JP2009083819A - Control method for driving force transmission device in hybrid vehicle - Google Patents

Control method for driving force transmission device in hybrid vehicle Download PDF

Info

Publication number
JP2009083819A
JP2009083819A JP2007259769A JP2007259769A JP2009083819A JP 2009083819 A JP2009083819 A JP 2009083819A JP 2007259769 A JP2007259769 A JP 2007259769A JP 2007259769 A JP2007259769 A JP 2007259769A JP 2009083819 A JP2009083819 A JP 2009083819A
Authority
JP
Japan
Prior art keywords
cage
outer ring
way clutch
electric motor
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007259769A
Other languages
Japanese (ja)
Inventor
Koji Sato
光司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007259769A priority Critical patent/JP2009083819A/en
Publication of JP2009083819A publication Critical patent/JP2009083819A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for driving force transmission device in a hybrid vehicle, preventing the generation of a shock due to sudden engagement of a two-way clutch when the vehicle travels in the reverse direction. <P>SOLUTION: The control method for driving force transmission device in a hybrid vehicle includes: a front wheel taking an engine as a driving source and a rear wheel taking an electric motor with a speed reducer as a driving source, wherein a mechanical two-way clutch 19 is built in a torque transmission passage extending from an output shaft 18 of the electric motor to the rear wheel, thereby preventing turning torque from being transmitted from the rear wheel to the output shaft 18 when a vehicle is traveled by the engine. During traveling on a uphill slope by the drive of the engine and the electric motor, the vehicle is once stopped, and in again traveling in the same direction, when the vehicle is traveled in the reverse direction by its dead load, the electric motor is driven in the direction opposite to the reverse traveling direction, whereby load torque more than the engagement release torque of a sprag 24 of the two-way clutch 19 is applied to an outer ring 22 of the two-way clutch 19. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、エンジンにより駆動輪を駆動し、減速機付き電動モータによって補助駆動輪を駆動するハイブリッド車両における駆動力伝達装置の制御方法に関する。   The present invention relates to a method for controlling a driving force transmission device in a hybrid vehicle in which driving wheels are driven by an engine and auxiliary driving wheels are driven by an electric motor with a reduction gear.

エンジンおよび電動モータを備え、その電動モータを発進時や、加速時等の負荷が大きいときにアシストとして用いるようにしたハイブリッド車両の駆動力伝達装置として、特許文献1に記載されたものが従来から知られている。   As a driving force transmission device for a hybrid vehicle that includes an engine and an electric motor and that is used as an assist when the load is large when starting or accelerating, the one described in Patent Document 1 has been conventionally used. Are known.

上記特許文献1に記載された駆動力伝達装置においては、電動モータの回転を減速する減速機の出力軸から補助駆動輪に至るトルク伝達系に2方向クラッチを組込み、エンジンの駆動による通常走行時に、その2方向クラッチによって補助駆動輪から減速機側への回転トルクの伝達を遮断するようにしている。   In the driving force transmission device described in Patent Document 1, a two-way clutch is incorporated in the torque transmission system from the output shaft of the speed reducer that decelerates the rotation of the electric motor to the auxiliary driving wheel, and during normal driving by driving the engine. The two-way clutch interrupts transmission of rotational torque from the auxiliary drive wheels to the speed reducer.

ここで、2方向クラッチとして、図7に示すスプラグタイプの2方向クラッチを採用している。このスプラグタイプの2方向クラッチにおいては、電動モータの回転トルクが伝達される外輪22と補助駆動輪に回転トルクを伝達する内輪23の対向面間に径の異なる2つの保持器25a、25bを組込み、その外側保持器25aを外輪22に固定し、各保持器25a、25bのそれぞれに径方向で対向する複数のポケット31を周方向に等間隔に設け、径方向で対向するポケット31のそれぞれ内部にスプラグ24と、そのスプラグ24をポケット31に周方向の略中央位置に保持する弾性部材32を組込んだ構成としている。   Here, the sprag type two-way clutch shown in FIG. 7 is adopted as the two-way clutch. In this sprag type two-way clutch, two retainers 25a and 25b having different diameters are incorporated between opposing surfaces of an outer ring 22 that transmits the rotational torque of the electric motor and an inner ring 23 that transmits the rotational torque to the auxiliary drive wheels. The outer cage 25a is fixed to the outer ring 22, and a plurality of pockets 31 that are radially opposed to each of the cages 25a and 25b are provided at equal intervals in the circumferential direction, and each of the pockets 31 that are radially opposed to each other. The sprag 24 and an elastic member 32 for holding the sprag 24 in the pocket 31 at a substantially central position in the circumferential direction are incorporated.

上記の構成からなる2方向クラッチにおいては、外側保持器25aと内側保持器25bの相対回転によりスプラグ24を周方向に傾動させ、外輪22の円筒形内面22aと内輪23の円筒形外面23aにスプラグ24の両端のカム面を係合させて、外輪22と内輪23の相互間で回転トルクを伝達するようにしている。   In the two-way clutch configured as described above, the sprag 24 is tilted in the circumferential direction by the relative rotation of the outer cage 25a and the inner cage 25b, and the sprags are formed on the cylindrical inner surface 22a of the outer ring 22 and the cylindrical outer surface 23a of the inner ring 23. Rotational torque is transmitted between the outer ring 22 and the inner ring 23 by engaging the cam surfaces at both ends of 24.

特開平11−291774号公報JP 11-291774 A

ところで、上記特許文献1に記載されたハイブリッド車両の駆動力伝達装置においては、エンジンの駆動によって上り坂を前進走行し、あるいは、後退走行している状態で、車両を一旦停止し、再度同方向に発進する際に、車両が自重で逆走した場合に以下のような問題が発生する。   By the way, in the driving force transmission device for a hybrid vehicle described in the above-mentioned Patent Document 1, the vehicle is temporarily stopped in a state of traveling forwardly on an uphill or traveling backward by driving the engine, and again in the same direction. When starting the vehicle, the following problems occur when the vehicle runs backward due to its own weight.

即ち、車両が登坂路を前進走行している状態では、図7(I)に示すように、スプラグ24は前進側に傾動して、外輪22の円筒形内面22aと内輪23の円筒形外面23aに接触するスタンバイ状態にある。また、内輪23は補助駆動輪からの回転トルクが伝達されて、同図の矢印で示す方向に回転している。   That is, when the vehicle is traveling forward on the uphill road, as shown in FIG. 7 (I), the sprag 24 tilts forward, and the cylindrical inner surface 22a of the outer ring 22 and the cylindrical outer surface 23a of the inner ring 23 are moved. It is in the standby state to touch. The inner ring 23 is rotated in the direction indicated by the arrow in FIG.

上記登坂路の前進走行状態でブレーキを掛け、車両を一旦停止させた後、再度同方向に車両を前進させようとした場合、自重で車両が後退すると、内輪23が図7(II)の矢印で示す方向に逆回転し、その回転によってスプラグ24が外輪22の円筒形内面22aと内輪23の円筒形外面23aに係合する。   When the brake is applied in the forward traveling state on the uphill road and the vehicle is temporarily stopped and then the vehicle is advanced again in the same direction, the inner wheel 23 is moved to the arrow shown in FIG. The sprag 24 is engaged with the cylindrical inner surface 22a of the outer ring 22 and the cylindrical outer surface 23a of the inner ring 23 by the rotation.

上記スプラグ24の係合により、内輪23の回転はそのスプラグ24を介して外輪22に伝達され、図7(III)の矢印で示す方向に外輪22が回転する。このとき、外輪22に固定された外側保持器25aと内側保持器25bが相対回転し、図7(IV)に示すように、内側保持器25bのポケット31の一方の端面がスプラグ24に当接する。   By the engagement of the sprag 24, the rotation of the inner ring 23 is transmitted to the outer ring 22 through the sprag 24, and the outer ring 22 rotates in the direction indicated by the arrow in FIG. At this time, the outer cage 25a and the inner cage 25b fixed to the outer ring 22 rotate relative to each other, and one end surface of the pocket 31 of the inner cage 25b comes into contact with the sprag 24 as shown in FIG. .

エンジンの駆動による走行時には電動モータが停止状態にあり、外輪22の負荷も小さく、スプラグ24の係合力も小さいので、上記ポケット31の端面の押圧によりスプラグ24は円筒形内面22aおよび円筒形外面23aに対する係合が解除される。   Since the electric motor is in a stopped state during traveling by driving the engine, the load on the outer ring 22 is small, and the engagement force of the sprag 24 is also small, so that the sprag 24 is pressed by the end surface of the pocket 31 so that the sprag 24 is cylindrical inner surface 22a and cylindrical outer surface 23a Is disengaged.

スプラグ24の係合が解除されると、弾性部材32の復元弾性によってスプラグ24は、図7(V)に示すように、中立位置に近い状態に保持される。スプラグ24の係合が解除すると同時に、内輪23から外輪22へのトルク伝達が遮断されるため、外側保持器25aに対して内側保持器25bは相対回転せず、スプラグ24は両側の弾性部材32の弾性力が均等する不安定な中立状態に保持される。   When the engagement of the sprags 24 is released, the sprags 24 are held in a state close to the neutral position as shown in FIG. At the same time as the engagement of the sprags 24 is released, torque transmission from the inner ring 23 to the outer ring 22 is interrupted, so that the inner holder 25b does not rotate relative to the outer holder 25a, and the sprags 24 are elastic members 32 on both sides. It is held in an unstable neutral state where the elastic force of each is equal.

車両が逆走を続けると、内輪23のみが回転を続け、スプラグ24は不安定な姿勢のままであるため、振動等の外力が負荷されると、スプラグ24が急激に係合して、ショックを与え、異常な噛み合いによって、スムーズな走行が阻害されるという問題が発生する。   If the vehicle continues to run backward, only the inner ring 23 continues to rotate, and the sprag 24 remains in an unstable posture. Therefore, when an external force such as vibration is applied, the sprag 24 rapidly engages and shocks A problem arises that smooth running is hindered by abnormal meshing.

なお、登坂路を後退走行する場合においても、一旦停止して、車両が逆走した場合にも、上記と同様な問題が発生する。   Even when the vehicle travels backward on the uphill road, the same problem as described above also occurs when the vehicle stops once and the vehicle runs backward.

この発明の課題は、車両の逆走時に、2方向クラッチの係合子が急激に係合してショックが発生するのを防止することができるようにしたハイブリッド車両における駆動力伝達装置の制御方法を提供することである。   An object of the present invention is to provide a control method for a driving force transmission device in a hybrid vehicle that can prevent a shock from being generated due to a sudden engagement of an engagement element of a two-way clutch when the vehicle runs backward. Is to provide.

上記の第1の課題を解決するため、第1の発明においては、エンジンを駆動源として回転駆動される駆動輪と、減速機付き電動モータを駆動源として回転駆動される補助駆動輪とを備え、前記電動モータにおける減速機の出力軸から補助駆動輪に至るトルク伝達経路に2方向クラッチを組込み、その2方向クラッチが、前記減速機からの回転トルクが入力される外輪とその内側に組込まれた内輪との間に係合子と、その係合子を保持する保持器を組込み、前記外輪に対する保持器の相対回転によって係合子を外輪と内輪の対向面に係合させるようにしたメカニカルタイプの2方向クラッチからなり、前記電動モータの駆動時に前記外輪と保持器を相対回転させて係合子を外輪と内輪の対向面に係合させるようにしたハイブリッド車両における駆動力伝達装置の制御方法において、前記エンジンの駆動による走行時、自重によって車両が逆走した際に、その直前の車両走行方向と同方向に電動モータを駆動して、係合子の解除トルク以上の負荷トルクを外輪に負荷するようにした構成を採用したのである。   In order to solve the first problem, the first invention includes a drive wheel that is rotationally driven using an engine as a drive source, and an auxiliary drive wheel that is rotationally driven using an electric motor with a speed reducer as a drive source. A two-way clutch is incorporated in a torque transmission path from the output shaft of the speed reducer to the auxiliary drive wheel in the electric motor, and the two-way clutch is incorporated inside and outside the outer ring to which the rotational torque from the speed reducer is input. A mechanical type 2 in which an engaging member and a retainer for holding the engaging member are incorporated between the inner ring and the engaging member are engaged with opposing surfaces of the outer ring and the inner ring by relative rotation of the retainer with respect to the outer ring. In a hybrid vehicle comprising a directional clutch, wherein the outer ring and the cage are relatively rotated when the electric motor is driven, and the engagement element is engaged with the opposing surfaces of the outer ring and the inner ring. In the control method of the power transmission device, when the vehicle runs backward due to its own weight when traveling by driving the engine, the electric motor is driven in the same direction as the vehicle traveling direction immediately before the vehicle, so that the torque exceeds the release torque of the engagement element. A configuration was adopted in which load torque was applied to the outer ring.

また、第2の発明においては、エンジンを駆動源として回転駆動される駆動輪と、減速機付き電動モータを駆動源として回転駆動される補助駆動輪とを備え、前記電動モータにおける減速機の出力軸から補助駆動輪に至るトルク伝達経路に2方向クラッチを組込み、その2方向クラッチが、前記減速機からの回転トルクが入力される外輪とその内側に組込まれた内輪との間に係合子と、その係合子を保持する保持器を組込み、前記外輪に対する保持器の相対回転によって係合子を外輪と内輪の対向面に係合させるようにしたメカニカルタイプの2方向クラッチからなり、前記電動モータの駆動時に前記外輪と保持器を相対回転させて係合子を外輪と内輪の対向面に係合させるようにしたハイブリッド車両における駆動力伝達装置の制御方法において、前記エンジンの駆動による走行時、自重によって車両が逆走した際に、その逆走方向に電動モータを駆動して、係合子が逆走前の係合状態から逆方向に係合するまで外輪を回転させるようにした構成を採用したのである。   According to a second aspect of the invention, there are provided drive wheels that are rotationally driven using an engine as a drive source, and auxiliary drive wheels that are rotationally driven using an electric motor with a speed reducer as a drive source, and the output of the speed reducer in the electric motor. A two-way clutch is incorporated in a torque transmission path from the shaft to the auxiliary drive wheel, and the two-way clutch is provided between an outer ring to which rotational torque from the speed reducer is input and an inner ring incorporated therein. And a mechanical type two-way clutch in which a retainer for holding the engagement element is incorporated, and the engagement element is engaged with the opposing surfaces of the outer ring and the inner ring by relative rotation of the retainer with respect to the outer ring. A control method for a driving force transmission device in a hybrid vehicle in which the outer ring and the cage are relatively rotated during driving to engage the engaging element with the opposing surfaces of the outer ring and the inner ring. When the vehicle runs backward due to its own weight during driving by driving the engine, the electric motor is driven in the reverse running direction until the engagement element is engaged in the reverse direction from the engaged state before the reverse running. A configuration in which the outer ring is rotated is adopted.

上記第1の発明および第2の発明に係るハイブリッド車両における駆動力伝達装置の制御方法において、2方向クラッチは、外輪の円筒形内面と内輪の円筒形外面間に径の異なる2つの保持器を組込み、その大径の外側保持器を外輪の円筒形内面に固定し、その外側保持器と小径の内側保持器に径方向で対向するポケットを設け、そのポケット内にスプラグと、そのスプラグをポケットの周方向の略中央位置に保持する弾性部材とを組込み、前記内側保持器に摩擦抵抗を付与し、外側保持器に対する内側保持器の相対回転によりスプラグを傾動させて外輪の円筒形内面と内輪の円筒形外面に係合させるようにしたスプラグタイプのものであってもよく、あるいは、外輪の内側に内輪を組込み、その外輪の内周に内輪の円筒形外面との間で周方向の両端が狭小のくさび形空間を形成するカム面を設け、そのカム面と円筒形外面間に組込まれたローラを保持器で保持し、その保持器に摩擦抵抗を付与し、外輪に対する保持器の相対回転によってローラをカム面および円筒形外面に係合させるようにしたローラタイプのものであってもよい。   In the control method of the driving force transmission device in the hybrid vehicle according to the first and second inventions, the two-way clutch includes two cages having different diameters between the cylindrical inner surface of the outer ring and the cylindrical outer surface of the inner ring. Built-in, the large-diameter outer cage is fixed to the cylindrical inner surface of the outer ring, and the outer cage and the small-diameter inner cage are provided with pockets facing in the radial direction. The sprag and the sprag are pocketed in the pocket. An elastic member that is held at a substantially central position in the circumferential direction of the inner ring is incorporated, friction resistance is given to the inner cage, and the sprag is tilted by the relative rotation of the inner cage with respect to the outer cage, so that the cylindrical inner surface and inner ring of the outer ring It may be of the sprag type adapted to be engaged with the cylindrical outer surface of the inner ring, or an inner ring is incorporated inside the outer ring, and the inner ring of the outer ring is surrounded by the cylindrical outer surface of the inner ring. A cam surface that forms a narrow wedge-shaped space is provided at both ends of the roller, and a roller incorporated between the cam surface and the cylindrical outer surface is held by a cage, and a frictional resistance is imparted to the cage to retain the cage against the outer ring. It may be of a roller type in which the roller is engaged with the cam surface and the cylindrical outer surface by relative rotation.

ここで、保持器に摩擦抵抗を付与する手段として、外輪に前記減速機の出力軸に固定された駆動ギヤに噛合する入力ギヤを設け、前記保持器の端部外周に前記駆動ギヤに噛合すると共に、入力ギヤより歯数の多いサブギヤを嵌合し、そのサブギヤを弾性部材により保持器の外周に形成されたフランジに押付けるようにした構成からなるものや、保持器の端部外周に摩擦プレートを嵌合し、その摩擦プレートを静止部材に対して回り止めし、その摩擦プレートを弾性部材により保持器の外周に形成されたフランジに押付けるようにした構成からなるものを採用することができる。   Here, as means for imparting frictional resistance to the cage, an input gear that meshes with a drive gear fixed to the output shaft of the speed reducer is provided on the outer ring, and meshes with the drive gear on the outer periphery of the end of the cage. In addition, a sub-gear having a larger number of teeth than the input gear is fitted, and the sub-gear is pressed against a flange formed on the outer periphery of the cage by an elastic member, or friction is applied to the outer periphery of the cage end. It is possible to adopt a structure in which the plate is fitted, the friction plate is prevented from rotating with respect to the stationary member, and the friction plate is pressed against the flange formed on the outer periphery of the cage by the elastic member. it can.

第1の発明のように、エンジンの駆動による走行時、自重によって車両が逆走した際に、その直前の車両走行方向と同方向に電動モータを駆動して、係合子の解除トルク以上の負荷トルクを外輪に負荷することにより、車両の逆走時に、補助駆動輪から内輪に回転トルクが伝達されても、係合子の係合が解除されない。このため、係合子を車両逆走前の係合位置に保持することができ、振動等の外力の負荷によって係合子が急激に係合するという不都合の発生を防止することができる。   As in the first aspect of the invention, when the vehicle runs backward due to its own weight during traveling by driving the engine, the electric motor is driven in the same direction as the vehicle traveling direction immediately before it, and a load greater than the release torque of the engagement element By applying torque to the outer wheel, even when the rotational torque is transmitted from the auxiliary drive wheel to the inner wheel during reverse running of the vehicle, the engagement of the engagement element is not released. For this reason, the engagement element can be held at the engagement position before the vehicle reverse running, and it is possible to prevent the occurrence of inconvenience that the engagement element is suddenly engaged by a load of external force such as vibration.

また、第2の発明のように、エンジンの駆動による走行時、自重によって車両が逆走した際に、その逆走方向に電動モータを駆動して、係合子が逆走前の係合状態から逆方向に係合するまで外輪を回転させることにより、車両が逆走を続けて補助駆動輪からの回転トルクの伝達により内輪が回転すると、その回転は係合子の空転方向となり、振動等の外力の負荷によって係合子が急激に係合するという不都合の発生を防止することができる。   Further, as in the second aspect of the invention, when the vehicle runs backward due to its own weight during traveling by driving the engine, the electric motor is driven in the backward running direction so that the engagement element is released from the engaged state before the backward running. By rotating the outer wheel until it engages in the opposite direction, when the vehicle continues to run backward and the inner wheel rotates due to the transmission of rotational torque from the auxiliary drive wheel, the rotation becomes the idling direction of the engagement element, and external forces such as vibration It is possible to prevent the inconvenience that the engaging element is suddenly engaged by the load.

以下、この発明の実施の形態を図面に基いて説明する。図1に示すように、ハイブリッド車両10は、車体前部に駆動輪としての前輪11が左右に設けられている。また、車体後部には補助駆動輪としての後輪12が設けられている。   Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the hybrid vehicle 10 is provided with front wheels 11 as drive wheels on the left and right at the front of the vehicle body. A rear wheel 12 as an auxiliary drive wheel is provided at the rear of the vehicle body.

さらに、車体には、エンジン13と、減速機付き電動モータ16とが搭載され、上記エンジン13の回転はトランスミッション14およびディファレンシャル15を介して前輪11に伝達される。一方、電動モータ16における減速機17の出力軸18の回転は2方向クラッチ19およびディファレンシャル20を介して後輪12に伝達される。   Further, an engine 13 and an electric motor 16 with a reduction gear are mounted on the vehicle body, and the rotation of the engine 13 is transmitted to the front wheels 11 via the transmission 14 and the differential 15. On the other hand, the rotation of the output shaft 18 of the speed reducer 17 in the electric motor 16 is transmitted to the rear wheel 12 via the two-way clutch 19 and the differential 20.

図2および図3は電動モータ16のトルク伝達系を示し、減速機17の出力軸18には駆動ギヤ21が取付けられ、その駆動ギヤ21の回転は2方向クラッチ19に入力される。   2 and 3 show a torque transmission system of the electric motor 16. A drive gear 21 is attached to the output shaft 18 of the speed reducer 17, and the rotation of the drive gear 21 is input to the two-way clutch 19.

図3および図4に示すように、2方向クラッチ19は、外輪22と、その内側に組込まれた内輪23と、上記外輪22の円筒形内面22aと内輪23の円筒形外面23a間に組込まれたスプラグ24と、そのスプラグ24を保持する保持器25とからなる。   As shown in FIGS. 3 and 4, the two-way clutch 19 is assembled between an outer ring 22, an inner ring 23 incorporated inside the outer ring 22, and a cylindrical inner surface 22 a of the outer ring 22 and a cylindrical outer surface 23 a of the inner ring 23. The sprag 24 and a holder 25 for holding the sprag 24.

外輪22と内輪23は軸受26を介して相対的に回転自在に支持され、その外輪22に設けられた入力ギヤ27は駆動ギヤ21に噛合している。   The outer ring 22 and the inner ring 23 are rotatably supported via a bearing 26, and an input gear 27 provided on the outer ring 22 meshes with the drive gear 21.

保持器25は、径の異なる2つの保持器25a、25bからなり、その外側保持器25aは外輪22の円筒形内面22aに固定されて外輪22と一体に回転するようになっている。   The retainer 25 includes two retainers 25 a and 25 b having different diameters, and the outer retainer 25 a is fixed to the cylindrical inner surface 22 a of the outer ring 22 and rotates integrally with the outer ring 22.

一方、内側保持器25bは軸受28によって内輪23に回転自在に支持されている。この内側保持器25bには径方向外方に延びるスイッチピン29が固定され、そのスイッチピン29は外側保持器25aに形成された周方向に長い長孔30内に挿入され、上記スイッチピン29が長孔30の周方向両端に当接する範囲内において外側保持器25aと内側保持器25bは相対的に回転自在とされている。   On the other hand, the inner cage 25 b is rotatably supported on the inner ring 23 by a bearing 28. A switch pin 29 extending radially outward is fixed to the inner holder 25b. The switch pin 29 is inserted into a long hole 30 formed in the outer holder 25a in the circumferential direction, and the switch pin 29 is inserted into the inner holder 25b. The outer retainer 25a and the inner retainer 25b are relatively rotatable within a range in contact with both ends of the long hole 30 in the circumferential direction.

外側保持器25aと内側保持器25bには径方向で対向する複数のポケット31が周方向に間隔をおいて形成され、径方向で対向するポケット31内のそれぞれにスプラグ24が組込まれている。   A plurality of radially opposing pockets 31 are formed in the outer retainer 25a and the inner retainer 25b at intervals in the circumferential direction, and a sprag 24 is incorporated in each of the radially opposing pockets 31.

スプラグ24は、正転用カム面24aと逆転用カム面24bを両端のそれぞれに有し、内側保持器25bのポケット31内に組込まれた弾性部材32によって
ポケット31の周方向の中央位置に保持されている。
The sprag 24 has a cam surface 24a for normal rotation and a cam surface 24b for reverse rotation at both ends, and is held at a central position in the circumferential direction of the pocket 31 by an elastic member 32 incorporated in the pocket 31 of the inner holder 25b. ing.

内側保持器25bの一端部は外側保持器25aの端部より外側に位置し、その内側保持器25bの一端部外周にフランジ33と、そのフランジ33から内側保持器25bの一端面側に円筒面34とが形成され、上記円筒面34に係合溝35が設けられている。   One end portion of the inner cage 25b is located outside the end portion of the outer cage 25a, a flange 33 is formed on the outer periphery of one end portion of the inner cage 25b, and a cylindrical surface extends from the flange 33 to one end surface side of the inner cage 25b. 34 and an engaging groove 35 is provided in the cylindrical surface 34.

円筒面34にはサブギヤ36が回転自在に嵌合され、そのサブギヤ36は係合溝35に組込まれた皿ばね等の弾性部材37によってフランジ33に押付けられている。   A sub-gear 36 is rotatably fitted to the cylindrical surface 34, and the sub-gear 36 is pressed against the flange 33 by an elastic member 37 such as a disc spring incorporated in the engaging groove 35.

サブギヤ36は駆動ギヤ21に噛合し、外周の歯数は入力ギヤ27の歯数より多くなっている。このため、駆動ギヤ21が回転すると、サブギヤ36はフランジ33との接触部で滑りを生じつつ入力ギヤ27より遅れて回転する。   The sub gear 36 meshes with the drive gear 21, and the number of teeth on the outer periphery is larger than the number of teeth on the input gear 27. For this reason, when the drive gear 21 rotates, the sub gear 36 rotates behind the input gear 27 while slipping at the contact portion with the flange 33.

図2および図3に示すように、内輪23には、ディファレンシャル20のディファレンシャルケース40が固定され、上記内輪23からそのディファレンシャルケース40に回転トルクが伝達されると、その回転トルクはディファレンシャル機構41を介して図1に示す後輪12のアクスル42に伝達されるようになっている。   As shown in FIGS. 2 and 3, the differential case 40 of the differential 20 is fixed to the inner ring 23, and when rotational torque is transmitted from the inner ring 23 to the differential case 40, the rotational torque is transmitted to the differential mechanism 41. 1 is transmitted to the axle 42 of the rear wheel 12 shown in FIG.

実施の形態で示すハイブリッド車両の駆動力伝達装置は上記の構造からなり、
いま、電動モータ16を駆動すると、その電動モータ16の回転は減速機17により減速されて駆動ギヤ21に伝達され、その駆動ギヤ21から入力ギヤ27およびサブギヤ36に伝達される。
The driving force transmission device for a hybrid vehicle shown in the embodiment has the above structure,
Now, when the electric motor 16 is driven, the rotation of the electric motor 16 is decelerated by the speed reducer 17 and transmitted to the drive gear 21, and is transmitted from the drive gear 21 to the input gear 27 and the sub gear 36.

このため、外輪22およびその外輪22に固定された外側保持器25aが一方向に回転すると共に、サブギヤ36とフランジ33の接触によって内側保持器25bも外輪22と同方向に回転する。   Therefore, the outer ring 22 and the outer cage 25 a fixed to the outer ring 22 rotate in one direction, and the inner cage 25 b also rotates in the same direction as the outer ring 22 by the contact between the sub gear 36 and the flange 33.

このとき、サブギヤ36の歯数は入力ギヤ27の歯数より多いため、サブギヤ36はフランジ33との接触部で滑りを生じつつ入力ギヤ27より遅れて回転し、外輪22に固定された外側保持器25aと内側保持器25bが相対回転する。   At this time, since the number of teeth of the sub gear 36 is larger than the number of teeth of the input gear 27, the sub gear 36 rotates behind the input gear 27 while sliding at the contact portion with the flange 33, and is held outside fixed to the outer ring 22. The container 25a and the inner holder 25b rotate relative to each other.

外側保持器25aと内側保持器25bの相対回転により、スプラグ24は外側保持器25aの回転方向に倒れて、図4(II)に示すように、外輪22の円筒形内面22aと内輪23の円筒形外面23aに係合する。   Due to the relative rotation of the outer cage 25a and the inner cage 25b, the sprag 24 falls in the direction of rotation of the outer cage 25a, and as shown in FIG. 4 (II), the cylindrical inner surface 22a of the outer ring 22 and the cylinder of the inner ring 23 Engages with the outer shape surface 23a.

外側保持器25aと内側保持器25bが所定角度相対回転すると、外側保持器25aに形成された長孔30の一端がスイッチピン29に当接し、外側保持器25aの回転は上記スイッチピン29から内側保持器25bに伝達されて内側保持器25bは外側保持器25aと一体に回転し、スプラグ24は係合状態に保持される。また、サブギヤ36はフランジ33との接触部で滑りを生じつつ回転する。   When the outer retainer 25a and the inner retainer 25b rotate relative to each other by a predetermined angle, one end of the long hole 30 formed in the outer retainer 25a comes into contact with the switch pin 29, and the rotation of the outer retainer 25a is inward from the switch pin 29. The inner retainer 25b is transmitted to the retainer 25b and rotates integrally with the outer retainer 25a, and the sprag 24 is retained in the engaged state. The sub gear 36 rotates while sliding at the contact portion with the flange 33.

2方向クラッチ19におけるスプラグ24の係合により、そのスプラグ24を介して外輪22の回転が内輪23に伝達される。また、内輪23の回転はその内輪23に固定されたディファレンシャルケース40からディファレンシャル機構41を介して図1に示すアクスル42に伝達されて後輪12が回転し、車両が走行する。   By the engagement of the sprag 24 in the two-way clutch 19, the rotation of the outer ring 22 is transmitted to the inner ring 23 through the sprag 24. Further, the rotation of the inner ring 23 is transmitted from the differential case 40 fixed to the inner ring 23 to the axle 42 shown in FIG. 1 through the differential mechanism 41 so that the rear wheel 12 rotates and the vehicle travels.

車両の走行を電動モータ16からエンジン13に切換える場合は、図示省略した発進クラッチを結合状態として、そのエンジン13の回転をトランスミッション14に入力し、前輪11を回転させる。その駆動力の切換えと同時に電動モータ16を停止する。   When switching the running of the vehicle from the electric motor 16 to the engine 13, the start clutch (not shown) is put into a coupled state, the rotation of the engine 13 is input to the transmission 14, and the front wheels 11 are rotated. The electric motor 16 is stopped simultaneously with the switching of the driving force.

エンジン13の駆動による車両の前進走行時において、登坂路を走行し、一旦ブレーキを掛けて停止し、再度同方向に走行を続けようとした場合に、自重で車両が後退すると、2方向クラッチ19は、図7(I)乃至(V)に示す動作を順に行って、スプラグ24は両側の弾性部材32の弾性力が均等する不安定な中立状態に保持されることになり、そのとき、振動等の外力が負荷されると、スプラグ24が急激に係合して、ショックを与え、異常な噛み合いによって、スムーズな走行が阻害されるという問題が発生する。   When the vehicle travels forward by driving the engine 13, when the vehicle travels on an uphill road, stops once with a brake applied, and continues to travel in the same direction again, the two-way clutch 19 when the vehicle moves backward due to its own weight. 7 (I) to 7 (V) are sequentially performed, and the sprags 24 are held in an unstable neutral state in which the elastic forces of the elastic members 32 on both sides are equalized. When an external force such as the above is applied, the sprag 24 suddenly engages and gives a shock, and a problem arises in that smooth running is hindered by abnormal meshing.

そのような問題点を解決するため、実施の形態においては、エンジン13の駆動による走行時、自重によって車両が逆走し、2方向クラッチ19の内輪23が図7(II)に示すように、矢印で示す方向に回転し始める時、逆走前の車両走行方向と同方向に電動モータ16を駆動して、スプラグ24の解除トルク以上の負荷トルクを外輪22に負荷するようにしている。   In order to solve such a problem, in the embodiment, when traveling by driving the engine 13, the vehicle runs backward by its own weight, and the inner ring 23 of the two-way clutch 19 is as shown in FIG. When starting to rotate in the direction indicated by the arrow, the electric motor 16 is driven in the same direction as the vehicle traveling direction before reverse running so that a load torque greater than the release torque of the sprag 24 is applied to the outer ring 22.

上記のように、電動モータ16の駆動によって外輪22にスプラグ24の解除トルク以上の負荷トルクを負荷することにより、車両の逆走時に、後輪12から内輪23に回転トルクが伝達されても、スプラグ24の係合が解除されず、スプラグ24を図7(I)に示す車両逆走前の走行時の係合状態に保持することができる。   As described above, by applying a load torque equal to or greater than the release torque of the sprag 24 to the outer ring 22 by driving the electric motor 16, even when rotational torque is transmitted from the rear wheel 12 to the inner ring 23 during reverse running of the vehicle, The engagement of the sprag 24 is not released, and the sprag 24 can be held in the engaged state during traveling before the vehicle reversely travels as shown in FIG.

このため、スプラグ24は、図7(V)に示すように、係合解除状態に戻されるようなことがなくなり、振動等の外力の負荷によって上記スプラグ24が急激に係合するという不都合の発生を防止することができ、スムーズな走行を可能とすることができる。   For this reason, as shown in FIG. 7 (V), the sprag 24 is not returned to the disengaged state, and the sprag 24 is suddenly engaged by a load of external force such as vibration. Can be prevented and smooth running can be achieved.

また、上記問題点を解決するため、エンジン13の駆動による走行時、自重によって車両が逆走した際に、その逆走方向に電動モータ16を駆動して、前進側に係合しているスプラグ24(図7(II)に示す状態のスプラグ24)が逆方向に係合する位置まで外輪22を回転させるようにしている。   Further, in order to solve the above problems, when the vehicle runs backward due to its own weight when the engine 13 is driven, the electric motor 16 is driven in the reverse running direction to engage the forward side. The outer ring 22 is rotated to a position where 24 (the sprag 24 in the state shown in FIG. 7 (II)) engages in the opposite direction.

上記のように、電動モータ16によってスプラグ24を後退側にスイッチさせることにより、車両が逆走を続けて後輪12からの回転トルクの伝達により内輪23が回転すると、その回転はスプラグ24に対して空転方向となり、車両の逆走状態でスプラグ24が振動等の外力によって急激に係合するというようなことがなく、ショックが発生するのを防止することができる。   As described above, by switching the sprag 24 to the backward side by the electric motor 16, when the vehicle continues to run backward and the inner wheel 23 rotates due to the transmission of the rotational torque from the rear wheel 12, the rotation is performed with respect to the sprag 24. Therefore, the sprag 24 is not suddenly engaged by an external force such as vibration in the reverse running state of the vehicle, and a shock can be prevented.

図3に示す実施の形態においては、サブギヤ36を用いて外側保持器25aと内側保持器25bを相対回転させるようにしたが、図5に示すように、上記サブギヤ36に代えて、円筒面34に摩擦プレート50を回転自在に嵌合し、その摩擦プレート50を弾性部材37でフランジ33に圧接すると共に、静止部材としてのハウジング51に固定された固定プレート52に対して回り止めして、内側保持器25bに摩擦による回転抵抗を負荷するようにしてもよい。摩擦プレート50の回り止めに際しては、その摩擦プレート50の外周に突起部を形成し、その突起部を固定プレート52に形成された凹部に係合させるようにした構成を採用することができる。   In the embodiment shown in FIG. 3, the outer retainer 25a and the inner retainer 25b are rotated relative to each other using the sub-gear 36. However, as shown in FIG. The friction plate 50 is rotatably fitted to the friction plate 50, the friction plate 50 is pressed against the flange 33 by the elastic member 37, and is prevented from rotating with respect to the fixed plate 52 fixed to the housing 51 as a stationary member. You may make it load the rotation resistance by friction to the holder | retainer 25b. When the friction plate 50 is prevented from rotating, a configuration in which a protrusion is formed on the outer periphery of the friction plate 50 and the protrusion is engaged with a recess formed in the fixed plate 52 can be employed.

図5に示す場合においても、駆動ギヤ21から入力ギヤ27に対する回転トルクの伝達時に外側保持器25aと内側保持器25bとを相対回転させてスプラグ24を係合位置にスイッチさせることができる。   Also in the case shown in FIG. 5, the sprag 24 can be switched to the engaged position by relatively rotating the outer retainer 25a and the inner retainer 25b when the rotational torque is transmitted from the drive gear 21 to the input gear 27.

また、図3に示す実施の形態では、2方向クラッチ19としてスプラグタイプのものを示したが、図6(I)、(II)に示すように、入力ギヤ27の内径面に固定される外輪61の内径面に内輪62の円筒形外面63との間で周方向の両端に向けて対向間隔が次第に小さくなるくさび状空間を形成するカム面64を設け、上記外輪61と内輪62間に組込まれた保持器65には上記カム面64と対向する位置にポケット66を形成し、そのポケット66内にローラ67と、そのローラ67をポケット66の周方向の略中央位置に保持する弾性部材68を組込んだローラタイプの2方向クラッチ19を用いるようにしてもよい。   In the embodiment shown in FIG. 3, the two-way clutch 19 is shown as a sprag type, but as shown in FIGS. 6 (I) and (II), the outer ring fixed to the inner diameter surface of the input gear 27. A cam surface 64 is provided on the inner diameter surface of the inner ring 62 so as to form a wedge-shaped space between the cylindrical outer surface 63 of the inner ring 62 and the gap between the opposite ends in the circumferential direction. The cam surface 64 is incorporated between the outer ring 61 and the inner ring 62. The retainer 65 has a pocket 66 formed at a position facing the cam surface 64, a roller 67 in the pocket 66, and an elastic member 68 that holds the roller 67 at a substantially central position in the circumferential direction of the pocket 66. A roller-type two-way clutch 19 incorporating the above may be used.

上記ローラタイプの2方向クラッチ19においては、保持器65に径方向外方に向くスイッチピン69を固定し、そのスイッチピン69を外輪61に形成した長孔70内に挿入し、その長孔70の両端にスイッチピン69が当接する範囲内において外輪61と保持器65を相対的に回転自在としている。   In the roller type two-way clutch 19, a switch pin 69 facing radially outward is fixed to the retainer 65, and the switch pin 69 is inserted into a long hole 70 formed in the outer ring 61. The outer ring 61 and the retainer 65 are relatively rotatable within a range in which the switch pin 69 abuts both ends thereof.

上記のようなローラタイプの2方向クラッチ19の採用において、ここでは、保持器65の端部にサブギヤ36を回転自在に嵌合し、そのサブギヤ36を弾性部材37によって上記保持器65に設けられたフランジ71に押付けて、駆動ギヤ21から入力ギヤ27への回転トルクの伝達時に、外輪61と保持器65とを相対回転させてローラ67をカム面64と円筒形外面63に係合させるようにしているが、上記サブギヤ36に代えて、図5に示す摩擦プレート50および固定プレート52からなる摩擦抵抗付与手段を採用してもよい。   In the adoption of the roller type two-way clutch 19 as described above, here, the sub gear 36 is rotatably fitted to the end portion of the retainer 65, and the sub gear 36 is provided in the retainer 65 by the elastic member 37. When the rotational torque is transmitted from the drive gear 21 to the input gear 27, the outer ring 61 and the retainer 65 are rotated relative to each other so that the roller 67 is engaged with the cam surface 64 and the cylindrical outer surface 63. However, instead of the sub-gear 36, a frictional resistance applying means including the friction plate 50 and the fixed plate 52 shown in FIG.

この発明に係るハイブリッド車両の駆動力伝達装置の実施の形態を示す全体の構成図Overall configuration diagram showing an embodiment of a driving force transmission device for a hybrid vehicle according to the present invention 図1の電動モータのトルク伝達系を示す断面図Sectional drawing which shows the torque transmission system of the electric motor of FIG. 図2の一部分を拡大して示す断面図Sectional drawing which expands and shows a part of FIG. (I)は図3のIV−IV線に沿った断面図、(II)はスプラグの係合状態を示す断面図(I) is a cross-sectional view taken along line IV-IV in FIG. 3, and (II) is a cross-sectional view showing an engaged state of a sprag. 回転抵抗付与手段の他の例を示す断面図Sectional drawing which shows the other example of a rotation resistance provision means (I)は2方向クラッチの他の例を示す縦断正面図、(II)は(I)のVI−VI線に沿った断面図(I) is a longitudinal front view showing another example of a two-way clutch, and (II) is a sectional view taken along line VI-VI in (I). (I)乃至(V)は車両逆走時の2方向クラッチの変化を段階的に示す断面図(I) thru | or (V) is sectional drawing which shows the change of the two-way clutch at the time of vehicle reverse running in steps

符号の説明Explanation of symbols

11 前輪(駆動輪)
12 後輪(補助駆動輪)
13 エンジン
16 減速機付き電動モータ
17 減速機
18 出力軸
19 2方向クラッチ
22 外輪
22a 円筒形内面
23 内輪
23a 円筒形外面
24 スプラグ(係合子)
25 保持器
25a 外側保持器
25b 内側保持器
31 ポケット
32 弾性部材
61 外輪
62 内輪
63 円筒形外面
64 カム面
65 保持器
66 ポケット
67 ローラ(係合子)
11 Front wheels (drive wheels)
12 Rear wheels (auxiliary drive wheels)
13 Engine 16 Electric motor with reduction gear 17 Reduction gear 18 Output shaft 19 Two-way clutch 22 Outer ring 22a Cylindrical inner surface 23 Inner ring 23a Cylindrical outer surface 24 Sprag (engagement element)
25 retainer 25a outer retainer 25b inner retainer 31 pocket 32 elastic member 61 outer ring 62 inner ring 63 cylindrical outer surface 64 cam surface 65 retainer 66 pocket 67 roller (engagement element)

Claims (6)

エンジンを駆動源として回転駆動される駆動輪と、減速機付き電動モータを駆動源として回転駆動される補助駆動輪とを備え、前記電動モータにおける減速機の出力軸から補助駆動輪に至るトルク伝達経路に2方向クラッチを組込み、その2方向クラッチが、前記減速機からの回転トルクが入力される外輪とその内側に組込まれた内輪との間に係合子と、その係合子を保持する保持器を組込み、前記外輪に対する保持器の相対回転によって係合子を外輪と内輪の対向面に係合させるようにしたメカニカルタイプの2方向クラッチからなり、前記電動モータの駆動時に前記外輪と保持器を相対回転させて係合子を外輪と内輪の対向面に係合させるようにしたハイブリッド車両における駆動力伝達装置の制御方法において、
前記エンジンの駆動による走行時、自重によって車両が逆走した際に、その直前の車両走行方向と同方向に電動モータを駆動して、係合子の解除トルク以上の負荷トルクを外輪に負荷するようにしたことを特徴とするハイブリッド車両における駆動力伝達装置の制御方法。
Torque transmission from the output shaft of the speed reducer to the auxiliary drive wheel in the electric motor, comprising drive wheels that are driven to rotate using the engine as a drive source and auxiliary drive wheels that are driven to rotate using an electric motor with a speed reducer A two-way clutch is incorporated in the path, and the two-way clutch holds an engagement element between an outer ring to which rotational torque from the speed reducer is input and an inner ring incorporated therein, and a retainer for holding the engagement element. And a mechanical type two-way clutch in which the engagement element is engaged with the opposing surfaces of the outer ring and the inner ring by relative rotation of the cage with respect to the outer ring, and the outer ring and the cage are relatively moved when the electric motor is driven. In the control method of the driving force transmission device in the hybrid vehicle in which the engaging element is rotated and engaged with the opposing surfaces of the outer ring and the inner ring,
During traveling by driving the engine, when the vehicle runs backward due to its own weight, the electric motor is driven in the same direction as the vehicle traveling direction immediately before that to load a load torque on the outer ring that is equal to or greater than the release torque of the engagement element. A control method for a driving force transmission device in a hybrid vehicle, characterized in that
エンジンを駆動源として回転駆動される駆動輪と、減速機付き電動モータを駆動源として回転駆動される補助駆動輪とを備え、前記電動モータにおける減速機の出力軸から補助駆動輪に至るトルク伝達経路に2方向クラッチを組込み、その2方向クラッチが、前記減速機からの回転トルクが入力される外輪とその内側に組込まれた内輪との間に係合子と、その係合子を保持する保持器を組込み、前記外輪に対する保持器の相対回転によって係合子を外輪と内輪の対向面に係合させるようにしたメカニカルタイプの2方向クラッチからなり、前記電動モータの駆動時に前記外輪と保持器を相対回転させて係合子を外輪と内輪の対向面に係合させるようにしたハイブリッド車両における駆動力伝達装置の制御方法において、
前記エンジンの駆動による走行時、自重によって車両が逆走した際に、その逆走方向に電動モータを駆動して、係合子が逆走前の係合状態から逆方向に係合するまで外輪を回転させるようにしたことを特徴とするハイブリッド車両における駆動力伝達装置の制御方法。
Torque transmission from the output shaft of the speed reducer to the auxiliary drive wheel in the electric motor, comprising drive wheels that are driven to rotate using the engine as a drive source and auxiliary drive wheels that are driven to rotate using an electric motor with a speed reducer A two-way clutch is incorporated in the path, and the two-way clutch holds an engagement element between an outer ring to which rotational torque from the speed reducer is input and an inner ring incorporated therein, and a retainer for holding the engagement element. And a mechanical type two-way clutch in which the engagement element is engaged with the opposing surfaces of the outer ring and the inner ring by relative rotation of the cage with respect to the outer ring, and the outer ring and the cage are relatively moved when the electric motor is driven. In the control method of the driving force transmission device in the hybrid vehicle in which the engaging element is rotated and engaged with the opposing surfaces of the outer ring and the inner ring,
When the vehicle runs backward due to its own weight during driving by driving the engine, the electric motor is driven in the reverse running direction, and the outer ring is moved until the engagement element is engaged in the reverse direction from the engaged state before the reverse running. A method for controlling a driving force transmission device in a hybrid vehicle, wherein the driving force transmission device is rotated.
前記2方向クラッチが、外輪の円筒形内面と内輪の円筒形外面間に径の異なる2つの保持器を組込み、その大径の外側保持器を外輪の円筒形内面に固定し、その外側保持器と小径の内側保持器に径方向で対向するポケットを設け、そのポケット内にスプラグと、そのスプラグをポケットの周方向の略中央位置に保持する弾性部材とを組込み、前記内側保持器に摩擦抵抗を付与し、外側保持器に対する内側保持器の相対回転によりスプラグを傾動させて外輪の円筒形内面と内輪の円筒形外面に係合させるようにしたスプラグタイプの2方向クラッチからなる請求項1又は2に記載のハイブリッド車両の駆動力伝達装置の制御方法。   The two-way clutch incorporates two cages having different diameters between the cylindrical inner surface of the outer ring and the cylindrical outer surface of the inner ring, and fixes the outer cage having a large diameter to the cylindrical inner surface of the outer ring. And a small-diameter inner cage are provided with pockets opposed in the radial direction, and a sprag and an elastic member that holds the sprag at a substantially central position in the circumferential direction of the pocket are incorporated in the pocket, and the inner cage has a frictional resistance. And a sprag type two-way clutch which is configured to engage the cylindrical inner surface of the outer ring and the cylindrical outer surface of the inner ring by tilting the sprag by relative rotation of the inner cage with respect to the outer cage. 3. A method for controlling a driving force transmission device for a hybrid vehicle according to 2. 前記2方向クラッチが、外輪の内側に内輪を組込み、その外輪の内周に内輪の円筒形外面との間で周方向の両端が狭小のくさび形空間を形成するカム面を設け、そのカム面と円筒形外面間に組込まれたローラを保持器で保持し、その保持器に摩擦抵抗を付与し、外輪に対する保持器の相対回転によってローラをカム面および円筒形外面に係合させるようにしたローラタイプの2方向クラッチからなる請求項1又は2に記載のハイブリッド車両の駆動力伝達装置の制御方法。   The two-way clutch incorporates an inner ring on the inner side of the outer ring, and a cam surface is provided on the inner periphery of the outer ring that forms a narrow wedge-shaped space between the inner ring and the cylindrical outer surface of the inner ring. The roller assembled between the outer surface and the cylindrical outer surface is held by a cage, friction resistance is applied to the cage, and the roller is engaged with the cam surface and the cylindrical outer surface by relative rotation of the cage with respect to the outer ring. The method for controlling a driving force transmission device for a hybrid vehicle according to claim 1, comprising a roller type two-way clutch. 前記保持器に摩擦抵抗を付与する手段が、前記外輪に前記減速機の出力軸に固定された駆動ギヤに噛合する入力ギヤを設け、前記保持器の端部外周に前記駆動ギヤに噛合すると共に、入力ギヤより歯数の多いサブギヤを嵌合し、そのサブギヤを弾性部材により保持器の外周に形成されたフランジに押付けるようにした構成からなる請求項3又は4に記載のハイブリッド車両の駆動力伝達装置の制御方法。   The means for imparting frictional resistance to the cage includes an input gear that meshes with a drive gear fixed to the output shaft of the speed reducer on the outer ring, and meshes with the drive gear on an outer periphery of an end of the cage. 5. The drive of a hybrid vehicle according to claim 3, wherein a sub-gear having a greater number of teeth than the input gear is fitted, and the sub-gear is pressed against a flange formed on the outer periphery of the cage by an elastic member. Control method of force transmission device. 前記保持器に摩擦抵抗を付与する手段が、保持器の端部外周に摩擦プレートを嵌合し、その摩擦プレートを静止部材に対して回り止めし、その摩擦プレートを弾性部材により保持器の外周に形成されたフランジに押付けるようにした構成からなる請求項3又は4に記載のハイブリッド車両の駆動力伝達装置の制御方法。   The means for imparting frictional resistance to the cage includes a friction plate fitted to the outer periphery of the end of the cage, the friction plate is prevented from rotating with respect to the stationary member, and the friction plate is secured to the outer circumference of the cage by an elastic member. The method for controlling a driving force transmission device for a hybrid vehicle according to claim 3 or 4, wherein the control method is configured to be pressed against a flange formed on the vehicle.
JP2007259769A 2007-10-03 2007-10-03 Control method for driving force transmission device in hybrid vehicle Pending JP2009083819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259769A JP2009083819A (en) 2007-10-03 2007-10-03 Control method for driving force transmission device in hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259769A JP2009083819A (en) 2007-10-03 2007-10-03 Control method for driving force transmission device in hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2009083819A true JP2009083819A (en) 2009-04-23

Family

ID=40657776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259769A Pending JP2009083819A (en) 2007-10-03 2007-10-03 Control method for driving force transmission device in hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2009083819A (en)

Similar Documents

Publication Publication Date Title
JP5876410B2 (en) Power transmission device
JP5634842B2 (en) Planetary gear mechanism and hub motor device for battery-assisted bicycle equipped with the same
JP2000035061A (en) Power intermittent device for hybrid vehicle
JP3967201B2 (en) Wheel steering device
WO2011030689A1 (en) Electric automobile
JP2005059791A (en) Deceleration drive device
JP3699371B2 (en) In-wheel motor drive unit and hybrid system
JP2012096775A (en) Hub motor device for power-assisted bicycle
JP2010018101A (en) Driving force transmission device for hybrid vehicle
KR101675383B1 (en) Dual one way clutch and transmission having the same
JP2009078754A (en) Method for controlling driving force transmission device for hybrid vehicle
JP2009101738A (en) Driving force transmitting device for hybrid vehicle
JP5771046B2 (en) Electric assist bicycle with regenerative mechanism
JP2005140145A (en) Power transmitting device for hybrid vehicle
JP3408431B2 (en) Driving force transmission device
JP2009083819A (en) Control method for driving force transmission device in hybrid vehicle
JP2009078598A (en) Driving force transmission device of hybrid vehicle
JP2008151327A (en) Rotation transmitting device
JP2007210400A (en) Motor-driven rotation transmission controller for vehicle
JP2009078751A (en) Driving force transmission device of hybrid vehicle
JP2010018098A (en) Driving force transmission device of hybrid vehicle
JP2009156458A (en) Driving force transmission device for hybrid vehicle
JPWO2010137668A1 (en) Power transmission device
JP2009047278A (en) Locking direction changing clutch and simple differential gear device
JP2009078749A (en) Driving force transmission device of hybrid vehicle