JP2009077505A - Electric-driven vehicle - Google Patents

Electric-driven vehicle Download PDF

Info

Publication number
JP2009077505A
JP2009077505A JP2007243213A JP2007243213A JP2009077505A JP 2009077505 A JP2009077505 A JP 2009077505A JP 2007243213 A JP2007243213 A JP 2007243213A JP 2007243213 A JP2007243213 A JP 2007243213A JP 2009077505 A JP2009077505 A JP 2009077505A
Authority
JP
Japan
Prior art keywords
wheel
speed detection
detection value
driven
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007243213A
Other languages
Japanese (ja)
Other versions
JP4845839B2 (en
Inventor
Teru Kikuchi
輝 菊池
Takashi Ikimi
高志 伊君
Masaki Sasaki
正貴 佐々木
Keizo Shimada
恵三 嶋田
Naoshi Sugawara
直志 菅原
Tetsuhiro Fujimoto
哲弘 藤本
Yasuhiro Kiyofuji
康弘 清藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007243213A priority Critical patent/JP4845839B2/en
Publication of JP2009077505A publication Critical patent/JP2009077505A/en
Application granted granted Critical
Publication of JP4845839B2 publication Critical patent/JP4845839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric-driven vehicle capable of accurately detecting slippage of driving wheels without receiving an influence of a change in a wheel radius. <P>SOLUTION: The electric-driven vehicle is equipped with motors 1, 4 for driving or braking the wheels and a motor controller 33 for controlling the motors. The vehicle is further equipped with speed detectors 9, 10, 11, 12 for detecting the rotational speed of the driven wheels and the driving wheels of the vehicle, and with a slip determining device 18 computing the slip ratio of the driving wheels from the rotational speed detected value of the driven wheels and the driving wheels to determine whether the driving wheels are slipped or not. The slip determining device 18 is equipped with a means for detecting the wheel speed of the driven wheels and the driving wheels, using the wheel radius of the driven wheels and the driving wheels set in advance. The means for detecting the wheel speed adjusts the gain for computing the wheel speed detected value of the driven wheels or the wheel speed detected value of the driving wheels so that the wheel speed detected value of the driven wheels approaches the wheel speed detected value of the driving wheels in the state that the driving wheels are not slipped. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電動機によって駆動輪が駆動されることで走行する電気駆動車両の制御装置及び制御方法に関するものである。   The present invention relates to a control device and a control method for an electrically driven vehicle that travels when drive wheels are driven by an electric motor.

凍結路,圧雪路等の滑りやすい路面を走行中の車両において、運転者がアクセルを踏み込んで車両を加速させようとすると、駆動輪の回転速度が急増し、駆動輪が空転する現象が発生する場合がある。また、逆に運転者がブレーキを踏み込んで車両を減速させようとすると、駆動輪の回転速度が急減し、駆動輪がロックする現象が発生する場合がある。以下ではまとめてこれらの現象をスリップと称する。このようなスリップが発生すると、車両の挙動は不安定になり、またステアリング操作も効かず安定走行が困難になる。そこで、このようなスリップの発生を抑制することが重要であり、そのためにはできるだけ精度良くスリップの発生を検出する必要がある。   In a vehicle running on a slippery road surface such as an icy road or a snowy road, when the driver attempts to accelerate the vehicle by depressing the accelerator, the rotational speed of the driving wheel rapidly increases, causing a phenomenon that the driving wheel idles. There is a case. On the other hand, if the driver depresses the brake to decelerate the vehicle, the rotational speed of the drive wheel may suddenly decrease and the drive wheel may lock. Hereinafter, these phenomena are collectively referred to as slip. When such a slip occurs, the behavior of the vehicle becomes unstable, the steering operation does not work, and stable running becomes difficult. Therefore, it is important to suppress the occurrence of such slip, and for that purpose, it is necessary to detect the occurrence of slip as accurately as possible.

従来の車両におけるスリップの発生を検出する方式について説明する。スリップの発生を検出する方式としては、駆動輪と従動輪のそれぞれの車輪速度を検出してそれらから駆動輪のスリップ率を演算し、そのスリップ率が規定値を超えることで検出する方式や、駆動輪と従動輪のそれぞれの車輪速度を検出してそれらの速度差を演算し、その速度差が規定値を超えることで検出する方式が挙げられる。一例として、特許文献1にこのような検出方法を採用した車両が記載されている。また、駆動輪の車輪速度を検出してその変化率を演算し、その変化率が規定値を超えることで検出する方式や、駆動輪の左右速度差が規定値を超えることで検出する方式が挙げられる。一例として、特許文献2にそのような検出方式を行う車両が記載されている。   A method for detecting the occurrence of slip in a conventional vehicle will be described. As a method of detecting the occurrence of slip, a method of detecting each wheel speed of the driving wheel and the driven wheel, calculating a slip ratio of the driving wheel from them, and detecting when the slip ratio exceeds a specified value, There is a method of detecting the wheel speeds of the driving wheel and the driven wheel, calculating the speed difference between them, and detecting the speed difference exceeding a specified value. As an example, Patent Document 1 describes a vehicle that employs such a detection method. In addition, there are a method for detecting the wheel speed of the drive wheel, calculating its rate of change, and detecting when the rate of change exceeds a specified value, and a method for detecting when the left-right speed difference of the drive wheel exceeds the specified value. Can be mentioned. As an example, Patent Document 2 describes a vehicle that performs such a detection method.

特開2002−27610号公報JP 2002-27610 A 米国特許6148269号公報US Pat. No. 6,148,269

しかし、駆動輪や従動輪の車輪速度を検出するためには、それら車輪の回転速度及び半径が必要となる。これは、車輪速度はその車輪の回転速度と半径の積に比例するためである。ここで、車輪の回転速度は例えばロータリーエンコーダのようなセンサを用いることで容易に検出可能である。しかし、車輪の半径はタイヤの磨耗や気温等の外的環境の変化によって変化するので、実際の車輪速度と検出する車輪速度の間にはずれが発生する。例えば、タイヤが磨耗して車輪の半径が仮に元の大きさの95%になっていたとすると、検出する車輪速度も実際の車輪速度の95%となり、5%の検出誤差が発生する。従って、このような誤差を含んだ車輪速度の検出値を用いてスリップの発生を判定すると、誤った判定を起こす可能性が高い。   However, in order to detect the wheel speeds of the driving wheels and the driven wheels, the rotational speeds and radii of these wheels are required. This is because the wheel speed is proportional to the product of the rotational speed of the wheel and the radius. Here, the rotational speed of the wheel can be easily detected by using a sensor such as a rotary encoder. However, since the wheel radius changes due to changes in the external environment such as tire wear and temperature, a deviation occurs between the actual wheel speed and the detected wheel speed. For example, if the tire is worn and the wheel radius is 95% of the original size, the detected wheel speed is also 95% of the actual wheel speed, resulting in a detection error of 5%. Therefore, if the occurrence of slip is determined using the detected value of the wheel speed including such an error, there is a high possibility of causing an erroneous determination.

一般に、加速中にスリップを検出した場合には駆動輪の駆動力を緩めるように制御し、減速中にスリップを検出した場合には駆動輪の制動力を緩めるように制御される。従って、誤った判定を起こすと、スリップが実際は発生していないにも関わらず、不必要に駆動力あるいは制動力を緩めて車両の乗り心地や加減速性能を悪化させたり、逆にスリップが実際は発生しているにも関わらず、駆動力あるいは制動力を緩めずに車両の挙動をますます不安定化させ、安定走行を困難にしてしまう可能性が考えられる。   In general, when slip is detected during acceleration, control is performed so as to loosen the driving force of the driving wheel, and when slip is detected during deceleration, control is performed so as to loosen the braking force of the driving wheel. Therefore, if an incorrect determination is made, the driving force or braking force is unnecessarily lowered to reduce the riding comfort and acceleration / deceleration performance even though no slip actually occurs. In spite of the occurrence, there is a possibility that the behavior of the vehicle will be further destabilized without loosening the driving force or braking force, making stable driving difficult.

以上のように、車輪速度を検出してスリップの発生を判定する場合には、車輪の半径の変化が判定の精度に大きく影響を与える。   As described above, when the occurrence of slip is determined by detecting the wheel speed, the change in the radius of the wheel greatly affects the accuracy of the determination.

本発明は、車輪の半径が変化する影響を受けることなく、常に精度良くスリップの発生を判定することを実現した電気駆動車両を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an electrically driven vehicle that can always accurately determine the occurrence of slip without being affected by changes in the radius of a wheel.

上記目的を達成するために、本発明では車輪を駆動あるいは制動するための電動機と、前記電動機を制御する電動機制御器を備えた電気駆動車両において、前記車両の従動輪及び駆動輪の回転速度を検出する速度検出器と、前記従動輪及び前記駆動輪の回転速度検出値から前記駆動輪のスリップ率を演算して前記駆動輪がスリップしているか否かを判定するスリップ判定器と、該スリップ判定器は予め設定した前記従動輪及び前記駆動輪の車輪半径を用いて前記従動輪及び前記駆動輪の車輪速度を検出する手段を備え、該車輪速度検出手段は前記駆動輪がスリップしていない状態で前記従動輪の車輪速度検出値と前記駆動輪の車輪速度検出値が近づくように、前記従動輪の車輪速度検出値あるいは前記駆動輪の車輪速度検出値を演算するゲインを調整することを特徴とするものである。   To achieve the above object, in the present invention, in an electrically driven vehicle including an electric motor for driving or braking a wheel and an electric motor controller for controlling the electric motor, the rotational speeds of the driven wheel and the driving wheel of the vehicle are set. A speed detector for detecting, a slip determining device for calculating whether or not the driving wheel is slipping by calculating a slip ratio of the driving wheel from detected rotational speed values of the driven wheel and the driving wheel, and the slip The determiner includes means for detecting wheel speeds of the driven wheel and the driving wheel using preset wheel radii of the driven wheel and the driving wheel, and the wheel speed detecting means does not slip the driving wheel. A gay which calculates the wheel speed detection value of the driven wheel or the wheel speed detection value of the driving wheel so that the wheel speed detection value of the driven wheel and the wheel speed detection value of the driving wheel approach in the state. It is characterized in that to adjust.

更に、本発明の電気駆動車両では、前記ゲインは前記従動輪と前記駆動輪の車輪速度検出値の比を入力とする一次遅れフィルタの出力であることを特徴とするものである。   Further, in the electrically driven vehicle according to the present invention, the gain is an output of a first-order lag filter that receives a ratio of a wheel speed detection value of the driven wheel and the driven wheel as an input.

更に、本発明の電気駆動車両では、前記スリップ判定器が前記駆動輪がスリップしていると判定した場合には前記電動機の出力するトルクを低減することを特徴とするものである。   Furthermore, in the electrically driven vehicle of the present invention, when the slip determiner determines that the drive wheel is slipping, the torque output from the electric motor is reduced.

また、上記目的を達成するために、本発明では車輪を駆動あるいは制動するための左側電動機及び右側電動機と、前記左側電動機及び前記右側電動機を制御する電動機制御器を備えた電気駆動車両において、前記車両の左側従動輪及び左側駆動輪及び右側従動輪及び右側駆動輪の回転速度を検出する速度検出器と、前記左側従動輪及び前記左側駆動輪の回転速度検出値から前記左側駆動輪のスリップ率を演算して前記左側駆動輪がスリップしているか否かを判定し、前記右側従動輪及び前記右側駆動輪の回転速度検出値から前記右側駆動輪のスリップ率を演算して前記右側駆動輪がスリップしているか否かを判定するスリップ判定器と、該スリップ判定器は予め設定した前記左側従動輪及び前記左側駆動輪の車輪半径を用いて前記左側従動輪及び前記左側駆動輪の車輪速度を検出する第1の車輪速度検出手段、及び、予め設定した前記右側従動輪及び前記右側駆動輪の車輪半径を用いて前記右側従動輪及び前記右側駆動輪の車輪速度を検出する第2の車輪速度検出手段とを備え、前記第1の車輪速度検出手段は前記左側駆動輪がスリップしていない状態で前記左側従動輪の車輪速度検出値と前記左側駆動輪の車輪速度検出値が近づくように、前記左側従動輪の車輪速度検出値あるいは前記左側駆動輪の車輪速度検出値を演算するゲインを調整し、前記第2の車輪速度検出手段は前記右側駆動輪がスリップしていない状態で前記右側従動輪の車輪速度検出値と前記右側駆動輪の車輪速度検出値が近づくように、前記右側従動輪の車輪速度検出値あるいは前記右側駆動輪の車輪速度検出値を演算するゲインを調整することを特徴とするものである。   In order to achieve the above object, the present invention provides an electric drive vehicle including a left motor and a right motor for driving or braking a wheel, and an electric motor controller for controlling the left motor and the right motor. A speed detector for detecting rotational speeds of a left driven wheel, a left driven wheel, a right driven wheel, and a right driven wheel of a vehicle; and a slip ratio of the left driven wheel from a detected rotational speed value of the left driven wheel and the left driven wheel To determine whether or not the left driving wheel is slipping, and from the rotational speed detection values of the right driven wheel and the right driving wheel, the slip ratio of the right driving wheel is calculated to determine whether the right driving wheel is A slip determiner for determining whether or not the vehicle is slipping, and the slip determiner uses the wheel radii of the left driven wheel and the left drive wheel that are set in advance. First wheel speed detecting means for detecting a wheel speed of the left driving wheel, and wheels of the right driven wheel and the right driving wheel using a preset wheel radius of the right driven wheel and the right driving wheel. Second wheel speed detecting means for detecting the speed, wherein the first wheel speed detecting means detects the wheel speed detection value of the left driven wheel and the left driving wheel in a state where the left driving wheel is not slipping. The gain for calculating the wheel speed detection value of the left driven wheel or the wheel speed detection value of the left driving wheel is adjusted so that the wheel speed detection value approaches, and the second wheel speed detection means The wheel speed detection value of the right driven wheel or the wheel speed detection of the right driving wheel so that the wheel speed detection value of the right driven wheel and the wheel speed detection value of the right driving wheel approach each other without slipping. It is characterized in adjusting a gain for calculating a.

更に、本発明の電気駆動車両では、前記第1の車輪速度検出手段のゲインは前記左側従動輪と前記左側駆動輪の車輪速度検出値の比を入力とする一次遅れフィルタの出力であり、前記第2の車輪速度検出手段のゲインは前記右側従動輪と前記右側駆動輪の車輪速度検出値の比を入力とする一次遅れフィルタの出力であることを特徴とするものである。   Furthermore, in the electrically driven vehicle according to the present invention, the gain of the first wheel speed detecting means is an output of a first-order lag filter that receives a ratio of wheel speed detected values of the left driven wheel and the left driven wheel as input. The gain of the second wheel speed detecting means is an output of a first-order lag filter that receives a ratio of wheel speed detection values of the right driven wheel and the right driving wheel as an input.

更に、本発明の電気駆動車両では、前記スリップ判定器が前記左側駆動輪あるいは前記右側駆動輪がスリップしていると判定した場合には前記左側電動機及び、又は前記右側電動機の出力するトルクを低減することを特徴とするものである。   Furthermore, in the electrically driven vehicle of the present invention, when the slip determiner determines that the left drive wheel or the right drive wheel is slipping, the torque output from the left motor and / or the right motor is reduced. It is characterized by doing.

本発明の電気駆動車両によれば、車輪半径の変化に影響されることなく、駆動輪のスリップを精度良く検出することができる。従って、タイヤ磨耗や気温等の外的環境の変化によって車輪半径が変化しても、スリップを抑制することが可能であり、車両の安定走行を実現する電気駆動車両を提供することが実現できる。   According to the electrically driven vehicle of the present invention, it is possible to accurately detect the slip of the drive wheel without being affected by the change in the wheel radius. Therefore, even if the wheel radius changes due to changes in the external environment such as tire wear and temperature, it is possible to suppress slipping and to provide an electrically driven vehicle that realizes stable running of the vehicle.

以下、本発明に掛かる一実施例を図面を用いて説明する。図1は本発明の一実施例の全体構成を示す。   An embodiment according to the present invention will be described below with reference to the drawings. FIG. 1 shows the overall configuration of an embodiment of the present invention.

図1において、電動機1がギア2を介して車輪3を駆動し、電動機4がギア5を介して車輪6を駆動することで車両が前進あるいは後進する。電動機1及び電動機4は電動機制御器33によって制御され、電力変換器13は電動機1と電動機4を駆動する。電流検出器14は電力変換器13と電動機1の間に接続されており、それらの間に流れる電流を検出する。電流検出器15は電力変換器13と電動機4の間に接続されており、それらの間に流れる電流を検出する。速度検出器9は電動機1に接続されており、電動機1の回転速度を検出する。速度検出器10は電動機4に接続されており、電動機4の回転速度を検出する。速度検出器11は車輪7の軸に接続されており、車輪7の回転速度を検出する。速度検出器12は車輪8の軸に接続されており、車輪8の回転速度を検出する。   In FIG. 1, the electric motor 1 drives the wheel 3 via the gear 2, and the electric motor 4 drives the wheel 6 via the gear 5, so that the vehicle moves forward or backward. The electric motor 1 and the electric motor 4 are controlled by an electric motor controller 33, and the power converter 13 drives the electric motor 1 and the electric motor 4. The current detector 14 is connected between the power converter 13 and the electric motor 1 and detects a current flowing between them. The current detector 15 is connected between the power converter 13 and the electric motor 4 and detects a current flowing between them. The speed detector 9 is connected to the electric motor 1 and detects the rotational speed of the electric motor 1. The speed detector 10 is connected to the electric motor 4 and detects the rotational speed of the electric motor 4. The speed detector 11 is connected to the shaft of the wheel 7 and detects the rotational speed of the wheel 7. The speed detector 12 is connected to the shaft of the wheel 8 and detects the rotational speed of the wheel 8.

アクセル開度検出器19は運転者のアクセル操作に応じたアクセルペダルの開度を検出し、ブレーキ開度検出器20は運転者のブレーキ操作に応じたブレーキペダルの開度を検出し、ステアリング角度検出器21は運転者のステアリング操作に応じたステアリングの角度を検出する。   The accelerator opening detector 19 detects the opening degree of the accelerator pedal according to the driver's accelerator operation, and the brake opening degree detector 20 detects the opening degree of the brake pedal according to the driver's brake operation. The detector 21 detects the steering angle according to the driver's steering operation.

トルク指令演算器17はアクセル開度検出器19の出力するアクセル開度検出値及びブレーキ開度検出器20の出力するブレーキ開度検出値及びステアリング角度検出器21の出力するステアリング角度検出値を入力として、電動機1へのトルク指令及び電動機4へのトルク指令を出力する。   The torque command calculator 17 receives the accelerator opening detection value output from the accelerator opening detector 19, the brake opening detection value output from the brake opening detector 20, and the steering angle detection value output from the steering angle detector 21. The torque command to the motor 1 and the torque command to the motor 4 are output.

トルク制御器16はトルク指令演算器17の出力する電動機1へのトルク指令及び電流検出器14の出力する電流検出値及び速度検出器9の出力する回転速度検出値から電動機1の出力するトルクが電動機1へのトルク指令に従うように、PWM制御により電力変換器13へのゲートパルス信号を出力する。また、トルク制御器16はトルク指令演算器17の出力する電動機4へのトルク指令及び電流検出器15の出力する電流検出値及び速度検出器10の出力する回転速度検出値から電動機4の出力するトルクが電動機4へのトルク指令に従うように、PWM制御により電力変換器13へのゲートパルス信号を出力する。電力変換器13はこれらのゲートパルス信号を受け、IGBT等のスイッチング素子が高速にスイッチングを行うことで、高応答なトルク制御を実現する。   The torque controller 16 determines the torque output from the motor 1 based on the torque command output from the torque command calculator 17, the current detection value output from the current detector 14, and the rotational speed detection value output from the speed detector 9. A gate pulse signal to the power converter 13 is output by PWM control so as to follow the torque command to the electric motor 1. The torque controller 16 outputs the motor 4 from the torque command to the motor 4 output from the torque command calculator 17, the current detection value output from the current detector 15, and the rotational speed detection value output from the speed detector 10. A gate pulse signal to the power converter 13 is output by PWM control so that the torque follows the torque command to the electric motor 4. The power converter 13 receives these gate pulse signals, and a switching element such as an IGBT performs switching at high speed, thereby realizing torque control with high response.

スリップ判定器18は速度検出器9,速度検出器10,速度検出器11,速度検出器12の出力する回転速度検出値を入力として、駆動輪である車輪3あるいは車輪6にスリップが発生しているかどうかを判定する。仮に、スリップが発生していると判定した場合には、トルク指令演算器17へ電動機1及び、又は電動機4の出力するトルクが低減するようにトルク低減指令を出力する。   The slip determination unit 18 receives the rotational speed detection values output from the speed detector 9, the speed detector 10, the speed detector 11, and the speed detector 12, and slips occur on the wheel 3 or the wheel 6 that is a driving wheel. Determine whether or not. If it is determined that slip has occurred, a torque reduction command is output to the torque command calculator 17 so that the torque output by the motor 1 and / or the motor 4 is reduced.

次に、スリップ判定器18の構成について説明する。   Next, the configuration of the slip determiner 18 will be described.

図2にスリップ判定器18の構成図を示す。スリップ判定器18は車両の左右に備わった駆動輪である車輪3と車輪6のスリップ率をそれぞれ演算してスリップが発生しているかどうかを判定する。   FIG. 2 shows a configuration diagram of the slip determiner 18. The slip determination unit 18 calculates the slip ratios of the wheels 3 and 6 which are drive wheels provided on the left and right sides of the vehicle, respectively, and determines whether or not slip has occurred.

ゲイン22は速度検出器9の出力する電動機1の回転速度検出値を入力として、ギア2のギア比Grの逆数で与えられるゲインを掛けることで車輪3の回転速度検出値を出力する。ゲイン23はゲイン22の出力する車輪3の回転速度検出値を入力として、予め設定した車輪3の半径Rrを掛けることで、車輪3の車輪速度検出値を出力する。ゲイン24は速度検出器11の出力する車輪7の回転速度検出値を入力として、予め設定した車輪7の半径Rfを掛けることで、車輪7の車輪速度検出値を出力する。   The gain 22 receives the rotational speed detection value of the electric motor 1 output from the speed detector 9 and outputs the rotational speed detection value of the wheel 3 by multiplying the gain given by the reciprocal of the gear ratio Gr of the gear 2. The gain 23 outputs the wheel speed detection value of the wheel 3 by taking the rotation speed detection value of the wheel 3 output from the gain 22 as input and multiplying by a preset radius Rr of the wheel 3. The gain 24 receives the rotation speed detection value of the wheel 7 output from the speed detector 11 and multiplies a preset radius Rf of the wheel 7 to output the wheel speed detection value of the wheel 7.

除算器25はゲイン24の出力する車輪7の車輪速度検出値をゲイン23の出力する車輪3の車輪速度検出値で割ることで、車輪7と車輪3の車輪速度比を出力する。   The divider 25 divides the wheel speed detection value of the wheel 7 output by the gain 24 by the wheel speed detection value of the wheel 3 output by the gain 23 to output the wheel speed ratio of the wheel 7 and the wheel 3.

一次遅れフィルタ26は除算器25の出力する車輪7と車輪3の車輪速度比を入力として、その変動成分を除去して直流成分を出力する。なお、一次遅れフィルタ以外のフィルタを用いても良い。   The first-order lag filter 26 receives the wheel speed ratio between the wheel 7 and the wheel 3 output from the divider 25, removes the fluctuation component, and outputs a DC component. A filter other than the first-order lag filter may be used.

乗算器27は一次遅れフィルタ26の出力する車輪7と車輪3の車輪速度比の直流成分とゲイン23の出力する車輪3の車輪速度検出値を掛けることで、車輪3の補正した車輪速度検出値を出力する。   The multiplier 27 multiplies the DC component of the wheel speed ratio of the wheel 7 and the wheel 3 output from the first-order lag filter 26 by the wheel speed detection value of the wheel 3 output from the gain 23, thereby correcting the detected wheel speed of the wheel 3. Is output.

スリップ率演算器28は乗算器27の出力する車輪3の補正した車輪速度検出値とゲイン24の出力する車輪7の車輪速度検出値を入力として車輪3のスリップ率を演算する。ここで、車輪7は従動輪であることから、車輪7の車輪速度検出値は車輪7が備わっている側の実際の車両速度を表していると考えられる。例えば、図1の場合であれば車輪7の車輪速度検出値は車両左側の実際の速度を表すと考えられる。   The slip ratio calculator 28 calculates the slip ratio of the wheel 3 using the corrected wheel speed detection value of the wheel 3 output from the multiplier 27 and the wheel speed detection value of the wheel 7 output from the gain 24 as inputs. Here, since the wheel 7 is a driven wheel, the wheel speed detection value of the wheel 7 is considered to represent the actual vehicle speed on the side where the wheel 7 is provided. For example, in the case of FIG. 1, the wheel speed detection value of the wheel 7 is considered to represent the actual speed on the left side of the vehicle.

同様に、速度検出器10の出力する電動機4の回転速度検出値と、速度検出器12の出力する車輪8の回転速度検出値を入力として、車輪6のスリップ率を演算する。ここで、車輪8は従動輪であることから車輪8の車輪速度検出値は車輪8が備わっている側の実際の車両速度を表していると考えられる。例えば、図1の場合であれば車輪8の車輪速度検出値は車両右側の実際の速度を表すと考えられる。   Similarly, the slip ratio of the wheel 6 is calculated using the rotation speed detection value of the electric motor 4 output from the speed detector 10 and the rotation speed detection value of the wheel 8 output from the speed detector 12 as inputs. Here, since the wheel 8 is a driven wheel, the wheel speed detection value of the wheel 8 is considered to represent the actual vehicle speed on the side where the wheel 8 is provided. For example, in the case of FIG. 1, the wheel speed detection value of the wheel 8 is considered to represent the actual speed on the right side of the vehicle.

判定器29はスリップ率演算器28の出力する車輪3および車輪6のスリップ率を入力として、それらのいずれかが規定範囲を越えた場合にはスリップが発生したと判断して、トルク低減指令を出力する。   The determination unit 29 receives the slip ratios of the wheels 3 and 6 output from the slip ratio calculator 28 and determines that slip has occurred if any of them exceeds the specified range, and issues a torque reduction command. Output.

以上の構成により、車両の左右に備えられた駆動輪である車輪3及び車輪6のスリップ率をそれぞれ演算することが可能となり、車輪3あるいは車輪6にスリップが発生した場合には、電動機1及び、又は電動機4の出力するトルクを低減することによりスリップを抑制することができる。   With the above configuration, it becomes possible to calculate the slip ratios of the wheels 3 and 6 which are drive wheels provided on the left and right sides of the vehicle, respectively. Or slip can be suppressed by reducing the torque which the electric motor 4 outputs.

次に、スリップ率演算器28の構成について説明する。   Next, the configuration of the slip ratio calculator 28 will be described.

図3にスリップ率演算器の構成図を示す。減算器30は駆動輪の車輪速度検出値と従動輪の車輪速度検出値を入力とし、それらの差を出力する。最大値選択器31は駆動輪の車輪速度検出値と従動輪の車輪速度検出値を入力とし、値の大きい方を出力する。除算器32は減算器30の出力を最大値選択器31の出力で割ることでスリップ率を出力する。   FIG. 3 shows a configuration diagram of the slip ratio calculator. The subtracter 30 receives the wheel speed detection value of the driving wheel and the wheel speed detection value of the driven wheel, and outputs the difference between them. The maximum value selector 31 receives the wheel speed detection value of the driving wheel and the wheel speed detection value of the driven wheel, and outputs the larger value. The divider 32 divides the output of the subtractor 30 by the output of the maximum value selector 31 to output a slip ratio.

次に、スリップ率と車輪−路面間の摩擦係数の関係について説明する。   Next, the relationship between the slip ratio and the friction coefficient between the wheel and the road surface will be described.

図4にスリップ率と車輪−路面間の摩擦係数の関係を示す。ここで、摩擦係数が負の領域は車輪−路面間に発生する力が車両の進行方向と逆向きであることを表す。一般に、スリップ率の大きさが小さい領域は、スリップ率の大きさが増加するにつれて車輪−路面間の摩擦係数の大きさも増加するため、車輪−路面間に作用する力も増加し、スリップが発生しない。図4において、スリップが発生しないのはスリップ率λがλ1<λ<λ2を満たす領域である。 FIG. 4 shows the relationship between the slip ratio and the friction coefficient between the wheel and the road surface. Here, the region where the coefficient of friction is negative represents that the force generated between the wheel and the road surface is opposite to the traveling direction of the vehicle. In general, in the region where the slip ratio is small, the friction coefficient between the wheel and the road surface increases as the slip ratio increases, so the force acting between the wheel and the road surface also increases, and slip does not occur. . In FIG. 4, the slip does not occur in the region where the slip ratio λ satisfies λ 1 <λ <λ 2 .

一方、スリップ率の大きさがある領域を超えると、スリップ率の大きさが増加するにつれて車輪−路面間の摩擦係数の大きさが逆に減少するため、車輪−路面間に作用する力も減少し、スリップが発生する。図4において、スリップが発生するのはスリップ率λがλ>λ2あるいはλ<λ1を満たす領域である。 On the other hand, when the slip ratio exceeds a certain region, the friction coefficient between the wheel and the road surface decreases as the slip ratio increases, so the force acting between the wheel and the road surface also decreases. Slip occurs. In FIG. 4, slip occurs in a region where the slip ratio λ satisfies λ> λ 2 or λ <λ 1 .

従って、スリップ率を計算することで、スリップが発生したか否かを判定することができる。   Therefore, it is possible to determine whether or not a slip has occurred by calculating the slip ratio.

次に、スリップ判定器18の動作について説明する。   Next, the operation of the slip determiner 18 will be described.

図5は図2において予め設定した車輪半径Rf及びRrが実際の車輪半径と一致する場合の動作を表す。   FIG. 5 shows the operation when the wheel radii Rf and Rr set in advance in FIG. 2 coincide with the actual wheel radii.

スリップが発生していない場合には、駆動輪と従動輪の実際の車輪速度はほぼ等しい。また、車輪半径が設定値と等しいので、車輪速度検出値は正しく検出される。従って、図2に示すように従動輪の車輪速度検出値241を駆動輪の車輪速度検出値231で割ることで演算する車輪速度比251は定常的にほぼ1となり、その車輪速度比251を入力とする一次遅れフィルタの出力261も定常的にほぼ1となる。従って、一次遅れフィルタの出力261と駆動輪の車輪速度検出値231を掛けて得られる駆動輪の補正した車輪速度検出値271はほぼ駆動輪の車輪速度検出値231と等しく、スリップ率の演算に用いられる従動輪の車輪速度検出値241と駆動輪の補正した車輪速度検出値271はほぼ等しくなる。この時、図3に示すスリップ率演算の構成より、演算したスリップ率281はほぼ零となる。従って、図5(d)に示すように、スリップが発生していない場合には演算したスリップ率281はほぼ零となる。   When slip does not occur, the actual wheel speeds of the driving wheel and the driven wheel are substantially equal. Further, since the wheel radius is equal to the set value, the wheel speed detection value is correctly detected. Therefore, as shown in FIG. 2, the wheel speed ratio 251 calculated by dividing the wheel speed detection value 241 of the driven wheel by the wheel speed detection value 231 of the driving wheel is constantly about 1, and the wheel speed ratio 251 is input. The output 261 of the first-order lag filter is constantly about 1. Therefore, the corrected wheel speed detection value 271 of the driving wheel obtained by multiplying the output 261 of the first-order lag filter and the wheel speed detection value 231 of the driving wheel is substantially equal to the wheel speed detection value 231 of the driving wheel, and is used for calculating the slip ratio. The wheel speed detection value 241 of the driven wheel used and the corrected wheel speed detection value 271 of the driving wheel are substantially equal. At this time, the calculated slip ratio 281 becomes substantially zero from the configuration of the slip ratio calculation shown in FIG. Accordingly, as shown in FIG. 5D, when the slip does not occur, the calculated slip ratio 281 is almost zero.

ここで、例えばアクセル操作で加速中にぬかるみ等にはまることで車輪−路面間の摩擦係数が低下し、図5(a)に示すように駆動輪の回転速度221が増加する場合を考える。駆動輪の回転速度221が増加すると、図5(b)に示すように駆動輪の車輪速度検出値231が増加するので、図2に示すように従動輪の車輪速度検出値241を駆動輪の車輪速度検出値231で割ることで演算する車輪速度比251は1よりも小さくなる。例えば、駆動輪の車輪速度検出値231が2倍に増加した場合を考えると、車輪速度比251はほぼ1からほぼ0.5に変化する。しかし、その車輪速度比251を入力とする一次遅れフィルタの出力261は一次遅れフィルタの時定数を十分大きく設定しておけばその出力は急変せずほぼ1を維持する。従って、一次遅れフィルタの出力261と駆動輪の車輪速度検出値231を掛けて得られる駆動輪の補正した車輪速度検出値271は図5(c)に示すようにほぼ2倍に増加する。この時、図3に示すスリップ率演算の構成より、演算したスリップ率281は増加するので、図5(d)に示すようにスリップ率281がλ2より大きくなると駆動輪がスリップしていることを検出することができる。なお、車輪−路面間の摩擦係数が元に戻り、駆動輪の回転速度221が元に戻ると、スリップ率281も元に戻り、駆動輪のスリップが解消したことを検出することができる。 Here, for example, consider a case where the friction coefficient between the wheel and the road surface decreases due to slipping during acceleration by acceleration operation and the rotational speed 221 of the driving wheel increases as shown in FIG. When the rotational speed 221 of the driving wheel increases, the wheel speed detection value 231 of the driving wheel increases as shown in FIG. 5 (b), so that the wheel speed detection value 241 of the driven wheel becomes equal to that of the driving wheel as shown in FIG. The wheel speed ratio 251 calculated by dividing by the wheel speed detection value 231 is smaller than 1. For example, considering the case where the wheel speed detection value 231 of the drive wheel has increased twice, the wheel speed ratio 251 changes from approximately 1 to approximately 0.5. However, the output 261 of the first-order lag filter using the wheel speed ratio 251 as an input does not change abruptly if the time constant of the first-order lag filter is set to be sufficiently large, and remains substantially 1. Accordingly, the corrected wheel speed detection value 271 of the driving wheel obtained by multiplying the output 261 of the first-order lag filter and the wheel speed detection value 231 of the driving wheel increases almost twice as shown in FIG. 5C. At this time, the calculated slip ratio 281 increases from the configuration of the slip ratio calculation shown in FIG. 3, so that the drive wheel slips when the slip ratio 281 becomes larger than λ 2 as shown in FIG. 5 (d). Can be detected. Note that when the friction coefficient between the wheel and the road surface is restored and the rotational speed 221 of the drive wheel is restored, the slip ratio 281 is also restored and it can be detected that the slip of the drive wheel has been eliminated.

次に、例えばブレーキ操作で減速中にぬかるみ等にはまることで車輪−路面間の摩擦係数が低下し、図5(a)に示すように駆動輪の回転速度221が減少する場合を考える。駆動輪の回転速度221が減少すると、図5(b)に示すように駆動輪の車輪速度検出値231が減少するので、図2に示すように従動輪の車輪速度検出値241を駆動輪の車輪速度検出値231で割ることで演算する車輪速度比251は1よりも大きくなる。例えば、駆動輪の車輪速度検出値231が0.5倍に減少した場合を考えると、車輪速度比251はほぼ1からほぼ2に変化する。しかし、その車輪速度比251を入力とする一次遅れフィルタの出力261は一次遅れフィルタの時定数を十分大きく設定しておけばその出力は急変せずほぼ1を維持する。従って、一次遅れフィルタの出力261と駆動輪の車輪速度検出値231を掛けて得られる駆動輪の補正した車輪速度検出値271は図5(c)に示すようにほぼ0.5倍に減少する。この時、図3に示すスリップ率演算の構成より、演算したスリップ率281は減少するので、図5(d)に示すようにスリップ率281がλ1より小さくなると駆動輪がスリップしていることを検出することができる。なお、車輪−路面間の摩擦係数が元に戻り、駆動輪の回転速度221が元に戻ると、スリップ率281も元に戻り、駆動輪のスリップが解消したことを検出することができる。 Next, consider a case where the friction coefficient between the wheel and the road surface is lowered by, for example, becoming muddy during deceleration by a brake operation, and the rotational speed 221 of the driving wheel is reduced as shown in FIG. When the rotational speed 221 of the drive wheel decreases, the wheel speed detection value 231 of the drive wheel decreases as shown in FIG. 5 (b), so that the wheel speed detection value 241 of the driven wheel is set as shown in FIG. The wheel speed ratio 251 calculated by dividing by the wheel speed detection value 231 is larger than 1. For example, considering the case where the wheel speed detection value 231 of the drive wheel is reduced by a factor of 0.5, the wheel speed ratio 251 changes from approximately 1 to approximately 2. However, the output 261 of the first-order lag filter using the wheel speed ratio 251 as an input does not change abruptly if the time constant of the first-order lag filter is set to be sufficiently large, and remains substantially 1. Therefore, the corrected wheel speed detection value 271 of the driving wheel obtained by multiplying the output 261 of the first-order lag filter and the wheel speed detection value 231 of the driving wheel is reduced to about 0.5 times as shown in FIG. . At this time, the calculated slip ratio 281 decreases from the configuration of the slip ratio calculation shown in FIG. 3, so that the drive wheel slips when the slip ratio 281 becomes smaller than λ 1 as shown in FIG. Can be detected. Note that when the friction coefficient between the wheel and the road surface is restored and the rotational speed 221 of the drive wheel is restored, the slip ratio 281 is also restored and it can be detected that the slip of the drive wheel has been eliminated.

図6は図2において予め設定した車輪半径RfあるいはRrあるいはRfとRrの両方が実際の車輪半径と異なる場合の動作を表す。   FIG. 6 shows an operation when the wheel radius Rf or Rr set in FIG. 2 or both Rf and Rr are different from the actual wheel radius.

スリップが発生していない場合には、駆動輪と従動輪の実際の車輪速度はほぼ等しい。しかし、車輪半径が設定値と等しくないので、車輪速度検出値は正しく検出されない。従って、図2に示すように従動輪の車輪速度検出値241を駆動輪の車輪速度検出値231で割ることで演算する車輪速度比251は車輪半径のずれによって様々な値になり得る。例えば、駆動輪のタイヤが磨耗して従動輪に対して車輪半径が約95%になっていたとすると、1/0.95≒1.05より、駆動輪の実際の回転速度221は従動輪の実際の回転速度111の約1.05倍となる。予め設定した車輪半径RfとRrが仮に同じ値であったとすると、駆動輪の車輪速度検出値231は従動輪の車輪速度検出値241の約1.05倍として検出される。従って、図2に示すように従動輪の車輪速度検出値241を駆動輪の車輪速度検出値231で割ることで演算する車輪速度比251は1/1.05≒0.95より、ほぼ0.95となり、その車輪速度比251を入力とする一次遅れフィルタの出力261も定常的にほぼ0.95となる。従って、一次遅れフィルタの出力261と駆動輪の車輪速度検出値231を掛けて得られる駆動輪の補正した車輪速度検出値271は駆動輪の車輪速度検出値231のほぼ0.95倍となる。しかし、駆動輪の車輪速度検出値231は従動輪の車輪速度検出値241の約1.05倍として検出されることから、0.95×1.05≒1より、スリップ率の演算に用いられる従動輪の車輪速度検出値241と駆動輪の補正した車輪速度検出値271はほぼ等しくなる。この時、図3に示すスリップ率演算の構成より、演算したスリップ率281はほぼ零となる。従って、図6(d)に示すように、スリップが発生していない場合には演算したスリップ率281はほぼ零となる。   When slip does not occur, the actual wheel speeds of the driving wheel and the driven wheel are substantially equal. However, since the wheel radius is not equal to the set value, the wheel speed detection value is not correctly detected. Accordingly, the wheel speed ratio 251 calculated by dividing the detected wheel speed value 241 of the driven wheel by the detected wheel speed value 231 of the driving wheel as shown in FIG. 2 can be various values depending on the deviation of the wheel radius. For example, if the tire of the driving wheel is worn and the wheel radius is about 95% of the driven wheel, the actual rotational speed 221 of the driving wheel is 1 / 0.95≈1.05. This is about 1.05 times the actual rotation speed 111. Assuming that the preset wheel radii Rf and Rr have the same value, the wheel speed detection value 231 of the driving wheel is detected as about 1.05 times the wheel speed detection value 241 of the driven wheel. Therefore, as shown in FIG. 2, the wheel speed ratio 251 calculated by dividing the wheel speed detection value 241 of the driven wheel by the wheel speed detection value 231 of the driving wheel is approximately 1.05≈0.95, and is approximately 0.9. 95, and the output 261 of the first-order lag filter having the wheel speed ratio 251 as an input is also regularly 0.95. Therefore, the corrected wheel speed detection value 271 of the driving wheel obtained by multiplying the output 261 of the first-order lag filter and the wheel speed detection value 231 of the driving wheel is approximately 0.95 times the wheel speed detection value 231 of the driving wheel. However, since the wheel speed detection value 231 of the driving wheel is detected as about 1.05 times the wheel speed detection value 241 of the driven wheel, 0.95 × 1.05≈1 is used for calculating the slip ratio. The wheel speed detection value 241 of the driven wheel and the corrected wheel speed detection value 271 of the driving wheel are substantially equal. At this time, the calculated slip ratio 281 becomes substantially zero from the configuration of the slip ratio calculation shown in FIG. Therefore, as shown in FIG. 6D, when the slip does not occur, the calculated slip ratio 281 is almost zero.

ここで、例えばアクセル操作で加速中にぬかるみ等にはまることで車輪−路面間の摩擦係数が低下し、図6(a)に示すように駆動輪の回転速度221が増加する場合を考える。駆動輪の回転速度221が増加すると、図6(b)に示すように駆動輪の車輪速度検出値231が増加するので、図2に示すように従動輪の車輪速度検出値241を駆動輪の車輪速度検出値231で割ることで演算する車輪速度比251は0.95よりも小さくなる。例えば、駆動輪の車輪速度検出値231が2倍に増加した場合を考えると、車輪速度比251はほぼ0.95からほぼ0.475に変化する。しかし、その車輪速度比251を入力とする一次遅れフィルタの出力261は一次遅れフィルタの時定数を十分大きく設定しておけばその出力は急変せずほぼ0.95を維持する。従って、一次遅れフィルタの出力261と駆動輪の車輪速度検出値231を掛けて得られる駆動輪の補正した車輪速度検出値271は図6(c)に示すようにほぼ2倍に増加する。この時、図3に示すスリップ率演算の構成より、演算したスリップ率281は増加するので、図6(d)に示すようにスリップ率281がλ2より大きくなると駆動輪がスリップしていることを検出することができる。なお、車輪−路面間の摩擦係数が元に戻り、駆動輪の回転速度221も元に戻ると、スリップ率281も元に戻り、駆動輪のスリップが解消したことを検出することができる。 Here, for example, consider a case where the friction coefficient between the wheel and the road surface decreases due to slipperiness or the like during acceleration by an accelerator operation, and the rotational speed 221 of the drive wheel increases as shown in FIG. When the rotational speed 221 of the drive wheel increases, the wheel speed detection value 231 of the drive wheel increases as shown in FIG. 6B. Therefore, the wheel speed detection value 241 of the driven wheel is set as shown in FIG. The wheel speed ratio 251 calculated by dividing by the wheel speed detection value 231 is smaller than 0.95. For example, considering the case where the wheel speed detection value 231 of the driving wheel is doubled, the wheel speed ratio 251 changes from approximately 0.95 to approximately 0.475. However, if the time constant of the first-order lag filter is set sufficiently large, the output 261 of the first-order lag filter using the wheel speed ratio 251 as an input does not change abruptly and maintains approximately 0.95. Therefore, the corrected wheel speed detection value 271 of the driving wheel obtained by multiplying the output 261 of the first-order lag filter and the wheel speed detection value 231 of the driving wheel is almost doubled as shown in FIG. 6C. At this time, since the calculated slip ratio 281 increases from the configuration of the slip ratio calculation shown in FIG. 3, when the slip ratio 281 becomes larger than λ 2 as shown in FIG. Can be detected. When the friction coefficient between the wheels and the road surface returns to the original value and the rotational speed 221 of the drive wheel also returns to the original value, the slip ratio 281 also returns to the original value, and it can be detected that the slip of the drive wheel has been eliminated.

次に、例えばブレーキ操作で減速中にぬかるみ等にはまることで車輪−路面間の摩擦係数が低下し、図6(a)に示すように駆動輪の回転速度221が減少する場合を考える。駆動輪の回転速度221が減少すると、図6(b)に示すように駆動輪の車輪速度検出値231が減少するので、図2に示すように従動輪の車輪速度検出値241を駆動輪の車輪速度検出値231で割ることで演算する車輪速度比251は0.95よりも大きくなる。例えば、駆動輪の車輪速度検出値231が0.5倍に減少した場合を考えると、車輪速度比251はほぼ0.95からほぼ1.9に変化する。しかし、その車輪速度比251を入力とする一次遅れフィルタの出力261は一次遅れフィルタの時定数を十分大きく設定しておけばその出力は急変せずほぼ0.95を維持する。従って、一次遅れフィルタの出力261と駆動輪の車輪速度検出値231を掛けて得られる駆動輪の補正した車輪速度検出値271は図6(c)に示すようにほぼ0.5倍に減少する。この時、図3に示すスリップ率演算の構成より、演算したスリップ率281は減少するので、図6(d)に示すようにスリップ率281がλ1より小さくなると駆動輪がスリップしていることを検出することができる。なお、車輪−路面間の摩擦係数が元に戻り、駆動輪の回転速度221も元に戻ると、スリップ率281も元に戻り、駆動輪のスリップが解消したことを検出することができる。 Next, consider a case where the friction coefficient between the wheels and the road surface is reduced by, for example, slipping during deceleration by braking operation, and the rotational speed 221 of the driving wheel is reduced as shown in FIG. When the rotational speed 221 of the driving wheel decreases, the wheel speed detection value 231 of the driving wheel decreases as shown in FIG. 6B. Therefore, the wheel speed detection value 241 of the driven wheel is set as shown in FIG. The wheel speed ratio 251 calculated by dividing by the wheel speed detection value 231 becomes larger than 0.95. For example, considering the case where the wheel speed detection value 231 of the drive wheel is reduced by a factor of 0.5, the wheel speed ratio 251 changes from approximately 0.95 to approximately 1.9. However, if the time constant of the first-order lag filter is set sufficiently large, the output 261 of the first-order lag filter using the wheel speed ratio 251 as an input does not change abruptly and maintains approximately 0.95. Therefore, the corrected wheel speed detection value 271 of the driving wheel obtained by multiplying the output 261 of the first-order lag filter and the wheel speed detection value 231 of the driving wheel is reduced to about 0.5 times as shown in FIG. . At this time, the calculated slip ratio 281 decreases from the configuration of the slip ratio calculation shown in FIG. 3, so that the drive wheel slips when the slip ratio 281 becomes smaller than λ 1 as shown in FIG. 6 (d). Can be detected. When the friction coefficient between the wheels and the road surface returns to the original value and the rotational speed 221 of the drive wheel also returns to the original value, the slip ratio 281 also returns to the original value, and it can be detected that the slip of the drive wheel has been eliminated.

以上の実施例で示したスリップ判定器の構成とすることで、予め設定した駆動輪及び従動輪の車輪半径と実際の車輪半径が一致していてもしていなくても、スリップが発生していない場合はスリップ率はほぼ零であり、スリップが発生する場合はスリップ率が大きくあるいは小さくなることが分かる。従って、スリップ率を演算することで、スリップが発生したか否かを判定することができる。   By adopting the configuration of the slip determination device shown in the above embodiment, no slip occurs even if the wheel radius of the driving wheel and the driven wheel set in advance and the actual wheel radius do not coincide with each other. In this case, the slip ratio is almost zero, and when the slip occurs, the slip ratio is large or small. Therefore, it is possible to determine whether or not a slip has occurred by calculating the slip ratio.

なお、簡単の為に予め設定した車輪半径RfとRrが同じ値である場合について述べたが、駆動輪と従動輪の実際の車輪半径が元々異なり、予め設定した車輪半径RfとRrが異なる値である場合についても同様である。   In addition, although the case where the preset wheel radii Rf and Rr are the same value was described for the sake of simplicity, the actual wheel radii of the driving wheel and the driven wheel are originally different, and the preset wheel radii Rf and Rr are different values. The same applies to the case of.

また、図2においては、駆動輪の車輪速度を補正してスリップ率演算に用いているが、図7に示すように従動輪の車輪速度を補正する構成としても良い。   In FIG. 2, the wheel speed of the drive wheel is corrected and used for the slip ratio calculation. However, the wheel speed of the driven wheel may be corrected as shown in FIG. 7.

以上より、車輪半径の変化に影響されることなく、駆動輪のスリップを精度良く検出することができる。駆動輪のスリップを検出すると、スリップ判定器18がトルク低減指令を出力することで、電動機1及び、又は電動機4の出力するトルクが低減し、駆動輪のスリップは抑制される。従って、駆動輪のスリップを精度良く検出することで、車両の安定走行を実現することが可能となる。   As described above, the slip of the driving wheel can be detected with high accuracy without being affected by the change in the wheel radius. When the slip of the driving wheel is detected, the slip determiner 18 outputs a torque reduction command, whereby the torque output from the electric motor 1 and / or the electric motor 4 is reduced, and the slip of the driving wheel is suppressed. Therefore, stable driving of the vehicle can be realized by accurately detecting the slip of the driving wheel.

本発明によれば、車輪半径の変化に影響されることなく、駆動輪のスリップを精度良く検出することができる。従って、タイヤ磨耗や気温等の外的環境の変化によって車輪半径が変化しても、スリップを抑制することが可能であり、駆動輪を電動機により動かすいろいろな種類の車両に対して、本発明の技術を適用することが可能である。   According to the present invention, the slip of the drive wheel can be detected with high accuracy without being affected by the change in the wheel radius. Therefore, even if the wheel radius changes due to changes in the external environment such as tire wear and temperature, it is possible to suppress slip, and for various types of vehicles in which the drive wheels are driven by an electric motor, Technology can be applied.

本発明を適用した電気駆動車両の制御装置の構成図。The block diagram of the control apparatus of the electric drive vehicle to which this invention is applied. スリップ判定器の構成図。The block diagram of a slip determination device. スリップ率演算器の構成図。The block diagram of a slip ratio calculator. スリップ率と車輪−路面間の摩擦係数の関係図。The relationship figure of the friction coefficient between a slip ratio and a wheel-road surface. 実際の車輪半径と一致する場合のスリップ判定器の動作図。The operation | movement figure of a slip determination device in case it corresponds with an actual wheel radius. 実際の車輪半径と異なる場合のスリップ判定器の動作図。The operation | movement figure of a slip determination device when different from an actual wheel radius. スリップ判定器の別の構成図。Another block diagram of a slip determination device.

符号の説明Explanation of symbols

1 電動機
2,5 ギア
3 車輪
4 電動機
6,7,8 車輪
9,10,11,12 速度検出器
13 電力変換器
14,15 電流検出器
16 トルク制御器
17 トルク指令演算器
18 スリップ判定器
19 アクセル開度検出器
20 ブレーキ開度検出器
21 ステアリング角度検出器
22,23,24 ゲイン
25,32 除算器
26 一次遅れフィルタ
27 乗算器
28 スリップ率演算器
29 判定器
30 減算器
31 最大値選択器
33 電動機制御器
111 従動輪の回転速度
221 駆動輪の回転速度
231 駆動輪の車輪速度検出値
241 従動輪の車輪速度検出値
251 車輪速度比
261 一次遅れフィルタの出力
271 駆動輪の補正した車輪速度検出値
281 スリップ率
1 Electric motor
2,5 gear
3 wheels
4 Electric motor
6, 7, 8 Wheel 9, 10, 11, 12 Speed detector 13 Power converter
14, 15 Current detector 16 Torque controller
17 Torque command calculator
18 Slip detector 19 Accelerator position detector
20 Brake opening detector
21 Steering angle detector 22, 23, 24 Gain
25, 32 Divider 26 First-order lag filter 27 Multiplier
28 Slip ratio calculator
29 Determinator 30 Subtractor
31 Maximum value selector
33 Motor controller 111 Rotating speed of driven wheel
221 Drive wheel rotation speed
231 Wheel speed detection value of driving wheel
241 Wheel speed detection value of driven wheel 251 Wheel speed ratio
261 Output of first order lag filter 271 Corrected wheel speed detected value 281 of driving wheel Slip rate

Claims (6)

車輪を駆動あるいは制動するための電動機と、前記電動機を制御する電動機制御器を備えた電気駆動車両において、
前記車両の従動輪及び駆動輪の回転速度を検出する速度検出器と、
前記従動輪及び前記駆動輪の回転速度検出値から前記駆動輪のスリップ率を演算して前記駆動輪がスリップしているか否かを判定するスリップ判定器と、
該スリップ判定器は予め設定した前記従動輪及び前記駆動輪の車輪半径を用いて前記従動輪及び前記駆動輪の車輪速度を検出する手段を備え、
該車輪速度検出手段は前記駆動輪がスリップしていない状態で前記従動輪の車輪速度検出値と前記駆動輪の車輪速度検出値が近づくように、前記従動輪の車輪速度検出値あるいは前記駆動輪の車輪速度検出値を演算するゲインを調整することを特徴とする電気駆動車両。
In an electric drive vehicle comprising an electric motor for driving or braking a wheel and an electric motor controller for controlling the electric motor,
A speed detector for detecting the rotational speed of the driven wheel and the drive wheel of the vehicle;
A slip determination device that determines whether or not the driving wheel is slipping by calculating a slip ratio of the driving wheel from a rotational speed detection value of the driven wheel and the driving wheel;
The slip determination device includes means for detecting wheel speeds of the driven wheel and the driving wheel using a preset wheel radius of the driven wheel and the driving wheel,
The wheel speed detection means detects the wheel speed detection value of the driven wheel or the drive wheel so that the wheel speed detection value of the driven wheel approaches the wheel speed detection value of the drive wheel in a state where the drive wheel is not slipping. An electric drive vehicle characterized by adjusting a gain for calculating a detected wheel speed of the vehicle.
請求項1において、
前記ゲインは前記従動輪と前記駆動輪の車輪速度検出値の比を入力とする一次遅れフィルタの出力であることを特徴とする電気駆動車両。
In claim 1,
The electric drive vehicle according to claim 1, wherein the gain is an output of a first-order lag filter having a ratio of a wheel speed detection value of the driven wheel and the drive wheel as an input.
請求項1において、
前記スリップ判定器が前記駆動輪がスリップしていると判定した場合には前記電動機の出力するトルクを低減することを特徴とする電気駆動車両。
In claim 1,
An electric drive vehicle characterized by reducing torque output from the electric motor when the slip determiner determines that the drive wheel is slipping.
車輪を駆動あるいは制動するための左側電動機及び右側電動機と、前記左側電動機及び前記右側電動機を制御する電動機制御器を備えた電気駆動車両において、
前記車両の左側従動輪及び左側駆動輪及び右側従動輪及び右側駆動輪の回転速度を検出する速度検出器と、
前記左側従動輪及び前記左側駆動輪の回転速度検出値から前記左側駆動輪のスリップ率を演算して前記左側駆動輪がスリップしているか否かを判定し、前記右側従動輪及び前記右側駆動輪の回転速度検出値から前記右側駆動輪のスリップ率を演算して前記右側駆動輪がスリップしているか否かを判定するスリップ判定器と、
該スリップ判定器は予め設定した前記左側従動輪及び前記左側駆動輪の車輪半径を用いて前記左側従動輪及び前記左側駆動輪の車輪速度を検出する第1の車輪速度検出手段、及び、予め設定した前記右側従動輪及び前記右側駆動輪の車輪半径を用いて前記右側従動輪及び前記右側駆動輪の車輪速度を検出する第2の車輪速度検出手段とを備え、
前記第1の車輪速度検出手段は前記左側駆動輪がスリップしていない状態で前記左側従動輪の車輪速度検出値と前記左側駆動輪の車輪速度検出値が近づくように、前記左側従動輪の車輪速度検出値あるいは前記左側駆動輪の車輪速度検出値を演算するゲインを調整し、
前記第2の車輪速度検出手段は前記右側駆動輪がスリップしていない状態で前記右側従動輪の車輪速度検出値と前記右側駆動輪の車輪速度検出値が近づくように、前記右側従動輪の車輪速度検出値あるいは前記右側駆動輪の車輪速度検出値を演算するゲインを調整することを特徴とする電気駆動車両。
In an electric drive vehicle comprising a left motor and a right motor for driving or braking a wheel, and an electric motor controller for controlling the left motor and the right motor,
A speed detector for detecting rotational speeds of the left driven wheel and the left driven wheel and the right driven wheel and the right driven wheel of the vehicle;
The slip ratio of the left driving wheel is calculated from the rotational speed detection values of the left driven wheel and the left driving wheel to determine whether the left driving wheel is slipping, and the right driven wheel and the right driving wheel. A slip determination device that calculates a slip ratio of the right drive wheel from the rotation speed detection value and determines whether or not the right drive wheel is slipping,
The slip determiner includes first wheel speed detection means for detecting wheel speeds of the left driven wheel and the left driving wheel using wheel radii of the left driven wheel and the left driving wheel set in advance, and a preset value. Second wheel speed detecting means for detecting wheel speeds of the right driven wheel and the right drive wheel using wheel radii of the right driven wheel and the right drive wheel,
The first wheel speed detecting means is arranged such that a wheel speed detected value of the left driven wheel and a wheel speed detected value of the left driven wheel approach each other in a state where the left driven wheel is not slipping. Adjust the gain to calculate the speed detection value or the wheel speed detection value of the left drive wheel,
The second wheel speed detecting means is arranged such that a wheel speed detection value of the right driven wheel and a wheel speed detection value of the right driving wheel approach each other so that the right driving wheel is not slipping. An electric drive vehicle characterized by adjusting a gain for calculating a speed detection value or a wheel speed detection value of the right drive wheel.
請求項4において、
前記第1の車輪速度検出手段のゲインは前記左側従動輪と前記左側駆動輪の車輪速度検出値の比を入力とする一次遅れフィルタの出力であり、
前記第2の車輪速度検出手段のゲインは前記右側従動輪と前記右側駆動輪の車輪速度検出値の比を入力とする一次遅れフィルタの出力であることを特徴とする電気駆動車両。
In claim 4,
The gain of the first wheel speed detection means is an output of a first-order lag filter that receives as input a ratio of wheel speed detection values of the left driven wheel and the left drive wheel,
An electric drive vehicle characterized in that the gain of the second wheel speed detection means is an output of a first-order lag filter that receives a ratio of wheel speed detection values of the right driven wheel and the right drive wheel as an input.
請求項4において、
前記スリップ判定器が前記左側駆動輪あるいは前記右側駆動輪がスリップしていると判定した場合には前記左側電動機及び、又は前記右側電動機の出力するトルクを低減することを特
徴とする電気駆動車両。
In claim 4,
An electric drive vehicle characterized by reducing torque output from the left electric motor and / or the right electric motor when the slip determination device determines that the left drive wheel or the right drive wheel is slipping.
JP2007243213A 2007-09-20 2007-09-20 Electric drive vehicle Active JP4845839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243213A JP4845839B2 (en) 2007-09-20 2007-09-20 Electric drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243213A JP4845839B2 (en) 2007-09-20 2007-09-20 Electric drive vehicle

Publications (2)

Publication Number Publication Date
JP2009077505A true JP2009077505A (en) 2009-04-09
JP4845839B2 JP4845839B2 (en) 2011-12-28

Family

ID=40611952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243213A Active JP4845839B2 (en) 2007-09-20 2007-09-20 Electric drive vehicle

Country Status (1)

Country Link
JP (1) JP4845839B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071014A1 (en) * 2009-12-11 2011-06-16 Ntn株式会社 Control apparatus and control method for electrically driven vehicle
WO2013157484A1 (en) * 2012-04-20 2013-10-24 日立建機株式会社 Electric drive vehicle
JP2014147291A (en) * 2014-05-21 2014-08-14 Ntn Corp Control apparatus for electric vehicle
WO2015041108A1 (en) * 2013-09-18 2015-03-26 Ntn株式会社 Electric-vehicle slip control device
WO2015079553A1 (en) * 2013-11-29 2015-06-04 パイオニア株式会社 Traction control device and traction control method
WO2015106260A1 (en) * 2014-01-13 2015-07-16 General Electric Company System and method for controlling a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044549A (en) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd Hybrid vehicle
JP2006136175A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Motor traction controller for vehicle
JP2006345626A (en) * 2005-06-08 2006-12-21 Sumitomonacco Materials Handling Co Ltd Method and apparatus for correcting driving wheel speed
JP2007030642A (en) * 2005-07-26 2007-02-08 Denso Corp Drive control device of vehicle
JP2007104892A (en) * 2005-09-06 2007-04-19 Nissan Motor Co Ltd Slip control device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044549A (en) * 2004-08-06 2006-02-16 Nissan Motor Co Ltd Hybrid vehicle
JP2006136175A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Motor traction controller for vehicle
JP2006345626A (en) * 2005-06-08 2006-12-21 Sumitomonacco Materials Handling Co Ltd Method and apparatus for correcting driving wheel speed
JP2007030642A (en) * 2005-07-26 2007-02-08 Denso Corp Drive control device of vehicle
JP2007104892A (en) * 2005-09-06 2007-04-19 Nissan Motor Co Ltd Slip control device for vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125150A (en) * 2009-12-11 2011-06-23 Ntn Corp Device and method for controlling electric vehicle
WO2011071014A1 (en) * 2009-12-11 2011-06-16 Ntn株式会社 Control apparatus and control method for electrically driven vehicle
EP2511124A4 (en) * 2009-12-11 2016-04-27 Ntn Toyo Bearing Co Ltd Control apparatus and control method for electrically driven vehicle
US9211807B2 (en) 2009-12-11 2015-12-15 Ntn Corporation Control apparatus and control method for electrically driven vehicle
US9315116B2 (en) 2012-04-20 2016-04-19 Hitachi Construction Machinery Co., Ltd. Electric drive vehicle
WO2013157484A1 (en) * 2012-04-20 2013-10-24 日立建機株式会社 Electric drive vehicle
AU2013250411B2 (en) * 2012-04-20 2015-09-03 Hitachi Construction Machinery Co., Ltd. Electric drive vehicle
US10202038B2 (en) 2013-09-18 2019-02-12 Ntn Corporation Electric-vehicle slip control device
WO2015041108A1 (en) * 2013-09-18 2015-03-26 Ntn株式会社 Electric-vehicle slip control device
JP2015061362A (en) * 2013-09-18 2015-03-30 Ntn株式会社 Slip control device for electric vehicle
WO2015079553A1 (en) * 2013-11-29 2015-06-04 パイオニア株式会社 Traction control device and traction control method
JPWO2015079553A1 (en) * 2013-11-29 2017-03-16 パイオニア株式会社 Traction control device and traction control method
WO2015106260A1 (en) * 2014-01-13 2015-07-16 General Electric Company System and method for controlling a vehicle
US10173532B2 (en) 2014-01-13 2019-01-08 General Electric Company System and method for controlling a vehicle
JP2014147291A (en) * 2014-05-21 2014-08-14 Ntn Corp Control apparatus for electric vehicle

Also Published As

Publication number Publication date
JP4845839B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5336447B2 (en) Electric drive vehicle
US10137784B2 (en) Control device for electric vehicle
JP4069921B2 (en) Vehicle turning behavior control device
JP4845839B2 (en) Electric drive vehicle
JPH0549106A (en) Motor controller
JPH08182119A (en) Control method of traveling motor for electric vehicle
WO2013024871A1 (en) Electrically driven vehicle
WO2017047496A1 (en) Electric braking system
US11279333B2 (en) Vehicle control device
JP2010037079A (en) Traction control method of driving wheel in reach type forklift, and system thereof
JP5185912B2 (en) Vehicle behavior control device
JP4933210B2 (en) Crawler type traveling device
JP5810692B2 (en) Vehicle turning behavior control device
JP2007252045A (en) Drive control device for vehicles, automobile, and drive control method for vehicles
JP4542832B2 (en) Electric brake device
JP6453103B2 (en) Vehicle motion control device
JP6823977B2 (en) Vehicle anti-skid control
JPH05338457A (en) Four-wheel drive device for vehicle
JPH04150702A (en) Controller for electric motor vehicle
JP7445459B2 (en) Electric vehicle control device
JP2008043141A (en) Industrial vehicle provided with slip detection means, and slip detection method
JP6613172B2 (en) Vehicle control apparatus and vehicle control method
JP2010255720A (en) Gear ratio control device
JP2017005814A (en) Movable body
JP2021164354A (en) Vehicle traction control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4845839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350