature of 200 to 350 ° C. and a strain rate of 1 × 10 −5 to 10 −2 s −1 .
A typical true stress-true strain curve is shown in FIG. It can be seen that the slower the strain rate during the tensile test, the greater the elongation.
The true stress when the true strain reaches 0.1 is defined as flow stress, and the relationship between flow stress-strain rate and break elongation-strain rate at each temperature is shown in FIG. When the strain rate sensitivity index: m value (m = 1 / n, n is a stress index) in FIG. 9A is 0.5, it is generally said that the plastic film has superplastic behavior. Based on this, the conditions under which the superplastic behavior is expressed are outlined.
From FIG. 9 (b), it was found that a large elongation was obtained under the condition where the superplastic behavior was exhibited, and the maximum elongation was exhibited under the conditions of temperature: 200 ° C. and strain rate: 1 × 10 −5 s −1. I understand. An appearance photograph at that time is shown in FIG.
Except for RE = Ho, Mg-Zn-RE alloy extrudates and Mg-Zn alloy extrudates were also subjected to a high-temperature tensile test in the same manner as described above. However, the tensile test temperature is only 200 ° C. FIG. 11 shows the relationship between the flow stress-strain rate and the elongation at break-strain rate. Similar to the result of the Mg—Zn—Ho alloy extruded material, there is a condition that the strain rate sensitivity index: m value is 0.5, and the development of superplastic behavior can be confirmed. Moreover, strain rate: 1 In × 10 -5 to 10 within the range of -3 s -1, it can be confirmed that it shows a huge extend. On the other hand, it can be seen that the Mg-Zn alloy having no quasicrystalline phase has a small m value and is smaller than the elongation of the Mg-Zn-RE alloy. In particular, the tendency is remarkable at a strain rate of 1 × 10 −5 to 10 −3 s −1 . Therefore, it is suggested that the dispersion of the quasicrystalline phase is effective for exhibiting superplastic behavior exhibiting a huge ductility.

高温変形挙動を記述する構成方程式は、一般に次(式1)で記述される。
(式1)

マグネシウム合金の超塑性変形では、有効拡散係数:Deffを利用し、各値の典型的な値としてn=2(m=0.5)、p=2を用いる。
有効拡散係数は次(式2)で記述される。
(式2)
The constitutive equation describing the high temperature deformation behavior is generally described by the following (Equation 1).
(Formula 1)

In superplastic deformation of a magnesium alloy, an effective diffusion coefficient: D eff is used, and n = 2 (m = 0.5) and p = 2 are used as typical values of each value.
The effective diffusion coefficient is described by the following (Equation 2).
(Formula 2)

表2と3で示すMg-Zn-RE合金の高温引張試験で得られた結晶粒径と有効拡散係数で補正したひずみ速度と、剛性率で補正した流動応力の関係を図12に示す。(図12の規格化時に使用した結晶粒径:各温度で30分間保持した試料の結晶粒径を測定し、その値を用いた。)
図12には、析出粒子が存在しない一般的な超塑性マグネシウム合金についても示す。
式(1)と(2)(図12中、太実線)と析出粒子が存在する超塑性マグネシウム合金(図12中、細実線)の場合も併せて示す。
準結晶粒子分散超塑性マグネシウムの変形応力は、析出粒子が存在しない超塑性材料よりも高い値を示すが、一般的な析出粒子分散マグネシウムと比較して低いことが分かる。
すなわち、準結晶分散マグネシウムが超塑性挙動を示す場合、材料定数:Aは、1.8×10以上7.2×10以下の範囲内に存在することが分かる。
また、これらの結果は、超塑性変形と組合せ温間加工を実施した場合、一般的な超塑性マグネシウム合金よりは大きな変形応力を必要とするが、一般的な析出粒子分散マグネシウム合金と比較して、低い変形応力で成形が可能であることを意味する。
FIG. 12 shows the relationship between the crystal grain size obtained in the high-temperature tensile test of the Mg-Zn-RE alloys shown in Tables 2 and 3, the strain rate corrected with the effective diffusion coefficient, and the flow stress corrected with the rigidity. (Crystal grain size used at the time of normalization in FIG. 12: The crystal grain size of a sample held for 30 minutes at each temperature was measured, and the value was used.)
FIG. 12 also shows a general superplastic magnesium alloy having no precipitated particles.
The cases of formulas (1) and (2) (thick solid line in FIG. 12) and a superplastic magnesium alloy in which precipitated particles exist (thin solid line in FIG. 12) are also shown.
It can be seen that the deformation stress of the quasicrystalline particle-dispersed superplastic magnesium is higher than that of the superplastic material in which no precipitated particles are present, but is lower than that of general precipitated particle-dispersed magnesium.
That is, when the quasicrystal-dispersed magnesium exhibits superplastic behavior, the material constant A is found to be in the range of 1.8 × 10 6 to 7.2 × 10 6 .
In addition, these results show that when superplastic deformation and combined warm working are performed, larger deformation stress is required than general superplastic magnesium alloy, but compared with general precipitated particle dispersed magnesium alloy. This means that molding is possible with low deformation stress.

超塑性成形前後で室温機械的特性に及ぼす影響について調査した。実施例1で使用したMg−Zn−Y合金押出材を200℃、1/2時間炉内で保持した。その後、水冷後、平行部直径2.5mm、長さ10mmを示す引張試験片を採取し(熱処理材)、室温で引張試験を行った。典型的な公称応力−ひずみ曲線を図13に示す。降伏応力は242MPa、破断伸びは23%を示した。降伏応力は、公称ひずみ0.2%時の応力値、破断伸びは公称応力が30%以上低下した際の公称ひずみ値としている。一方で、実施例1で使用したMg−Zn−Y合金押出材を200℃、1×10−4−1で50%高温引張変形を行った後、水冷し、平行部直径2.5mm、長さ10mmを示す引張試験片を採取した(超塑性変形材)。同試料の室温引張試験の結果を図13に示す。降伏応力は233MPa、破断伸びは21%を示し、熱処理材の機械的特性と比較して、ほぼ差異のないことが確認できる。 The effects on room temperature mechanical properties before and after superplastic forming were investigated. The Mg—Zn—Y alloy extruded material used in Example 1 was held in a furnace at 200 ° C. for ½ hour. Then, after water cooling, a tensile test piece having a parallel part diameter of 2.5 mm and a length of 10 mm was collected (heat treated material), and a tensile test was performed at room temperature. A typical nominal stress-strain curve is shown in FIG. The yield stress was 242 MPa and the elongation at break was 23%. The yield stress is a stress value at a nominal strain of 0.2%, and the elongation at break is a nominal strain value when the nominal stress is reduced by 30% or more. On the other hand, the Mg—Zn—Y alloy extruded material used in Example 1 was subjected to 50% high temperature tensile deformation at 200 ° C. and 1 × 10 −4 s −1 , and then water-cooled, and the parallel part diameter was 2.5 mm. A tensile test piece having a length of 10 mm was collected (superplastic deformation material). The result of the room temperature tensile test of the sample is shown in FIG. The yield stress is 233 MPa, the elongation at break is 21%, and it can be confirmed that there is almost no difference compared to the mechanical properties of the heat-treated material.

本発明は、軽量、高強度材料として有望視されていたマグネシウム合金の各種材料用途への路を開き、航空機、自動車などの軽量化が要求される機械、装置へのマグネシウム合金の使用を実現するものである。   The present invention opens the way to various material applications of magnesium alloys that have been regarded as promising as lightweight and high-strength materials, and realizes the use of magnesium alloys in machines and devices that require weight reduction such as aircraft and automobiles. Is.

Mg−3at%Zn−0.5at%Ho合金のTEM組織観察例:(a)結晶粒径組織,(b)準結晶相Example of TEM structure observation of Mg-3at% Zn-0.5at% Ho alloy: (a) crystal grain size structure, (b) quasicrystalline phase Mg−Zn−Y合金押出材のTEM組織観察写真。The TEM structure observation photograph of a Mg-Zn-Y alloy extrusion material. Mg−Zn−Gd合金押出材のTEM組織観察写真。The TEM structure observation photograph of a Mg-Zn-Gd alloy extrusion material. Mg−Zn−Tb合金押出材のTEM組織観察写真。The TEM structure observation photograph of a Mg-Zn-Tb alloy extrusion material. Mg−Zn−Dy合金押出材のTEM組織観察写真。The TEM structure observation photograph of a Mg-Zn-Dy alloy extrusion material. Mg−Zn−Tb合金押出材のTEM組織観察写真。The TEM structure observation photograph of a Mg-Zn-Tb alloy extrusion material. Mg−Zn合金押出材のTEM組織観察写真。TEM structure observation photograph of Mg-Zn alloy extruded material. 試験温度200℃で得られた真応力−真ひずみ曲線。True stress-true strain curve obtained at a test temperature of 200 ° C. Mg−3at%Zn−0.5at%Ho合金の高温引張り試験結果:(a)流動応力−ひずみ速度,(b)破断伸び−ひずみ速度High temperature tensile test results of Mg-3at% Zn-0.5at% Ho alloy: (a) Flow stress-strain rate, (b) Elongation at break-strain rate 引張り試験後の外観写真。Appearance photograph after tensile test. Mg−3at%Zn−0.5at%RE合金およびのMg−3at%Zn合金高温引張り試験結果:(a)流動応力−ひずみ速度,(b)破断伸び−ひずみ速度Mg-3at% Zn-0.5at% RE alloy and Mg-3at% Zn alloy high temperature tensile test results: (a) flow stress-strain rate, (b) elongation at break-strain rate Mg-Zn-RE合金押出材の高温引張試験により得られた結晶粒径と有効拡散係数で補正したひずみ速度と、剛性率で補正した流動応力の関係Relationship between crystal grain size obtained by high-temperature tensile test of Mg-Zn-RE alloy extruded material, strain rate corrected by effective diffusion coefficient, and flow stress corrected by rigidity 超塑性成形前後の試料を用い、室温引張試験により得られた公称応力−ひずみ曲線Nominal stress-strain curve obtained by room temperature tensile test using samples before and after superplastic forming

Claims (4)

マグネシウム合金の温間加工方法であって、前記マグネシウム合金が準結晶相を有し、下記式1のAが、1.8×10超7.2×10未満となるように加工温度とひずみ速度を設定することを特徴とするマグネシウム合金の温間加工方法。
(式1)
A method for warm processing of a magnesium alloy, wherein the magnesium alloy has a quasicrystalline phase, and the processing temperature is set so that A in the following formula 1 is more than 1.8 × 10 6 and less than 7.2 × 10 6. A method of warm working a magnesium alloy, characterized by setting a strain rate.
(Formula 1)
請求項1に記載の温間加工方法において、前記マグネシウム合金が、Mg−Zn−RE系合金(RE:希土類金属)であることを特徴とするマグネシウム合金の温間加工方法。   2. The warm working method according to claim 1, wherein the magnesium alloy is an Mg—Zn—RE alloy (RE: rare earth metal). 3. 温間加工用のマグネシウム合金であって、そのマグネシウム母相の結晶粒径が15μm以下で、平均粒子径が2μm以下の準結晶相を有し、次の一般式(3)を満たす組成を有することを特徴とするマグネシウム合金。
(式3)
Mg{100−(y+x)}ZnRE…………(3)
0.2≦x≦1.5、5x≦y≦7x、xとyは原子%、
REはHo、Y、Gd、Tb、Dy、Erのいずれか一種の希土類元素。
A magnesium alloy for warm working, having a quasicrystalline phase with a magnesium parent phase having a crystal grain size of 15 μm or less and an average particle diameter of 2 μm or less, and satisfying the following general formula (3) A magnesium alloy characterized by that.
(Formula 3)
Mg {100- (y + x)} Zn y RE x (3)
0.2 ≦ x ≦ 1.5, 5x ≦ y ≦ 7x, x and y are atomic%,
RE is a rare earth element of any one of Ho, Y, Gd, Tb, Dy, and Er.
請求項3に記載のマグネシウム合金の製造方法であって、前記(式3)示す組成を有する母合金を460℃以下で4時間以上均質化処理を行い、次に200〜300℃で15〜90分間保持した後に、加工比8:1〜400:1で強ひずみ加工を施すことを特徴とするマグネシウム合金の製造方法。
It is a manufacturing method of the magnesium alloy of Claim 3, Comprising: The mother alloy which has the composition which shows the said (Formula 3) is homogenized at 460 degrees C or less for 4 hours, and then 15-90 at 200-300 degrees C A method for producing a magnesium alloy, characterized in that after holding for a minute, a high strain processing is performed at a processing ratio of 8: 1 to 400: 1.
JP2008206493A 2007-09-14 2008-08-11 Magnesium alloy warm working method Expired - Fee Related JP5376488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206493A JP5376488B2 (en) 2007-09-14 2008-08-11 Magnesium alloy warm working method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007238620 2007-09-14
JP2007238620 2007-09-14
JP2008206493A JP5376488B2 (en) 2007-09-14 2008-08-11 Magnesium alloy warm working method

Publications (2)

Publication Number Publication Date
JP2009084685A true JP2009084685A (en) 2009-04-23
JP5376488B2 JP5376488B2 (en) 2013-12-25

Family

ID=40658478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206493A Expired - Fee Related JP5376488B2 (en) 2007-09-14 2008-08-11 Magnesium alloy warm working method

Country Status (1)

Country Link
JP (1) JP5376488B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110272A1 (en) 2009-03-24 2010-09-30 独立行政法人物質・材料研究機構 Mg ALLOY MEMBER
WO2013069638A1 (en) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 HIGH STRENGTH Mg ALLOY AND METHOD FOR PRODUCING SAME

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013018747; 'Superplasticity of Mg-Zn-Y alloy containing quasicrystal phase processed by equal channel angular pr' materials letters Vol.61, 20070215, P.4406-4408 *
JPN6013018749; 'Microstructure and Strength of Extruded Mg-Zn-Ho alloys' 日本金属学会講演概要 Vol.138th, 20060321, P.111 *
JPN6013018752; 'Compressive strength and yield asymmery in extruded Mg-Zn-Ho alloys containing quasicrystal phase' Scripta MATERIALIA Vol.56, 20070308, P.935-938 *
JPN7013000136; 'Quasicrystal strengthened Mg-Zn-Y alloys by extrusion' Sctipta Materialia vol. 49, No. 5, 200309, p. 417-422 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110272A1 (en) 2009-03-24 2010-09-30 独立行政法人物質・材料研究機構 Mg ALLOY MEMBER
US8728254B2 (en) 2009-03-24 2014-05-20 National Institute For Materials Science Mg alloy
WO2013069638A1 (en) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 HIGH STRENGTH Mg ALLOY AND METHOD FOR PRODUCING SAME
CN104011238A (en) * 2011-11-07 2014-08-27 丰田自动车株式会社 High strength Mg alloy and method for producing same
US9523141B2 (en) 2011-11-07 2016-12-20 Toyota Jidosha Kabushiki Kaisha High strength Mg alloy and method for producing same

Also Published As

Publication number Publication date
JP5376488B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
Homma et al. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion
JP5540415B2 (en) Mg-based alloy
JP5429702B2 (en) Magnesium alloy and manufacturing method thereof
JP5561846B2 (en) High strength aluminum alloy material and manufacturing method thereof
TWI591191B (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, and rolled copper alloy for electronic device
JP5557121B2 (en) Magnesium alloy
JP5586027B2 (en) Mg-based alloy
EP1640466A1 (en) Magnesium alloy and production process thereof
JP2007138227A (en) Magnesium alloy material
WO2013115490A1 (en) Magnesium alloy having high ductility and high toughness, and preparation method thereof
WO2008117890A1 (en) Magnesium alloys and process for producing the same
JP2005113235A (en) High strength magnesium alloy, and its production method
CN110195178B (en) High-strength high-plasticity heat-resistant flame-retardant magnesium alloy and manufacturing method thereof
JP6373557B2 (en) Magnesium wrought alloy and method for producing the same
Nie et al. Microstructure, tensile properties and work hardening behavior of an extruded Mg–Zn–Ca–Mn magnesium alloy
KR101614004B1 (en) Magnesium alloy for precipition hardened extrusion and manufacturing method of the magnesium alloy
KR101700419B1 (en) Method for preparing high-strength magnesium alloy extruded material using low temperature and slow speed extrusion process and magnesium alloy extruded material manufactured thereby
Li et al. Microstructural evolution and mechanical properties of Mg-5Y-5Gd-x Nd-0.5 Zr magnesium alloys at different states
JP5376488B2 (en) Magnesium alloy warm working method
KR101993506B1 (en) Precipitation hardening magnesium alloy for extruding and method for manufacturing the same
JP4155149B2 (en) High strength magnesium alloy and method for producing the same
JP5403508B2 (en) Mg alloy member.
Singh et al. Strengthening in magnesium alloys by icosahedral phase
JP5419071B2 (en) Mg alloy forged product and its manufacturing method
WO2023080056A1 (en) Magnesium-based alloy extension material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5376488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees