JP2009078809A - Running control device of vehicle - Google Patents

Running control device of vehicle Download PDF

Info

Publication number
JP2009078809A
JP2009078809A JP2008298050A JP2008298050A JP2009078809A JP 2009078809 A JP2009078809 A JP 2009078809A JP 2008298050 A JP2008298050 A JP 2008298050A JP 2008298050 A JP2008298050 A JP 2008298050A JP 2009078809 A JP2009078809 A JP 2009078809A
Authority
JP
Japan
Prior art keywords
vehicle
driving force
traveling
margin
host vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008298050A
Other languages
Japanese (ja)
Inventor
Kenji Kawahara
研司 河原
Hisashi Iida
飯田  寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008298050A priority Critical patent/JP2009078809A/en
Publication of JP2009078809A publication Critical patent/JP2009078809A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate excess/shortage of the marginal driving force and thereby reduce the amount of fuel consumption. <P>SOLUTION: A required driving force calculation part 10 calculates the required driving force on the basis of the amount of accelerator being stamped by the driver and the speed of the vehicle concerned. A preceding vehicle recognition part 20 acknowledges the vehicle running ahead and calculates the distance from the preceding vehicle, relative speed, etc. A running situation judging part 30 judges the running situation of the vehicle concerned on the basis of the preceding vehicle information including the inter-vehicle distance and relative speed recognized by the preceding vehicle recognition part 20 and the heading course altering information including the amount of steering wheel being turned, the operating signal for a direction indicator, etc. A required marginal driving force calculation part 40 calculates the required marginal driving force to be secured at each time on the basis of the running situation of the vehicle concerned judged by the running situation judging part 30, in addition to the amount of accelerator being operated and the vehicle speed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両の走行状態制御装置に関するものである。   The present invention relates to a vehicle running state control device.

従来より、ドライバの出力要求と車速等により算出した目標駆動力に、今後の加速要求に備えて算出した余裕駆動力を加算し、その結果を用いて最良燃費にて車両の走行状態を制御する技術が知られている(例えば、特許文献1参照)。   Conventionally, the marginal driving force calculated in preparation for future acceleration requests is added to the target driving force calculated based on the driver's output request and vehicle speed, etc., and the driving state of the vehicle is controlled with the best fuel consumption using the result. A technique is known (see, for example, Patent Document 1).

ここで、余裕駆動力は現在から近い将来において発生する駆動力増加要求に短時間で応答できるように考慮されるものであり、変速スケジュールやリーン運転条件等はこの余裕駆動力を考慮して設定される。例えば、オートマチックトランスミッション搭載車両では余裕駆動力は車両の走行性能と燃料消費性能を総合的に考慮して予め設定される、又は余裕駆動力を考慮してギア段やエンジン運転モードが設定される。この場合、通常一般の車両では、余裕駆動力を大きく設定すると例えば低速ギアで運転することになり、エンジン回転数が高くなる。つまり、加速性能を上げようとすると燃費が悪化するという背反の関係がある。   Here, the margin driving force is considered so that it can respond in a short time to the driving force increase request generated in the near future from now, and the shift schedule and lean operation conditions are set in consideration of this margin driving force. Is done. For example, in a vehicle equipped with an automatic transmission, the marginal driving force is set in advance in consideration of the running performance and fuel consumption performance of the vehicle, or the gear stage and the engine operation mode are set in consideration of the marginal driving force. In this case, in a normal ordinary vehicle, if the marginal driving force is set large, for example, the vehicle is operated with a low-speed gear, and the engine speed increases. That is, there is a contradictory relationship that fuel efficiency deteriorates when trying to increase acceleration performance.

また、余裕駆動力は道路状況に応じてその必要量が変化するものであるため、過剰に余裕駆動力を確保しすぎて燃費性能を悪化させることがありえる。上記特許文献1では、ナビゲーションシステム等により得られた道路勾配情報を基に余裕駆動力を算出することで道路勾配に応じた余裕駆動力設定を行おうとしているが、自車両が単独で走行している場合にはある程度の燃費改善効果があるものの、他車両が存在する状況では十分な効果が期待できない。つまり、必要な余裕駆動力は道路勾配のみならず、自車両と他車両との相対関係に応じて必要量が変わると考えられる。それ故、上記特許文献1では、燃費改善効果が不十分であるという問題があった。
特開2002−254962号公報
Further, since the required amount of the marginal driving force changes depending on the road condition, it is possible that the marginal driving force is excessively secured and the fuel efficiency is deteriorated. In Patent Document 1, an attempt is made to set a margin driving force according to a road gradient by calculating a margin driving force based on road gradient information obtained by a navigation system or the like, but the host vehicle travels alone. However, if there is another vehicle, a sufficient effect cannot be expected. In other words, the necessary margin driving force is considered to change depending on not only the road gradient but also the relative relationship between the host vehicle and the other vehicle. Therefore, the above-mentioned Patent Document 1 has a problem that the fuel efficiency improvement effect is insufficient.
Japanese Patent Application Laid-Open No. 2002-254962

本発明は、必要に応じてフェールセーフ処置を適度に実施することができる車両制御システムを提供することを主たる目的とするものである。   The main object of the present invention is to provide a vehicle control system capable of appropriately performing fail-safe treatment as necessary.

請求項1の車両の走行状態制御装置では、周囲を走行する他車両との相対関係を含む自車両の走行状況が判定され、該判定された自車両の走行状況に基づいて余裕駆動力が増大又は低減される。つまり、自車両の周囲に他車両が存在する場合、その他車両の相対関係等によっては現状以上に駆動力を増大する必要があったり、逆になかったりする。この場合、自車両の走行状況を考慮して余裕駆動力を決定することで、当該余裕駆動力の過不足を解消し、それにより燃料消費量の低減等を図ることができる。   In the vehicle travel state control device according to claim 1, the travel state of the host vehicle including a relative relationship with other vehicles traveling around is determined, and the marginal driving force is increased based on the determined travel state of the host vehicle. Or reduced. In other words, when there is another vehicle around the host vehicle, it may be necessary to increase the driving force beyond the current level or not depending on the relative relationship of the other vehicle. In this case, by determining the marginal driving force in consideration of the traveling state of the host vehicle, it is possible to eliminate the excess or deficiency of the marginal driving force, thereby reducing the fuel consumption.

さらに、請求項1の発明では、自車両の周囲を走行する他車両と自車両とが接近する状態であることが判定された時、余裕駆動力が増大される。例えば、側方車両や後方車両との車間距離が縮まる場合には、その後の衝突防止のために追い越しを行う可能性がある。この場合、余裕駆動力を増大することで、ドライバの加速意志を反映しつつ、適切なる危険回避走行等が可能となる。   Further, in the first aspect of the present invention, when it is determined that the other vehicle traveling around the host vehicle is close to the host vehicle, the marginal driving force is increased. For example, when the inter-vehicle distance with the side vehicle or the rear vehicle is reduced, there is a possibility of overtaking to prevent a subsequent collision. In this case, by increasing the marginal driving force, it is possible to perform appropriate risk avoidance traveling while reflecting the driver's acceleration intention.

請求項2の発明では、自車両の前方所定領域に存在する他車両を追い越さずに追従走行している状態であることが判定された時、前記余裕駆動力が低減される。つまり、他車両に追従走行している時には今後将来の加速の可能性は低い。この場合、余裕駆動力を低減することで、燃費低減が可能となる。   In the invention of claim 2, when it is determined that the vehicle is following the vehicle without overtaking another vehicle existing in a predetermined area in front of the host vehicle, the margin driving force is reduced. In other words, the possibility of future acceleration is low when traveling following other vehicles. In this case, the fuel efficiency can be reduced by reducing the marginal driving force.

ここで、前方所定領域の他車両に対して自車両がほぼ同速度で走行しており且つ自車両の進路が変更されない場合に他車両に追従走行している状態であることが判定されると良い(請求項3)。自車両の進路変更の有無は、ハンドル操作量(操舵角情報)や方向指示器の操作情報等により判定されると良い。   Here, when it is determined that the host vehicle is traveling at substantially the same speed with respect to the other vehicle in the predetermined area ahead and the vehicle is following the other vehicle when the course of the host vehicle is not changed. Good (claim 3). The presence / absence of a change in the course of the host vehicle may be determined based on a handle operation amount (steering angle information), operation information on a direction indicator, or the like.

また、請求項4の発明では、自車両の前方所定領域に存在する他車両を追い越す状態であることが判定された時、前記余裕駆動力が増大される。つまり、他車両の追い越し時には、迅速なる加速応答が必要となる。この場合、余裕駆動力を増大することで、ドライバの加速意志を適切に反映することが可能となる。   In the invention of claim 4, when it is determined that the vehicle is overtaking another vehicle existing in a predetermined area in front of the host vehicle, the margin driving force is increased. That is, when overtaking another vehicle, a quick acceleration response is required. In this case, it is possible to appropriately reflect the driver's acceleration intention by increasing the marginal driving force.

ここで、前方所定領域の他車両に対して自車両が接近しており且つ自車両の進路が変更される場合に他車両を追い越す状態であることが判定されると良い(請求項5)。   Here, when the host vehicle is approaching another vehicle in a predetermined area in front and the course of the host vehicle is changed, it is preferably determined that the vehicle is overtaking the other vehicle.

以下、本発明を具体化した一実施の形態を図面に従って説明する。本実施の形態は、自動車用制御システムに適用されるものであり、当該制御システムにおいて電子制御ユニット(以下、ECUという)によりエンジンや自動変速機などを好適に制御するための手法について以下に詳述する。周知構成であるため図示は省略するが、車両は、エンジンと該エンジンのクランク軸(出力軸)に連結されたトルクコンバータ付き自動変速機とを備えており、エンジンの出力がクランク軸を介して自動変速機に伝達され、更に自動変速機の出力軸の回転がディファレンシャルギア及び車軸を介して車輪に伝達されることで車両が走行する。また、エンジンには、スロットルバルブの開度を調整するためのスロットルアクチュエータが設けられており、スロットル開度はドライバのアクセル操作量等に応じて電気的に制御されるようになっている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. The present embodiment is applied to an automobile control system, and a method for suitably controlling an engine, an automatic transmission, and the like by an electronic control unit (hereinafter referred to as ECU) in the control system will be described in detail below. Describe. Although not shown because it is a well-known configuration, the vehicle includes an engine and an automatic transmission with a torque converter connected to the crankshaft (output shaft) of the engine, and the output of the engine is transmitted via the crankshaft. The vehicle travels by being transmitted to the automatic transmission, and further by transmitting the rotation of the output shaft of the automatic transmission to the wheels via the differential gear and the axle. Further, the engine is provided with a throttle actuator for adjusting the opening degree of the throttle valve, and the throttle opening degree is electrically controlled in accordance with the accelerator operation amount of the driver and the like.

図1は車両の駆動力制御に関するECUの機能ブロック図であり、先ずは本制御全般の概要について説明する。   FIG. 1 is a functional block diagram of an ECU relating to vehicle driving force control. First, an overview of the overall control will be described.

図1において、要求駆動力算出部10は、ドライバによるアクセル操作量と自車両の車速とに基づいて要求駆動力を算出する。また、前方車両認識部20は、レーザレーダセンサ等により構成されており、自車両の前方を走行する他車両(以下、前方車両という)を認識し、前方車両との車間距離や相対速度等を算出する。より具体的には、レーザレーダセンサは、車両前方の所定領域に向けてレーザ光を照射する発光部と、車両前方に照射されたレーザ光の反射波を受光する受光部とを備えており、車両前方の所定領域を所定周期でスキャニングするように構成されている。そして、発光部からレーザ光が照射された後にその反射波が受光部で受光されるまでの時間に応じた信号、及び反射波の入射角度に応じた信号がレーザレーダセンサから出力され、この出力信号に基づいて自車両の前方所定領域内に存在する前方車両等までの車間距離が検出されると共に、その検出された車間距離を微分処理することにより前方車両との相対速度(車間距離の単位時間あたり変化量)が検出される。   In FIG. 1, the required driving force calculation unit 10 calculates the required driving force based on the accelerator operation amount by the driver and the vehicle speed of the host vehicle. Further, the forward vehicle recognition unit 20 is configured by a laser radar sensor or the like, recognizes another vehicle that travels in front of the host vehicle (hereinafter referred to as a forward vehicle), and determines an inter-vehicle distance, a relative speed, and the like with the forward vehicle. calculate. More specifically, the laser radar sensor includes a light emitting unit that irradiates laser light toward a predetermined area in front of the vehicle, and a light receiving unit that receives a reflected wave of the laser light irradiated to the front of the vehicle. It is configured to scan a predetermined area in front of the vehicle at a predetermined cycle. Then, a signal corresponding to the time until the reflected wave is received by the light receiving unit after the laser beam is emitted from the light emitting unit, and a signal corresponding to the incident angle of the reflected wave are output from the laser radar sensor. Based on the signal, an inter-vehicle distance to a front vehicle existing in a predetermined area in front of the host vehicle is detected, and a relative speed with respect to the front vehicle (unit of inter-vehicle distance is determined by differentiating the detected inter-vehicle distance. Change amount per hour) is detected.

走行状況判定部30は、前記前方車両認識部20で認識した車間距離や相対速度といった前方車両情報と、ハンドル操作量や方向指示器の操作信号といった進路変更情報とに基づいて自車両の走行状況を判定する。なお、ハンドル操作量は、操舵角センサの検出信号から算出される。その他、ドライバのアクセル操作量(加速の状態)等を考慮して自車両の走行状況を判定することも可能である。   The traveling state determination unit 30 is based on the forward vehicle information such as the inter-vehicle distance and the relative speed recognized by the forward vehicle recognition unit 20 and the traveling state of the host vehicle based on the route change information such as the steering wheel operation amount and the direction indicator operation signal. Determine. The steering wheel operation amount is calculated from the detection signal of the steering angle sensor. In addition, it is possible to determine the traveling state of the host vehicle in consideration of the driver's accelerator operation amount (acceleration state) and the like.

本実施の形態では、自車両の走行状況として少なくとも、
(1)前方所定領域に前方車両が存在し、その前方車両に接近中であり且つ同前方車両を追い越そうとしている状況であること、
(2)前方所定領域に前方車両が存在し、その前方車両にほぼ同速度で追従走行している状況であること、
(3)上記(1),(2)以外の状況であること、
を判定することとしている。
In the present embodiment, at least as the traveling situation of the host vehicle,
(1) There is a forward vehicle in a predetermined area in front, the vehicle is approaching the vehicle ahead and is about to pass the vehicle ahead;
(2) There is a front vehicle in a predetermined area ahead, and the vehicle is following the front vehicle at substantially the same speed,
(3) The situation is other than (1) and (2) above.
Is going to be judged.

要求余裕駆動力算出部40は、アクセル操作量と車速とに加え、前記走行状況判定部30により判定した自車両の走行状況に基づいて、その都度確保すべき要求余裕駆動力を算出する。本実施の形態では、余裕駆動力の設定モードとして、ノーマルモード、高余裕駆動力走行モード、低余裕駆動力走行モードを設けており、その都度の自車両の走行状況に応じて何れかのモードが選択されるようになっている。   The required margin driving force calculation unit 40 calculates the required margin driving force to be secured each time based on the traveling state of the host vehicle determined by the traveling state determination unit 30 in addition to the accelerator operation amount and the vehicle speed. In the present embodiment, a normal mode, a high margin driving force traveling mode, and a low margin driving force traveling mode are provided as the margin driving force setting modes, and any mode is selected according to the traveling state of the host vehicle each time. Is to be selected.

要求ギア段算出部50は、前記要求駆動力算出部10で算出した要求駆動力、前記要求余裕駆動力算出部40で算出した要求余裕駆動力等に基づいて要求ギア段を算出する。   The required gear stage calculation unit 50 calculates the required gear stage based on the required driving force calculated by the required driving force calculation unit 10, the required margin driving force calculated by the required margin driving force calculation unit 40, and the like.

エンジン運転パラメータ算出部60は、前記要求駆動力算出部10で算出した要求駆動力、前記要求余裕駆動力算出部40で算出した要求余裕駆動力、実ギア比等に基づいてエンジンの各種運転パラメータを算出する。なお、実ギア比は、前記要求ギア段算出部50で算出した要求ギア段により実現されるギア比である。   The engine operating parameter calculation unit 60 is configured to perform various engine operating parameters based on the required driving force calculated by the required driving force calculation unit 10, the required margin driving force calculated by the required margin driving force calculation unit 40, the actual gear ratio, and the like. Is calculated. The actual gear ratio is a gear ratio realized by the required gear stage calculated by the required gear stage calculation unit 50.

次に、上記各機能ブロックのうち、走行状況判定部30、要求余裕駆動力算出部40、要求ギア段算出部50及びエンジン運転パラメータ算出部60の詳細を順に説明する。図2は、走行状況判定部30の演算処理を詳細に示すフローチャートである。本処理では、自車両の走行状況を判定すると共に、その走行状況に応じて高余裕駆動力走行フラグと低余裕駆動力走行フラグとを適宜ON又はOFFとする構成としている。   Next, among the functional blocks, details of the traveling state determination unit 30, the required margin driving force calculation unit 40, the required gear stage calculation unit 50, and the engine operation parameter calculation unit 60 will be described in order. FIG. 2 is a flowchart showing in detail the calculation process of the traveling state determination unit 30. In this process, the traveling state of the host vehicle is determined, and the high margin driving force traveling flag and the low margin driving force traveling flag are appropriately turned ON or OFF according to the traveling state.

図2において、ステップS101では、レーザレーダセンサ等による前方車両情報に基づいて前方車両の有無を判別し、続くステップS102では、前方車両との車間距離が所定のしきい値K1よりも小さいか否かを判別する。前方車両がいない場合、又は前方車両があっても車間距離≧K1の場合、ステップS110に進み、高余裕駆動力走行フラグと低余裕駆動力走行フラグとを何れもOFFとする。   In FIG. 2, in step S101, the presence or absence of a forward vehicle is determined based on forward vehicle information from a laser radar sensor or the like, and in the subsequent step S102, whether or not the inter-vehicle distance from the forward vehicle is smaller than a predetermined threshold value K1. Is determined. If there is no preceding vehicle or if there is a preceding vehicle and the inter-vehicle distance ≧ K1, the process proceeds to step S110, and both the high margin driving force traveling flag and the low margin driving force traveling flag are turned OFF.

また、ステップS101,S102が共にYESの場合、ステップS103では、自車両と前方車両との相対速度が所定のしきい値K2以下であるか否かを判別する。ここで、しきい値K2はマイナス値(K2<0)であり、相対速度≦K2である場合、自車両と前方車両とが離れる状況にあることが判定される。この場合、ステップS110に進み、高余裕駆動力走行フラグと低余裕駆動力走行フラグとを何れもOFFとする。つまり、ドライバは前方車両との車間距離を減らすため加速要求する可能性があるが、加速要求せずに現状の運転状態を継続する可能性もあり走行状況の判定は不確実であるため、各フラグをクリアして本処理を終了する。   If both steps S101 and S102 are YES, in step S103, it is determined whether or not the relative speed between the host vehicle and the preceding vehicle is equal to or less than a predetermined threshold value K2. Here, when the threshold value K2 is a negative value (K2 <0) and the relative speed ≦ K2, it is determined that the host vehicle and the preceding vehicle are separated. In this case, the process proceeds to step S110, and both the high margin driving force traveling flag and the low margin driving force traveling flag are turned OFF. In other words, the driver may request acceleration in order to reduce the inter-vehicle distance with the preceding vehicle, but it may continue the current driving state without requesting acceleration, so the determination of the driving situation is uncertain. The flag is cleared and this process is terminated.

また、ステップS104では、自車両と前方車両との相対速度が所定のしきい値K3以上であるか否かを判別する。ここで、しきい値K3はプラス値(K3>0)であり、相対速度≧K3である場合、自車両と前方車両とが接近する状況にあることが判定される。この場合、ステップS105に進み、自車両の進路が変更される状況にあるか、すなわちドライバが前方車両を追い越そうとしているか否かを判別する。具体的には、操舵角情報や方向指示器の操作情報等に基づいて進路変更の状況を判別する。進路変更時には、進路変更に伴い追い越しを開始し自車両が前方車両を追い抜くまでの期間でステップS105がYESとされる。   In step S104, it is determined whether or not the relative speed between the host vehicle and the preceding vehicle is equal to or greater than a predetermined threshold value K3. Here, when the threshold value K3 is a positive value (K3> 0) and the relative speed ≧ K3, it is determined that the host vehicle and the preceding vehicle are in a state of approaching. In this case, the process proceeds to step S105, and it is determined whether or not the course of the host vehicle is being changed, that is, whether or not the driver is going to pass the preceding vehicle. Specifically, the course change status is determined based on the steering angle information, the operation information of the direction indicator, and the like. When the route is changed, step S105 is set to YES in a period from when overtaking is started along with the route change until the own vehicle overtakes the preceding vehicle.

自車両と前方車両とが接近する状況にあって且つ進路変更時であればステップS106に進み、高余裕駆動力走行フラグをONとする。また、進路変更時でなければステップS110に進み、高余裕駆動力走行フラグと低余裕駆動力走行フラグとを何れもOFFとする。つまり、自車両と前方車両とが接近する状況にあっても進路変更がなされていなければ、今後追い越し走行するかどうか不確実であるため、各フラグをクリアして本処理を終了する。   If the host vehicle and the vehicle ahead are close to each other and the course is being changed, the process proceeds to step S106, and the high margin driving force travel flag is set to ON. If the course is not changed, the process proceeds to step S110, and both the high margin driving force traveling flag and the low margin driving force traveling flag are turned OFF. That is, even if the host vehicle and the preceding vehicle are approaching each other, if the course has not been changed, it is uncertain whether or not the vehicle will overtake in the future, so each flag is cleared and the process is terminated.

また、K2<相対速度<K3の場合(ステップS103,S104が共にNOの場合)、前方車両にほぼ同速度で自車両が走行している状況にあり、かかる状況ではステップS107に進み、自車両の進路が変更される状況にあるか否か、すなわちドライバが前方車両を追い越そうとしているか否かを判別する。前方車両とほぼ同速度であって且つ進路変更時でなければ、自車両が前方車両に追従走行していると判定できる。この追従走行時には、ステップS108で遅延処理を行い、その後ステップS109では、低余裕駆動力走行フラグをONとする。つまり、自車両が前方車両に追従走行する場合においては、ノーマルモード等から低余裕駆動力モードに移行する際に所定時間の遅れを持たせた後、モード移行がなされるようになっている。   Further, when K2 <relative speed <K3 (when both steps S103 and S104 are NO), the host vehicle is traveling at substantially the same speed as the preceding vehicle. In such a situation, the process proceeds to step S107. It is determined whether or not the course of the vehicle is being changed, that is, whether or not the driver is overtaking the vehicle ahead. If the speed is substantially the same as that of the preceding vehicle and the course is not changed, it can be determined that the host vehicle is following the preceding vehicle. During this follow-up running, delay processing is performed in step S108, and then in step S109, the low margin driving force running flag is turned ON. That is, when the host vehicle travels following the preceding vehicle, the mode shift is performed after a predetermined time delay when shifting from the normal mode or the like to the low margin driving force mode.

また、前方車両とほぼ同速度であって且つ進路変更時であればステップS110に進み、高余裕駆動力走行フラグと低余裕駆動力走行フラグとを何れもOFFとする。つまり、前方車両とほぼ同速度であって且つ進路変更時であれば、追い越しでなく単なる車線変更や行き先変更かもしれず、走行状況の判定は不確実であるため、各フラグをクリアして本処理を終了する。   If the speed is substantially the same as that of the preceding vehicle and the course is being changed, the process proceeds to step S110, and both the high margin driving force traveling flag and the low margin driving force traveling flag are turned OFF. In other words, if it is almost the same speed as the preceding vehicle and the course is changing, it may be a simple lane change or destination change instead of overtaking, and it is uncertain about the driving situation. Exit.

次に、図3は、要求余裕駆動力算出部40の詳細を示す図面である。図3の構成では、車速に応じて最大駆動力を算出し、最大駆動力から要求駆動力を減算することで最大余裕駆動力を算出する。なお、最大駆動力は、車速が高いほど小さい値として算出されるようになっている。また、アクセル操作量と車速とに基づいて余裕駆動力指標を算出すると共に、その余裕駆動力指標と最大余裕駆動力との乗算により余裕駆動力ベース値を算出する。一方、前記走行状況判定部30で判定した自車両の走行状況(前記図2の処理で設定した各フラグ)に基づいて余裕駆動力補正量を算出し、この余裕駆動力補正量を前記余裕駆動力ベース値に加算して要求余裕駆動力を算出する。このとき、前記図2の処理で高余裕駆動力走行フラグがONされていれば(すなわち高余裕駆動力走行モードであれば)、正の余裕駆動力補正量が算出され、余裕駆動力ベース値が増加側に補正される。また、低余裕駆動力走行フラグがONされていれば(すなわち低余裕駆動力走行モードであれば)、負の余裕駆動力補正量が算出され、余裕駆動力ベース値が減少側に補正される。高余裕駆動力走行フラグと低余裕駆動力走行フラグとが何れもOFFであれば(すなわちノーマルモードであれば)、余裕駆動力補正量が0とされ、余裕駆動力ベース値は補正されない。   Next, FIG. 3 is a diagram showing details of the required margin driving force calculation unit 40. In the configuration of FIG. 3, the maximum driving force is calculated according to the vehicle speed, and the maximum marginal driving force is calculated by subtracting the required driving force from the maximum driving force. The maximum driving force is calculated as a smaller value as the vehicle speed is higher. Further, an allowance driving force index is calculated based on the accelerator operation amount and the vehicle speed, and an allowance driving force base value is calculated by multiplying the margin driving force index and the maximum allowance driving force. On the other hand, a margin driving force correction amount is calculated based on the traveling state of the host vehicle determined by the traveling state determination unit 30 (each flag set in the processing of FIG. 2), and this margin driving force correction amount is calculated as the margin driving force. The required margin driving force is calculated by adding to the force base value. At this time, if the high margin driving force travel flag is ON in the processing of FIG. 2 (that is, in the high margin driving force traveling mode), a positive margin driving force correction amount is calculated and the margin driving force base value is calculated. Is corrected to the increasing side. If the low margin driving force travel flag is ON (that is, in the low margin driving force traveling mode), the negative margin driving force correction amount is calculated, and the margin driving force base value is corrected to the decreasing side. . If the high margin driving force running flag and the low margin driving force running flag are both OFF (that is, in the normal mode), the margin driving force correction amount is set to 0, and the margin driving force base value is not corrected.

また、図4は、要求ギア段算出部50の詳細を示す図面である。図4の構成では、トルコンタービン回転数に基づいて最大可能タービントルクを算出する一方、自動変速機の1速ギア〜5速ギアの各ギア比をマルチプレクサ(MUX)にて1つのベクトル信号として取り出す。また、最大可能タービントルクとMUXのベクトル信号との乗算により最大可能出力軸トルクを算出すると共に、それにデフ比を乗算して最大可能車軸トルクを算出し、更に駆動輪半径を除算した後要求駆動力を減算することで最大可能余裕駆動力を算出する。この一連の処理により、1速〜5速の各ギア比に対応する最大可能余裕駆動力がそれぞれ算出される。   FIG. 4 is a diagram showing details of the required gear stage calculation unit 50. In the configuration of FIG. 4, the maximum possible turbine torque is calculated based on the torque converter turbine rotation speed, and each gear ratio of the first to fifth gears of the automatic transmission is extracted as one vector signal by the multiplexer (MUX). . Also, the maximum possible output shaft torque is calculated by multiplying the maximum possible turbine torque and the MUX vector signal, and the maximum possible axle torque is calculated by multiplying it by the differential ratio. The maximum possible margin driving force is calculated by subtracting the force. By this series of processing, the maximum possible margin driving force corresponding to each gear ratio of 1st speed to 5th speed is calculated.

そして、1速〜5速の各ギア比に対応する最大可能余裕駆動力と前記要求余裕駆動力算出部40にて算出した要求余裕駆動力(前記図3参照)とをそれぞれ大小比較し、そのうち「最大可能余裕駆動力>要求余裕駆動力」となるものを抽出する。また、その抽出結果に各ギア段情報を反映した後、そのうち最高ギア段を要求ギア段とする。   Then, the maximum possible margin driving force corresponding to each gear ratio of the first to fifth gears and the required margin driving force calculated by the required margin driving force calculation unit 40 (see FIG. 3) are respectively compared in magnitude. A value that satisfies “maximum possible margin driving force> required margin driving force” is extracted. Moreover, after reflecting each gear stage information in the extraction result, the highest gear stage is set as the required gear stage.

図5は、エンジン運転パラメータ算出部60の詳細を示す図面である。図5の構成では、エンジン運転パラメータとして目標スロットル開度と目標燃料量とを算出することとしており、先ずは要求駆動力を要求エンジントルクに変換する。より具体的には、次の(1)式を用いて要求エンジントルクを算出する。   FIG. 5 is a diagram showing details of the engine operation parameter calculation unit 60. In the configuration of FIG. 5, the target throttle opening and the target fuel amount are calculated as engine operating parameters. First, the required driving force is converted into the required engine torque. More specifically, the required engine torque is calculated using the following equation (1).

Figure 2009078809
上記(1)式において、トルクコンバータトルク比は、トルクコンバータの出力軸トルクと入力軸トルクの比(=出力軸トルク/入力軸トルク)であり、例えば図6の関係に基づいて算出される。図6において、トルクコンバータ速度比はトルクコンバータの出力軸回転数(トランスミッション入力回転数)と入力軸回転数(エンジン回転数)との比(出力軸回転数/入力軸回転数)である。
Figure 2009078809
In the above equation (1), the torque converter torque ratio is the ratio of the output shaft torque and the input shaft torque of the torque converter (= output shaft torque / input shaft torque), and is calculated based on the relationship of FIG. In FIG. 6, the torque converter speed ratio is a ratio (output shaft speed / input shaft speed) between the output shaft speed (transmission input speed) and the input shaft speed (engine speed) of the torque converter.

そして、要求エンジントルクとエンジン回転数とに基づいて要求空気量を算出すると共に、該要求空気量に基づいて目標スロットル開度を算出する。   Then, the required air amount is calculated based on the required engine torque and the engine speed, and the target throttle opening is calculated based on the required air amount.

また、要求余裕駆動力を要求余裕エンジントルクに変換する。この変換手法は前記要求エンジントルクの変換と同様である。そして、要求エンジントルクと要求余裕エンジントルクとに基づいて目標空燃比を算出すると共に、この目標空燃比と筒内充填空気量とに基づいて目標燃料量を算出する。   Further, the required margin driving force is converted into the required margin engine torque. This conversion method is the same as the conversion of the required engine torque. Then, the target air-fuel ratio is calculated based on the required engine torque and the required margin engine torque, and the target fuel amount is calculated based on the target air-fuel ratio and the cylinder air charge amount.

以上詳述した本実施の形態によれば、以下の優れた効果が得られる。   According to the embodiment described above in detail, the following excellent effects can be obtained.

前方車両との相対関係を含む自車両の走行状況を判定し、該判定した自車両の走行状況に基づいて要求余裕駆動力を増大又は低減するようにしたため、当該余裕駆動力の過不足を解消し、それにより燃料消費量の低減等を図ることができる。これに加え、過剰な騒音の防止も図ることができる。また、余裕駆動力の適正化に伴い、エンジンや自動変速機の運転状態を最適に保つことができる。   Since the running situation of the host vehicle including the relative relationship with the preceding vehicle is determined and the required margin driving force is increased or decreased based on the determined running situation of the host vehicle, the excess or deficiency of the margin driving force is eliminated. As a result, the fuel consumption can be reduced. In addition, excessive noise can be prevented. Further, with the optimization of the margin driving force, the operating state of the engine and the automatic transmission can be kept optimal.

また、前方車両との車間距離、相対速度、ハンドル操作量、方向指示器の操作情報を基に自車両の走行状況を判定するため、ドライバの運転心理を正しく判断し、それを駆動力制御に反映することができる。   In addition, in order to determine the driving situation of the host vehicle based on the inter-vehicle distance, relative speed, steering wheel operation amount, and direction indicator operation information with the preceding vehicle, the driver's driving psychology is correctly determined, and this is used for driving force control. Can be reflected.

進路変更せずに(すなわち前方車両を追い越さずに)追従走行している走行状況であれば低余裕駆動力走行モードとし、要求余裕駆動力を低減した。そのため、今後将来の加速の可能性は低い走行状況において燃費低減が可能となる。静粛なる車両運転の実現も可能となる。   If the driving situation is that the vehicle is following the vehicle without changing the course (that is, without overtaking the vehicle ahead), the low margin driving force driving mode is set to reduce the required margin driving force. Therefore, fuel consumption can be reduced in a driving situation where the possibility of future acceleration is low. It is also possible to realize quiet vehicle driving.

また、前方車両を追い越す走行状況であれば高余裕駆動力走行モードとし、要求余裕駆動力を増大した。そのため、追い越しのために迅速なる加速応答が必要となる走行状況においてドライバの加速意志を適切に反映することが可能となる。   Further, if the vehicle is in a driving situation overtaking the preceding vehicle, the driving mode is set to the high margin driving force driving mode, and the required margin driving force is increased. Therefore, it is possible to appropriately reflect the driver's acceleration intention in a driving situation where a quick acceleration response is required for overtaking.

高余裕駆動力走行モードへの移行時には直ちにモード移行させるのに対し、低余裕駆動力走行モードへの移行時には遅延処理を行う構成としたため、ドライバによる走行状況変化(追い越し操作等)が行われる可能性が低くなってから実際に余裕駆動力が低減される。これにより、追従走行開始直後等においてドライバによる走行状況変化に即座に対応できるようになる。   When the mode is shifted to the high margin driving force driving mode, the mode is shifted immediately, whereas when the mode is shifted to the low margin driving force driving mode, a delay process is performed so that the driving state can be changed by the driver (overtaking operation, etc.). The marginal driving force is actually reduced after the performance is lowered. As a result, it is possible to immediately respond to changes in the driving situation by the driver immediately after the start of follow-up driving.

なお、本発明は上記実施の形態の記載内容に限定されず、例えば次のように実施しても良い。   In addition, this invention is not limited to the content of description of the said embodiment, For example, you may implement as follows.

要求余裕駆動力算出部40の構成を図7のように変更しても良い。図7の構成では、高余裕駆動力走行モード、低余裕駆動力走行モード、ノーマルモードのそれぞれについて、要求余裕駆動力マップを参照してアクセル操作量と車速とに基づき要求余裕駆動力を算出する。そして、各モードの算出値をその都度の自車両の走行状況(具体的には、高余裕駆動力走行フラグ、低余裕駆動力走行フラグの状態)に応じて切り替えて使用する。この場合、ノーマルモードの余裕駆動力(マップ値)に対して、高余裕駆動力走行モードでは余裕駆動力が大きめに設定され、低余裕駆動力走行モードでは余裕駆動力が小さめに設定されるようになっている。なお、自車両の走行状況に応じて選択された1つのモードについて、マップ参照する構成であっても良い。   The configuration of the required margin driving force calculation unit 40 may be changed as shown in FIG. In the configuration of FIG. 7, the required margin driving force is calculated based on the accelerator operation amount and the vehicle speed with reference to the demand margin driving force map for each of the high margin driving force traveling mode, the low margin driving force traveling mode, and the normal mode. . Then, the calculated value of each mode is switched and used according to the traveling state of the host vehicle (specifically, the state of the high margin driving force traveling flag and the low margin driving force traveling flag). In this case, the margin driving force is set to be larger in the high margin driving force traveling mode and the margin driving force is set to be smaller in the low margin driving force traveling mode than the margin driving force (map value) in the normal mode. It has become. In addition, the structure which refers to a map about one mode selected according to the driving | running | working condition of the own vehicle may be sufficient.

自車両が進路変更する際、進路変更開始から所定時間が経過するまでの間で高余裕駆動力走行モードとし、余裕駆動力の増大を図るようにすることも可能である。   When the host vehicle changes the course, it is possible to set the high margin driving force travel mode until the predetermined time elapses from the start of the course change so as to increase the margin driving force.

自車両の側方所定領域や後方所定領域における他車両の存在を検出し、該他車両との相対関係に応じて余裕駆動力を増大又は低減するようにしても良い。例えば、自車両の側方所定領域や後方所定領域に存在する他車両との車間距離が縮まる場合に高余裕駆動力走行モードとし、余裕駆動力の増大を図る。これにより、自車両と他車両とが過剰に接近しドライバがそれに気づいた場合において迅速なる危険回避走行が可能となる。   The presence of another vehicle in a predetermined side area or a predetermined rear area of the host vehicle may be detected, and the marginal driving force may be increased or decreased according to the relative relationship with the other vehicle. For example, when the inter-vehicle distance with another vehicle existing in the predetermined side area or the predetermined rear area of the host vehicle is reduced, the high margin driving force traveling mode is set to increase the margin driving force. Thereby, when the own vehicle and other vehicles approach too much and the driver notices it, quick danger avoidance traveling is enabled.

車両の駆動力制御に関するECUの機能ブロック図である。It is a functional block diagram of ECU regarding the driving force control of a vehicle. 走行状況判定部の演算処理を詳細に示すフローチャートである。It is a flowchart which shows the calculation process of a driving | running | working condition determination part in detail. 要求余裕駆動力算出部の詳細を示す図である。It is a figure which shows the detail of a required margin drive force calculation part. 要求ギア段算出部の詳細を示す図である。It is a figure which shows the detail of a request | requirement gear stage calculation part. エンジン運転パラメータ算出部の詳細を示す図である。It is a figure which shows the detail of an engine operation parameter calculation part. トルクコンバータトルク比を算出するための図である。It is a figure for calculating a torque converter torque ratio. 要求余裕駆動力算出部の別の構成を示す図である。It is a figure which shows another structure of a required margin drive force calculation part.

符号の説明Explanation of symbols

10…要求駆動力算出部、20…前方車両認識部、30…走行状況判定部、40…要求余裕駆動力算出部。   DESCRIPTION OF SYMBOLS 10 ... Required driving force calculation part, 20 ... Forward vehicle recognition part, 30 ... Driving condition determination part, 40 ... Required margin driving force calculation part.

Claims (5)

その都度のドライバの要求に応じて車両の要求駆動力を算出する手段と、今後の加速要求に備えて余裕駆動力を算出する手段とを備え、これら要求駆動力と余裕駆動力とに基づいて車両走行状態を制御する車両の走行状態制御装置において、
周囲を走行する他車両との相対関係を含む自車両の走行状況を判定する走行状況判定手段と、
前記判定した自車両の走行状況に基づいて前記余裕駆動力を増大又は低減する余裕駆動力増減手段と、
を備え、
自車両の周囲を走行する他車両と自車両とが接近する状態であることを、前記走行状況判定手段により判定した時、前記余裕駆動力増減手段は、前記余裕駆動力を増大することを特徴とする車両の走行状態制御装置。
A means for calculating the required driving force of the vehicle in response to the driver's request in each case, and a means for calculating a marginal driving force in preparation for a future acceleration request, based on these required driving force and marginal driving force In the vehicle running state control device for controlling the vehicle running state,
A traveling state determination means for determining a traveling state of the host vehicle including a relative relationship with other vehicles traveling around;
A margin driving force increasing / decreasing means for increasing or decreasing the margin driving force based on the determined traveling state of the host vehicle;
With
The margin driving force increasing / decreasing means increases the margin driving force when the traveling state determining means determines that the other vehicle traveling around the host vehicle and the host vehicle are approaching each other. A vehicle running state control device.
自車両の前方所定領域に存在する他車両を追い越さずに追従走行している状態であることを、前記走行状況判定手段により判定した時、前記余裕駆動力増減手段は、前記余裕駆動力を低減する請求項1に記載の車両の走行状態制御装置。   When the traveling state determination means determines that the vehicle is following the vehicle without overtaking another vehicle existing in a predetermined area in front of the host vehicle, the margin driving force increase / decrease unit reduces the margin driving force. The vehicle running state control device according to claim 1. 前記走行状況判定手段は、前方所定領域の他車両に対して自車両がほぼ同速度で走行しており且つ自車両の進路が変更されない場合に他車両に追従走行している状態であることを判定する請求項2に記載の車両の走行状態制御装置。   The traveling state determination means is in a state in which the host vehicle is traveling at substantially the same speed with respect to another vehicle in a predetermined front area and is traveling following the other vehicle when the course of the host vehicle is not changed. The vehicle travel state control device according to claim 2 for determination. 自車両の前方所定領域に存在する他車両を追い越す状態であることを、前記走行状況判定手段により判定した時、前記余裕駆動力増減手段は、前記余裕駆動力を増大する請求項1乃至3の何れかに記載の車両の走行状態制御装置。   4. The margin driving force increase / decrease means increases the margin driving force when the traveling state determination means determines that the vehicle is overtaking another vehicle existing in a predetermined area in front of the host vehicle. The vehicle travel state control device according to any one of the above. 前記走行状況判定手段は、前方所定領域の他車両に対して自車両が接近しており且つ自車両の進路が変更される場合に他車両を追い越す状態であることを判定する請求項4に記載の車両の走行状態制御装置。   5. The driving condition determination unit according to claim 4, wherein when the host vehicle is approaching another vehicle in a predetermined area in front and the course of the host vehicle is changed, it is determined that the vehicle is overtaking the other vehicle. Vehicle running state control device.
JP2008298050A 2008-11-21 2008-11-21 Running control device of vehicle Pending JP2009078809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298050A JP2009078809A (en) 2008-11-21 2008-11-21 Running control device of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298050A JP2009078809A (en) 2008-11-21 2008-11-21 Running control device of vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004119965A Division JP4281606B2 (en) 2004-04-15 2004-04-15 Vehicle running state control device

Publications (1)

Publication Number Publication Date
JP2009078809A true JP2009078809A (en) 2009-04-16

Family

ID=40653875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298050A Pending JP2009078809A (en) 2008-11-21 2008-11-21 Running control device of vehicle

Country Status (1)

Country Link
JP (1) JP2009078809A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021484A (en) * 2009-07-13 2011-02-03 Fuji Heavy Ind Ltd Driving force control device
KR101305816B1 (en) 2011-12-22 2013-09-06 현대자동차주식회사 Method for controlling the operating characteristic of a hybrid electric vehicle
US11008005B2 (en) 2018-02-09 2021-05-18 Honda Motor Co., Ltd. Vehicle travel control apparatus
US11009885B2 (en) 2018-02-09 2021-05-18 Honda Motor Co., Ltd. Vehicle travel control apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156977A (en) * 1991-12-04 1993-06-22 Toyota Motor Corp Driving controller for vehicle
JPH05159198A (en) * 1991-12-02 1993-06-25 Toyota Motor Corp Travelling controller for vehicle
JPH0872591A (en) * 1994-09-05 1996-03-19 Nissan Motor Co Ltd Driving force controller for vehicle
JP2000343980A (en) * 1999-03-29 2000-12-12 Denso Corp Automatic travel controller and recording medium, and automatic travel controlling method
JP2001260703A (en) * 2000-03-16 2001-09-26 Hitachi Ltd Vehicle control method
JP2002211270A (en) * 2000-11-16 2002-07-31 Honda Motor Co Ltd Automatic cruising device
JP2002254962A (en) * 2001-03-01 2002-09-11 Nissan Motor Co Ltd Controller for vehicle
WO2002076780A1 (en) * 2001-03-23 2002-10-03 Robert Bosch Gmbh Method and device for assisting a overtaking maneuver in motor vehicles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159198A (en) * 1991-12-02 1993-06-25 Toyota Motor Corp Travelling controller for vehicle
JPH05156977A (en) * 1991-12-04 1993-06-22 Toyota Motor Corp Driving controller for vehicle
JPH0872591A (en) * 1994-09-05 1996-03-19 Nissan Motor Co Ltd Driving force controller for vehicle
JP2000343980A (en) * 1999-03-29 2000-12-12 Denso Corp Automatic travel controller and recording medium, and automatic travel controlling method
JP2001260703A (en) * 2000-03-16 2001-09-26 Hitachi Ltd Vehicle control method
JP2002211270A (en) * 2000-11-16 2002-07-31 Honda Motor Co Ltd Automatic cruising device
JP2002254962A (en) * 2001-03-01 2002-09-11 Nissan Motor Co Ltd Controller for vehicle
WO2002076780A1 (en) * 2001-03-23 2002-10-03 Robert Bosch Gmbh Method and device for assisting a overtaking maneuver in motor vehicles
JP2004525814A (en) * 2001-03-23 2004-08-26 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Car overtaking operation support method, car overtaking operation support device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021484A (en) * 2009-07-13 2011-02-03 Fuji Heavy Ind Ltd Driving force control device
KR101305816B1 (en) 2011-12-22 2013-09-06 현대자동차주식회사 Method for controlling the operating characteristic of a hybrid electric vehicle
US11008005B2 (en) 2018-02-09 2021-05-18 Honda Motor Co., Ltd. Vehicle travel control apparatus
US11009885B2 (en) 2018-02-09 2021-05-18 Honda Motor Co., Ltd. Vehicle travel control apparatus

Similar Documents

Publication Publication Date Title
JP3167987B2 (en) Curve approach control device
JP4858039B2 (en) Vehicle control device
JP5336052B2 (en) Cruise control device, program, and target vehicle speed setting method
US9085301B2 (en) Vehicle control device
US6687595B2 (en) Adaptive cruise control system for vehicle
US6769504B2 (en) Adaptive cruise control system for vehicle
JP5369504B2 (en) Vehicle travel control device
JP6528743B2 (en) Vehicle control device
JP2007187090A (en) Speed-maintaining control device
US11208102B2 (en) Adaptive cruise control
JP2010246355A (en) Controller of vehicle
WO2019111309A1 (en) Vehicle control method and control device
JP2009078809A (en) Running control device of vehicle
JP4770280B2 (en) Driving assistance device
JP7139593B2 (en) Travel control device, vehicle, and travel control method
JP7351076B2 (en) Electric vehicle control method and electric vehicle control device
US20230141314A1 (en) Driving force control device
JP4281606B2 (en) Vehicle running state control device
JP2010149859A (en) Travel controller for vehicle
JP5381762B2 (en) Vehicle control device
JP6369351B2 (en) Vehicle control device
JP2005297612A (en) Device and method for controlling driving force of vehicle
CN113264040A (en) Vehicle control device
JP2006312997A (en) Shift control system of transmission
JP4341568B2 (en) Route guidance device for vehicles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402