JP2009079935A - Failure diagnosis method of received power measuring system in distributed power source - Google Patents

Failure diagnosis method of received power measuring system in distributed power source Download PDF

Info

Publication number
JP2009079935A
JP2009079935A JP2007248073A JP2007248073A JP2009079935A JP 2009079935 A JP2009079935 A JP 2009079935A JP 2007248073 A JP2007248073 A JP 2007248073A JP 2007248073 A JP2007248073 A JP 2007248073A JP 2009079935 A JP2009079935 A JP 2009079935A
Authority
JP
Japan
Prior art keywords
power
generation device
changed
inverter
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007248073A
Other languages
Japanese (ja)
Other versions
JP4836907B2 (en
Inventor
Yukiteru Soga
幸照 曽我
Masahiro Ogawa
雅弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2007248073A priority Critical patent/JP4836907B2/en
Publication of JP2009079935A publication Critical patent/JP2009079935A/en
Application granted granted Critical
Publication of JP4836907B2 publication Critical patent/JP4836907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a failure diagnosis method of a received power measuring system in a distributed power source capable of detecting surely a failure of a power measuring device, even when a control device of a power generation device recognizes wrongly the received power owing to an abnormality of the power measuring device. <P>SOLUTION: In this failure diagnosis method of the received power measuring system in the distributed power source wherein a power generation device is used as the distributed power source having a system link operation function and an autonomous operation function, the received power from a commercial power source system and the transmitted power from the power generation device are measured by the power measuring device, and the measured power is input into a control device of the power generation device by means of a signal by a current or a voltage, and when a power measuring signal does not change for a fixed period, is determined that the power measuring device is out of order. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、分散型電源における受電電力計測系の故障診断方法に関する。   The present invention relates to a failure diagnosis method for a received power measurement system in a distributed power source.

一般家庭にコージェネレーション(熱電併給)システムのような自家発電装置を設置する場合、住宅用分電盤の主幹に電力計測器として電流センサー(CT)またはCTに加えてトランスデューサ形電力計を設け、いわゆる逆潮流の発生の防止などを目的として、家庭の受電点における受電電力および発電電力を計測し、受電電力および発電電力をそれぞれ制御する。受電点における電流または電力の計測信号を発電装置の制御装置に入力することで、受電電力を把握し、それに基づいて受電電力の監視、発電装置の出力の制御、中性線への過負荷保護を行っている。   When installing an in-house power generator such as a cogeneration system in a general household, install a transducer-type wattmeter in addition to a current sensor (CT) or CT as a power meter on the main power distribution board for houses. For the purpose of preventing the occurrence of so-called reverse power flow, the received power and generated power at the power receiving point in the home are measured, and the received power and generated power are respectively controlled. By inputting the measurement signal of the current or power at the power receiving point to the control device of the power generator, the received power is grasped, and based on this, the received power is monitored, the output of the power generator is controlled, and the overload protection to the neutral line It is carried out.

特許文献1には、系統連系運転および自立運転機能を備えた発電装置を買電と並行して家庭用負荷に接続する場合において、住宅用の分電盤(単相2線あるいは単相3線用)に発電装置を接続して運用する形態で、一般家庭の受電点で受電電力及び送電電力を監視し、またこれを用いて発電装置の出力を制御する方法が開示されている。
特開平11−069634号公報
In Patent Document 1, in the case where a power generation device having a grid interconnection operation and a self-sustaining operation function is connected to a household load in parallel with power purchase, a residential distribution board (single-phase two-wire or single-phase three) is disclosed. A method of monitoring the received power and the transmitted power at a power receiving point of a general household and controlling the output of the power generating device using this is disclosed in a form in which the power generating device is connected to a line).
Japanese Patent Laid-Open No. 11-069634

単相2線100V、単相2線200Vあるいは単相3線200Vの発電装置を連系した場合に、ある条件では中性線過負荷状態が継続する可能性があるために中性線あるいは中性線以外にCTを取付けて過負荷保護を行い対応する場合がある。   When a single-phase two-wire 100V, single-phase two-wire 200V or single-phase three-wire 200V power generator is connected, the neutral wire overload state may continue under certain conditions. In some cases, a CT may be installed in addition to the normal wire to provide overload protection.

しかし、特許文献1の方法においては、電力計測器の回路に断線などの故障を生じた場合に、電力計測器から制御装置に送られる電流または電圧信号が誤った計測情報であるにも拘わらず、制御装置が受電電力を誤認識してしまい、異常を検知することができない状態のままで発電装置が運転を継続してしまうおそれがある。   However, in the method of Patent Document 1, when a failure such as disconnection occurs in the circuit of the power meter, the current or voltage signal sent from the power meter to the control device is erroneous measurement information. The control device may misrecognize the received power, and the power generation device may continue to operate in a state where no abnormality can be detected.

さらに、発電装置の制御装置が逆潮流を発生させないようにインバータを制御して運転している場合には、電力計測器が故障すると、制御装置は、受電電力を監視し、逆潮流が発生していないものと判断し、逆潮流が発生した状態で発電装置の運転を継続してしまうおそれがある。これらの異常発生状態における発電装置の運転の継続を防止するためには、受電電力を計測する電力計測器そのもの自体が異常となったことを検知する必要がある。   In addition, if the control device of the power generator is operating by controlling the inverter so as not to generate reverse power flow, if the power meter fails, the control device monitors the received power and reverse power flow occurs. There is a risk that the power generator will continue to operate in a state where reverse power flow has occurred. In order to prevent continuation of the operation of the power generation apparatus in these abnormal occurrence states, it is necessary to detect that the power measuring instrument itself that measures the received power has become abnormal.

本発明は上記の課題を解決するためになされたものであり、電力計測器の異常により発電装置の制御装置が受電電力を誤認識している場合においても、電力計測器の故障を確実に検出できる分散型電源における受電電力計測系の故障診断方法を提供することを目的とする。   The present invention has been made to solve the above-described problem, and even when the control device of the power generation device misrecognizes the received power due to an abnormality of the power measurement device, the failure of the power measurement device is reliably detected. It is an object of the present invention to provide a fault diagnosis method for a received power measurement system in a distributed power source.

本発明に係る分散型電源における受電電力計測系の故障診断方法は、系統連系運転および自立運転機能を備えた分散型電源として発電装置が用いられる分散型電源における受電電力計測系の故障診断方法において、電力計測器により商用電源系統からの受電電力および前記発電装置からの送電電力を計測し、前記計測した電力を電流または電圧の信号で前記発電装置の制御装置に入力し、前記電力計測信号が一定期間変化しない場合に、前記電力計測器が故障していると判定することを特徴とする。   A fault diagnosis method for a received power measurement system in a distributed power source according to the present invention is a fault diagnosis method for a received power measurement system in a distributed power source in which a power generator is used as a distributed power source having a grid interconnection operation and a self-sustaining operation function. The power measuring device measures the received power from the commercial power supply system and the transmitted power from the power generation device, and inputs the measured power to the control device of the power generation device as a current or voltage signal, and the power measurement signal When the power does not change for a certain period, it is determined that the power measuring device has failed.

本明細書中において「系統連系運転」とは、自家発電設備を商用電源系統と連系して負荷に電力を供給する運転方式をいう。   In the present specification, “system interconnection operation” refers to an operation method in which a private power generation facility is connected to a commercial power supply system to supply power to a load.

また、「自立運転機能を備えた発電装置」とは、外部電源を利用することなく、それ自体が自立して発電稼動することができる発電装置をいう。例えば、燃料電池システムは、自立運転機能を備えた発電装置といえるものである。   In addition, “a power generation device having a self-sustaining operation function” refers to a power generation device that itself can operate and generate power independently without using an external power source. For example, the fuel cell system can be said to be a power generation device having a self-sustaining operation function.

本発明によれば、電力計測器の異常により発電装置の制御装置が受電電力を誤認識している場合においても、電力計測器の故障を確実に検出できる。   ADVANTAGE OF THE INVENTION According to this invention, even when the control apparatus of a generator is misrecognizing received electric power by abnormality of an electric power meter, a failure of an electric power meter can be detected reliably.

以下、添付の図面を参照して本発明を実施するための最良の実施の形態について説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the accompanying drawings.

(第1の実施の形態)
図1を参照して本発明の第1の実施の形態に用いられる装置の概要を説明する。
(First embodiment)
The outline of the apparatus used in the first embodiment of the present invention will be described with reference to FIG.

商用電源系統1は、受電点2、電力計測器3、家庭用分電盤11を介して家庭の負荷9に接続されている。一般家庭では、商用電源系統1から受電点2に受電電力P1が供給され、さらに家庭用分電盤11を介して家庭の負荷9に電力が供給されている。分電盤11は、受電点2の側から順に直列に接続されたサービスブレーカ12、漏電ブレーカ13および複数の分岐ブレーカ14a〜14dを備えている。複数の分岐ブレーカ14a〜14dは、並列に接続され、家庭の負荷9にそれぞれ接続されている。家庭の負荷9は、通常の家電品の他にインターネット家電対応の電子機器を含むものである。   The commercial power supply system 1 is connected to a household load 9 via a power receiving point 2, a power meter 3, and a home distribution board 11. In a general home, the received power P1 is supplied from the commercial power supply system 1 to the power receiving point 2, and further, the power is supplied to the household load 9 via the home distribution board 11. The distribution board 11 includes a service breaker 12, a leakage breaker 13, and a plurality of branch breakers 14a to 14d connected in series from the power receiving point 2 side. The plurality of branch breakers 14a to 14d are connected in parallel and connected to a load 9 in the home. The household load 9 includes electronic devices compatible with Internet home appliances in addition to normal home appliances.

家庭の自家発電用発電装置4として燃料電池発電システムが設置されている。発電装置4は、燃料電池スタックを備えた発電部5、インバータ6、制御装置7および補機10を備えている。発電部5の燃料電池スタックは、固体電解質膜、アノード触媒層、カソード触媒層が一体に接合された膜電極接合体(MEA)、アノード流路板、カソード流路板、燃料供給源および送風ファンを有している。インバータ6は、発電部5で発電された電力を調整し、出力電力P2として分電盤11を介して家庭の負荷9に出力するものである。制御装置7は、電力計測器3から計測信号S1を受け取り、これに基づいてインバータ6の出力動作、家庭の負荷9の駆動、補機10の駆動等をそれぞれ制御するものである。制御装置7は、メモリ部に複数の故障診断モードを随時読み出し可能に格納している。補機10は、インバータ6からの出力電力P3により駆動され、制御装置7の制御信号S2により制御される燃料供給ポンプ、送風ファン、ヒータ等である。   A fuel cell power generation system is installed as a power generation device 4 for home private power generation. The power generation device 4 includes a power generation unit 5 including a fuel cell stack, an inverter 6, a control device 7, and an auxiliary device 10. The fuel cell stack of the power generation unit 5 includes a membrane electrode assembly (MEA) in which a solid electrolyte membrane, an anode catalyst layer, and a cathode catalyst layer are integrally joined, an anode channel plate, a cathode channel plate, a fuel supply source, and a blower fan have. The inverter 6 adjusts the electric power generated by the power generation unit 5 and outputs it as output power P <b> 2 to the household load 9 via the distribution board 11. The control device 7 receives the measurement signal S1 from the power meter 3, and controls the output operation of the inverter 6, the driving of the household load 9, the driving of the auxiliary machine 10, and the like based on the measurement signal S1. The control device 7 stores a plurality of failure diagnosis modes in the memory unit so that they can be read out at any time. The auxiliary machine 10 is a fuel supply pump, a blower fan, a heater, or the like that is driven by the output power P3 from the inverter 6 and controlled by the control signal S2 of the control device 7.

一般家庭に上記の自家発電装置4を設置し、受電電力P1の一部を発電装置4からの送電電力P2で賄ういわゆる系統連系運転を行う場合、家庭の負荷9で消費される電力を把握するために電力計測器3を受電点2またはその近傍に設置し、受電電力P1および発電電力P2をそれぞれ計測するようにしている。電力計測器3には、電流センサー(CT)を用いてもよいし、CTをトランスデューサ形電力計と組み合わせて用いるようにしてもよい。   When the above-described private power generation device 4 is installed in a general household and a so-called grid-connected operation in which a part of the received power P1 is covered by the transmission power P2 from the power generation device 4, the power consumed by the load 9 of the home is grasped. Therefore, the power measuring instrument 3 is installed at or near the power receiving point 2 to measure the received power P1 and the generated power P2. The power meter 3 may be a current sensor (CT) or may be used in combination with a transducer type wattmeter.

一般に、系統連系運転を行なう需要家は、自己の消費電力はできるだけ自家発電装置4から供給し、不足分を商用電源系統1すなわち電力会社からの電力により補給することを望む。系統連系運転には、自家発電装置の余剰電力を電力会社に送り出すことが認められない「逆潮流なし」と、条件付きで送り出しが認められ電力会社に買い取ってもらう「逆潮流あり」との2方式があり、受電契約時にいずれかの方式で系統連系運転を行うかを決定するようになっている。しかし、電力会社による余剰電力の買い取り単価の問題もあり、「逆潮流あり」はほとんど認められず、一般家庭においては「逆潮流なし」の条件で運転されるのが一般的である。   In general, a consumer who performs grid connection operation desires to supply his / her power consumption from the private power generator 4 as much as possible, and to replenish the shortage with the power from the commercial power supply system 1, that is, the power company. In grid-connected operation, there is “no reverse power flow” that is not allowed to send surplus power from the private power generation equipment to the power company, and “with reverse power flow” that is allowed to be sent under certain conditions and purchased by the power company. There are two methods, and at the time of a power reception contract, it is determined whether any method is used for grid interconnection operation. However, there is a problem of the unit price for purchasing surplus power by the power company, and “with reverse power flow” is hardly recognized, and in general households are operated under the condition of “no reverse power flow”.

このような系統連系運転では、電力計測器3により受電電力P1と発電電力P2をそれぞれ計測し、これらの計測結果を信号S1として発電装置4の制御装置7へ送る。制御装置7は、入力信号S1に基づいて家庭の負荷9に信号S3を出力するとともに、インバータ6に信号S4を出力して、家庭の需要に応じた受電電力P1および送電電力P2にそれぞれ調整制御する。   In such grid connection operation, the power meter 3 measures the received power P1 and the generated power P2, and sends these measurement results to the control device 7 of the power generator 4 as a signal S1. The control device 7 outputs a signal S3 to the household load 9 based on the input signal S1, and also outputs a signal S4 to the inverter 6 to adjust and control the received power P1 and the transmitted power P2 according to household demand, respectively. To do.

商用電源系統1からの受電電力P1は、受電点2において電力計測器3により直接的に測定される。一方、発電装置4からの出力電力P2は、インバータ6から分岐ブレーカ14aを経由して負荷9で消費される電力と、インバータ6から分岐ブレーカ14a、漏電ブレーカ13、サービスブレーカ12を経由して受電点2に向かう電力とに分かれる。電力計測器3は、出力電力P2のうち後者の部分を測定する。   The received power P1 from the commercial power supply system 1 is directly measured by the power meter 3 at the power receiving point 2. On the other hand, the output power P2 from the power generator 4 is received from the inverter 6 via the branch breaker 14a and at the load 9, and is received from the inverter 6 via the branch breaker 14a, the earth leakage breaker 13, and the service breaker 12. It is divided into electric power going to point 2. The power meter 3 measures the latter part of the output power P2.

次に、図2を参照して第1の実施の形態の故障診断方法を説明する。   Next, the failure diagnosis method of the first embodiment will be described with reference to FIG.

制御装置7は、先ず信号S4をインバータ6に発信し、インバータ6から返ってくる信号S5により発電装置4が運転中か否かを判定する(工程K1)。その判定結果がNOであった場合、すなわち発電装置4が停止中の場合は、後述する図3に示す第2の実施の形態の工程S1〜S4へ進む。   First, the control device 7 transmits a signal S4 to the inverter 6, and determines whether or not the power generation device 4 is in operation based on the signal S5 returned from the inverter 6 (step K1). When the determination result is NO, that is, when the power generation device 4 is stopped, the process proceeds to steps S1 to S4 of the second embodiment shown in FIG.

工程K1の判定結果がYESの場合、すなわち発電装置4が運転中の場合は、電力計測器3から送られてくる計測信号S1に基づいて受電点2の電力が一定期間(例えば1時間)にわたり変化しないかどうかを制御装置7は判定する(工程K2)。その判定結果がNOであった場合、すなわち受電点2の電力が一定期間の間に変化した場合は、電力計測器3が故障していないものと判定して最初の工程K1に戻る。   When the determination result of the process K1 is YES, that is, when the power generation device 4 is in operation, the power at the power receiving point 2 over a certain period (for example, 1 hour) based on the measurement signal S1 sent from the power meter 3. The control device 7 determines whether or not there is a change (step K2). If the determination result is NO, that is, if the power at the power receiving point 2 changes during a certain period, it is determined that the power meter 3 has not failed and the process returns to the first step K1.

工程K2の判定結果がYESであった場合、すなわち受電点2の電力が一定期間の間に変化しない場合は、電力計測器3が断線等により故障しているものと判定して次の工程K3へ進む。   If the determination result in step K2 is YES, that is, if the power at the power receiving point 2 does not change during a certain period, it is determined that the power meter 3 has failed due to disconnection or the like, and the next step K3 Proceed to

次いで、制御装置7は、複数の診断モードのうちから優先順位の高い順に選択する(工程K3)。診断モードの優先順位は、需要家の好みに応じて適宜決めることができる。このような診断モードの選択は、人間が発電装置4の表示パネルのボタンを押して手動で入力することに行ってもよい。   Next, the control device 7 selects a plurality of diagnosis modes in descending order of priority (step K3). The priority order of the diagnosis mode can be appropriately determined according to the preference of the customer. Such selection of the diagnosis mode may be performed by a person manually pressing a button on the display panel of the power generation device 4 and inputting it manually.

診断モード1を選択した場合は、制御装置7からインバータ6に信号S4を送り、インバータ6からの送電電力P2を強制的に変化させる(工程K4−1)。診断モード2を選択した場合は、制御装置7からインバータ6に別の信号S4を送り、インバータ6のゲート電極への給電を短時間停止してインバータ6をゲートブロックし、インバータ6からの出力電力P1を短時間だけ停止させる(工程K4−2)。診断モード3を選択した場合は、制御装置7から補機10に信号S2を送るとともにインバータ6に別の信号S4を送り、燃料電池発電装置4内の補機10の出力を変化させる(工程K4−3)。補機10には、燃料供給ポンプ、送風ファン、ヒータなど種々あるが、例えばヒータへの給電量を低下させ、液体燃料の気化量を減少させて発電部5における発電量を低下させる。診断モード4を選択した場合は、制御装置7から家庭の負荷9へ信号S3を送り、家庭の負荷9を変化させる(工程K4−4)。家庭の負荷9としては、ノートパソコン等のようなインターネット家電対応の負荷を対象にすることができる。   When the diagnosis mode 1 is selected, the control device 7 sends a signal S4 to the inverter 6 to forcibly change the transmitted power P2 from the inverter 6 (step K4-1). When the diagnosis mode 2 is selected, another signal S4 is sent from the control device 7 to the inverter 6, power supply to the gate electrode of the inverter 6 is stopped for a short time, the inverter 6 is gate-blocked, and the output power from the inverter 6 P1 is stopped for a short time (step K4-2). When the diagnosis mode 3 is selected, a signal S2 is sent from the control device 7 to the auxiliary machine 10 and another signal S4 is sent to the inverter 6 to change the output of the auxiliary machine 10 in the fuel cell power generator 4 (step K4). -3). There are various types of auxiliary equipment 10 such as a fuel supply pump, a blower fan, and a heater. For example, the power generation amount in the power generation unit 5 is reduced by reducing the amount of power supplied to the heater and reducing the vaporization amount of the liquid fuel. When the diagnosis mode 4 is selected, a signal S3 is sent from the control device 7 to the home load 9 to change the home load 9 (step K4-4). The home load 9 can be a load corresponding to an Internet home appliance such as a notebook personal computer.

選択される診断モードは1つのみに限られない。制御装置7は、複数の診断モードのうちから1つのみを選択するばかりでなく、2つ以上を選択してその組み合わせモードを用いて診断するようにしてもよい。例えば、モード1とモード3を選択して組み合わせたモード1+3を用いて故障診断する場合、インバータ6からの出力電力P2を変化させるとともに、補機10(例えばポンプ)の出力を変化させる(工程K4−1、工程K4−3)。これにより電力計測器3が故障しているか否かを更に確実に診断することができる。   The selected diagnostic mode is not limited to one. The control device 7 may select not only one from a plurality of diagnosis modes but also select two or more and perform diagnosis using the combination mode. For example, when the failure diagnosis is performed using the mode 1 + 3 in which the mode 1 and the mode 3 are selected and combined, the output power P2 from the inverter 6 is changed and the output of the auxiliary machine 10 (for example, a pump) is changed (step K4). -1, step K4-3). As a result, it is possible to more reliably diagnose whether or not the power meter 3 has failed.

また、モード2とモード3を選択して組み合わせたモード2+3を用いて故障診断する場合、インバータ6を短時間ゲートブロックするとともに、補機10(例えばポンプ)の出力を変化させる(工程K4−2、工程K4−3)。   Further, when the failure diagnosis is performed using the mode 2 + 3 obtained by selecting and combining the mode 2 and the mode 3, the inverter 6 is gate-blocked for a short time and the output of the auxiliary machine 10 (for example, the pump) is changed (step K4-2). Step K4-3).

また、例えば、モード3とモード4を選択して組み合わせたモード3+4を用いて故障診断する場合、補機10(例えばヒータ)の出力を変化させるとともに、家庭の負荷9を変化させる(工程K4−3、工程K4−4)。このようにしても故障診断の精度が更に向上する。   Further, for example, when failure diagnosis is performed using mode 3 + 4 in which mode 3 and mode 4 are selected and combined, the output of auxiliary machine 10 (for example, a heater) is changed and household load 9 is changed (step K4- 3, Step K4-4). Even in this case, the accuracy of failure diagnosis is further improved.

さらに、電力計測器3の故障診断を一定期間ごとに定期的に繰り返し行うようにすることもできる。例えば、制御装置7からインバータ6に診断モード1を実行するための信号S4を定期的に(例えば3分間隔ごとに)送ることにより、電力計測器3をほとんど常に監視し続けることができるようになる。これにより電力計測器3の故障発見の確率が飛躍的に向上し、故障を早期に発見することができるようになり、燃料電池発電装置4の異常運転を迅速に停止することが可能になる。   Furthermore, failure diagnosis of the power meter 3 can be periodically repeated at regular intervals. For example, by periodically sending a signal S4 for executing the diagnosis mode 1 from the control device 7 to the inverter 6 (for example, every 3 minutes), the power meter 3 can be continuously monitored almost always. Become. As a result, the probability of finding the failure of the power meter 3 can be dramatically improved, the failure can be found at an early stage, and the abnormal operation of the fuel cell power generator 4 can be stopped quickly.

上記の故障診断を行った結果、それに応じて電力計測器3から制御装置7に入ってくる計測電力信号S1が変化する場合は、電力計測器3が正常に作動しているものと診断して、最初の工程K1へ戻る(K5→K1)。   If the measured power signal S1 entering the control device 7 from the power meter 3 changes accordingly as a result of the above fault diagnosis, it is diagnosed that the power meter 3 is operating normally. Return to the first step K1 (K5 → K1).

一方、上記の故障診断を行っても計測電力信号S1がまったく変化しない場合は、制御装置7は電力計測器3が故障しているものと診断し、発電部5および補機10に停止信号を送り、発電装置4の運転を停止させる(工程K6)。これにより発電装置4が異常運転から保護される。そして、電力計測器3の故障を修理または交換した後に、リセットボタンを押して発電装置7の運転を再開する。   On the other hand, if the measured power signal S1 does not change at all even after performing the above-described failure diagnosis, the control device 7 diagnoses that the power meter 3 has failed, and sends a stop signal to the power generation unit 5 and the auxiliary device 10. The operation of the power generation device 4 is stopped (step K6). Thereby, the electric power generating apparatus 4 is protected from abnormal operation. Then, after repairing or replacing the failure of the power meter 3, the reset button is pressed to restart the operation of the power generator 7.

本実施形態によれば、新たに故障検出装置を増設することなく、インバータ6からの送電電力P2を制御するために受電点2の電力の変化を監視している既設の制御装置7を用いて、電力計測器3の故障を確実に診断することができる。   According to the present embodiment, the existing control device 7 that monitors the power change at the power receiving point 2 is used to control the transmission power P2 from the inverter 6 without newly adding a failure detection device. The failure of the power meter 3 can be reliably diagnosed.

また、本実施形態によれば、インバータ6からの送電電力P2を定期的に変化させることで、常に有効電力及び無効電力が常に不安定となる状態を作り出すことができるため単独運転防止機能の検出感度の向上が期待できる。   In addition, according to the present embodiment, since the state in which the active power and the reactive power are always unstable can be created by periodically changing the transmission power P2 from the inverter 6, it is possible to detect the isolated operation prevention function. An improvement in sensitivity can be expected.

(第2の実施形態)
次に、図3を参照して本発明の第2の実施形態について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG.

第2の実施形態は、発電装置4の停止中に電力計測器3を故障診断する方法である。   The second embodiment is a method for diagnosing a failure of the power meter 3 while the power generation device 4 is stopped.

制御装置7は、先ず信号S4をインバータ6に発信し、インバータ6から返ってくる信号S5により発電装置4が運転中か否かを判定し(工程K1)、その判定結果がNOである場合、すなわち発電装置4が停止中である場合は、複数の診断モードのうちから有線順位にしたがって診断モードを選択する(工程S1)。診断モードの優先順位は、需要家の好みに応じて適宜決めることができる。このような診断モードの選択は、人間が発電装置4の表示パネルのボタンを押して手動で入力することに行ってもよい。   The control device 7 first transmits a signal S4 to the inverter 6, determines whether or not the power generation device 4 is in operation based on the signal S5 returned from the inverter 6 (step K1), and if the determination result is NO, That is, when the power generation device 4 is stopped, the diagnosis mode is selected from the plurality of diagnosis modes according to the wired order (step S1). The priority order of the diagnosis mode can be appropriately determined according to the preference of the customer. Such selection of the diagnosis mode may be performed by a person manually pressing a button on the display panel of the power generation device 4 and inputting it manually.

本実施形態では発電装置4が停止中であるので、インバータ6を故障診断に利用することができない。したがって、診断モード3または4のいずれかを選択することになる。診断モード3を選択した場合は、制御装置7から補機10に信号S2を送るとともにインバータ6に別の信号S4を送り、燃料電池発電装置4内の補機10の出力を変化させる(工程S2−1)。補機10には、燃料供給ポンプ、送風ファン、ヒータなど種々あるが、例えばヒータへの給電量を低下させ、液体燃料の気化量を減少させて発電部5における発電量を低下させる。診断モード4を選択した場合は、制御装置7から家庭の負荷9へ信号S3を送り、家庭の負荷9を変化させる(工程S2−2)。   In this embodiment, since the power generator 4 is stopped, the inverter 6 cannot be used for failure diagnosis. Therefore, either diagnosis mode 3 or 4 is selected. When the diagnosis mode 3 is selected, a signal S2 is sent from the control device 7 to the auxiliary machine 10 and another signal S4 is sent to the inverter 6 to change the output of the auxiliary machine 10 in the fuel cell power generator 4 (step S2). -1). There are various types of auxiliary equipment 10 such as a fuel supply pump, a blower fan, and a heater. For example, the power generation amount in the power generation unit 5 is reduced by reducing the amount of power supplied to the heater and reducing the vaporization amount of the liquid fuel. When the diagnosis mode 4 is selected, a signal S3 is sent from the control device 7 to the home load 9 to change the home load 9 (step S2-2).

選択される診断モードは1つのみに限られない。制御装置7は、複数の診断モードのうちから1つのみを選択するばかりでなく、2つ以上を選択してその組み合わせモードを用いて診断するようにしてもよい。例えば、モード3とモード4を選択して組み合わせたモード3+4を用いて故障診断する場合、補機10(例えばヒータ)の出力を変化させるとともに、家庭の負荷9を変化させる(工程S2−1、工程S2−2)。このようにしても故障診断の精度が更に向上する。   The selected diagnostic mode is not limited to one. The control device 7 may select not only one from a plurality of diagnosis modes but also select two or more and perform diagnosis using the combination mode. For example, when the failure diagnosis is performed using the mode 3 + 4 in which the mode 3 and the mode 4 are selected and combined, the output of the auxiliary machine 10 (for example, the heater) is changed and the household load 9 is changed (steps S2-1 and S2-1). Step S2-2). Even in this case, the accuracy of failure diagnosis is further improved.

さらに、電力計測器3の故障診断を一定期間ごとに定期的に繰り返し行うようにすることもできる。例えば、制御装置7から家庭の負荷9に診断モード4を実行するための信号S3を定期的に(例えば10分間隔ごとに)送ることにより、電力計測器3をほとんど常に監視し続けることができるようになる。これにより電力計測器3の故障発見の確率が飛躍的に向上し、故障を早期に発見することができるようになり、燃料電池発電装置4の異常運転を迅速に停止することが可能になる。   Furthermore, failure diagnosis of the power meter 3 can be periodically repeated at regular intervals. For example, the power meter 3 can be continuously monitored almost constantly by sending a signal S3 for executing the diagnosis mode 4 from the control device 7 to the household load 9 periodically (for example, every 10 minutes). It becomes like this. As a result, the probability of finding the failure of the power meter 3 can be dramatically improved, the failure can be found at an early stage, and the abnormal operation of the fuel cell power generator 4 can be stopped quickly.

上記の故障診断を行った結果、それに応じて電力計測器3から制御装置7に入ってくる計測電力信号S1が変化する場合は、電力計測器3が正常に作動しているものと診断して、最初の工程K1へ戻る(S3→K1)。   If the measured power signal S1 entering the control device 7 from the power meter 3 changes accordingly as a result of the above fault diagnosis, it is diagnosed that the power meter 3 is operating normally. Return to the first step K1 (S3 → K1).

一方、上記の故障診断を行っても計測電力信号S1がまったく変化しない場合は、制御装置7は電力計測器3が故障しているものと診断し、電力計測器3を修理または交換する(工程S4)。   On the other hand, if the measured power signal S1 does not change at all even after performing the above-described failure diagnosis, the control device 7 diagnoses that the power meter 3 has failed and repairs or replaces the power meter 3 (step) S4).

本実施形態によれば、電力計測器3の故障診断を発電装置4の発電前の起動時に確認することで、電力計測器3が故障した状態で発電装置4から出力電力P2を家庭の負荷9に供給することを事前に防ぐことができる。   According to the present embodiment, the failure diagnosis of the power meter 3 is confirmed at the time of starting the power generation device 4 before power generation, so that the output power P2 is output from the power generation device 4 to the household load 9 in a state where the power meter 3 has failed. Can be prevented in advance.

また、本実施形態によれば、燃料電池などの出力変化を急激に実施できないシステムにおいてもインバータ6の送電電力P2を直接変化させることなく電力計測器3の故障診断を実施することができる。   Moreover, according to this embodiment, even in a system such as a fuel cell that cannot change the output suddenly, failure diagnosis of the power meter 3 can be performed without directly changing the transmission power P2 of the inverter 6.

本発明は、系統連系運転および自立運転機能を備えた分散型電源としての燃料電池に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a fuel cell as a distributed power source having grid interconnection operation and independent operation functions.

本発明の故障診断方法が用いられる燃料電池発電システムの構成ブロック図。The block diagram of the configuration of the fuel cell power generation system in which the failure diagnosis method of the present invention is used. 本発明の故障診断方法の一例を示すフローチャート。The flowchart which shows an example of the failure diagnosis method of this invention. 本発明の故障診断方法の一例を示すフローチャート。The flowchart which shows an example of the failure diagnosis method of this invention.

符号の説明Explanation of symbols

1…商用電源系統、2…受電点、3…電力計測器、
4…発電装置(燃料電池発電システム)、
5…発電部、6…インバータ、7…制御装置、9…負荷、10…補機、
11…家庭用分電盤、12… サービスブレーカ、13…漏電ブレーカ、
14a,14b,14c,14d…分岐ブレーカ、
S1,S2,S3,S4,S5…信号、
P1…受電電力、
P2,P3…送電電力(出力電力、発電電力)。
1 ... Commercial power system, 2 ... Receiving point, 3 ... Power meter,
4. Power generation device (fuel cell power generation system),
DESCRIPTION OF SYMBOLS 5 ... Electric power generation part, 6 ... Inverter, 7 ... Control apparatus, 9 ... Load, 10 ... Auxiliary machine,
11 ... Home distribution board, 12 ... Service breaker, 13 ... Earth leakage breaker,
14a, 14b, 14c, 14d ... branch breaker,
S1, S2, S3, S4, S5 ... signal,
P1 ... Received power,
P2, P3: Transmission power (output power, generated power).

Claims (13)

系統連系運転および自立運転機能を備えた分散型電源として発電装置が用いられる分散型電源における受電電力計測系の故障診断方法において、
電力計測器により商用電源系統からの受電電力および前記発電装置からの送電電力を計測し、
前記計測した電力を電流または電圧の信号で前記発電装置の制御装置に入力し、
前記電力計測信号が一定期間変化しない場合に、前記電力計測器が故障していると判定することを特徴とする分散型電源における受電電力計測系の故障診断方法。
In a fault diagnosis method for a received power measurement system in a distributed power source in which a power generator is used as a distributed power source having a grid interconnection operation and a self-sustaining operation function
Measure the received power from the commercial power system and the transmitted power from the power generator with a power meter,
The measured power is input to the control device of the power generator as a current or voltage signal,
A failure diagnosis method for a received power measurement system in a distributed power source, wherein, when the power measurement signal does not change for a certain period, it is determined that the power meter has failed.
前記発電装置のインバータの出力を変化させたときに、前記電力計測信号が変化しない場合に、前記電力計測器が故障していると判定することを特徴とする請求項1記載の方法。 The method according to claim 1, wherein when the output of the inverter of the power generation device is changed, if the power measurement signal does not change, it is determined that the power measuring device is faulty. 前記発電装置のインバータを短時間ゲートブロックしたときに、前記電力計測信号が変化しない場合に、前記電力計測器が故障していると判定することを特徴とする請求項1または2のいずれか1項記載の方法。 3. The method according to claim 1, wherein when the power measurement signal does not change when the inverter of the power generation device is gate-blocked for a short time, it is determined that the power measurement device has failed. The method described in the paragraph. 前記発電装置内部にある補機の出力を変化させたときに、前記電力計測信号が変化しない場合に、前記電力計測器が故障していると判定することを特徴とする請求項1乃至3のうちのいずれか1項記載の方法。 The power meter is determined to be faulty when the power measurement signal does not change when the output of an auxiliary machine inside the power generator is changed. The method of any one of them. 家庭の負荷を変化させたときに、前記電力計測信号が変化しない場合に、前記電力計測器が故障していると判定することを特徴とする請求項1乃至4のうちのいずれか1項記載の方法。 5. The device according to claim 1, wherein when the household load is changed, if the power measurement signal does not change, it is determined that the power meter has failed. 6. the method of. 前記発電装置の停止中において前記発電装置内部にある補機の出力を変化させたときに、前記電力計測信号が変化しない場合に、前記電力計測器が故障していると判定することを特徴とする請求項1乃至5のうちのいずれか1項記載の方法。 When the power measurement signal does not change when the output of an auxiliary machine inside the power generation device is changed while the power generation device is stopped, it is determined that the power measurement device has failed. A method according to any one of claims 1 to 5. 前記発電装置の停止中において家庭の負荷を変化させたときに、前記電力計測信号が変化しない場合に、前記電力計測器が故障していると判定することを特徴とする請求項1乃至6のうちのいずれか1項記載の方法。 The power meter is determined to be faulty if the power measurement signal does not change when a household load is changed while the power generation device is stopped. The method of any one of them. 前記発電装置のインバータの出力を変化させ、かつ前記発電装置内部にある補機の出力を変化させたときに、前記電力計測信号が変化しない場合に、前記電力計測器が故障していると判定することを特徴とする請求項1記載の方法。 When the output of the inverter of the power generation device is changed and the output of an auxiliary machine inside the power generation device is changed, if the power measurement signal does not change, it is determined that the power measurement device has failed. The method of claim 1 wherein: 前記発電装置のインバータの出力を変化させ、かつ家庭の負荷を変化させたときに、前記電力計測信号が変化しない場合に、前記電力計測器が故障していると判定することを特徴とする請求項1記載の方法。 When the output of the inverter of the power generation device is changed and the load of a home is changed, it is determined that the power measuring device has failed when the power measurement signal does not change. Item 2. The method according to Item 1. 前記発電装置のインバータを短時間ゲートブロックし、かつ前記発電装置内部にある補機の出力を変化させたときに、前記電力計測信号が変化しない場合に、前記電力計測器が故障していると判定することを特徴とする請求項1記載の方法。 When the power measurement signal is not changed when the inverter of the power generation device is gate-blocked for a short time and the output of an auxiliary machine inside the power generation device is changed, the power measurement device is broken. The method of claim 1, wherein the method is determined. 前記発電装置のインバータを短時間ゲートブロックし、かつ家庭の負荷を変化させたときに、前記電力計測信号が変化しない場合に、前記電力計測器が故障していると判定することを特徴とする請求項1記載の方法。 When the inverter of the power generation device is gate-blocked for a short time and the load at home is changed, it is determined that the power measuring device has failed when the power measurement signal does not change. The method of claim 1. 前記発電装置のインバータの出力を定期的に変化させることを特徴とする請求項1記載の方法。 The method according to claim 1, wherein the output of the inverter of the power generator is periodically changed. 前記発電装置のインバータを定期的に短時間ゲートブロックすることを特徴とする請求項1記載の方法。 The method according to claim 1, wherein the inverter of the power generator is periodically gate-blocked for a short time.
JP2007248073A 2007-09-25 2007-09-25 Fault diagnosis method for received power measurement system in distributed power supply Active JP4836907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248073A JP4836907B2 (en) 2007-09-25 2007-09-25 Fault diagnosis method for received power measurement system in distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248073A JP4836907B2 (en) 2007-09-25 2007-09-25 Fault diagnosis method for received power measurement system in distributed power supply

Publications (2)

Publication Number Publication Date
JP2009079935A true JP2009079935A (en) 2009-04-16
JP4836907B2 JP4836907B2 (en) 2011-12-14

Family

ID=40654802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248073A Active JP4836907B2 (en) 2007-09-25 2007-09-25 Fault diagnosis method for received power measurement system in distributed power supply

Country Status (1)

Country Link
JP (1) JP4836907B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014054106A1 (en) * 2012-10-01 2016-08-25 富士通株式会社 Power distribution management device, abnormality detection method and abnormality detection program
JP2017175831A (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Control system, control method, and program
CN107632280A (en) * 2017-08-04 2018-01-26 国网浙江省电力公司 Live defect elimination method of the ammeter completely without data fault under a kind of I types concentrator
CN107656232A (en) * 2017-08-04 2018-02-02 国网浙江省电力公司 Live defect elimination method of the ammeter completely without data fault under a kind of II type concentrator
JP2018029441A (en) * 2016-08-18 2018-02-22 東京瓦斯株式会社 Construction method of power system and power system
KR101907988B1 (en) * 2018-05-30 2018-10-16 주식회사 대경산전 Error detecting apparatus for digital meter and solar energy generation system using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589389A (en) * 2017-10-16 2018-01-16 国家电网公司 Arrester discharge counter calibration equipment and method of calibration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178326A (en) * 2005-12-28 2007-07-12 Ebara Ballard Corp Method of measuring electric power and generating facility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178326A (en) * 2005-12-28 2007-07-12 Ebara Ballard Corp Method of measuring electric power and generating facility

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014054106A1 (en) * 2012-10-01 2016-08-25 富士通株式会社 Power distribution management device, abnormality detection method and abnormality detection program
US10152073B2 (en) 2012-10-01 2018-12-11 Fujitsu Limited Power distribution management apparatus and abnormality detection method
JP2017175831A (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Control system, control method, and program
JP2018029441A (en) * 2016-08-18 2018-02-22 東京瓦斯株式会社 Construction method of power system and power system
CN107632280A (en) * 2017-08-04 2018-01-26 国网浙江省电力公司 Live defect elimination method of the ammeter completely without data fault under a kind of I types concentrator
CN107656232A (en) * 2017-08-04 2018-02-02 国网浙江省电力公司 Live defect elimination method of the ammeter completely without data fault under a kind of II type concentrator
KR101907988B1 (en) * 2018-05-30 2018-10-16 주식회사 대경산전 Error detecting apparatus for digital meter and solar energy generation system using the same

Also Published As

Publication number Publication date
JP4836907B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4836907B2 (en) Fault diagnosis method for received power measurement system in distributed power supply
JP5138122B2 (en) Distributed power generator and method of operating the same
CN103703646B (en) Method for diagnosing faults, system interconnect and control device
JP4802046B2 (en) Building power monitoring system
JP5501757B2 (en) Power generation device and operation method thereof
US20080026271A1 (en) Fuel Cell Power Generation System
JP2009118673A (en) Distributed power supply system
JP2012222923A (en) Distributed generator
US11394218B2 (en) Controller, electricity storage system, and recording medium
KR101372375B1 (en) Power generator control system and control method thereof
JP2013079746A (en) Cogeneration system
JP7523364B2 (en) Operation status management system
JP2016099192A (en) Ground fault detection circuit failure diagnosis device
JP2013258794A (en) Distributed power generator and operation method of the same
JP2014087133A (en) Photovoltaic power generation system, power conditioner, off-system detection device, and method for detecting off-system in photovoltaic power generation system
JP2008066006A (en) Fuel cell system
CN110784175A (en) User photovoltaic operation monitoring method based on mobile terminal
JP2010283943A (en) Cogeneration apparatus
JP2020150581A (en) Monitor system
KR20170140881A (en) photovoltaic power generation equipment efficiency detection system based on multi variables
JP6316116B2 (en) Solar power generation system monitoring device
JP5665895B2 (en) Power converter, power supply system, and power supply method
JP7259742B2 (en) Storage battery system and power display device
JP4059788B2 (en) Power recovery system
JP6619185B2 (en) Photovoltaic power generation diagnostic system and diagnostic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350