JP2008151327A - Rotation transmitting device - Google Patents

Rotation transmitting device Download PDF

Info

Publication number
JP2008151327A
JP2008151327A JP2006342936A JP2006342936A JP2008151327A JP 2008151327 A JP2008151327 A JP 2008151327A JP 2006342936 A JP2006342936 A JP 2006342936A JP 2006342936 A JP2006342936 A JP 2006342936A JP 2008151327 A JP2008151327 A JP 2008151327A
Authority
JP
Japan
Prior art keywords
peripheral surface
inner ring
inner member
elastic
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006342936A
Other languages
Japanese (ja)
Inventor
Yoshihiro Demura
良広 出村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006342936A priority Critical patent/JP2008151327A/en
Publication of JP2008151327A publication Critical patent/JP2008151327A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control change-over between the transmission and the interruption of rotating torque without using an electromagnetic clutch. <P>SOLUTION: This rotation transmitting device comprises first and second inner rings 10, 20, an outer ring 30 arranged outside the first and second inner rings 10, 20, a plurality of pairs of rollers 40a, 40b arranged in wedge spaces Ma, Mb between each of the first and second inner rings 10, 20 and the outer ring 30 in an engageable/disengageable manner, a cage connected to the second inner ring 20 and having pockets for storing the rollers 40a, 40b, a first spring 60 inserted between each of the pairs of rollers 40a, 40b for energizing the rollers 40a, 40b in the direction of engaging them in the wedge spaces Ma, Mb, and a second spring 70 for rotating the second inner ring 20 relative to the first inner ring 10 in one direction to energize the roller 40b laid between the second inner ring 20 and the outer ring 30 in the wedge space Mb in the direction of separating it. Herein, a switch 80 is provided for thrusting the second inner ring 20 against the elastic force of the second spring 70 to engage the roller 40b in the wedge space Mb and for separating the roller 40b in the wedge space Mb with one-directional rotation of the second inner ring 20 due to the elastic force of the second spring 70 during the operation of centrifugal force. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃費向上を目的としてハイブリットカーに搭載された簡易型システム、いわゆるISG(Integrated Starter Generator)システムに利用され、車輌のジェネレータプーリ等のように動力の伝達と遮断の切り換えに用いられる回転伝達装置に関する。   The present invention is used in a simple system mounted on a hybrid car for the purpose of improving fuel efficiency, a so-called ISG (Integrated Starter Generator) system, and used for switching between transmission and cut-off of power, such as a generator pulley of a vehicle. The present invention relates to a transmission device.

この種の回転伝達装置として、動力の伝達と遮断の切り換えを電磁クラッチにより制御する構造のものがある(例えば、特許文献1参照)。   As this type of rotation transmission device, there is one having a structure in which switching of power transmission and switching is controlled by an electromagnetic clutch (for example, see Patent Document 1).

この特許文献1に開示された回転伝達装置は、内方部材と、その内方部材の外側に設けられた外方部材と、外方部材の内周と内方部材の外周間に組み込まれて軸方向に移動可能な磁性体からなるアーマチュアと、そのアーマチュアに組み込まれ、外方部材の内周と内方部材の外周との間で係合可能なローラと、そのローラが内方部材の外周および外方部材の内周に対して係合解除される中立位置にアーマチュアを弾性保持するスイッチばねと、外方部材の内周または内方部材の外周に固定されてアーマチュアに対向するロータと、そのロータに対向し、通電によりロータにアーマチュアを吸着させる電磁石とで構成されている。   The rotation transmission device disclosed in Patent Document 1 is incorporated between an inner member, an outer member provided outside the inner member, an inner periphery of the outer member, and an outer periphery of the inner member. An armature made of a magnetic material movable in the axial direction, a roller incorporated in the armature and engageable between the inner periphery of the outer member and the outer periphery of the inner member, and the roller being the outer periphery of the inner member A switch spring that elastically holds the armature in a neutral position that is disengaged from the inner periphery of the outer member, and a rotor that is fixed to the inner periphery of the outer member or the outer periphery of the inner member and faces the armature, It is composed of an electromagnet that faces the rotor and attracts the armature to the rotor by energization.

前述の構成からなる回転伝達装置において、電磁石への通電の遮断状態では、アーマチュアがロータから離反し、スイッチばねの弾性力によってローラは外方部材の内周と内方部材の外周との間で係合解除された中立位置に保持されている。その結果、内方部材に回転トルクが入力されて内方部材が回転しても、その回転は外方部材に伝達されず、内方部材のみがフリー回転する。   In the rotation transmission device having the above-described configuration, the armature is separated from the rotor and the roller is moved between the inner periphery of the outer member and the outer periphery of the inner member by the elastic force of the switch spring when the electromagnet is cut off. It is held in the disengaged neutral position. As a result, even if rotational torque is input to the inner member and the inner member rotates, the rotation is not transmitted to the outer member, and only the inner member rotates freely.

一方、この内方部材の回転状態において、電磁石に通電すると、ロータにアーマチュアが吸着され、そのロータを介してアーマチュアが外方部材に結合される。その結果、内方部材とアーマチュアが相対回転し、その相対回転によってローラは外方部材の内周と内方部材の外周との間で係合する。このため、内方部材の回転はローラを介して外方部材に伝達され、その外方部材が内方部材と同一方向に回転する。   On the other hand, when the electromagnet is energized in the rotation state of the inner member, the armature is attracted to the rotor, and the armature is coupled to the outer member via the rotor. As a result, the inner member and the armature rotate relative to each other, and the roller engages between the inner periphery of the outer member and the outer periphery of the inner member by the relative rotation. For this reason, the rotation of the inner member is transmitted to the outer member via the roller, and the outer member rotates in the same direction as the inner member.

また、内方部材とアーマチュアが相対回転すると、スイッチばねが弾性変形する。そのため、電磁石への通電を遮断すると、スイッチばねの弾性復元力によりアーマチュアが回動され、ローラは外方部材の内周と内方部材の外周との間で係合解除された中立位置に戻され、内方部材から外方部材へのトルク伝達が遮断される。
特開2006−248463号公報
Further, when the inner member and the armature rotate relative to each other, the switch spring is elastically deformed. Therefore, when the electromagnet is de-energized, the armature is rotated by the elastic restoring force of the switch spring, and the roller returns to the neutral position where the engagement is released between the inner periphery of the outer member and the outer periphery of the inner member. Thus, torque transmission from the inner member to the outer member is interrupted.
JP 2006-248463 A

ところで、前述した従来の回転伝達装置では、通電によりロータにアーマチュアを吸着させる電磁石を有する電磁クラッチにより、動力の伝達と遮断の切り換えを制御するようにしている。そのため、電磁クラッチに通電し続けなければ、内方部材から外方部材へ回転トルクを伝達し続けることができない構造となっていることから、この回転伝達装置を主に動力伝達状態で使用する場合、電力消費量が大きくなるという問題がある。   By the way, in the conventional rotation transmission device described above, switching between power transmission and interruption is controlled by an electromagnetic clutch having an electromagnet that attracts the armature to the rotor by energization. For this reason, if the electromagnetic clutch is not energized continuously, the rotation torque cannot be continuously transmitted from the inner member to the outer member. Therefore, when this rotation transmission device is mainly used in the power transmission state There is a problem that power consumption increases.

また、この回転伝達装置では、内方部材から外方部材への動力伝達状態、つまり、電磁クラッチへの通電状態で、内方部材および外方部材の回転が正逆方向で切り換わる際、外方部材の内周と内方部材の外周との間でのローラの係合状態が切り換わるため、そのローラの係合状態の切り換えでもってガタが発生し、異音発生および寿命低下の要因となる可能性がある。   Further, in this rotation transmission device, when the rotation of the inner member and the outer member is switched in the forward and reverse directions in the power transmission state from the inner member to the outer member, that is, in the energized state of the electromagnetic clutch, Since the engagement state of the roller is switched between the inner periphery of the inner member and the outer periphery of the inner member, rattling occurs by switching the engagement state of the roller. There is a possibility.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、電磁クラッチを使用することなく、簡便な手段により、回転トルクの伝達と遮断の切り換えを制御し得る回転伝達装置を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to control the switching between transmission and interruption of rotational torque by simple means without using an electromagnetic clutch. The object is to provide a rotation transmission device.

前述の目的を達成するための技術的手段として、本発明は、正逆回転自在に同軸的に配置された第一の内方部材および第二の内方部材と、第一の内方部材および第二の内方部材の外側に同軸的に配置された正逆回転可能な外方部材と、第一の内方部材の外周面と外方部材の内周面との間に形成された楔空間で係合した状態で配された一方の係合子および第二の内方部材の外周面と外方部材の内周面との間に形成された楔空間で係合離脱可能に配された他方の係合子からなる複数対の係合子と、第二の内方部材に連結され、各対の係合子を円周方向に転動自在に収容するポケットを有する保持器と、第一の内方部材の外周面と外方部材の内周面との間および第二の内方部材の外周面と外方部材の内周面との間にそれぞれ介在した各対の係合子間に介挿され、各対の両係合子を楔空間で係合させる方向に付勢する第一の弾性部材と、第一の内方部材と第二の内方部材との間に介挿され、第一の内方部材に対して第二の内方部材を一方向に回転させて第二の内方部材の外周面と外方部材の内周面との間に介在した係合子を楔空間で離脱させる方向に付勢する第二の弾性部材とを備え、第一の内方部材と第二の内方部材との間に介挿され、第二の内方部材を第二の弾性部材の弾性力に抗して押圧することにより第二の内方部材の外周面と外方部材の内周面との間に介在した係合子を楔空間で係合させ、遠心力の作用時に第二の弾性部材の弾性力による第二の内方部材の一方向回転でもって係合子を楔空間で離脱させる切換部材を具備したことを特徴とする。   As technical means for achieving the above-mentioned object, the present invention includes a first inner member and a second inner member which are coaxially arranged so as to be rotatable forward and backward, a first inner member, An outer member that is coaxially disposed on the outer side of the second inner member and that can rotate forward and backward, and a wedge formed between the outer peripheral surface of the first inner member and the inner peripheral surface of the outer member Arranged in a wedge space formed between the outer peripheral surface of one of the engaging elements and the second inner member and the inner peripheral surface of the outer member arranged in a state of being engaged in the space so as to be disengageable. A plurality of pairs of engagement elements comprising the other engagement elements, a cage connected to the second inner member, and having a pocket for accommodating each pair of engagement elements so as to be capable of rolling in the circumferential direction; Between each pair of engagement elements interposed between the outer peripheral surface of the outer member and the inner peripheral surface of the outer member and between the outer peripheral surface of the second inner member and the inner peripheral surface of the outer member. Inserted between the first elastic member and the first inner member and the second inner member that are biased in the direction in which each pair of engaging elements is engaged in the wedge space, The engagement member interposed between the outer peripheral surface of the second inner member and the inner peripheral surface of the outer member by rotating the second inner member in one direction with respect to the first inner member is a wedge space. And a second elastic member that urges the second inner member between the first inner member and the second inner member, and the second inner member is inserted into the second elastic member. By pressing against the elastic force of the second inner member, the engaging element interposed between the outer peripheral surface of the second inner member and the inner peripheral surface of the outer member is engaged in the wedge space, and the A switching member for separating the engagement element in the wedge space by unidirectional rotation of the second inner member by the elastic force of the second elastic member is provided.

本発明の回転伝達装置では、正逆回転自在に同軸的に配置された第一の内方部材および第二の内方部材を備え、その第一の内方部材と第二の内方部材との間に介挿された切換部材により、第二の内方部材を第二の弾性部材の弾性力に抗して押圧することにより第二の内方部材の外周面と外方部材の内周面との間に介在した係合子を楔空間で係合させれば、両方向回転による動力伝達状態となり、また、遠心力の作用時に第二の弾性部材の弾性力による第二の内方部材の一方向回転で係合子を楔空間で離脱させれば、一方向回転による動力伝達状態となる。このように、回転トルクの伝達と遮断の切り換えを遠心力でもって行うことにより、従来の回転伝達装置における電磁クラッチを使用することなく、電力消費もない。   The rotation transmission device of the present invention includes a first inner member and a second inner member that are coaxially disposed so as to be rotatable in the forward and reverse directions, the first inner member and the second inner member, By pressing the second inner member against the elastic force of the second elastic member by the switching member inserted between the outer peripheral surface of the second inner member and the inner periphery of the outer member If the engagement element interposed between the two surfaces is engaged in the wedge space, a power transmission state is obtained by bi-directional rotation, and the second inner member is moved by the elastic force of the second elastic member when centrifugal force is applied. If the engagement element is separated from the wedge space by one-way rotation, a power transmission state is obtained by one-way rotation. As described above, by switching between transmission and interruption of the rotational torque with the centrifugal force, the electromagnetic clutch in the conventional rotational transmission device is not used and there is no power consumption.

また、複数対の係合子を、第一の内方部材および第二の内方部材の外周面と外方部材の内周面との間に形成された楔空間で係合離脱可能に配し、第一の内方部材の外周面と外方部材の内周面との間および第二の内方部材の外周面と外方部材の内周面との間にそれぞれ介在した各対の係合子間に第一の弾性部材を介挿し、その第一の弾性部材により各対の両係合子を楔空間で係合させる方向に付勢するようにしたことで、入力回転方向が正逆切り換わっても、正回転側と逆回転側の両方向で係合子が楔空間で係合しているため、係合子の係合状態の切り換えがないことでガタが発生することはない。   In addition, a plurality of pairs of engagement elements are arranged so as to be disengageable in a wedge space formed between the outer peripheral surface of the first inner member and the second inner member and the inner peripheral surface of the outer member. And a pair of members interposed between the outer peripheral surface of the first inner member and the inner peripheral surface of the outer member and between the outer peripheral surface of the second inner member and the inner peripheral surface of the outer member. The first elastic member is inserted between the couplings, and the first elastic member urges each pair of the engagement elements in the wedge space so that the input rotation direction is switched between forward and reverse. Even if it changes, since the engagement element is engaged in the wedge space in both the forward rotation side and the reverse rotation side, the engagement state of the engagement element is not switched and no play occurs.

一方、前述の構成における切換部材は、第一の内方部材と第二の内方部材との間に径方向移動可能に介挿されたピンと、そのピンと保持器との間に設けられ、径方向内側へ弾性力を付勢する第三の弾性部材と、ピンの一端に取り付けられ、遠心力により第三の弾性部材の弾性力に抗して径方向外側へピンを移動させる錘とからなる構造が望ましい。   On the other hand, the switching member in the above-described configuration is provided between the first inner member and the second inner member so as to be movable in the radial direction, and between the pin and the cage. A third elastic member that biases the elastic force inward in the direction, and a weight that is attached to one end of the pin and moves the pin outward in the radial direction against the elastic force of the third elastic member by centrifugal force A structure is desirable.

このような構造によれば、第三の弾性部材の弾性力によりピンが径方向最内側位置の場合、両方向回転による動力伝達状態となる。一方、遠心力により第三の弾性部材の弾性力に抗してピンが径方向外側へ移動した場合、一方向回転による動力伝達状態となる。   According to such a structure, when the pin is in the radially innermost position due to the elastic force of the third elastic member, a power transmission state is achieved by bi-directional rotation. On the other hand, when the pin moves radially outward against the elastic force of the third elastic member due to the centrifugal force, a power transmission state is achieved by one-way rotation.

また、前述の構成における切換部材は、第一の内方部材と第二の内方部材との間に回動可能に介挿された偏心カムと、その偏心カムと第一の内方部材との間に設けられ、偏心カムが第二の内方部材を押圧する方向に付勢する第三の弾性部材とからなり、遠心力により第三の弾性部材の弾性力に抗して偏心カムを回動させるようにした構造が望ましい。   The switching member in the above-described configuration includes an eccentric cam that is rotatably inserted between the first inner member and the second inner member, the eccentric cam, and the first inner member. The eccentric cam includes a third elastic member that urges the second inner member in a direction to press the second inner member, and the eccentric cam resists the elastic force of the third elastic member by centrifugal force. A structure that allows rotation is desirable.

このような構造によれば、第三の弾性部材の弾性力により偏心カムが第二の内方部材を押圧することにより、両方向回転による動力伝達状態となる。一方、遠心力により第三の弾性部材の弾性力に抗して偏心カムを回動させ、第二の弾性部材の弾性力が偏心カムによる第二の内方部材への押圧力よりも大きくなると、その第二の弾性部材により第二の内方部材が一方向に回転し、一方向回転による動力伝達状態となる。   According to such a structure, when the eccentric cam presses the second inner member by the elastic force of the third elastic member, a power transmission state is achieved by bi-directional rotation. On the other hand, when the eccentric cam is rotated against the elastic force of the third elastic member by centrifugal force, and the elastic force of the second elastic member becomes larger than the pressing force to the second inner member by the eccentric cam. The second inner member rotates in one direction by the second elastic member, and a power transmission state is obtained by the one-way rotation.

本発明によれば、第一の内方部材と第二の内方部材との間に介挿され、第二の内方部材を第二の弾性部材の弾性力に抗して押圧することにより第二の内方部材の外周面と外方部材の内周面との間に介在した係合子を楔空間で係合させ、遠心力の作用時に第二の弾性部材の弾性力による第二の内方部材の一方向回転でもって係合子を楔空間で離脱させる切換部材を具備したことにより、従来の回転伝達装置における電磁クラッチを使用することなく、電力消費がない安価な回転伝達装置を提供でき、両方向回転による動力伝達状態と一方向回転による動力伝達状態の切り換えが可能となる。   According to the present invention, the first inner member is inserted between the second inner member and the second inner member is pressed against the elastic force of the second elastic member. An engagement element interposed between the outer peripheral surface of the second inner member and the inner peripheral surface of the outer member is engaged in the wedge space, and the second force due to the elastic force of the second elastic member is applied when centrifugal force is applied. By providing a switching member that disengages the engagement element in the wedge space by one-way rotation of the inner member, an inexpensive rotation transmission device that does not consume power without using an electromagnetic clutch in a conventional rotation transmission device is provided. It is possible to switch between a power transmission state by bi-directional rotation and a power transmission state by one-way rotation.

また、第一の内方部材および第二の内方部材の外周面と外方部材の内周面との間に形成された楔空間に配された複数対の係合子と、第一の内方部材の外周面と外方部材の内周面との間および第二の内方部材の外周面と外方部材の内周面との間にそれぞれ介在した各対の係合子間に介挿され、各対の両係合子を楔空間で係合させる方向に付勢する第一の弾性部材とを具備したことにより、動力伝達状態で回転方向が正逆切り換わる際のガタがないので、異音の発生を未然に防止でき、回転伝達装置の寿命向上が図れる。   A plurality of pairs of engaging elements disposed in a wedge space formed between the outer peripheral surface of the first inner member and the second inner member and the inner peripheral surface of the outer member; Inserted between each pair of engaging members interposed between the outer peripheral surface of the outer member and the inner peripheral surface of the outer member and between the outer peripheral surface of the second inner member and the inner peripheral surface of the outer member. In addition, since the first elastic member that urges each pair of the engagement elements in the direction to engage with each other in the wedge space, there is no backlash when the rotation direction is switched between forward and reverse in the power transmission state. Occurrence of abnormal noise can be prevented and the life of the rotation transmission device can be improved.

以下、本発明に係る回転伝達装置の実施形態を詳述する。図1および図2は本発明の第一の実施形態で、図1(a)(b)は両方向回転による動力伝達状態、図2(a)(b)は一方向回転による動力伝達状態をそれぞれ示す。また、図3および図4は本発明の第二の実施形態で、図3(a)(b)は両方向回転による動力伝達状態、図4(a)(b)は一方向回転による動力伝達状態をそれぞれ示す。さらに、図5は第一の実施形態における回転伝達装置をハイブリットカー等に搭載されたISGシステムに適用した例を示す。   Hereinafter, embodiments of the rotation transmission device according to the present invention will be described in detail. 1 and 2 show a first embodiment of the present invention. FIGS. 1 (a) and 1 (b) show a power transmission state by bi-directional rotation, and FIGS. 2 (a) and 2 (b) show a power transmission state by one-way rotation, respectively. Show. 3 and 4 show a second embodiment of the present invention. FIGS. 3 (a) and 3 (b) show a power transmission state by bi-directional rotation, and FIGS. 4 (a) and 4 (b) show a power transmission state by one-way rotation. Respectively. Further, FIG. 5 shows an example in which the rotation transmission device in the first embodiment is applied to an ISG system mounted on a hybrid car or the like.

図1(a)(b)に示す第一の実施形態における回転伝達装置は、回転トルクが出力される第一の内方部材である第一内輪10、第二の内方部材である第二内輪20、回転トルクが入力される外方部材である外輪30、複数対(図では4対)の係合子であるローラ40a,40b、保持器50、第一の弾性部材である第一ばね60、第二の弾性部材である第二ばね70、切換部材であるスイッチ80とで主要部が構成されている。   The rotation transmission device in the first embodiment shown in FIGS. 1A and 1B is a first inner ring 10 that is a first inner member that outputs a rotational torque, and a second inner member that is a second inner member. Inner ring 20, outer ring 30 that is an outer member to which rotational torque is input, rollers 40a and 40b that are a plurality of pairs (four pairs in the figure), retainers 50, and a first spring 60 that is a first elastic member. The main part is composed of the second spring 70 as the second elastic member and the switch 80 as the switching member.

第一内輪10および第二内輪20は、相互に軸方向に接合した状態で正逆方向に相対回転可能に同軸的に配置されている。第一内輪10の中心には、第二内輪側〔図1(b)左側〕に突出した内側軸部13と反第二内輪側〔図1(b)右側〕に突出した外側軸部15が一体的に設けられている。第一内輪10の内側軸部13は第二内輪20の中心に形成された凹所23に挿入配置されている。第一内輪10の外側軸部15は出力軸として外部に導出されている。   The first inner ring 10 and the second inner ring 20 are coaxially arranged so as to be rotatable relative to each other in the forward and reverse directions while being joined to each other in the axial direction. At the center of the first inner ring 10, there are an inner shaft part 13 projecting on the second inner ring side (left side in FIG. 1 (b)) and an outer shaft part 15 projecting on the opposite second inner ring side (right side in FIG. 1 (b)). It is provided integrally. The inner shaft portion 13 of the first inner ring 10 is inserted and disposed in a recess 23 formed at the center of the second inner ring 20. The outer shaft portion 15 of the first inner ring 10 is led out to the outside as an output shaft.

第一内輪10は、その円周方向等間隔(90°間隔)で径方向に突出してさらに軸方向〔図1(b)左方向〕に延びる凸部12を有し、その凸部12の外周面を、外輪30の内周面32との間でローラ40aが係合離脱可能な楔空間Maを形成するカム面14としている。また、第一内輪10は、その一部をV字状に切り欠いた切欠き部16を有する。   The first inner ring 10 has a convex portion 12 that protrudes in the radial direction at equal circumferential intervals (90 ° intervals) and extends in the axial direction (left direction in FIG. 1B). The surface is a cam surface 14 that forms a wedge space Ma with which the roller 40 a can be engaged and disengaged with the inner peripheral surface 32 of the outer ring 30. Moreover, the 1st inner ring | wheel 10 has the notch part 16 which notched the part in V shape.

一方、第二内輪20は、その円周方向等間隔(90°間隔)で径方向に突出してさらに第一内輪10とは逆の軸方向〔図1(b)右方向〕に延びる凸部22を有し、その凸部22の外周面を、外輪30の内周面32との間でローラ40bが係合離脱可能な楔空間Mbを形成するカム面24としている。また、第二内輪20は、その一部をV字状に切り欠いた切欠き部26を有する。さらに、第二内輪20は、その中央部位を軸方向〔図1(b)左方向〕に突出させた軸部28を有する。   On the other hand, the second inner ring 20 protrudes in the radial direction at equal circumferential intervals (90 ° intervals) and further extends in the axial direction opposite to the first inner ring 10 (right direction in FIG. 1B). The outer peripheral surface of the convex portion 22 is a cam surface 24 that forms a wedge space Mb between which the roller 40 b can be engaged and disengaged with the inner peripheral surface 32 of the outer ring 30. Moreover, the 2nd inner ring | wheel 20 has the notch part 26 which notched the part in V shape. Furthermore, the 2nd inner ring | wheel 20 has the axial part 28 which made the center site | part protrude in the axial direction [FIG.1 (b) left direction].

この第二内輪20の凸部22は、第一内輪10の凸部12に対して円周方向に所定角度だけ位相をずらした状態に配置されている。また、第二内輪20の切欠き部26の一部が第一内輪10の切欠き部16の一部と重合して第一内輪10の切欠き部16と第二内輪20の切欠き部26で軸方向に貫通する状態に配置されている。   The convex portion 22 of the second inner ring 20 is arranged in a state where the phase is shifted by a predetermined angle in the circumferential direction with respect to the convex portion 12 of the first inner ring 10. Further, a part of the notch 26 of the second inner ring 20 overlaps with a part of the notch 16 of the first inner ring 10, so that the notch 16 of the first inner ring 10 and the notch 26 of the second inner ring 20 are overlapped. It is arranged in a state of penetrating in the axial direction.

外輪30は、第一内輪10および第二内輪20の外側で同軸的に正逆回転可能に配置されている。つまり、外輪30は、前述の第一内輪10および第二内輪20を収容した円筒状の大径部34と、その大径部34の一端側〔図1(b)左側〕に一体的に設けられた小径部36とからなり、小径部36を転がり軸受102を介して第二内輪20の軸部28に回転自在に支持している。なお、小径部36と第二内輪20の軸部28との間に介在した転がり軸受102は、第二内輪20の軸部28に装着された止め輪104により抜け止めされている。   The outer ring 30 is coaxially arranged outside the first inner ring 10 and the second inner ring 20 so as to be able to rotate forward and backward. That is, the outer ring 30 is integrally provided on the cylindrical large-diameter portion 34 that accommodates the first inner ring 10 and the second inner ring 20 described above, and one end side (left side in FIG. 1B) of the large-diameter portion 34. The small diameter portion 36 is rotatably supported on the shaft portion 28 of the second inner ring 20 via the rolling bearing 102. The rolling bearing 102 interposed between the small diameter portion 36 and the shaft portion 28 of the second inner ring 20 is prevented from coming off by a retaining ring 104 attached to the shaft portion 28 of the second inner ring 20.

複数対〔図1(a)では4対〕のローラ40a,40bは、外輪30の円周方向に沿って等間隔(90°間隔)で配されている。各対のローラ40a,40bのうち、一方のローラ40aは、第一内輪10の凸部12のカム面14と外輪30の円筒状内周面32との間に形成された楔空間Maで係合した状態に配され、他方のローラ40bは、第二内輪20の凸部22のカム面24と外輪30の円筒状内周面32との間に形成された楔空間Mbで係合離脱可能に配されている。   A plurality of pairs (four pairs in FIG. 1A) of rollers 40 a and 40 b are arranged at equal intervals (90 ° intervals) along the circumferential direction of the outer ring 30. Of each pair of rollers 40a, 40b, one roller 40a is engaged in a wedge space Ma formed between the cam surface 14 of the convex portion 12 of the first inner ring 10 and the cylindrical inner peripheral surface 32 of the outer ring 30. The other roller 40b can be engaged and disengaged in a wedge space Mb formed between the cam surface 24 of the convex portion 22 of the second inner ring 20 and the cylindrical inner peripheral surface 32 of the outer ring 30. It is arranged in.

保持器50は、一端側〔図1(b)右側〕が開口した有底筒状をなし、その底部52に形成された孔54を第二内輪20の軸部28の根元部分に嵌合させ、その根元部分に装着された止め輪106により抜け止めされている。この保持器50の底部52から軸方向に一体的に延びる筒状部58には、ローラ40a,40bを転動自在に収容するポケット56a,56bが形成されている。保持器50の筒状部58の開口端には、プレート51が第一内輪10に軸方向に接合した状態で固着されて保持器50の開口部を塞ぎ、第一内輪10の外側軸部15に装着された止め輪108により抜け止めされている。従って、保持器50はプレート51を介して第一内輪10と一体的に回転可能となっている。   The cage 50 has a bottomed cylindrical shape with one end side (the right side in FIG. 1B) opened, and a hole 54 formed in the bottom portion 52 is fitted into the root portion of the shaft portion 28 of the second inner ring 20. The retaining ring 106 attached to the base portion is prevented from coming off. Pockets 56a and 56b for accommodating the rollers 40a and 40b in a rollable manner are formed in the cylindrical portion 58 that integrally extends in the axial direction from the bottom 52 of the cage 50. The plate 51 is fixed to the opening end of the cylindrical portion 58 of the cage 50 in a state of being joined to the first inner ring 10 in the axial direction so as to close the opening of the cage 50, and the outer shaft portion 15 of the first inner ring 10. The stopper ring 108 is attached to the stopper ring 108 to prevent it from coming off. Therefore, the cage 50 can rotate integrally with the first inner ring 10 via the plate 51.

第一ばね60は、各対のローラ40a,40b間、つまり、第一内輪10の凸部12のカム面14と外輪30の円筒状内周面32との間に形成された楔空間Maで係合した状態に配された一方のローラ40aと、第二内輪20の凸部22のカム面24と外輪30の円筒状内周面32との間に形成された楔空間Mbで係合離脱可能に配された他方のローラ40bとの間に介挿されている。この第一ばね60の弾性力は、各対のローラ40a,40bを楔空間Ma,Mbの狭い側へ付勢することで第一内輪10および第二内輪20のカム面14,24と外輪30の内周面32との間に係合させるようにしている。図1(a)は、第一ばね60の弾性力により、各対のローラ40a,40bが楔空間Ma,Mbの狭い側で第一内輪10および第二内輪20のカム面14,24と外輪30の内周面32との間に係合している状態を示す。   The first spring 60 is a wedge space Ma formed between each pair of rollers 40 a and 40 b, that is, between the cam surface 14 of the convex portion 12 of the first inner ring 10 and the cylindrical inner peripheral surface 32 of the outer ring 30. Engagement / disengagement is achieved by a wedge space Mb formed between one roller 40a disposed in an engaged state, the cam surface 24 of the convex portion 22 of the second inner ring 20 and the cylindrical inner peripheral surface 32 of the outer ring 30. It is interposed between the other roller 40b arranged as possible. The elastic force of the first spring 60 biases each pair of rollers 40a and 40b toward the narrow side of the wedge spaces Ma and Mb, thereby causing the cam surfaces 14 and 24 of the first inner ring 10 and the second inner ring 20 and the outer ring 30 to be biased. The inner peripheral surface 32 is engaged with each other. FIG. 1A shows the cam surfaces 14 and 24 of the first inner ring 10 and the second inner ring 20 on the narrow side of the wedge spaces Ma and Mb and the outer ring due to the elastic force of the first spring 60. The state which is engaging between 30 inner peripheral surfaces 32 is shown.

第二ばね70は、第一内輪10の凸部12と第二内輪20の凸部22の対向端面同士間に介挿されている。この第二ばね70の弾性力は、第一内輪10に対して第二内輪20を時計方向〔図1(a)参照〕に回転させる方向に付勢される。これにより、第一内輪10の凸部12に対してこれと対をなす第二内輪20の凸部22を円周方向に沿って離間させるようにしている。その結果、第一内輪10の凸部12のカム面14が外輪30の内周面32に対してなす楔角度は変化しないが、第二内輪20の凸部22のカム面24が外輪30の内周面32に対してなす楔角度が大きくなり、各対のローラ40a,40bのうち、一方のローラ40aは楔空間Maで係合した状態で、他方のローラ40bは楔空間Mbで離脱することになる。図2(a)は、第二ばね70の弾性力により、各対のローラ40a,40bのうち、一方のローラ40aは第一内輪10のカム面14と外輪30の内周面32との間で係合し、他方のローラ40bは第二内輪20のカム面24と外輪30の内周面32との間から離脱して外輪30の内周面32との間で微小隙間Sbが形成されている状態を示す。   The second spring 70 is interposed between the opposed end surfaces of the convex portion 12 of the first inner ring 10 and the convex portion 22 of the second inner ring 20. The elastic force of the second spring 70 is urged in the direction in which the second inner ring 20 is rotated clockwise with respect to the first inner ring 10 (see FIG. 1A). Thereby, the convex part 22 of the 2nd inner ring | wheel 20 which makes a pair with this with respect to the convex part 12 of the 1st inner ring | wheel 10 is spaced apart along the circumferential direction. As a result, the wedge angle formed by the cam surface 14 of the convex portion 12 of the first inner ring 10 with respect to the inner peripheral surface 32 of the outer ring 30 does not change, but the cam surface 24 of the convex portion 22 of the second inner ring 20 The wedge angle formed with respect to the inner peripheral surface 32 is increased. Of the pair of rollers 40a and 40b, one roller 40a is engaged in the wedge space Ma, and the other roller 40b is separated in the wedge space Mb. It will be. FIG. 2A shows that between the pair of rollers 40 a and 40 b, one roller 40 a is between the cam surface 14 of the first inner ring 10 and the inner peripheral surface 32 of the outer ring 30 due to the elastic force of the second spring 70. The other roller 40b is separated from between the cam surface 24 of the second inner ring 20 and the inner peripheral surface 32 of the outer ring 30, and a minute gap Sb is formed between the inner peripheral surface 32 of the outer ring 30 and the other roller 40b. It shows the state.

スイッチ80は、軸方向に沿って平行に配された丸棒状のピン82と、そのピン82の一端部に取り付けられた錘84と、ピン82の一端部近傍と保持器50の一部を構成するプレート51との間に張設された第三の弾性部材である第三ばね86とで構成されている。ピン82の先端部および中央部は、第二内輪20の切欠き部26の一部が第一内輪10の切欠き部16の一部と重合して第一内輪10の切欠き部16と第二内輪20の切欠き部26で軸方向に貫通する部位に配置され、第一内輪10の切欠き部16の傾斜面11と第二内輪20の切欠き部26の傾斜面21に当接している。プレート51の上部には、径方向に沿う長孔状のスリット53が形成され、そのスリット53にピン82が径方向移動可能に収容され、そのピン82と共にスリット53に収容された第三ばね86によりピン82が径方向内側へ付勢されている。ピン82の一端部に取り付けられた錘84は、プレート51の外側に配されている。このスイッチ80では、第一内輪10の回転により錘84に遠心力が作用すると、第三ばね86の弾性力に抗して径方向外側へピン82が移動することになる。   The switch 80 constitutes a round bar-like pin 82 arranged in parallel along the axial direction, a weight 84 attached to one end of the pin 82, the vicinity of one end of the pin 82, and a part of the cage 50. And a third spring 86 that is a third elastic member stretched between the plate 51 and the plate 51. At the tip and the center of the pin 82, a part of the notch 26 of the second inner ring 20 overlaps with a part of the notch 16 of the first inner ring 10, and the notch 16 and the first inner ring 10 The two inner rings 20 are arranged in a portion penetrating in the axial direction at the notch portion 26 of the inner ring 20, and are in contact with the inclined surface 11 of the notch portion 16 of the first inner ring 10 and the inclined surface 21 of the notch portion 26 of the second inner ring 20. Yes. In the upper part of the plate 51, a long hole-like slit 53 is formed along the radial direction, and a pin 82 is accommodated in the slit 53 so as to be movable in the radial direction, and the third spring 86 accommodated in the slit 53 together with the pin 82. Thus, the pin 82 is urged radially inward. A weight 84 attached to one end of the pin 82 is disposed outside the plate 51. In this switch 80, when a centrifugal force acts on the weight 84 due to the rotation of the first inner ring 10, the pin 82 moves radially outward against the elastic force of the third spring 86.

前述した構成からなる第一の実施形態の回転伝達装置の動作例を以下に詳述する。   An operation example of the rotation transmission device of the first embodiment having the above-described configuration will be described in detail below.

図1(a)(b)は両方向回転による動力伝達状態(外輪30からの回転入力により第一内輪10を時計方向および反時計方向に回転させる状態)を示す。この状態では、スイッチ80は、ピン82が第三ばね86の径方向内側へ向かう弾性力でもってスリット53内で径方向最内側位置〔図1(a)の最下端位置〕に配置されている。この時、第二ばね70の弾性力により、第一内輪10は第二内輪20に対して時計方向に押圧されている。この押圧力に対して第二内輪20の回転を位置規制するように、ピン82が第一内輪10の切欠き部16の傾斜面11と第二内輪20の切欠き部26の傾斜面21に当接して両傾斜面11,21間で挟み込まれている。   FIGS. 1A and 1B show a power transmission state (a state in which the first inner ring 10 is rotated clockwise and counterclockwise by rotational input from the outer ring 30) by bi-directional rotation. In this state, the switch 80 is disposed in the radially innermost position (the lowermost position in FIG. 1A) in the slit 53 with the elastic force of the pin 82 toward the radially inner side of the third spring 86. . At this time, the first inner ring 10 is pressed clockwise with respect to the second inner ring 20 by the elastic force of the second spring 70. The pin 82 is placed on the inclined surface 11 of the notched portion 16 of the first inner ring 10 and the inclined surface 21 of the notched portion 26 of the second inner ring 20 so as to position-control the rotation of the second inner ring 20 against this pressing force. Abutting and sandwiched between both inclined surfaces 11 and 21.

一方、第一ばね60の弾性力により、第一内輪10および第二内輪20と外輪30との間に介在した各対のローラ40a,40bは、一方のローラ40aと他方のローラ40bが円周方向に離間するように押圧されている。各対のローラ40a,40bのうち、一方のローラ40aは、第一内輪10の凸部12のカム面14と外輪30の内周面32との間に形成された楔空間Maの狭い側へ付勢されて第一内輪10のカム面14と外輪30の内周面32との間に係合し、他方のローラ40bは、第二内輪20の凸部22のカム面24と外輪30の内周面32との間に形成された楔空間Mbの狭い側へ付勢されて第二内輪20のカム面24と外輪30の内周面32との間に係合する状態となっている。   On the other hand, due to the elastic force of the first spring 60, each pair of rollers 40a and 40b interposed between the first inner ring 10 and the second inner ring 20 and the outer ring 30 has one roller 40a and the other roller 40b circumferentially. It is pressed so as to be separated in the direction. Of each pair of rollers 40a, 40b, one roller 40a is directed to the narrow side of the wedge space Ma formed between the cam surface 14 of the convex portion 12 of the first inner ring 10 and the inner peripheral surface 32 of the outer ring 30. The other roller 40 b is urged to engage between the cam surface 14 of the first inner ring 10 and the inner peripheral surface 32 of the outer ring 30, and the other roller 40 b is connected to the cam surface 24 of the convex portion 22 of the second inner ring 20 and the outer ring 30. The wedge space Mb formed between the inner peripheral surface 32 and the inner peripheral surface 32 is biased toward the narrow side and engaged between the cam surface 24 of the second inner ring 20 and the inner peripheral surface 32 of the outer ring 30. .

その結果、外輪30に正逆いずれかの方向の回転トルクが入力されると、その外輪30に第一内輪10および第二内輪20が第一ばね60の弾性力によりローラ40a,40bを介して正逆両方向に係合していることから、外輪30からの回転トルクが第一内輪10および第二内輪20に伝達される。すなわち、外輪30からの回転トルク入力により第二内輪20が正逆いずれかの方向に出力回転することになる。このように、動力伝達装置は、二方向クラッチとして機能する。   As a result, when rotational torque in either the forward or reverse direction is input to the outer ring 30, the first inner ring 10 and the second inner ring 20 are moved to the outer ring 30 via the rollers 40 a and 40 b by the elastic force of the first spring 60. Since it is engaged in both forward and reverse directions, the rotational torque from the outer ring 30 is transmitted to the first inner ring 10 and the second inner ring 20. That is, the second inner ring 20 is rotated in the forward or reverse direction by the rotational torque input from the outer ring 30. Thus, the power transmission device functions as a two-way clutch.

この時、各対のローラ40a,40bのうち、一方のローラ40aは、第一内輪10のカム面14と外輪30の内周面32との間の楔空間Maの狭い側(反時計方向側)へ付勢されて第一内輪10のカム面14と外輪30の内周面32との間に係合し、他方のローラ40bは、第二内輪20のカム面24と外輪30の内周面32との間の楔空間Mbの狭い側(時計方向側)へ付勢されて第二内輪20のカム面24と外輪30の内周面32との間に係合した状態となっている。つまり、反時計方向と時計方向の両方向でローラ40a,40bが楔空間Ma,Mbで係合している。これにより、外輪30に入力される回転トルクの方向が正逆切り換わっても、ローラ40a,40bの係合状態の切り換えがないことでガタが発生することはない。   At this time, of each pair of rollers 40a and 40b, one roller 40a is formed on the narrow side (counterclockwise side) of the wedge space Ma between the cam surface 14 of the first inner ring 10 and the inner peripheral surface 32 of the outer ring 30. ) Is engaged between the cam surface 14 of the first inner ring 10 and the inner peripheral surface 32 of the outer ring 30, and the other roller 40 b is connected to the cam surface 24 of the second inner ring 20 and the inner periphery of the outer ring 30. It is biased toward the narrow side (clockwise side) of the wedge space Mb between the surface 32 and is engaged between the cam surface 24 of the second inner ring 20 and the inner peripheral surface 32 of the outer ring 30. . That is, the rollers 40a and 40b are engaged in the wedge spaces Ma and Mb in both the counterclockwise direction and the clockwise direction. Thereby, even if the direction of the rotational torque input to the outer ring 30 is switched between the forward and reverse directions, the play does not occur because the engagement state of the rollers 40a and 40b is not switched.

次に、図2(a)(b)は図1(a)(b)に示す両方向回転による動力伝達状態から動力伝達装置の回転数を上げた状態、つまり、一方向回転による動力伝達状態(外輪30からの回転入力により第一内輪10を反時計方向に回転させる状態)を示す。図1(a)(b)に示す動力伝達装置の低速回転状態から図2(a)(b)に示す動力伝達装置の高速回転状態になると、図2(b)の矢印で示すようにスイッチ80の錘84に径方向外側へ向かう遠心力が作用し、その遠心力によりピン82が第三ばね86の弾性力に抗してスリット51内で径方向外側へ移動し、径方向最外側位置〔図2(a)の最上端位置〕に配置される。つまり、スイッチ80のピン82は、第一内輪10の切欠き部16の傾斜面11と第二内輪20の切欠き部26の傾斜面21に当接していた状態から外れる。   Next, FIGS. 2A and 2B show a state where the rotational speed of the power transmission device is increased from the power transmission state due to the bi-directional rotation shown in FIGS. 1A and 1B, that is, the power transmission state due to the one-way rotation ( A state in which the first inner ring 10 is rotated counterclockwise by rotational input from the outer ring 30 is shown. When the power transmission device shown in FIGS. 1 (a) and 1 (b) is changed from the low-speed rotation state to the high-speed rotation state of the power transmission device shown in FIGS. 2 (a) and 2 (b), a switch is indicated as indicated by an arrow in FIG. 2 (b). A centrifugal force acting radially outward acts on the weight 84 of the 80, and the pin 82 moves against the elastic force of the third spring 86 radially outward in the slit 51 by the centrifugal force, and the radially outermost position. It is arranged at [the uppermost position in FIG. 2 (a)]. That is, the pin 82 of the switch 80 is removed from the state in which it is in contact with the inclined surface 11 of the notched portion 16 of the first inner ring 10 and the inclined surface 21 of the notched portion 26 of the second inner ring 20.

その結果、第二ばね70の弾性力により、第一内輪10に対して第二内輪20が時計方向に回転する。この回転により、第一内輪10の凸部12に対して、これと対をなす第二内輪20の凸部22が円周方向に沿って離間することになり、第一内輪10の凸部12のカム面14が外輪30の内周面32に対してなす楔角度が大きくなる。これに対して、第二内輪20の凸部22のカム面24が外輪30の内周面32に対してなす楔角度は変化しない。   As a result, the second inner ring 20 rotates clockwise relative to the first inner ring 10 by the elastic force of the second spring 70. By this rotation, the convex portion 22 of the second inner ring 20 that is paired with the convex portion 12 of the first inner ring 10 is separated along the circumferential direction, and the convex portion 12 of the first inner ring 10 is separated. The wedge angle formed by the cam surface 14 with respect to the inner peripheral surface 32 of the outer ring 30 is increased. On the other hand, the wedge angle formed by the cam surface 24 of the convex portion 22 of the second inner ring 20 with respect to the inner peripheral surface 32 of the outer ring 30 does not change.

これにより、第一ばね60の弾性力により円周方向に沿って離間するように押圧された各対のローラ40a,40bのうち、一方のローラ40bは、その押圧力によって保持器50のポケット56bの外側端面に押圧されて楔空間Mbで離脱し、ローラ40bと外輪30の内周面32との間に微小隙間Sbが生じる。これに対して、他方のローラ40aは、第一内輪10のカム面14と外輪30の内周面32との間の楔空間Maで係合した状態を維持している。   As a result, of the pair of rollers 40a and 40b pressed so as to be separated from each other in the circumferential direction by the elastic force of the first spring 60, one of the rollers 40b has the pocket 56b of the cage 50 by the pressing force. Is pressed against the outer end surface of the outer periphery of the outer ring 30 and is released in the wedge space Mb, and a minute gap Sb is generated between the roller 40b and the inner peripheral surface 32 of the outer ring 30. On the other hand, the other roller 40 a maintains the engaged state in the wedge space Ma between the cam surface 14 of the first inner ring 10 and the inner peripheral surface 32 of the outer ring 30.

その結果、外輪30とローラ40a,40bは、反時計方向の一方向に回転可能となる。すなわち、外輪30からの反時計方向の回転トルクは第一内輪10および第二内輪20に伝達され、外輪30からの回転トルク入力により第二内輪20が反時計方向に出力回転することになる。これに対して、外輪30からの時計方向の回転トルクは第一内輪10および第二内輪20に伝達されず、外輪30は空転することになる。このように、動力伝達装置は、一方向クラッチとして機能する。   As a result, the outer ring 30 and the rollers 40a and 40b can rotate in one counterclockwise direction. That is, the counterclockwise rotational torque from the outer ring 30 is transmitted to the first inner ring 10 and the second inner ring 20, and the second inner ring 20 is output and rotated counterclockwise by the rotational torque input from the outer ring 30. On the other hand, the clockwise rotational torque from the outer ring 30 is not transmitted to the first inner ring 10 and the second inner ring 20, and the outer ring 30 rotates idly. Thus, the power transmission device functions as a one-way clutch.

なお、この動力伝達装置が高速回転状態〔図2(a)(b)参照〕から低速回転状態〔図1(a)(b)参照〕へ移行すると、前述した説明とは逆に、遠心力が錘84に作用しなくなるので、スイッチ80のピン82が第三ばね86の弾性力により径方向内側へ移動することにより、第一内輪10の切欠き部16の傾斜面11と第二内輪20の切欠き部26の傾斜面21との間に入り込む。これにより、ピン82が第二内輪20の切欠き部26の傾斜面21を押圧し、第二内輪20が第一内輪10に対して反時計方向に回転する。その結果、他方のローラ40bが、第二内輪20のカム面24と外輪30の内周面32との間の楔空間Mbで係合した状態となって、外輪30からの回転トルク入力に対して、第二内輪20が時計方向および反時計方向の両方向に出力回転可能となる。つまり、一方向クラッチから二方向クラッチへ移行することになる。   When this power transmission device shifts from the high speed rotation state (see FIGS. 2 (a) and 2 (b)) to the low speed rotation state (see FIGS. 1 (a) and (b)), the centrifugal force is reversed. Does not act on the weight 84, and the pin 82 of the switch 80 moves radially inward by the elastic force of the third spring 86, so that the inclined surface 11 of the notch 16 of the first inner ring 10 and the second inner ring 20 are moved. It enters between the inclined surface 21 of the notch 26. Thereby, the pin 82 presses the inclined surface 21 of the notch 26 of the second inner ring 20, and the second inner ring 20 rotates counterclockwise with respect to the first inner ring 10. As a result, the other roller 40b is engaged with the wedge space Mb between the cam surface 24 of the second inner ring 20 and the inner peripheral surface 32 of the outer ring 30, and the rotational torque input from the outer ring 30 is prevented. Thus, the second inner ring 20 can be rotated in both the clockwise and counterclockwise directions. That is, the one-way clutch is shifted to the two-way clutch.

以上で述べた第一の実施形態では、二方向クラッチ機能と一方向クラッチ機能を切り換える切換部材として、ピン82を有するスイッチ80を使用した場合について説明したが、本発明はこれに限定されることなく、図3および図4に示す第二の実施形態のように切換部材として、偏心カム83を有するスイッチ81を使用することも可能である。   In the first embodiment described above, the case where the switch 80 having the pin 82 is used as the switching member for switching between the two-way clutch function and the one-way clutch function has been described, but the present invention is limited to this. Instead, a switch 81 having an eccentric cam 83 can be used as a switching member as in the second embodiment shown in FIGS.

図3(a)(b)は、第一の実施形態における図1(a)(b)に相当し、両方向回転による動力伝達状態を示し、図4(a)(b)は、第一の実施形態における図2(a)(b)に相当し、一方向回転による動力伝達状態を示す。なお、以下の第二の実施形態では、第一の実施形態における回転伝達装置と同一部分には同一参照符号を付して重複説明は省略する。両実施形態で異なるのは、切換部材であり、ピン82を有するスイッチ80と偏心カム83を有するスイッチ81のみである。   FIGS. 3 (a) and 3 (b) correspond to FIGS. 1 (a) and 1 (b) in the first embodiment, and show a power transmission state by bi-directional rotation. FIGS. 4 (a) and 4 (b) show the first embodiment. It corresponds to FIGS. 2A and 2B in the embodiment, and shows a power transmission state by one-way rotation. Note that, in the following second embodiment, the same parts as those in the rotation transmission device in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. The difference between the two embodiments is a switching member, which is only a switch 80 having a pin 82 and a switch 81 having an eccentric cam 83.

第一の実施形態におけるスイッチ80は、動力伝達装置における低速回転と高速回転の切り換わりにより遠心力でピン82を径方向移動させることでもって、二方向クラッチ機能と一方向クラッチ機能とを切り換えるようにしている。これに対して、第二の実施形態におけるスイッチ81は、動力伝達装置における低速回転と高速回転の切り換わりにより遠心力で偏心カム83を回動させることでもって、二方向クラッチ機能と一方向クラッチ機能とを切り換える。   The switch 80 in the first embodiment switches the two-way clutch function and the one-way clutch function by moving the pin 82 in the radial direction by centrifugal force by switching between the low speed rotation and the high speed rotation in the power transmission device. I have to. On the other hand, the switch 81 in the second embodiment has a two-way clutch function and a one-way clutch by rotating the eccentric cam 83 by centrifugal force by switching between low speed rotation and high speed rotation in the power transmission device. Switch between functions.

つまり、第二の実施形態における回転伝達装置では、図3(a)(b)に示すように、スイッチ81は、水滴形状の偏心カム83と、偏心カム83をその中心からずれた位置で回動自在に支持する軸85と、第一内輪10の凸部12と偏心カム83との間に張設された第三の弾性部材である第三ばね87とで構成されている。   That is, in the rotation transmission device according to the second embodiment, as shown in FIGS. 3A and 3B, the switch 81 rotates the water droplet-shaped eccentric cam 83 and the eccentric cam 83 at a position shifted from the center thereof. The shaft 85 is movably supported, and the third spring 87 is a third elastic member stretched between the convex portion 12 of the first inner ring 10 and the eccentric cam 83.

このスイッチ81の偏心カム83は、第二内輪20の切欠き部26の一部が第一内輪10の切欠き部16の一部と重合して第一内輪10の切欠き部16と第二内輪20の切欠き部26で軸方向に貫通する部位に配置され、第一内輪10の切欠き部16の傾斜面11と第二内輪20の切欠き部26の傾斜面21に当接させている。また、スイッチ81の軸85は、軸方向に沿って平行に配置され、その基端が保持器50と一体をなすプレート51に固着されている。スイッチ81の第三ばね87は、第一内輪10に対して偏心カム83を反時計方向〔図3(a)左方向〕に押圧している。   The eccentric cam 83 of the switch 81 is configured such that a part of the notch portion 26 of the second inner ring 20 overlaps with a part of the notch part 16 of the first inner ring 10 and the second notch 16 of the first inner ring 10 and the second notch 16. The notch 26 of the inner ring 20 is disposed in a portion penetrating in the axial direction and is brought into contact with the inclined surface 11 of the notch 16 of the first inner ring 10 and the inclined surface 21 of the notch 26 of the second inner ring 20. Yes. Further, the shaft 85 of the switch 81 is arranged in parallel along the axial direction, and the base end thereof is fixed to the plate 51 that is integrated with the cage 50. The third spring 87 of the switch 81 presses the eccentric cam 83 counterclockwise (leftward in FIG. 3A) against the first inner ring 10.

このスイッチ81では、動力伝達装置の回転により作用する遠心力でもって偏心カム83を回動させてその姿勢を第一内輪10と第二内輪20の間で変更することで、両方向回転による動力伝達状態と一方向回転による動力伝達状態を切り換える。   In this switch 81, the eccentric cam 83 is rotated by the centrifugal force acting by the rotation of the power transmission device, and its posture is changed between the first inner ring 10 and the second inner ring 20, so that power transmission by bi-directional rotation is achieved. The state and the power transmission state by one-way rotation are switched.

つまり、図3(a)(b)に示す両方向回転による動力伝達状態では、スイッチ81は、第三ばね87の弾性力により偏心カム83が第二内輪20を反時計方向に押圧している。この時、偏心カム83の押圧力は、第一内輪10に対して第二内輪20を時計方向に押圧する第二ばね70の弾性力に打ち勝っている。従って、この第二ばね70の弾性力による押圧力に対して第二内輪20の回転を位置規制するように、偏心カム83が第二内輪20の切欠き部26の傾斜面21に当接している。   That is, in the power transmission state by the bi-directional rotation shown in FIGS. 3A and 3B, the switch 81 causes the eccentric cam 83 to press the second inner ring 20 counterclockwise by the elastic force of the third spring 87. At this time, the pressing force of the eccentric cam 83 overcomes the elastic force of the second spring 70 that presses the second inner ring 20 clockwise against the first inner ring 10. Therefore, the eccentric cam 83 abuts on the inclined surface 21 of the notch portion 26 of the second inner ring 20 so as to position-control the rotation of the second inner ring 20 against the pressing force by the elastic force of the second spring 70. Yes.

一方、第一ばね60の弾性力により、第一内輪10および第二内輪20と外輪30との間に介在した各対のローラ40a,40bは、一方のローラ40aと他方のローラ40bが円周方向に離間するように押圧され、一方のローラ40aは、第一内輪10のカム面14と外輪30の内周面32との間に形成された楔空間Maの狭い側へ付勢されて係合し、他方のローラ40bは、第二内輪20のカム面24と外輪30の内周面32との間に形成された楔空間Mbの狭い側へ付勢されて係合する状態となっている。   On the other hand, due to the elastic force of the first spring 60, each pair of rollers 40a and 40b interposed between the first inner ring 10 and the second inner ring 20 and the outer ring 30 has one roller 40a and the other roller 40b circumferentially. The one roller 40a is urged toward the narrow side of the wedge space Ma formed between the cam surface 14 of the first inner ring 10 and the inner peripheral surface 32 of the outer ring 30. The other roller 40b is in a state of being urged and engaged with the narrow side of the wedge space Mb formed between the cam surface 24 of the second inner ring 20 and the inner peripheral surface 32 of the outer ring 30. Yes.

その結果、外輪30に正逆いずれかの方向の回転トルクが入力されると、その外輪30に第一内輪10および第二内輪20が第一ばね60の弾性力によりローラ40a,40bを介して正逆両方向に係合していることから、外輪30からの回転トルクが第一内輪10および第二内輪20に伝達される。すなわち、外輪30からの回転トルク入力により第二内輪20が正逆いずれかの方向に出力回転し、動力伝達装置は、二方向クラッチとして機能する。   As a result, when rotational torque in either the forward or reverse direction is input to the outer ring 30, the first inner ring 10 and the second inner ring 20 are moved to the outer ring 30 via the rollers 40 a and 40 b by the elastic force of the first spring 60. Since it is engaged in both forward and reverse directions, the rotational torque from the outer ring 30 is transmitted to the first inner ring 10 and the second inner ring 20. That is, the second inner ring 20 is output and rotated in either the forward or reverse direction by the rotational torque input from the outer ring 30, and the power transmission device functions as a two-way clutch.

この時、第一の実施形態の場合と同様、反時計方向と時計方向の両方向でローラ40a,40bが楔空間Ma,Mbで係合していることにより、外輪30に入力される回転トルクの方向が正逆切り換わっても、ローラ40a,40bの係合状態の切り換えがないことでガタが発生することはない。   At this time, as in the case of the first embodiment, since the rollers 40a and 40b are engaged in the wedge spaces Ma and Mb in both the counterclockwise direction and the clockwise direction, the rotational torque input to the outer ring 30 is reduced. Even if the direction is switched between forward and reverse, there is no backlash due to the absence of switching of the engagement state of the rollers 40a and 40b.

次に、図3(a)(b)に示す動力伝達装置の低速回転状態から図4(a)(b)に示す動力伝達装置の高速回転状態になると、スイッチ81の偏心カム83に径方向外側へ向かう遠心力が作用してその偏心カム83の姿勢が変化する。つまり、図3(a)に示す状態では、偏心カム83の回動中心(軸85)に対する姿勢(中心線L)が径方向から若干傾いているが、図4(a)に示す状態では、偏心カム83の回動中心に対する姿勢(中心線L)が径方向と一致するように変化する。   Next, when the low-speed rotation state of the power transmission device shown in FIGS. 3A and 3B is changed to the high-speed rotation state of the power transmission device shown in FIGS. The centrifugal force toward the outside acts and the attitude of the eccentric cam 83 changes. That is, in the state shown in FIG. 3A, the attitude (center line L) of the eccentric cam 83 with respect to the rotation center (shaft 85) is slightly tilted from the radial direction, but in the state shown in FIG. The posture (center line L) with respect to the rotation center of the eccentric cam 83 changes so as to coincide with the radial direction.

この偏心カム83の姿勢変化により、第三ばね87により第二内輪20を押圧する偏心カム83の押圧力が低減し、第一内輪10に対して第二内輪20を時計方向に押圧する第二ばね70の弾性力が偏心カム83の押圧力に打ち勝つ。これにより、第二ばね70の弾性力でもって第二内輪20は時計方向に回転する。この回転により、第一内輪10の凸部12に対して第二内輪20の凸部22が円周方向に沿って離間することになり、第一内輪10の凸部12のカム面14が外輪30の内周面32に対してなす楔角度が大きくなる。これに対して、第二内輪20のカム面24が外輪30の内周面32に対してなす楔角度は変化しない。   Due to the change in posture of the eccentric cam 83, the pressing force of the eccentric cam 83 that presses the second inner ring 20 by the third spring 87 is reduced, and the second inner ring 20 is pressed clockwise against the first inner ring 10. The elastic force of the spring 70 overcomes the pressing force of the eccentric cam 83. As a result, the second inner ring 20 rotates clockwise with the elastic force of the second spring 70. Due to this rotation, the convex portion 22 of the second inner ring 20 is separated from the convex portion 12 of the first inner ring 10 along the circumferential direction, and the cam surface 14 of the convex portion 12 of the first inner ring 10 becomes the outer ring. The wedge angle formed with respect to the inner peripheral surface 32 of 30 is increased. On the other hand, the wedge angle formed by the cam surface 24 of the second inner ring 20 with respect to the inner peripheral surface 32 of the outer ring 30 does not change.

その結果、第一ばね60の弾性力により、各対のローラ40a,40bのうち、一方のローラ40bは、その押圧力によって保持器50のポケット56bの外側端面に押圧されて楔空間Mbで離脱し、ローラ40bと外輪30の内周面32との間に微小隙間Sbが生じる。これに対して、他方のローラ40aは、第一内輪10のカム面14と外輪30の内周面32との間の楔空間Maで係合した状態を維持している。   As a result, due to the elastic force of the first spring 60, one of the pair of rollers 40a and 40b is pressed against the outer end surface of the pocket 56b of the cage 50 by the pressing force, and is separated from the wedge space Mb. Thus, a minute gap Sb is generated between the roller 40b and the inner peripheral surface 32 of the outer ring 30. On the other hand, the other roller 40 a maintains the engaged state in the wedge space Ma between the cam surface 14 of the first inner ring 10 and the inner peripheral surface 32 of the outer ring 30.

そのため、外輪30とローラ40a,40bは、反時計方向の一方向に回転可能となる。すなわち、外輪30からの反時計方向の回転トルクは第一内輪10および第二内輪20に伝達され、外輪30からの回転トルク入力により第二内輪20が反時計方向に出力回転することになる。これに対して、外輪30からの時計方向の回転トルクは第一内輪10および第二内輪20に伝達されず、外輪30は空転することになる。このように、動力伝達装置は、一方向クラッチとして機能する。   Therefore, the outer ring 30 and the rollers 40a and 40b can be rotated in one counterclockwise direction. That is, the counterclockwise rotational torque from the outer ring 30 is transmitted to the first inner ring 10 and the second inner ring 20, and the second inner ring 20 is output and rotated counterclockwise by the rotational torque input from the outer ring 30. On the other hand, the clockwise rotational torque from the outer ring 30 is not transmitted to the first inner ring 10 and the second inner ring 20, and the outer ring 30 rotates idly. Thus, the power transmission device functions as a one-way clutch.

なお、この動力伝達装置が高速回転状態〔図4(a)(b)参照〕から低速回転状態〔図3(a)(b)参照〕へ移行すると、前述した説明とは逆に、遠心力が偏心カム83に作用しなくなるので、スイッチ81の偏心カム83が第三ばね87により第二内輪20を押圧する押圧力が大きくなって第二内輪20が反時計方向に回転する。その結果、他方のローラ40bが第二内輪20のカム面24と外輪30の内周面32との間の楔空間Mbで係合した状態となって、外輪30からの回転トルク入力に対して、第二内輪20が時計方向および反時計方向の両方向に出力回転する。つまり、一方向クラッチから二方向クラッチへ移行することになる。   When this power transmission device shifts from the high speed rotation state (see FIGS. 4 (a) and (b)) to the low speed rotation state (see FIGS. 3 (a) and (b)), the centrifugal force is reversed. Does not act on the eccentric cam 83, the pressing force by which the eccentric cam 83 of the switch 81 presses the second inner ring 20 by the third spring 87 increases, and the second inner ring 20 rotates counterclockwise. As a result, the other roller 40b is engaged in the wedge space Mb between the cam surface 24 of the second inner ring 20 and the inner peripheral surface 32 of the outer ring 30, and the rotational torque input from the outer ring 30 is prevented. The second inner ring 20 rotates in both clockwise and counterclockwise directions. That is, the one-way clutch is shifted to the two-way clutch.

ところで、本発明は、自動車の燃費向上を目的としてハイブリットカーに搭載された簡易型システム、いわゆるISG(Integrated Starter Generator)システムに適用することができる。図5は、エンジンと電動モータを併用したISGシステムのジェネレータプーリにおいて、第一の実施形態における回転伝達装置110をモータジェネレータ120(MG)とプーリ130との間に連結した適用例を示す。この構成例では、回転伝達装置110の外輪30の小径部36を軸方向に延在させてモータジェネレータ120に連結し、第一内輪10の外側軸部15を軸方向に延在させてプーリ130の回転軸としている。このプーリ130はベルト(図示せず)が纏い掛けられ、そのベルトを介してエンジン(図示せず)と連結されている。   By the way, the present invention can be applied to a simple system mounted on a hybrid car for the purpose of improving the fuel efficiency of an automobile, a so-called ISG (Integrated Starter Generator) system. FIG. 5 shows an application example in which the rotation transmission device 110 in the first embodiment is connected between the motor generator 120 (MG) and the pulley 130 in the generator pulley of the ISG system using both the engine and the electric motor. In this configuration example, the small diameter portion 36 of the outer ring 30 of the rotation transmission device 110 extends in the axial direction and is connected to the motor generator 120, and the outer shaft portion 15 of the first inner ring 10 extends in the axial direction to pull the pulley 130. The axis of rotation. The pulley 130 is wrapped around a belt (not shown), and is connected to an engine (not shown) via the belt.

プーリ130が高速回転する時には、回転伝達装置110は一方向クラッチとして機能し、一方向クラッチの動力伝達状態となり、エンジンからの動力はその回転伝達装置110を介してモータジェネレータ120に伝達され、モータジェネレータ120を発電させる。この時、モータジェネレータ120の慣性によりそのモータジェネレータ120が高速回転を維持した状態で、プーリ130が低速回転に移行した場合、回転伝達装置110は一方向クラッチの動力遮断状態となって外輪30が空転することになる。   When the pulley 130 rotates at a high speed, the rotation transmission device 110 functions as a one-way clutch and enters a power transmission state of the one-way clutch, and the power from the engine is transmitted to the motor generator 120 via the rotation transmission device 110. The generator 120 is caused to generate power. At this time, when the pulley 130 shifts to a low speed rotation while the motor generator 120 maintains a high speed rotation due to the inertia of the motor generator 120, the rotation transmission device 110 enters a power cut-off state of the one-way clutch and the outer ring 30 It will be idle.

これにより、プーリ130が低速回転するようになっても、モータジェネレータ120の高速回転を確保することができ、モータジェネレータ120が低速回転する現象を低減することが可能となるので、モータジェネレータ120の発電効率を向上させることが容易となる。また、回転伝達装置110が一方向クラッチの動力遮断状態となっていることから、プーリ130に纏い掛けられたベルトの張力変動も低減することができるので、ベルトの高寿命化が図れる。   Thus, even when the pulley 130 rotates at a low speed, the motor generator 120 can be ensured to rotate at a high speed, and the phenomenon that the motor generator 120 rotates at a low speed can be reduced. It becomes easy to improve the power generation efficiency. In addition, since the rotation transmission device 110 is in the power cutoff state of the one-way clutch, fluctuations in the tension of the belt wrapped around the pulley 130 can be reduced, so that the life of the belt can be extended.

一方、モータジェネレータ120がスタータモータとして機能する場合には、回転伝達装置110は二方向クラッチとして機能し、モータジェネレータ120の動力をその回転伝達装置110を介してエンジンに伝達することができる。   On the other hand, when motor generator 120 functions as a starter motor, rotation transmission device 110 functions as a two-way clutch, and the power of motor generator 120 can be transmitted to the engine via rotation transmission device 110.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the scope of the present invention. The scope of the present invention is not limited to patents. It includes the equivalent meanings recited in the claims, and the equivalent meanings recited in the claims, and all modifications within the scope.

本発明の第一の実施形態における回転伝達装置の両方向回転による動力伝達状態で、(a)は(b)のB−B線に沿う断面図、(b)は(a)のA−A線に沿う断面図である。In the power transmission state by the bi-directional rotation of the rotation transmission device according to the first embodiment of the present invention, (a) is a sectional view taken along line BB in (b), and (b) is line AA in (a). FIG. 本発明の第一の実施形態における回転伝達装置の一方向回転による動力伝達状態で、(a)は(b)のD−D線に沿う断面図、(b)は(a)のC−C線に沿う断面図である。In the power transmission state by one-way rotation of the rotation transmission device according to the first embodiment of the present invention, (a) is a cross-sectional view taken along line DD of (b), and (b) is CC of (a). It is sectional drawing which follows a line. 本発明の第二の実施形態における回転伝達装置の両方向回転による動力伝達状態で、(a)は(b)のF−F線に沿う断面図、(b)は(a)のE−E線に沿う断面図である。In the power transmission state by the bi-directional rotation of the rotation transmission device in the second embodiment of the present invention, (a) is a sectional view taken along line FF in (b), and (b) is line EE in (a). FIG. 本発明の第二の実施形態における回転伝達装置の一方向回転による動力遮断状態で、(a)は(b)のH−H線に沿う断面図、(b)は(a)のG−G線に沿う断面図である。(A) is sectional drawing in alignment with the HH line of (b), (b) is GG of (a) in the power interruption state by one-way rotation of the rotation transmission apparatus in 2nd embodiment of this invention. It is sectional drawing which follows a line. 第一の実施形態における回転伝達装置をモータジェネレータとプーリとの間に連結した適用例を示す構成図である。It is a block diagram which shows the application example which connected the rotation transmission apparatus in 1st embodiment between the motor generator and the pulley.

符号の説明Explanation of symbols

10 第一の内方部材(第一内輪)
14 第一の内方部材の外周面(カム面)
20 第二の内方部材(第二内輪)
24 第二の内方部材の外周面(カム面)
30 外方部材(外輪)
32 外方部材の内周面
40a,40b 係合子(ローラ)
50 保持器
56a,56b ポケット
60 第一の弾性部材(第一ばね)
70 第二の弾性部材(第二ばね)
80,81 切換部材(スイッチ)
82 ピン
83 偏心カム
84 錘
86,87 第三の弾性部材(第三ばね)
Ma,Mb 楔空間
10 First inner member (first inner ring)
14 The outer peripheral surface (cam surface) of the first inner member
20 Second inner member (second inner ring)
24 The outer peripheral surface (cam surface) of the second inner member
30 Outer member (outer ring)
32 Inner peripheral surface 40a, 40b of outer member Engagement element (roller)
50 Cage 56a, 56b Pocket 60 First elastic member (first spring)
70 Second elastic member (second spring)
80, 81 switching member (switch)
82 Pin 83 Eccentric cam 84 Weight 86, 87 Third elastic member (third spring)
Ma, Mb wedge space

Claims (3)

正逆回転自在に同軸的に配置された第一の内方部材および第二の内方部材と、前記第一の内方部材および第二の内方部材の外側に同軸的に配置された正逆回転可能な外方部材と、第一の内方部材の外周面と外方部材の内周面との間に形成された楔空間で係合した状態で配された一方の係合子および第二の内方部材の外周面と外方部材の内周面との間に形成された楔空間で係合離脱可能に配された他方の係合子からなる複数対の係合子と、第二の内方部材に連結され、各対の係合子を円周方向に転動自在に収容するポケットを有する保持器と、第一の内方部材の外周面と外方部材の内周面との間および第二の内方部材の外周面と外方部材の内周面との間にそれぞれ介在した各対の係合子間に介挿され、各対の両係合子を楔空間で係合させる方向に付勢する第一の弾性部材と、第一の内方部材と第二の内方部材との間に介挿され、第一の内方部材に対して第二の内方部材を一方向に回転させて第二の内方部材の外周面と外方部材の内周面との間に介在した係合子を楔空間で離脱させる方向に付勢する第二の弾性部材とを備え、
前記第一の内方部材と第二の内方部材との間に介挿され、第二の内方部材を第二の弾性部材の弾性力に抗して押圧することにより第二の内方部材の外周面と外方部材の内周面との間に介在した係合子を楔空間で係合させ、遠心力の作用時に第二の弾性部材の弾性力による第二の内方部材の一方向回転でもって前記係合子を楔空間で離脱させる切換部材を具備したことを特徴とする回転伝達装置。
A first inner member and a second inner member that are coaxially disposed so as to be rotatable forward and backward, and a positive member that is coaxially disposed on the outside of the first inner member and the second inner member. An outer member capable of rotating in reverse, one engagement element arranged in a state of being engaged in a wedge space formed between the outer peripheral surface of the first inner member and the inner peripheral surface of the outer member, and the first engaging member A plurality of pairs of engagement elements including the other engagement elements arranged to be disengageable in a wedge space formed between the outer peripheral surface of the two inner members and the inner peripheral surface of the outer member; A cage connected to the inner member and having a pocket for accommodating each pair of engaging members so as to roll in the circumferential direction, and between the outer peripheral surface of the first inner member and the inner peripheral surface of the outer member And a pair of engagement elements interposed between the outer peripheral surface of the second inner member and the inner peripheral surface of the outer member, respectively, and engaging both the engagement elements in the wedge space. The first elastic member to be urged, and the first inner member and the second inner member are inserted between the first inner member and the second inner member in one direction with respect to the first inner member. A second elastic member that rotates and urges the engaging element interposed between the outer peripheral surface of the second inner member and the inner peripheral surface of the outer member in a direction to disengage in the wedge space;
The second inner member is interposed between the first inner member and the second inner member and presses the second inner member against the elastic force of the second elastic member. An engagement element interposed between the outer peripheral surface of the member and the inner peripheral surface of the outer member is engaged in the wedge space, and one of the second inner members is caused by the elastic force of the second elastic member when centrifugal force is applied. A rotation transmission device comprising a switching member for detaching the engagement element in a wedge space by rotating in a direction.
前記切換部材は、第一の内方部材と第二の内方部材との間に径方向移動可能に介挿されたピンと、そのピンと前記保持器との間に設けられ、径方向内側へ弾性力を付勢する第三の弾性部材と、前記ピンの一端に取り付けられ、遠心力により第三の弾性部材の弾性力に抗して径方向外側へピンを移動させる錘とからなる請求項1に記載の回転伝達装置。   The switching member is provided between the first inner member and the second inner member so as to be movable in the radial direction, and between the pin and the cage, and is elastic inward in the radial direction. 2. A third elastic member that urges a force, and a weight that is attached to one end of the pin and moves the pin radially outward against the elastic force of the third elastic member by centrifugal force. The rotation transmission device according to 1. 前記切換部材は、第一の内方部材と第二の内方部材との間に回動可能に介挿された偏心カムと、その偏心カムと第一の内方部材との間に設けられ、前記偏心カムが第二の内方部材を押圧する方向に付勢する第三の弾性部材とからなり、遠心力により第三の弾性部材の弾性力に抗して偏心カムを回動させるようにした請求項1に記載の回転伝達装置。   The switching member is provided between an eccentric cam rotatably inserted between the first inner member and the second inner member, and between the eccentric cam and the first inner member. The eccentric cam comprises a third elastic member that urges the second inner member in a pressing direction, and the eccentric cam is rotated against the elastic force of the third elastic member by centrifugal force. The rotation transmission device according to claim 1.
JP2006342936A 2006-12-20 2006-12-20 Rotation transmitting device Withdrawn JP2008151327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006342936A JP2008151327A (en) 2006-12-20 2006-12-20 Rotation transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006342936A JP2008151327A (en) 2006-12-20 2006-12-20 Rotation transmitting device

Publications (1)

Publication Number Publication Date
JP2008151327A true JP2008151327A (en) 2008-07-03

Family

ID=39653697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342936A Withdrawn JP2008151327A (en) 2006-12-20 2006-12-20 Rotation transmitting device

Country Status (1)

Country Link
JP (1) JP2008151327A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039980A (en) * 2011-01-05 2011-05-04 重庆建设摩托车股份有限公司 Automatic gearshift of motorcycle
JP2015111994A (en) * 2013-07-19 2015-06-18 アスモ株式会社 Clutch motor and switchgear of opening and closing body
CN106763298A (en) * 2017-03-10 2017-05-31 李燊 Centrifugal clutch and the gear-shifting wheel hub motor with the centrifugal clutch
CN110762136A (en) * 2019-09-16 2020-02-07 洛阳轴承研究所有限公司 Centrifugal overrunning clutch

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039980A (en) * 2011-01-05 2011-05-04 重庆建设摩托车股份有限公司 Automatic gearshift of motorcycle
JP2015111994A (en) * 2013-07-19 2015-06-18 アスモ株式会社 Clutch motor and switchgear of opening and closing body
CN106763298A (en) * 2017-03-10 2017-05-31 李燊 Centrifugal clutch and the gear-shifting wheel hub motor with the centrifugal clutch
CN106763298B (en) * 2017-03-10 2018-12-28 蒋先正 centrifugal clutch
CN110762136A (en) * 2019-09-16 2020-02-07 洛阳轴承研究所有限公司 Centrifugal overrunning clutch
CN110762136B (en) * 2019-09-16 2020-11-27 洛阳轴承研究所有限公司 Centrifugal overrunning clutch

Similar Documents

Publication Publication Date Title
JP5612435B2 (en) Differential control 2-way clutch
JP2013050218A (en) Roller-type one-way clutch
JP2009228878A (en) Roller type one-way clutch
JP2003032806A (en) In-wheel motor driving unit and hybrid system
JP2008151327A (en) Rotation transmitting device
JP2012177328A (en) Turning device
JP2006234034A (en) Clutch for intercepting reverse input
JP7141239B2 (en) one way clutch
JP2011058534A (en) Motor drive device for vehicle, and automobile
JP2004270877A (en) Clutch unit
JP4010839B2 (en) Power switching device
JP2010018101A (en) Driving force transmission device for hybrid vehicle
JP2019078308A (en) One-way clutch
JP2009078598A (en) Driving force transmission device of hybrid vehicle
JP2009101738A (en) Driving force transmitting device for hybrid vehicle
JP2007270986A (en) Rotation transmission device
JP2013053644A (en) One-way clutch
JP2009078754A (en) Method for controlling driving force transmission device for hybrid vehicle
JP2006077921A (en) One-way clutch
JP2008144849A (en) Rotation transmitting device
JP2004286225A (en) Reverse input cutout clutch
JP2000346103A (en) Rotation transmission device
JP2021014198A (en) In-wheel motor type drive unit
JP7522332B1 (en) Ratchet-type clutch device and vehicle drive device
JP7227515B2 (en) cam clutch

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302