JP2009078976A - Arene-based compound and its production method, and arene-based compound derivative and its production method - Google Patents

Arene-based compound and its production method, and arene-based compound derivative and its production method Download PDF

Info

Publication number
JP2009078976A
JP2009078976A JP2007241319A JP2007241319A JP2009078976A JP 2009078976 A JP2009078976 A JP 2009078976A JP 2007241319 A JP2007241319 A JP 2007241319A JP 2007241319 A JP2007241319 A JP 2007241319A JP 2009078976 A JP2009078976 A JP 2009078976A
Authority
JP
Japan
Prior art keywords
group
arene
compound
substituted
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007241319A
Other languages
Japanese (ja)
Inventor
Tatatomi Nishikubo
忠臣 西久保
Hiroto Kudo
宏人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Kanagawa University
Original Assignee
JSR Corp
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp, Kanagawa University filed Critical JSR Corp
Priority to JP2007241319A priority Critical patent/JP2009078976A/en
Publication of JP2009078976A publication Critical patent/JP2009078976A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new arene-based compound which can be chemically modified with ease, has a characteristic three-dimensional structure, and whose utilization as a clathrate compound or the like can be expected. <P>SOLUTION: Provided is an arene-based compound prepared by reacting a raw material compound (A) represented by general formula (1) [wherein, X is a 1-10C alkyl group or the like; m is 0 or 1] with a raw material compound (B) represented by general formula (2) [wherein, Y is a monovalent substituent or the like; n is 0 or 1]. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、包摂化合物等としての利用が期待でき、官能基の導入による機能化が可能な新規化合物(アレーン系化合物及びアレーン系化合物誘導体)、及びその製造方法に関する。   The present invention relates to a novel compound (arene compound and arene compound derivative) that can be expected to be used as an inclusion compound and can be functionalized by introduction of a functional group, and a method for producing the same.

カリックスアレーン系化合物は、一般にはフェノール、レゾルシノール等のフェノール系化合物とアルデヒド系化合物の縮合により得られる環状オリゴマーである。近年、カリックスアレーン系化合物はホスト−ゲスト化学の分野においてクラウンエーテル、シクロデキストリンに次ぐ、第三の包接化合物として注目されている。   The calixarene compound is generally a cyclic oligomer obtained by condensation of a phenol compound such as phenol and resorcinol with an aldehyde compound. In recent years, calixarene compounds have attracted attention as third inclusion compounds after crown ether and cyclodextrin in the field of host-guest chemistry.

カリックスアレーン系化合物は、通常一分子内に多くの水酸基を有し、熱的安定性に優れ、高いガラス転移温度と高融点を有すること、また構造によっては成膜性を有することから、優れた機能性材料として注目されている。例えば、p−メチルカリックス[6]アレーンヘキサアセテートを用いた電子線ネガ型フォトレジストへの応用(例えば、非特許文献1参照)や、カリックス[4]レゾルシンアレーン、架橋剤、光酸発生剤に基づくアルカリ現像型のネガ型フォトレジストへの応用(例えば、非特許文献2参照)等が報告されている。また、カリックスアレーン系化合物を高性能な光硬化材料へ応用することを目的とした、ラジカル重合性官能基、カチオン重合性官能基の導入、及び高解像度のレジスト材料への応用を目的とした保護基の導入によるカリックスアレーン系誘導体の合成及びその光反応特性についての評価が報告されている(例えば、非特許文献3、4及び5参照)。また、種々のカチオン重合性官能基を有するp−アルキルカリックス[n]アレーン誘導体の合成とその光カチオン重合についての検討が報告されている(例えば、非特許文献6参照)。   The calixarene compound usually has many hydroxyl groups in one molecule, is excellent in thermal stability, has a high glass transition temperature and a high melting point, and has a film forming property depending on the structure. It is attracting attention as a functional material. For example, application to an electron beam negative photoresist using p-methylcalix [6] arene hexaacetate (see, for example, Non-Patent Document 1), calix [4] resorcinarene, crosslinking agent, photoacid generator Application to an alkali developing type negative photoresist based thereon (for example, see Non-Patent Document 2) has been reported. In addition, for the purpose of applying calixarene compounds to high-performance photocuring materials, the introduction of radically polymerizable functional groups and cationically polymerizable functional groups, and protection for the application to high-resolution resist materials Synthesis of calixarene derivatives by introduction of a group and evaluation of the photoreaction characteristics have been reported (for example, see Non-Patent Documents 3, 4 and 5). Moreover, the synthesis | combination of the p-alkyl calix [n] arene derivative which has various cationically polymerizable functional groups and examination about the photocationic polymerization are reported (for example, refer nonpatent literature 6).

また、カリックスアレーン系化合物の中でもレゾルシノール系化合物とアルデヒド系化合物との縮合物であるカリックスレゾルシノールアレーン系化合物については、大きなゲストの包接を目的とした検討が種々なされており、レゾルシノール環の化学修飾により空孔をより大きく、深くした誘導体が数多く合成されている。   Among calixarene compounds, calixresorcinolarene compounds, which are condensates of resorcinol compounds and aldehyde compounds, have been studied for the purpose of inclusion of large guests, and chemical modification of the resorcinol ring A number of derivatives with larger and deeper pores have been synthesized.

例えば、隣り合うレゾルシノール環の水酸基対を共有結合で架橋するとコーン配座が強固に固定されたかご型のキャビタンドが得られる。このような架橋法として、ジハロメタンを用いるアルキル化(非特許文献7参照)、ジアルキルジクロロシランを用いたシリル化(非特許文献8参照)等が報告されている。また、レゾルシノール系化合物として、CHO(非特許文献9参照)、OH(非特許文献10参照)、COR(非特許文献11参照)等の官能基を有する誘導体を用いた例が報告されている。更に、適当な官能基を持つ2種類以上のキャビタントをS2反応により連結するとカプセル型のカルセランドが得られることも報告されている(非特許文献12参照)。しかし、これらのキャビタント類は反応性基が残っていないために、更なる化学修飾が困難である。 For example, when a hydroxyl pair of adjacent resorcinol rings is cross-linked by a covalent bond, a cage-type cavitand having a firmly fixed corn conformation can be obtained. As such a crosslinking method, alkylation using dihalomethane (see Non-Patent Document 7), silylation using dialkyldichlorosilane (see Non-Patent Document 8), and the like have been reported. In addition, examples using derivatives having functional groups such as CHO (see non-patent document 9), OH (see non-patent document 10), CO 2 R (see non-patent document 11) have been reported as resorcinol compounds. Yes. Furthermore, it has also been reported that a capsule-type calceland can be obtained by linking two or more types of cavitants having appropriate functional groups by S N 2 reaction (see Non-Patent Document 12). However, these cavitants are difficult to be further chemically modified because no reactive groups remain.

Y.Ochiai,S.Manako,H.Yamamoto,T.Teshima,J.Fujita,E.Nomura:J.Photopolymer.Sci.Tech.13,413(2000)Y. Ochiai, S .; Manako, H .; Yamamoto, T .; Teshima, J .; Fujita, E .; Nomura: J. et al. Photopolymer. Sci. Tech. 13,413 (2000) T.Nakayama,M.Nomura,K.Haga,M.Ueda:Bull.Chem.Soc.Jpn.,71,2979(1998)T.A. Nakayama, M .; Nomura, K .; Haga, M .; Ueda: Bull. Chem. Soc. Jpn. 71, 2979 (1998) T.Nishikubo,A.Kameyama and H.Kudo,K,Tsutsui,:J.Polym.Sci.Part.Part A,Polym.Chem,39,1293(2002)T.A. Nishikubo, A .; Kameyama and H.K. Kudo, K, Tsutsui, J. et al. Polym. Sci. Part. Part A, Polym. Chem, 39, 1293 (2002) T.Nishikubo,A.Kameyama and H.Kudo:Polym.J.,35,213(2003)T.A. Nishikubo, A .; Kameyama and H.K. Kudo: Polym. J. et al. , 35, 213 (2003) T.Nishikubo,A.Kameyama and H.Kudo:Am.Chem.Soc,31,363T.A. Nishikubo, A .; Kameyama and H.K. Kudo: Am. Chem. Soc, 31, 363 K.Tsutsui,S.Kishimoto,A.Kameyama,T.Nishikubo:Polym.Prep.Jpn.,37,1805(1999)K. Tsutsui, S .; Kishimoto, A. et al. Kameyama, T .; Nishikubo: Polym. Prep. Jpn. , 37, 1805 (1999) J.R.Moran,S.karbach and D.J.Cram,J.Am.Chem.Soc.,104,5826(1982)J. et al. R. Moran, S .; karbach and D.C. J. et al. Cram, J .; Am. Chem. Soc. 104, 5826 (1982) D.J.Cram,K.D.Stewart,I.Goldberg and K.N.Trueblood,J,Am.Chem.Soc.,107,2574(1985)D. J. et al. Cram, K.M. D. Stewart, I.D. Goldberg and K.M. N. Trueblood, J, Am. Chem. Soc. 107, 2574 (1985). M.L.C.Quan and D.J.Cram,J.Am.Chem.Soc.,113,2754(1991)M.M. L. C. Quan and D.C. J. et al. Cram, J .; Am. Chem. Soc. , 113, 2754 (1991) J.C.Sherman and D.J.Cram,J.Am.Chem.Soc.,111,4527(1989)J. et al. C. Sherman and D.C. J. et al. Cram, J .; Am. Chem. Soc. 111, 4527 (1989) J.C.Sherman and D.J.Cram,J.Am.Chem.Soc.,111,4527(1989)J. et al. C. Sherman and D.C. J. et al. Cram, J .; Am. Chem. Soc. 111, 4527 (1989) P. Timmerman,W.Verboom,F.C.J.M.van Veggel,W.Hoorn and D.N.Reoinhoudt,Angew.Chem.Int.Ed.Engl.,33,1292(1994)P. Timerman, W.M. Verboom, F.M. C. J. et al. M.M. van Veggel, W.M. Hoorn and D.W. N. Reinhoudt, Angew. Chem. Int. Ed. Engl. 33, 1292 (1994)

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、化学修飾が容易であるとともに、特徴的な立体構造を有し、かつ、包摂化合物等としての利用が期待される新規なアレーン系化合物及びその製造方法を提供することにある。また、本発明の課題とするところは、特徴的な立体構造を有するとともに、包摂化合物等としての利用が期待される、化学修飾によって容易に製造される新規なアレーン系化合物誘導体及びその製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to facilitate chemical modification, to have a characteristic three-dimensional structure, and to include compounds It is an object of the present invention to provide a novel arene compound which is expected to be used as a compound and a production method thereof. In addition, the subject of the present invention is a novel arene-based compound derivative that has a characteristic three-dimensional structure and is expected to be used as an inclusion compound, etc., and is easily produced by chemical modification, and a method for producing the same. It is to provide.

本発明者らは上記課題を達成すべく鋭意検討した結果、芳香族ジオール化合物と芳香族ジアルデヒド化合物を反応させることによって上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be achieved by reacting an aromatic diol compound and an aromatic dialdehyde compound, and the present invention is completed. It came to.

即ち、本発明によれば、以下に示すアレーン系化合物、アレーン系化合物誘導体、アレーン系化合物の製造方法、及びアレーン系化合物誘導体の製造方法が提供される。   That is, according to the present invention, the following arene compounds, arene compound derivatives, methods for producing arene compounds, and methods for producing arene compound derivatives are provided.

[1]下記一般式(1)で表される原料化合物(A)と、下記一般式(2)で表される原料化合物(B)と、を反応させて得られる、化学修飾可能なフェノール性水酸基をその分子構造中に有するアレーン系化合物。   [1] A chemically modifiable phenolic compound obtained by reacting a raw material compound (A) represented by the following general formula (1) with a raw material compound (B) represented by the following general formula (2) An arene compound having a hydroxyl group in its molecular structure.

Figure 2009078976
Figure 2009078976

前記一般式(1)中、Xは、相互に独立に炭素数1〜10の置換若しくは非置換のアルキル基、炭素数2〜10の置換若しくは非置換のアルケニル基、炭素数2〜10の置換若しくは非置換のアルキニル基、炭素数7〜10の置換若しくは非置換のアラルキル基、炭素数1〜10の置換若しくは非置換のアルコキシ基、又は置換若しくは非置換のフェノキシ基を示し、mは、相互に独立に0又は1を示す。   In the general formula (1), X is independently a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a substitution having 2 to 10 carbon atoms. Or an unsubstituted alkynyl group, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group, Independently represents 0 or 1.

Figure 2009078976
Figure 2009078976

前記一般式(2)中、Yは、相互に独立に一価の置換基を示し、nは、相互に独立に0又は1を示す。   In the general formula (2), Y represents a monovalent substituent independently of each other, and n represents 0 or 1 independently of each other.

[2]前記原料化合物(A)が、1,3−ジヒドロキシベンゼンである前記[1]に記載のアレーン系化合物。   [2] The arene compound according to [1], wherein the raw material compound (A) is 1,3-dihydroxybenzene.

[3]前記原料化合物(B)が、o−フタルアルデヒド、m−フタルアルデヒド、又はp−フタルアルデヒドである前記[1]又は[2]に記載のアレーン系化合物。   [3] The arene compound according to [1] or [2], wherein the raw material compound (B) is o-phthalaldehyde, m-phthalaldehyde, or p-phthalaldehyde.

[4]前記[1]〜[3]のいずれかに記載のアレーン系化合物の前記フェノール性水酸基に保護基が導入されたアレーン系化合物誘導体。   [4] An arene compound derivative in which a protecting group is introduced into the phenolic hydroxyl group of the arene compound according to any one of [1] to [3].

[5]前記保護基が、tert−ブトキシカルボニル基である前記[4]に記載のアレーン系化合物誘導体。   [5] The arene compound derivative according to [4], wherein the protecting group is a tert-butoxycarbonyl group.

[6]下記一般式(1)で表される原料化合物(A)と、下記一般式(2)で表される原料化合物(B)と、を反応させる工程を有するアレーン系化合物の製造方法。   [6] A method for producing an arene-based compound comprising a step of reacting a raw material compound (A) represented by the following general formula (1) and a raw material compound (B) represented by the following general formula (2).

Figure 2009078976
Figure 2009078976

前記一般式(1)中、Xは、相互に独立に炭素数1〜10の置換若しくは非置換のアルキル基、炭素数2〜10の置換若しくは非置換のアルケニル基、炭素数2〜10の置換若しくは非置換のアルキニル基、炭素数7〜10の置換若しくは非置換のアラルキル基、炭素数1〜10の置換若しくは非置換のアルコキシ基、又は置換若しくは非置換のフェノキシ基を示し、mは、相互に独立に0又は1を示す。   In the general formula (1), X is independently a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a substitution having 2 to 10 carbon atoms. Or an unsubstituted alkynyl group, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group, Independently represents 0 or 1.

Figure 2009078976
Figure 2009078976

前記一般式(2)中、Yは、相互に独立に一価の置換基を示し、nは、相互に独立に0又は1を示す。   In the general formula (2), Y represents a monovalent substituent independently of each other, and n represents 0 or 1 independently of each other.

[7]前記原料化合物(A)が、1,3−ジヒドロキシベンゼンである前記[6]に記載のアレーン系化合物の製造方法。   [7] The method for producing an arene compound according to [6], wherein the raw material compound (A) is 1,3-dihydroxybenzene.

[8]前記原料化合物(B)が、o−フタルアルデヒド、m−フタルアルデヒド、又はp−フタルアルデヒドである前記[6]又は[7]に記載のアレーン系化合物の製造方法。   [8] The process for producing an arene compound according to [6] or [7], wherein the raw material compound (B) is o-phthalaldehyde, m-phthalaldehyde, or p-phthalaldehyde.

[9]前記[1]〜[3]のいずれかに記載のアレーン系化合物の前記フェノール性水酸基に保護基を導入する工程を有するアレーン系化合物誘導体の製造方法。   [9] A method for producing an arene compound derivative, comprising a step of introducing a protective group into the phenolic hydroxyl group of the arene compound according to any one of [1] to [3].

[10]前記保護基が、tert−ブトキシカルボニル基である前記[9]に記載のアレーン系化合物誘導体の製造方法。   [10] The method for producing an arene compound derivative according to [9], wherein the protecting group is a tert-butoxycarbonyl group.

本発明のアレーン系化合物は、化学修飾が容易であるとともに、特徴的な立体構造を有し、かつ、包摂化合物等としての利用が期待されるものである。また、本発明のアレーン系化合物を化学修飾することにより、硬化性組成物やレジスト用組成物への応用、及び包摂化合物としての利用、更には高機能を有するアレーン系化合物中間体としての利用等、幅広い分野における利用が期待される。   The arene compounds of the present invention are easy to chemically modify, have a characteristic steric structure, and are expected to be used as inclusion compounds. Also, by chemically modifying the arene compounds of the present invention, application to curable compositions and resist compositions, use as inclusion compounds, use as high-function arene compound intermediates, etc. Expected to be used in a wide range of fields.

本発明のアレーン系化合物誘導体は、特徴的な立体構造を有するとともに、包摂化合物等としての利用が期待されるものである。また、前述のアレーン系化合物を化学修飾することにより容易に製造されるものであり、硬化性組成物やレジスト用組成物への応用、及び包摂化合物としての利用、更には高機能を有するアレーン系化合物中間体としての利用等、幅広い分野における利用が期待される。   The arene-based compound derivative of the present invention has a characteristic steric structure and is expected to be used as an inclusion compound. Moreover, it is easily manufactured by chemically modifying the above-mentioned arene compounds, and is applied to a curable composition or a resist composition, and used as an inclusion compound, and further, an arene system having a high function. It is expected to be used in a wide range of fields, such as as a compound intermediate.

本発明のアレーン系化合物の製造方法によれば、化学修飾が容易であるとともに、特徴的な立体構造を有し、かつ、包摂化合物等としての利用が期待されるアレーン系化合物を容易に製造することができる。   According to the method for producing an arene-based compound of the present invention, an arene-based compound that can be easily chemically modified, has a characteristic three-dimensional structure, and is expected to be used as an inclusion compound or the like is easily produced. be able to.

本発明のアレーン系化合物誘導体の製造方法によれば、特徴的な立体構造を有するとともに、包摂化合物等としての利用が期待されるアレーン系化合物誘導体を化学就職によって容易に製造することができる。   According to the method for producing an arene compound derivative of the present invention, an arene compound derivative that has a characteristic steric structure and is expected to be used as an inclusion compound or the like can be easily produced by chemical employment.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

本発明のアレーン系化合物は、前記一般式(1)で表される原料化合物(A)と、前記一般式(2)で表される原料化合物(B)と、を反応させて得られるものである。以下、その詳細について説明する。   The arene compound of the present invention is obtained by reacting the raw material compound (A) represented by the general formula (1) with the raw material compound (B) represented by the general formula (2). is there. The details will be described below.

(原料化合物(A))
原料化合物(A)は、下記一般式(1)で表される芳香族ジオール化合物である。
(Raw compound (A))
The raw material compound (A) is an aromatic diol compound represented by the following general formula (1).

Figure 2009078976
Figure 2009078976

前記一般式(1)中、Xは、相互に独立に炭素数1〜10の置換若しくは非置換のアルキル基、炭素数2〜10の置換若しくは非置換のアルケニル基、炭素数2〜10の置換若しくは非置換のアルキニル基、炭素数7〜10の置換若しくは非置換のアラルキル基、炭素数1〜10の置換若しくは非置換のアルコキシ基、又は置換若しくは非置換のフェノキシ基を示し、mは、相互に独立に0又は1を示す。   In the general formula (1), X is independently a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a substitution having 2 to 10 carbon atoms. Or an unsubstituted alkynyl group, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group, Independently represents 0 or 1.

前記一般式(1)表される原料化合物(A)は、置換又は非置換のジヒドロキシベンゼンである。原料化合物(A)の具体例としては、1,3−ジヒドロキシベンゼン(レゾルシノール)、2−メチルレゾルシノール、及び2−ブチルレゾルシノール等を挙げることができる。これらのなかでも、レゾルシノール、2−メチルレゾルシノールが好ましい。なお、これらの原料化合物(A)は、一種単独で又は二種以上を組み合わせて用いることができる。   The raw material compound (A) represented by the general formula (1) is substituted or unsubstituted dihydroxybenzene. Specific examples of the raw material compound (A) include 1,3-dihydroxybenzene (resorcinol), 2-methylresorcinol, and 2-butylresorcinol. Among these, resorcinol and 2-methylresorcinol are preferable. In addition, these raw material compounds (A) can be used individually by 1 type or in combination of 2 or more types.

(原料化合物(B))
原料化合物(B)は、下記一般式(2)で表される芳香族ジアルデヒド化合物である。
(Raw material compound (B))
The raw material compound (B) is an aromatic dialdehyde compound represented by the following general formula (2).

Figure 2009078976
Figure 2009078976

前記一般式(2)中、Yは、相互に独立に一価の置換基を示し、nは、相互に独立に0又は1を示す。   In the general formula (2), Y represents a monovalent substituent independently of each other, and n represents 0 or 1 independently of each other.

前記一般式(2)表される原料化合物(B)は、置換又は非置換のフタルアルデヒドである。原料化合物(B)の具体例としては、o−フタルアルデヒド、m−フタルアルデヒド、及びp−フタルアルデヒド等を挙げることができる。これらの原料化合物(B)は、一種単独で又は二種以上を組み合わせて用いることができる。   The raw material compound (B) represented by the general formula (2) is a substituted or unsubstituted phthalaldehyde. Specific examples of the raw material compound (B) include o-phthalaldehyde, m-phthalaldehyde, and p-phthalaldehyde. These raw material compounds (B) can be used individually by 1 type or in combination of 2 or more types.

(原料化合物(A)と原料化合物(B)の反応)
本発明のアレーン系化合物は、原料化合物(A)と原料化合物(B)を、例えば溶媒中、触媒の存在下で、0.2時間以上(好ましくは48時間以上)、室温(25℃)〜110℃の温度条件下で脱水縮合反応させることにより製造することができる。用いることのできる溶媒としては、エタノール、イソプロパノール、n−プロパノール、n−ブタノール等のアルコールを挙げることができる。なお、溶媒は、脱水縮合反応の温度に応じて適宜選択することが好ましい。また、用いることのできる触媒としては、塩酸等の酸触媒を挙げることができる。
(Reaction of raw material compound (A) and raw material compound (B))
The arene compound of the present invention comprises a raw material compound (A) and a raw material compound (B) in a solvent, for example, in the presence of a catalyst for 0.2 hours or more (preferably 48 hours or more), from room temperature (25 ° C.) to It can be produced by a dehydration condensation reaction under a temperature condition of 110 ° C. Examples of the solvent that can be used include alcohols such as ethanol, isopropanol, n-propanol, and n-butanol. In addition, it is preferable to select a solvent suitably according to the temperature of dehydration condensation reaction. Examples of the catalyst that can be used include acid catalysts such as hydrochloric acid.

原料化合物(A)と原料化合物(B)のモル比に特に制限はないが、収率の観点から、原料化合物(B)/原料化合物(A)の値(モル比)が、0.1〜0.6の範囲であることが好ましく、0.2〜0.5の範囲であることが更に好ましく、0.2〜0.3の範囲であることが更に好ましく、0.2〜0.25の範囲であることが特に好ましい。   Although there is no restriction | limiting in particular in the molar ratio of a raw material compound (A) and a raw material compound (B), From a viewpoint of a yield, the value (molar ratio) of raw material compound (B) / raw material compound (A) is 0.1 It is preferably in the range of 0.6, more preferably in the range of 0.2 to 0.5, still more preferably in the range of 0.2 to 0.3, and 0.2 to 0.25. It is particularly preferable that the range is

また、反応溶液中の基質濃度(原料化合物(A)と原料化合物(B)の合計の濃度)に特に制限はないが、収率の観点から、2mol/l以上であることが好ましく、4mol/l以上であることが更に好ましく、4〜10mol/lの範囲であることが特に好ましい。   The substrate concentration in the reaction solution (the total concentration of the raw material compound (A) and the raw material compound (B)) is not particularly limited, but is preferably 2 mol / l or more from the viewpoint of yield, and 4 mol / l. 1 or more is more preferable, and the range of 4 to 10 mol / l is particularly preferable.

(立体構造)
上述の反応により得られる本発明のアレーン系化合物の立体構造は特に限定されない。本発明のアレーン系化合物の立体構造は、例えば、図1Aに示すようなラダー型環状オリゴマー、図1Bに示すようなラダー型ポリマー、及び図1に示すような分岐型ポリマー等であることが推測される。また、本発明のアレーン系化合物の立体構造は、例えば、これら図1A、図1B、及び図1Cで表される立体構造を組み合わせた構造であることも推測される。或いは、原料化合物(A)と原料化合物(B)を反応させることにより、図1A、図1B、及び図1Cで表されるそれぞれの立体構造を有する化合物の混合物として得られる場合が想定される。
(3D structure)
The steric structure of the arene compound of the present invention obtained by the above reaction is not particularly limited. The three-dimensional structure of the arene compound of the present invention is presumed to be, for example, a ladder-type cyclic oligomer as shown in FIG. 1A, a ladder-type polymer as shown in FIG. 1B, a branched polymer as shown in FIG. Is done. Moreover, it is estimated that the three-dimensional structure of the arene compound of the present invention is, for example, a structure obtained by combining these three-dimensional structures shown in FIGS. 1A, 1B, and 1C. Or the case where it obtains as a mixture of the compound which has each three-dimensional structure represented by FIG. 1A, FIG. 1B, and FIG. 1C by making a raw material compound (A) and a raw material compound (B) react is assumed.

本発明のアレーン系化合物は、化学修飾が可能なフェノール性水酸基(−OH基)をその分子構造中に有するものである。従って、このフェノール性水酸基には、種々の置換基を導入することが可能である。導入可能な置換基の具体例としては、tert−ブトキシカルボニル(Boc)基をはじめとする保護基、重合性官能基を有する基、アルカリ可溶性基を有する基、置換又は非置換のアルキル基等を挙げることができる。   The arene-based compound of the present invention has a phenolic hydroxyl group (—OH group) that can be chemically modified in its molecular structure. Therefore, various substituents can be introduced into this phenolic hydroxyl group. Specific examples of the substituent that can be introduced include a protective group such as a tert-butoxycarbonyl (Boc) group, a group having a polymerizable functional group, a group having an alkali-soluble group, a substituted or unsubstituted alkyl group, and the like. Can be mentioned.

重合成官能基の具体例としては、重合性不飽和構造を有する基、環状エーテル構造を有する基等を挙げることができる。より具体的には、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基、置換又は非置換のグリシジル基、置換又は非置換のオキセタニル基、置換又は非置換のスピロオルトエステル基等を挙げることができる。また、アルカリ可溶性基としては、カルボキシル基、アミノ基、スルホンアミド基、スルホン酸基、リン酸基等を挙げることができる。   Specific examples of the polysynthetic functional group include a group having a polymerizable unsaturated structure and a group having a cyclic ether structure. More specifically, a vinyl group, a vinylidene group, an acryloyl group, a methacryloyl group, a substituted or unsubstituted glycidyl group, a substituted or unsubstituted oxetanyl group, a substituted or unsubstituted spiro orthoester group, and the like can be given. Further, examples of the alkali-soluble group include a carboxyl group, an amino group, a sulfonamide group, a sulfonic acid group, and a phosphoric acid group.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified.

[赤外吸収スペクトル(IR)の測定]:サーモエレクトロン社製の商品名「Nicolet 380」を使用して赤外吸収スペクトル(IR)を測定した。   [Measurement of Infrared Absorption Spectrum (IR)]: The infrared absorption spectrum (IR) was measured using a trade name “Nicolet 380” manufactured by Thermo Electron.

[核磁気共鳴スペクトル(H−NMR)の測定]:日本電子社製の商品名「JNM−2500」を使用して核磁気共鳴スペクトル(H−NMR)を測定した。 [Measurement of nuclear magnetic resonance spectrum ( 1 H-NMR)]: A nuclear magnetic resonance spectrum ( 1 H-NMR) was measured using a trade name “JNM-2500” manufactured by JEOL.

[数平均分子量(Mn)の測定]:合成した試料の数平均分子量(Mn)を、東ソー社製のカラム(商品名「HLC−8220」)を使用し、流量:0〜600ml/min、溶出溶媒:DMF、カラム温度:40℃の分析条件で、ポリスチレンを標準とするサイズ排除クロマトグラフィー(SEC)により測定した。   [Measurement of Number Average Molecular Weight (Mn)]: The number average molecular weight (Mn) of the synthesized sample was measured using a column (trade name “HLC-8220”) manufactured by Tosoh Corporation, flow rate: 0 to 600 ml / min, elution. Measurement was performed by size exclusion chromatography (SEC) using polystyrene as a standard under the analysis conditions of solvent: DMF, column temperature: 40 ° C.

[熱分解温度(T)の測定]:セイコーインスツルメンツ社製の商品名「SSC/5200 DSC120」を使用し、窒素雰囲気下、10℃/分の昇温速度で熱分解温度(T)を測定した。 [Measurement of the thermal decomposition temperature (T d)]: using Seiko Instruments Inc. under the trade name "SSC / 5200 DSC120", under a nitrogen atmosphere, the thermal decomposition temperature at a heating rate of 10 ℃ / min (T d) It was measured.

(実施例1)
回転子を入れた50mlナスフラスコに、レゾルシノール2.2g(20mmol(官能基当量:40mmol))、及びエタノール3mlを入れ、エタノールにレゾルシノールを溶解させた。触媒として濃塩酸3mlを加えた後、氷冷下、熱エタノール6mlに溶解させたm−フタルアルデヒド(m−PA)0.67g(5mmol(官能基当量:10mmol))をゆっくりと滴下し、80℃で48時間撹拌して反応させた。反応終了後、生成した固体をエーテルで洗浄し、1.56gの黄色固体を得た。得られた黄色固体のIR、及びH−NMRの測定結果を示すチャートを図2及び図3にそれぞれ示す。
IR(film法、cm−1):3374(νOH);1607、1507、1430(νC=C(aromatic)
Example 1
In a 50 ml eggplant flask containing a rotor, 2.2 g (20 mmol (functional group equivalent: 40 mmol)) of resorcinol and 3 ml of ethanol were added, and resorcinol was dissolved in ethanol. After adding 3 ml of concentrated hydrochloric acid as a catalyst, 0.67 g (5 mmol (functional group equivalent: 10 mmol)) of m-phthalaldehyde (m-PA) dissolved in 6 ml of hot ethanol was slowly added dropwise under ice cooling. The reaction was stirred for 48 hours at 0 ° C. After completion of the reaction, the produced solid was washed with ether to obtain 1.56 g of a yellow solid. Charts showing IR and 1 H-NMR measurement results of the obtained yellow solid are shown in FIGS. 2 and 3, respectively.
IR (film method, cm −1 ): 3374 (ν OH ); 1607, 1507, 1430 (ν C═C (aromatic) )

(実施例2)
回転子を入れた50mlナスフラスコに、レゾルシノール2.2g(20mmol(官能基当量:40mmol))、及びエタノール1.5mlを入れ、エタノールにレゾルシノールを溶解させた。触媒として濃塩酸1.5mlを加えた後、氷冷下、熱エタノール3mlに溶解させたm−フタルアルデヒド(m−PA)0.67g(5mmol(官能基当量:10mmol))をゆっくりと滴下し、80℃で48時間撹拌して反応させた。反応終了後、生成した固体をエーテルで洗浄し、1.54gの黄色固体を得た(表1)。
(Example 2)
In a 50 ml eggplant flask containing a rotor, 2.2 g (20 mmol (functional group equivalent: 40 mmol)) of resorcinol and 1.5 ml of ethanol were added, and resorcinol was dissolved in ethanol. After adding 1.5 ml of concentrated hydrochloric acid as a catalyst, 0.67 g (5 mmol (functional group equivalent: 10 mmol)) of m-phthalaldehyde (m-PA) dissolved in 3 ml of hot ethanol was slowly added dropwise under ice cooling. The reaction was allowed to stir at 80 ° C. for 48 hours. After completion of the reaction, the produced solid was washed with ether to obtain 1.54 g of a yellow solid (Table 1).

(実施例3)
エタノールを3ml、濃塩酸を3ml、及び熱エタノールを6ml用いたこと以外は、前述の実施例2と同様の操作により1.56gの黄色固体を得た(表1)。
(Example 3)
Except for using 3 ml of ethanol, 3 ml of concentrated hydrochloric acid, and 6 ml of hot ethanol, 1.56 g of a yellow solid was obtained in the same manner as in Example 2 described above (Table 1).

Figure 2009078976
Figure 2009078976

(実施例4)
回転子を入れた50mlナスフラスコに、レゾルシノール2.2g(20mmol)、及びエタノール3mlを入れ、エタノールにレゾルシノールを溶解させた。触媒として濃塩酸3mlを加えた後、氷冷下、熱エタノール6mlに溶解させたm−フタルアルデヒド(m−PA)0.27g(2mmol)をゆっくりと滴下し、80℃で48時間撹拌して反応させた。反応終了後、生成した固体をエーテルで洗浄し、0.39gの黄色固体を得た。得られた黄色固体の数平均分子量(Mn)は1880であった。なお、サイズ排除クロマトグラフィー(SEC)による分析結果を示すクロマトグラム(溶出チャート)を図4に示す。
Example 4
In a 50 ml eggplant flask containing a rotor, 2.2 g (20 mmol) of resorcinol and 3 ml of ethanol were added, and resorcinol was dissolved in ethanol. After adding 3 ml of concentrated hydrochloric acid as a catalyst, 0.27 g (2 mmol) of m-phthalaldehyde (m-PA) dissolved in 6 ml of hot ethanol was slowly added dropwise under ice cooling, followed by stirring at 80 ° C. for 48 hours. Reacted. After completion of the reaction, the produced solid was washed with ether to obtain 0.39 g of a yellow solid. The number average molecular weight (Mn) of the obtained yellow solid was 1880. In addition, the chromatogram (elution chart) which shows the analysis result by size exclusion chromatography (SEC) is shown in FIG.

(実施例5〜11)
m−フタルアルデヒド(m−PA)を、0.4g(3mmol)、0.53g(4mmol)、0.67g(5mmol)、0.8g(6mmol)、0.93g(7mmol)、1.06g(8mmol)、及び1.34g(10mmol)用いたこと以外は、前述の実施例4と同様の操作により黄色固体を得た。収量(g)及び数平均分子量(Mn)の測定結果を表2に示す。また、サイズ排除クロマトグラフィー(SEC)による分析結果を示すクロマトグラム(溶出チャート)を図4に示す。
(Examples 5 to 11)
m-phthalaldehyde (m-PA) was added to 0.4 g (3 mmol), 0.53 g (4 mmol), 0.67 g (5 mmol), 0.8 g (6 mmol), 0.93 g (7 mmol), 1.06 g ( 8 mmol) and 1.34 g (10 mmol) were used, and a yellow solid was obtained in the same manner as in Example 4 described above. The measurement results of yield (g) and number average molecular weight (Mn) are shown in Table 2. Further, FIG. 4 shows a chromatogram (elution chart) showing an analysis result by size exclusion chromatography (SEC).

Figure 2009078976
Figure 2009078976

(実施例12)
回転子を入れた50mlナスフラスコに、レゾルシノール2.2g(20mmol(官能基当量:40mmol))、及びエタノール3mlを入れ、エタノールにレゾルシノールを溶解させた。触媒として濃塩酸3mlを加えた後、氷冷下、熱エタノール6mlに溶解させたo−フタルアルデヒド(o−PA)0.67g(5mmol(官能基当量:10mmol))をゆっくりと滴下し、80℃で0.5時間撹拌して反応させた。反応終了後、生成した固体をエーテルで洗浄し、1.38gの褐色固体を得た(表3)。得られた褐色固体のサイズ排除クロマトグラフィー(SEC)による分析結果を示すクロマトグラム(溶出チャート)を図5に示す。また、得られた褐色固体のIR、及びH−NMRの測定結果を示すチャートを図6及び図7にそれぞれ示す。
IR(film法、cm−1):3376(νOH);1602、1504、1433(νC=C(aromatic)
Example 12
In a 50 ml eggplant flask containing a rotor, 2.2 g (20 mmol (functional group equivalent: 40 mmol)) of resorcinol and 3 ml of ethanol were added, and resorcinol was dissolved in ethanol. After adding 3 ml of concentrated hydrochloric acid as a catalyst, 0.67 g (5 mmol (functional group equivalent: 10 mmol)) of o-phthalaldehyde (o-PA) dissolved in 6 ml of hot ethanol was slowly added dropwise under ice cooling. The reaction was allowed to stir at 0 ° C. for 0.5 hour. After completion of the reaction, the produced solid was washed with ether to obtain 1.38 g of a brown solid (Table 3). FIG. 5 shows a chromatogram (elution chart) showing the analysis result of the obtained brown solid by size exclusion chromatography (SEC). In addition, charts showing IR and 1 H-NMR measurement results of the obtained brown solid are shown in FIGS. 6 and 7, respectively.
IR (film method, cm −1 ): 3376 (ν OH ); 1602, 1504, 1433 (ν C═C (aromatic) )

(実施例13)
回転子を入れた50mlナスフラスコに、レゾルシノール2.2g(20mmol(官能基当量:40mmol))、及びエタノール3mlを入れ、エタノールにレゾルシノールを溶解させた。触媒として濃塩酸3mlを加えた後、氷冷下、熱エタノール6mlに溶解させたp−フタルアルデヒド(p−PA)0.67g(5mmol(官能基当量:10mmol))をゆっくりと滴下し、80℃で3時間撹拌して反応させた。反応終了後、生成した固体をエーテルで洗浄し、0.67gの褐色固体を得た(表3)。得られた褐色固体のサイズ排除クロマトグラフィー(SEC)による分析結果を示すクロマトグラム(溶出チャート)を図8に示す。また、得られた褐色固体のIR、及びH−NMRの測定結果を示すチャートを図9及び図10にそれぞれ示す。
IR(film法、cm−1):3386(νOH);1614、1506、1431(νC=C(aromatic)
(Example 13)
In a 50 ml eggplant flask containing a rotor, 2.2 g (20 mmol (functional group equivalent: 40 mmol)) of resorcinol and 3 ml of ethanol were added, and resorcinol was dissolved in ethanol. After adding 3 ml of concentrated hydrochloric acid as a catalyst, 0.67 g (5 mmol (functional group equivalent: 10 mmol)) of p-phthalaldehyde (p-PA) dissolved in 6 ml of hot ethanol was slowly added dropwise under ice cooling. The reaction was stirred for 3 hours at ° C. After completion of the reaction, the produced solid was washed with ether to obtain 0.67 g of a brown solid (Table 3). The chromatogram (elution chart) which shows the analysis result by size exclusion chromatography (SEC) of the obtained brown solid is shown in FIG. Further, charts showing IR and 1 H-NMR measurement results of the obtained brown solid are shown in FIGS. 9 and 10, respectively.
IR (film method, cm −1 ): 3386 (ν OH ); 1614, 1506, 1431 (ν C═C (aromatic) )

Figure 2009078976
Figure 2009078976

(実施例14)
回転子を入れた50mlフラスコに、実施例1で得た黄色固体(以下、「m−cyclic」と記す)3.2g(2.5mmol)、テトラブチルアンモニウムブロミド(TBAB)0.65g(2.0mmol)、及びピリジン30mlを入れ、m−cyclicをピリジンに溶解させた。その後、ジ−tert−ブチル−ジ−カーボネート(DiBoc)13.1g(60mmol)を氷冷下に滴下し、室温で48時間撹拌して反応させた。反応終了後、反応溶液をクロロホルムで希釈し、1N塩酸で3回、及び水道水で1回洗浄し、無水硫酸マグネシウムを用いて有機層を乾燥した。無水硫酸マグネシウムをろ別し、濃縮後、シリカゲルクロマトグラフィー(展開溶媒(体積比)=酢酸エチル:n−ヘキサン=1:1)により分離し、展開溶媒を減圧留去して6.0gの黄色固体(以下、「m−cyclic−Boc」と記す)を得た(収率83%)。得られたm−cyclic−Bocの熱分解温度は、T 5%=163℃、T 10%=166℃であった。なお、m−cyclic、及びm−cyclic−Bocの熱分解温度の測定結果を表4に示す。また、得られたm−cyclic−BocのIR、及びH−NMRの測定結果を示すチャートを図11及び図12にそれぞれ示す。更に、m−cyclic、及びm−cyclic−Bocの熱分解曲線を示すグラフを図13に示す。
IR(film法、cm−1):2981、2934(νC−H);1759(νC=O(carbonate));1605、1496、1458(νC=C(aromatic));1370(νC−H(t−butyl)
(Example 14)
In a 50 ml flask containing a rotor, 3.2 g (2.5 mmol) of the yellow solid obtained in Example 1 (hereinafter referred to as “m-cyclic”), 0.65 g of tetrabutylammonium bromide (TBAB) (2. 0 mmol) and 30 ml of pyridine were added, and m-cyclic was dissolved in pyridine. Thereafter, 13.1 g (60 mmol) of di-tert-butyl-di-carbonate (DiBoc) was added dropwise under ice cooling, and the mixture was reacted at room temperature for 48 hours. After completion of the reaction, the reaction solution was diluted with chloroform, washed 3 times with 1N hydrochloric acid and once with tap water, and the organic layer was dried using anhydrous magnesium sulfate. The anhydrous magnesium sulfate was filtered off, concentrated, and then separated by silica gel chromatography (developing solvent (volume ratio) = ethyl acetate: n-hexane = 1: 1), and the developing solvent was distilled off under reduced pressure to give 6.0 g of yellow A solid (hereinafter referred to as “m-cyclic-Boc”) was obtained (yield 83%). The thermal decomposition temperatures of the obtained m-cyclic-Boc were T d 5% = 163 ° C and T d 10% = 166 ° C. Table 4 shows the measurement results of the thermal decomposition temperatures of m-cyclic and m-cyclic-Boc. In addition, charts showing IR and 1 H-NMR measurement results of the obtained m-cyclic-Boc are shown in FIGS. 11 and 12, respectively. Furthermore, the graph which shows the thermal decomposition curve of m-cyclic and m-cyclic-Boc is shown in FIG.
IR (film method, cm −1 ): 2981, 2934 (ν C—H ); 1759 (ν C═O (carbonate) ); 1605, 1496, 1458 (ν C = C (aromatic) ); 1370 (ν C -H (t-butyl) )

Figure 2009078976
Figure 2009078976

IRの測定結果から、化学修飾により、3500cm−1付近に存在していた芳香族水酸基に由来する吸収が消失したことが明らかである。また、H−NMRの測定結果から、水酸基のプロトンに由来するシグナルが消失したことが明らかである。更には、H−NMRの積分値もよく一致していることから、原料であるm−cyclicのフェノール性水酸基に対して、Boc基を100%の割合で導入することができたと考えられる。 From the IR measurement results, it is clear that the absorption derived from the aromatic hydroxyl group present in the vicinity of 3500 cm −1 disappeared due to the chemical modification. Moreover, it is clear from the measurement result of 1 H-NMR that the signal derived from the proton of the hydroxyl group disappeared. Furthermore, since the integrated values of 1 H-NMR are also in good agreement, it is considered that the Boc group could be introduced at a ratio of 100% with respect to the phenolic hydroxyl group of m-cyclic as a raw material.

また、表4及び図13に示す結果から、m−cyclic−Bocは二段階で熱分解するとともに、一段階目の熱分解後は、m−cyclicと同様の熱分解曲線を示すことが明らかである。従って、m−cyclicのフェノール性水酸基に対してBoc基が導入されていると推測される。   Further, from the results shown in Table 4 and FIG. 13, it is clear that m-cyclic-Boc is thermally decomposed in two stages and, after the first stage of thermal decomposition, shows a thermal decomposition curve similar to that of m-cyclic. is there. Therefore, it is estimated that the Boc group is introduced with respect to the phenolic hydroxyl group of m-cyclic.

本発明のアレーン系化合物は、特徴的な立体構造を有し、化学修飾が容易なものである。このため、本発明のアレーン系化合物は、包摂化合物等をはじめとする特殊な機能を示す化合物としての利用が期待されるものである。   The arene compounds of the present invention have a characteristic steric structure and are easily chemically modified. For this reason, the arene compounds of the present invention are expected to be used as compounds exhibiting special functions including inclusion compounds.

本発明のアレーン系化合物の立体構造の一例(ラダー型環状オリゴマー)を示す模式図である。It is a schematic diagram which shows an example (ladder type | mold cyclic oligomer) of the three-dimensional structure of the arene type compound of this invention. 本発明のアレーン系化合物の立体構造の他の例(ラダー型ポリマー)を示す模式図である。It is a schematic diagram which shows the other example (ladder type polymer) of the three-dimensional structure of the arene compound of this invention. 本発明のアレーン系化合物の立体構造の更に他の例(分岐型ポリマー)を示す模式図である。It is a schematic diagram which shows the further another example (branched polymer) of the three-dimensional structure of the arene-type compound of this invention. 実施例1で得た黄色固体の赤外吸収スペクトル(IR)の測定結果を示すチャートである。2 is a chart showing measurement results of infrared absorption spectrum (IR) of a yellow solid obtained in Example 1. FIG. 実施例1で得た黄色固体の核磁気共鳴スペクトル(H−NMR)の測定結果を示すチャートである。2 is a chart showing measurement results of nuclear magnetic resonance spectrum ( 1 H-NMR) of a yellow solid obtained in Example 1. FIG. 実施例4〜10で得た黄色固体のサイズ排除クロマトグラフィー(SEC)による分析結果を示すクロマトグラム(溶出チャート)である。It is a chromatogram (elution chart) which shows the analysis result by size exclusion chromatography (SEC) of the yellow solid obtained in Examples 4-10. 実施例12で得た褐色固体のサイズ排除クロマトグラフィー(SEC)による分析結果を示すクロマトグラム(溶出チャート)である。It is a chromatogram (elution chart) which shows the analysis result by size exclusion chromatography (SEC) of the brown solid obtained in Example 12. 実施例12で得た褐色固体の赤外吸収スペクトル(IR)の測定結果を示すチャートである。10 is a chart showing measurement results of infrared absorption spectrum (IR) of a brown solid obtained in Example 12. 実施例12で得た褐色固体の核磁気共鳴スペクトル(H−NMR)の測定結果を示すチャートである。10 is a chart showing measurement results of nuclear magnetic resonance spectrum ( 1 H-NMR) of a brown solid obtained in Example 12. 実施例13で得た褐色固体のサイズ排除クロマトグラフィー(SEC)による分析結果を示すクロマトグラム(溶出チャート)である。It is a chromatogram (elution chart) which shows the analysis result by size exclusion chromatography (SEC) of the brown solid obtained in Example 13. 実施例13で得た褐色固体の赤外吸収スペクトル(IR)の測定結果を示すチャートである。10 is a chart showing measurement results of infrared absorption spectrum (IR) of a brown solid obtained in Example 13. 実施例13で得た褐色固体の核磁気共鳴スペクトル(H−NMR)の測定結果を示すチャートである。Is a chart showing the results of measurement of the nuclear magnetic resonance spectrum of a brown solid obtained in Example 13 (1 H-NMR). 実施例14で得た黄色固体(m−cyclic−Boc)の赤外吸収スペクトル(IR)の測定結果を示すチャートである。It is a chart which shows the measurement result of the infrared absorption spectrum (IR) of the yellow solid (m-cyclic-Boc) obtained in Example 14. 実施例14で得た黄色固体(m−cyclic−Boc)の核磁気共鳴スペクトル(H−NMR)の測定結果を示すチャートである。Is a chart showing the measurement results of the yellow solid obtained in Example 14 (m-cyclic-Boc) Nuclear magnetic resonance spectra (1 H-NMR). m−cyclic、及びm−cyclic−Bocの熱分解曲線を示すグラフである。It is a graph which shows the thermal decomposition curve of m-cyclic and m-cyclic-Boc.

Claims (10)

下記一般式(1)で表される原料化合物(A)と、下記一般式(2)で表される原料化合物(B)と、を反応させて得られる、化学修飾可能なフェノール性水酸基をその分子構造中に有するアレーン系化合物。
Figure 2009078976
(前記一般式(1)中、Xは、相互に独立に炭素数1〜10の置換若しくは非置換のアルキル基、炭素数2〜10の置換若しくは非置換のアルケニル基、炭素数2〜10の置換若しくは非置換のアルキニル基、炭素数7〜10の置換若しくは非置換のアラルキル基、炭素数1〜10の置換若しくは非置換のアルコキシ基、又は置換若しくは非置換のフェノキシ基を示し、mは、相互に独立に0又は1を示す)
Figure 2009078976
(前記一般式(2)中、Yは、相互に独立に一価の置換基を示し、nは、相互に独立に0又は1を示す)
A chemically modifiable phenolic hydroxyl group obtained by reacting a raw material compound (A) represented by the following general formula (1) with a raw material compound (B) represented by the following general formula (2) An arene compound contained in the molecular structure.
Figure 2009078976
(In the general formula (1), X is independently a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a group having 2 to 10 carbon atoms. A substituted or unsubstituted alkynyl group, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group, m is Shows 0 or 1 independently of each other)
Figure 2009078976
(In the general formula (2), Y represents a monovalent substituent independently of each other, and n represents independently of each other 0 or 1)
前記原料化合物(A)が、1,3−ジヒドロキシベンゼンである請求項1に記載のアレーン系化合物。   The arene compound according to claim 1, wherein the raw material compound (A) is 1,3-dihydroxybenzene. 前記原料化合物(B)が、o−フタルアルデヒド、m−フタルアルデヒド、又はp−フタルアルデヒドである請求項1又は2に記載のアレーン系化合物。   The arene compound according to claim 1 or 2, wherein the raw material compound (B) is o-phthalaldehyde, m-phthalaldehyde, or p-phthalaldehyde. 請求項1〜3のいずれか一項に記載のアレーン系化合物の前記フェノール性水酸基に保護基が導入されたアレーン系化合物誘導体。   The arene type compound derivative in which the protecting group was introduce | transduced into the said phenolic hydroxyl group of the arene type compound as described in any one of Claims 1-3. 前記保護基が、tert−ブトキシカルボニル基である請求項4に記載のアレーン系化合物誘導体。   The arene compound derivative according to claim 4, wherein the protecting group is a tert-butoxycarbonyl group. 下記一般式(1)で表される原料化合物(A)と、下記一般式(2)で表される原料化合物(B)と、を反応させる工程を有するアレーン系化合物の製造方法。
Figure 2009078976
(前記一般式(1)中、Xは、相互に独立に炭素数1〜10の置換若しくは非置換のアルキル基、炭素数2〜10の置換若しくは非置換のアルケニル基、炭素数2〜10の置換若しくは非置換のアルキニル基、炭素数7〜10の置換若しくは非置換のアラルキル基、炭素数1〜10の置換若しくは非置換のアルコキシ基、又は置換若しくは非置換のフェノキシ基を示し、mは、相互に独立に0又は1を示す)
Figure 2009078976
(前記一般式(2)中、Yは、相互に独立に一価の置換基を示し、nは、相互に独立に0又は1を示す)
A method for producing an arene compound, which comprises a step of reacting a raw material compound (A) represented by the following general formula (1) and a raw material compound (B) represented by the following general formula (2).
Figure 2009078976
(In the general formula (1), X is independently a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, or a group having 2 to 10 carbon atoms. A substituted or unsubstituted alkynyl group, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group, m is Shows 0 or 1 independently of each other)
Figure 2009078976
(In the general formula (2), Y represents a monovalent substituent independently of each other, and n represents independently of each other 0 or 1)
前記原料化合物(A)が、1,3−ジヒドロキシベンゼンである請求項6に記載のアレーン系化合物の製造方法。   The method for producing an arene compound according to claim 6, wherein the raw material compound (A) is 1,3-dihydroxybenzene. 前記原料化合物(B)が、o−フタルアルデヒド、m−フタルアルデヒド、又はp−フタルアルデヒドである請求項6又は7に記載のアレーン系化合物の製造方法。   The method for producing an arene-based compound according to claim 6 or 7, wherein the raw material compound (B) is o-phthalaldehyde, m-phthalaldehyde, or p-phthalaldehyde. 請求項1〜3のいずれか一項に記載のアレーン系化合物の前記フェノール性水酸基に保護基を導入する工程を有するアレーン系化合物誘導体の製造方法。   The manufacturing method of an arene type compound derivative which has the process of introduce | transducing a protecting group into the said phenolic hydroxyl group of the arene type compound as described in any one of Claims 1-3. 前記保護基が、tert−ブトキシカルボニル基である請求項9に記載のアレーン系化合物誘導体の製造方法。   The method for producing an arene-based compound derivative according to claim 9, wherein the protecting group is a tert-butoxycarbonyl group.
JP2007241319A 2007-09-03 2007-09-18 Arene-based compound and its production method, and arene-based compound derivative and its production method Withdrawn JP2009078976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241319A JP2009078976A (en) 2007-09-03 2007-09-18 Arene-based compound and its production method, and arene-based compound derivative and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007227646 2007-09-03
JP2007241319A JP2009078976A (en) 2007-09-03 2007-09-18 Arene-based compound and its production method, and arene-based compound derivative and its production method

Publications (1)

Publication Number Publication Date
JP2009078976A true JP2009078976A (en) 2009-04-16

Family

ID=40654021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241319A Withdrawn JP2009078976A (en) 2007-09-03 2007-09-18 Arene-based compound and its production method, and arene-based compound derivative and its production method

Country Status (1)

Country Link
JP (1) JP2009078976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275299A (en) * 2009-04-30 2010-12-09 Jsr Corp Aromatic compound and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275299A (en) * 2009-04-30 2010-12-09 Jsr Corp Aromatic compound and production method thereof

Similar Documents

Publication Publication Date Title
KR101135771B1 (en) Calixarene compound, process for producing the same, intermediate therefor, and composition thereof
JP4657030B2 (en) Calixarene derivatives and compositions containing the same
JP2001354685A (en) Phosphorus atom-containing phenol compound and method for producing the same
JP5596258B2 (en) Calixarene dimer compound and method for producing the same
Zhang et al. o-Quinones Derived from Tribenzotriquinacenes: Functionalization of Inner Bay Positions and Use for Single-Wing Extensions
JP2009078976A (en) Arene-based compound and its production method, and arene-based compound derivative and its production method
JP4669720B2 (en) Calix resorcinarene derivative and method for producing the same
JP2009196904A (en) Cyclic compound and its production method
JP2009215227A (en) Method of preparing calixarene compound
JP5629490B2 (en) Aromatic compounds
JP4431790B2 (en) Resorcinol novolac derivatives
JP5201620B2 (en) Phosphonium ionic liquid, method for producing biaryl compound and method for using ionic liquid
JP2009227613A (en) Arene compound
Liu et al. A general and efficient method for synthesis of enaminones and enamino esters catalyzed by NbCl 5 under solvent-free conditions
JP5375610B2 (en) Compound and production method thereof
JP2008050366A (en) Intermediate of calixarene-based compound
JP5745802B2 (en) Calixarene compound and method for producing the same
JP2009196918A (en) Arene compound
JP5820171B2 (en) Inclusion compound and method for producing the same
JP4118645B2 (en) Method for producing calix [4] arene derivative mixture
JP4360821B2 (en) Process for producing hydroxyphenyltriarylphosphonium iodide and derivatives thereof
WO1993012060A1 (en) Novel inclusion compound comprising tetrakisphenol as host
JPS6168435A (en) Novel brominated alkylphenyl allyl ether and its preparation
KR101511235B1 (en) Method of refining high purity 2,6-diamino-9,10-dihydroanthracene
JPS58174339A (en) 2,2-dihalo-6-halo-6-(1-haloisobutyl)cyclohexanone

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207