JP2009076508A - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
JP2009076508A
JP2009076508A JP2007241624A JP2007241624A JP2009076508A JP 2009076508 A JP2009076508 A JP 2009076508A JP 2007241624 A JP2007241624 A JP 2007241624A JP 2007241624 A JP2007241624 A JP 2007241624A JP 2009076508 A JP2009076508 A JP 2009076508A
Authority
JP
Japan
Prior art keywords
group
light emitting
carbon atoms
organic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007241624A
Other languages
Japanese (ja)
Inventor
Kazuyuki Shibata
和幸 柴田
Manabu Tobiyo
学 飛世
Masaji Kinoshita
正兒 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007241624A priority Critical patent/JP2009076508A/en
Publication of JP2009076508A publication Critical patent/JP2009076508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element with high light emission efficiency and excellent durability. <P>SOLUTION: The organic electroluminescent element includes at least one organic layer having a luminescent layer between a pair of electrodes. A layer containing a phosphine oxide compound between the luminescent layer and a negative electrode, and the luminescent layer contains at least one type of electron transport material, and at least one type of hole transport material. At least one of the electron transport material and hole transport material is a luminescent material. Concentration of the hole transport material in the luminescent layer is reduced in a direction from a positive electrode to the negative electrode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は有機電界発光素子に関する。特に、発光効率が高く耐久性に優れた有機電界発光素子に関する。   The present invention relates to an organic electroluminescent device. In particular, the present invention relates to an organic electroluminescent device having high luminous efficiency and excellent durability.

有機電界発光素子(以後、有機EL素子と略記する。)は、発光層もしくは発光層を含む複数の有機機能層と、これらの層を挟んだ対向電極とから構成されている。有機EL素子は、陰極から注入された電子と陽極から注入された正孔とが発光層において再結合し、生成した励起子からの発光及び前記励起子の少なくとも一方からエネルギー移動して生成した他の分子の励起子からの発光を利用した、発光を得るための素子である。   An organic electroluminescent element (hereinafter abbreviated as an organic EL element) is composed of a light emitting layer or a plurality of organic functional layers including a light emitting layer, and a counter electrode sandwiching these layers. In the organic EL element, electrons injected from the cathode and holes injected from the anode are recombined in the light emitting layer, and the generated light from the excitons and energy transferred from at least one of the excitons are generated. It is an element for obtaining light emission utilizing light emission from excitons of molecules.

これまで有機EL素子は、機能を分離した積層構造を用いることにより、輝度及び素子効率が大きく改善され発展してきた。例えば、正孔輸送層と発光兼電子輸送層を積層した二層積層型素子や正孔輸送層と発光層と電子輸送層とを積層した三層積層型素子や、正孔輸送層と発光層と正孔阻止層と電子輸送層とを積層した四層積層型素子がよく用いられる(例えば、非特許文献1参照。)。   Until now, organic EL elements have been developed with greatly improved brightness and element efficiency by using a laminated structure with separated functions. For example, a two-layer stacked device in which a hole transport layer and a light-emitting / electron transport layer are stacked, a three-layer stacked device in which a hole transport layer, a light-emitting layer, and an electron transport layer are stacked, a hole transport layer, and a light-emitting layer A four-layer stacked element in which a hole blocking layer and an electron transport layer are stacked is often used (see Non-Patent Document 1, for example).

しかしながら、有機EL素子の実用化には未だ多くの課題が残されている。第1に高い発光効率を達成すること、第2に高い駆動耐久性を達成することである。特に、連続駆動時の品質低下は最大の課題である。   However, many problems still remain in practical use of organic EL elements. The first is to achieve high luminous efficiency, and the second is to achieve high driving durability. In particular, quality degradation during continuous driving is the biggest problem.

例えば、発光層と正孔輸送層との間に0.1nm〜5nmの界面層をバリア層として設け、正孔の移動を遅くすることによって正孔と電子の移動バランスを調整して外部量子効率を高める試みが提案されている(例えば、特許文献1参照。)。しかしながら、この手段では、キャリア総体の移動は低下するので輝度が低下し、駆動電圧が増加し、また、キャリアの素子内滞留時間が長くなるために駆動耐久性が低下する問題が懸念される。   For example, an interface layer of 0.1 nm to 5 nm is provided as a barrier layer between the light emitting layer and the hole transport layer, and the external quantum efficiency is adjusted by adjusting the movement balance of holes and electrons by slowing the movement of holes. Attempts have been made to improve the above (for example, see Patent Document 1). However, with this means, since the movement of the carrier as a whole is reduced, the luminance is lowered, the drive voltage is increased, and the dwell time in the element of the carrier is increased, so that there is a concern that the drive durability is lowered.

また、マルチフォトンと呼ばれる発光層と機能層を含む一つの発光ユニットを多層に積層した構成が知られている。例えば、複数の有機電界発光素子(以後、有機EL素子とも記述する。)の発光ユニットを絶縁層で隔離し、各発光ユニットにそれぞれ対向する電極を配した構成が開示されている(例えば、特許文献2参照。)。しかしながら、この構成では、発光ユニット間の絶縁層および電極が発光の取り出しを妨げるため、実質的に各発光ユニットから発光が十分に利用することができない。また、各発光ユニットが本来抱えている外部量子効率の低さを改良する手段にはならない。無機発光素子(以後、無機EL素子とも記述する。)において、同様に発光ユニットを積層し、各発光ユニットを絶縁層で隔離した構成も開示されている(例えば、特許文献3参照。)。しかしながら、この構成においても、発光ユニットが単に複数積層されているだけであって、各発光ユニットが本来抱えている外部量子効率の低さを改良する手段にはならない。   In addition, a configuration in which a single light emitting unit including a light emitting layer called a multiphoton and a functional layer is stacked in multiple layers is known. For example, a configuration is disclosed in which light emitting units of a plurality of organic electroluminescent elements (hereinafter also referred to as organic EL elements) are separated by an insulating layer and electrodes facing each light emitting unit are arranged (for example, patents). Reference 2). However, in this configuration, since the insulating layer and the electrode between the light emitting units hinder the extraction of the light emission, the light emission from each light emitting unit cannot substantially be utilized sufficiently. In addition, it is not a means for improving the low external quantum efficiency inherent to each light emitting unit. In an inorganic light-emitting element (hereinafter also referred to as an inorganic EL element), a structure in which light-emitting units are similarly stacked and each light-emitting unit is separated by an insulating layer is also disclosed (for example, see Patent Document 3). However, even in this configuration, a plurality of light emitting units are simply stacked, and it is not a means for improving the low external quantum efficiency inherent to each light emitting unit.

また、電子輸送材料としてホスフィンオキサイド化合物が開示されている(例えば、特許文献4、5参照)。特許文献4にはこれらの有機化合物を電子輸送層に含有することが開示されている。特許文献5にはこれらの有機化合物を発光層もしくは電子輸送層に含有することが開示されている。これらのホスフィンオキサイド化合物は電子輸送性に優れ、駆動電圧を低下させ発光効率を向上させる効果を有するが、一方で、Ip(イオン化ポテンシャル)が高く、正孔をブロックするため陽極側界面に正孔がたまりしやすい、また正孔に対する耐性が弱い、ことなどから発光層から電子輸送層に漏れ出してくる正孔によって劣化されやすく、駆動耐久性が劣る問題があった。   Further, phosphine oxide compounds have been disclosed as electron transport materials (see, for example, Patent Documents 4 and 5). Patent Document 4 discloses that these organic compounds are contained in the electron transport layer. Patent Document 5 discloses that these organic compounds are contained in a light emitting layer or an electron transporting layer. These phosphine oxide compounds are excellent in electron transport properties and have the effect of lowering the driving voltage and improving the light emission efficiency. On the other hand, the Ip (ionization potential) is high, and holes are blocked at the anode side interface to block holes. There is a problem that the driving durability is inferior because it tends to accumulate and is easily deteriorated by holes leaking from the light emitting layer to the electron transporting layer because of its poor resistance to holes.

また、有機EL素子を積層構造とした場合、各層間の障壁のためにキャリア注入性が低下し、駆動電圧の上昇かつ耐久性の低下の問題があった。このような各層間の障壁を低減する手段として各層が含有する正孔注入材料、電子注入材料、あるいは正孔輸送材料、電子輸送材料の各層における濃度に傾斜を設けることが提案されている(例えば、特許文献6参照。)。この構成においては、発光層における発光材料はバイポーラー性混合層から形成される発光層内の限定された領域に配置されている。この構成においても発光材料の配置された限定された領域のみで発光する。   Further, when the organic EL element has a laminated structure, there is a problem that the carrier injection property is lowered due to the barrier between the respective layers, the driving voltage is increased, and the durability is lowered. As a means for reducing such a barrier between layers, it is proposed to provide a gradient in the concentration of each layer of the hole injection material, the electron injection material, or the hole transport material and the electron transport material contained in each layer (for example, , See Patent Document 6). In this configuration, the light emitting material in the light emitting layer is disposed in a limited region in the light emitting layer formed from the bipolar mixed layer. Even in this configuration, light is emitted only in a limited region where the light emitting material is disposed.

また、発光層内における発光材料および電荷輸送材料の濃度を共に陽極側で低く、陰極側で高くし、陰極側の領域に集中して発光を起こさせることが提案されている(例えば、特許文献7参照。)。この手段はポリマー分散型発光素子に特有の課題に有効であるが、発光領域が陰極側の一部の領域のみであって、発光層全体が有効に発光に利用されず、総括的な発光効率の向上とは言えない。   In addition, it has been proposed that the concentrations of the light emitting material and the charge transport material in the light emitting layer are both low on the anode side, high on the cathode side, and concentrated in the cathode side region to cause light emission (for example, Patent Documents). 7). This means is effective for problems specific to polymer-dispersed light-emitting elements, but the light-emitting region is only a partial region on the cathode side, and the entire light-emitting layer is not effectively used for light emission. It cannot be said that it is an improvement.

高い外部量子効率と高い駆動耐久性とを両立させることは、実用的に有用な有機EL素子を設計する上で極めて重要な課題であり、常に改良を求められている課題であった。
サイエンス(Science),267巻,3号,1995年,1332頁 特開2003−123984号公報 特開平6−310275号公報 特開平8−162273号公報 特開2002−63989号公報 特開2006−73581号公報 特開2002−313583号公報 特開2001−189193号公報
To achieve both high external quantum efficiency and high driving durability is an extremely important issue in designing a practically useful organic EL device, and has always been a demand for improvement.
Science, 267, 3, 1995, p. 1332 JP 2003-123984 A JP-A-6-310275 JP-A-8-162273 Japanese Patent Application Laid-Open No. 2002-63989 JP 2006-73581 A JP 2002-313583 A JP 2001-189193 A

本発明は、発光効率が高く耐久性に優れた有機EL素子を提供することを目的とする。   An object of the present invention is to provide an organic EL device having high luminous efficiency and excellent durability.

本発明の上記課題は、下記の手段によって解決する事を見出された。
<1> 一対の電極間に発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、前記発光層と陰極の間に、ホスフィンオキサイド化合物を含有する層を有し、かつ前記発光層が少なくとも一種の電子輸送材料と、少なくとも一種の正孔輸送材料とを含有し、前記電子輸送材料と前記正孔輸送材料の少なくとも一方が発光材料であって、前記発光層において前記正孔輸送材料の濃度が、前記陽極から前記陰極に向かって減少していることを特徴とする有機電界発光素子。
<2> 前記発光層の前記陰極側界面付近の領域における前記正孔輸送材料の濃度が、前記発光層の前記陽極側界面付近の領域における正孔輸送材料の濃度に対して0%以上50%以下であることを特徴とする<1>に記載の有機電界発光素子。
<3> 前記ホスフィンオキサイド化合物を含有する層が前記発光層に接していることを特徴とする<1>又は<2>に記載の有機電界発光素子。
<4> 前記ホスフィンオキサイド化合物が下記一般式(I)で表される有機化合物であることを特徴とする<1>〜<3>のいずれか1項に記載の有機電界発光素子:
It has been found that the above-mentioned problems of the present invention can be solved by the following means.
<1> An organic electroluminescent device having at least one organic layer including a light-emitting layer between a pair of electrodes, wherein the light-emitting layer has a layer containing a phosphine oxide compound between the light-emitting layer and the cathode. The layer contains at least one electron transport material and at least one hole transport material, and at least one of the electron transport material and the hole transport material is a light emitting material, and the hole transport in the light emitting layer An organic electroluminescent element, wherein the concentration of the material decreases from the anode toward the cathode.
<2> The concentration of the hole transport material in a region near the cathode side interface of the light emitting layer is 0% or more and 50% with respect to the concentration of the hole transport material in a region near the anode side interface of the light emitting layer. The organic electroluminescent element as described in <1>, which is as follows.
<3> The organic electroluminescent element according to <1> or <2>, wherein the layer containing the phosphine oxide compound is in contact with the light emitting layer.
<4> The organic electroluminescent element according to any one of <1> to <3>, wherein the phosphine oxide compound is an organic compound represented by the following general formula (I):

(式中、R、R、およびRは、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、又はヘテロ環基を表す。)。
<5> 前記一般式(I)で表されるホスフィンオキサイド化合物が、下記一般式(II)で表される有機化合物であることを特徴とする<4>に記載の有機電界発光素子:
Wherein R 1 , R 2 and R 3 are each independently an alkyl group, alkenyl group, alkynyl group, aryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, acyl group, alkoxycarbonyl Group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, heterocyclic thio group, or heterocyclic group To express.).
<5> The organic electroluminescent element according to <4>, wherein the phosphine oxide compound represented by the general formula (I) is an organic compound represented by the following general formula (II):

(式中、Ar、Ar、およびArは、それぞれ独立にアリール基またはヘテロ環基を表す。)。
<6> 前記一般式(II)で表されるホスフィンオキサイド化合物が、下記一般式(III)で表される有機化合物であることを特徴とする<5>に記載の有機電界発光素子:
(In the formula, Ar 1 , Ar 2 , and Ar 3 each independently represents an aryl group or a heterocyclic group).
<6> The organic electroluminescent element according to <5>, wherein the phosphine oxide compound represented by the general formula (II) is an organic compound represented by the following general formula (III):

(式中、R31〜R34はそれぞれ独立にアリール基またはヘテロ環基を表す。Lは二価の連結基を表す。)。
<7> 前記正孔輸送材料が正孔輸送性発光材料であることを特徴とする<1>〜<6>のいずれか1項に記載の有機電界発光素子。
<8> 前記正孔輸送材料が正孔輸送性ホスト材料であることを特徴とする<1>〜<6>のいずれか1項に記載の有機電界発光素子。
<9> 前記電子輸送材料が電子輸送性発光材料であることを特徴とする<1>〜<6>および<8>のいずれか1項に記載の有機電界発光素子。
<10> 前記電子輸送材料が電子輸送性ホスト材料であることを特徴とする<1>〜<7>のいずれか1項に記載の有機電界発光素子。
<11> 前記発光材料が3座以上の配位子を有する金属錯体であることを特徴とする<1>〜<10>のいずれか1項に記載の有機電界発光素子。
<12> 前記発光材料が下記一般式(A)で表される発光材料であることを特徴とする<11>に記載の有機電界発光素子:
(Wherein R 31 to R 34 each independently represents an aryl group or a heterocyclic group; L represents a divalent linking group).
<7> The organic electroluminescent element according to any one of <1> to <6>, wherein the hole transporting material is a hole transporting light emitting material.
<8> The organic electroluminescent element according to any one of <1> to <6>, wherein the hole transporting material is a hole transporting host material.
<9> The organic electroluminescent element according to any one of <1> to <6> and <8>, wherein the electron transport material is an electron transport luminescent material.
<10> The organic electroluminescent element according to any one of <1> to <7>, wherein the electron transporting material is an electron transporting host material.
<11> The organic electroluminescent element according to any one of <1> to <10>, wherein the light emitting material is a metal complex having a tridentate or higher ligand.
<12> The organic electroluminescent element according to <11>, wherein the light emitting material is a light emitting material represented by the following general formula (A):

(一般式(A)中、M11は金属イオンを表し、L11〜L15はそれぞれM11に配位する配位子を表す。L11とL14との間に原子群がさらに存在して環状配位子を形成してもよい。L15はL11及びL14の両方と結合して環状配位子を形成してもよい。Y11、Y12、Y13はそれぞれ連結基、単結合、または二重結合を表す。また、Y11、Y12、又はY13が連結基である場合、L11とY12、Y12とL12、L12とY11、Y11とL13、L13とY13、Y13とL14の間の結合は、それぞれ独立に、単結合又は二重結合を表す。n11は0〜4を表す。M11とL11〜L15との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。)。
<13> 前記3座以上の配位子を有する金属錯体が白金錯体であることを特徴とする<11>又は<12>に記載の有機電界発光素子。
(In the general formula (A), M 11 represents a metal ion, and L 11 to L 15 each represent a ligand coordinated to M 11. An atomic group further exists between L 11 and L 14. L 15 may be bonded to both L 11 and L 14 to form a cyclic ligand, Y 11 , Y 12 and Y 13 are each a linking group, Represents a single bond or a double bond, and when Y 11 , Y 12 , or Y 13 is a linking group, L 11 and Y 12 , Y 12 and L 12 , L 12 and Y 11 , Y 11 and L 13 , L 13 and Y 13 , and the bond between Y 13 and L 14 each independently represents a single bond or a double bond, n 11 represents 0 to 4. M 11 and L 11 to L 15 These bonds may be any of coordination bond, ionic bond, and covalent bond.)
<13> The organic electroluminescent element as described in <11> or <12>, wherein the metal complex having a tridentate or higher ligand is a platinum complex.

本発明により、発光効率が高く耐久性に優れた有機EL素子が提供される。
特に、燐光発光材料を用いて高い発光効率で優れた駆動耐久性を有する有機EL素子が提供される。
According to the present invention, an organic EL device having high luminous efficiency and excellent durability is provided.
In particular, an organic EL element having excellent driving durability with high luminous efficiency using a phosphorescent material is provided.

本発明の有機EL素子は、一対の電極間に発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、前記発光層と陰極との間に、ホスフィンオキサイド化合物を含有する層を有し、前記発光層が少なくとも一種の電子輸送材料と少なくとも一種の正孔輸送材料とを含有し、前記電子輸送材料と前記正孔輸送材料の少なくとも一方が発光材料であり、前記発光層における前記正孔輸送材料の濃度が陽極側から前記陰極側に向かって減少していることを特徴とする。本発明においては、「陽極側から前記陰極側に向かって濃度が減少している」ことが意味するところは、総体的に、陽極側から陰極側に向かって減少していることが本発明の主旨であって、連続的に変化しても、階段状に変化しても良い。あるいは、一部で増加または減少している領域があっても総体的に減少していれば本願の意図する範囲内である。本願においては、連続的に濃度が変化するパターンが好ましい。   The organic EL device of the present invention is an organic electroluminescent device having at least one organic layer including a light emitting layer between a pair of electrodes, wherein a layer containing a phosphine oxide compound is provided between the light emitting layer and the cathode. The light emitting layer contains at least one electron transport material and at least one hole transport material, and at least one of the electron transport material and the hole transport material is a light emitting material, The concentration of the hole transport material decreases from the anode side toward the cathode side. In the present invention, the phrase “the concentration decreases from the anode side toward the cathode side” means that the overall decrease is from the anode side toward the cathode side. The main point is that it may change continuously or stepwise. Alternatively, even if there is a region that is partially increased or decreased, it is within the intended scope of the present application if it is generally decreased. In the present application, a pattern in which the density continuously changes is preferable.

好ましくは、前記発光層における発光層が含有する前記正孔輸送材料の濃度が陽極側から前記陰極側に向かって漸減し、前記発光層の前記陰極側界面付近の領域における前記正孔輸送材料の濃度が、前記発光層の前記陽極側界面付近の領域における前記正孔輸送材料の濃度に対して0%以上50%以下である。より好ましくは0%以上25%以下である。   Preferably, the concentration of the hole transport material contained in the light emitting layer in the light emitting layer gradually decreases from the anode side toward the cathode side, and the hole transport material in the region near the cathode side interface of the light emitting layer The concentration is 0% or more and 50% or less with respect to the concentration of the hole transport material in a region near the anode side interface of the light emitting layer. More preferably, it is 0% or more and 25% or less.

なお、本願明細書において、「発光層の陰極側界面付近の領域」とは、発光層の陰極側界面から発光層全体の厚みの10%の厚みの領域を指すものと定義され、「発光層の陽極側界面付近の領域」とは、発光層の陽極側界面から発光層全体の厚みの10%の厚みの領域を指すものと定義される。また、その領域における濃度とは、その領域における平均濃度を指すものとして定義される。さらに、「発光層の陰極側(陽極側)界面付近の領域」における各材料の濃度は、飛行時間型二次イオン質量分析(TOF−SIMS)、エッチングX線光電子分光分析(XPS/ESCA)などの方法によって測定することができる。   In the specification of the present application, the “region near the cathode side interface of the light emitting layer” is defined as a region having a thickness of 10% of the thickness of the entire light emitting layer from the cathode side interface of the light emitting layer. The “region near the anode side interface” is defined as a region having a thickness of 10% of the thickness of the entire light emitting layer from the anode side interface of the light emitting layer. Further, the density in the region is defined as indicating the average density in the region. Furthermore, the concentration of each material in the “region near the cathode side (anode side) interface of the light-emitting layer” is the time of flight secondary ion mass spectrometry (TOF-SIMS), etching X-ray photoelectron spectroscopy (XPS / ESCA), etc. It can be measured by the method.

好ましくは、前記ホスフィンオキサイド化合物を含有する層が前記発光層に接している。
好ましくは、前記発光層が燐光発光材料を含有する。
Preferably, the layer containing the phosphine oxide compound is in contact with the light emitting layer.
Preferably, the light emitting layer contains a phosphorescent material.

本発明における発光層は、上記のように発光層内における正孔輸送性材料の濃度が傾斜していて、陽極側より陰極側に向かって漸減する構成を有する。本発明におけるホスフィンオキサイド化合物含有層は発光層の陰極側に好ましくは隣接して配されている。前記ホスフィンオキサイド化合物含有層と近接する、前記発光層の陰極側界面付近の領域は正孔輸送性材料濃度が最も低い領域である。本発明に於ける傾斜構造を有する発光層においては、電子および正孔の発光層内における移動バランスが好ましく調整され、発光層全域に渉って電子および正孔効率が再結合できるため、発光効率が向上し駆動電圧が低下する。さらに、陽極より注入された正孔が発光層内で効率よく再結合するので、正孔が発光層から陰極側に漏れ出すことがなくなる。従ってホスフィンオキサイド化合物を含有する層に対する正孔による劣化がなくなり、駆動電圧の低下、駆動耐久性の向上、発光効率の向上のすべてにおいて飛躍的に向上することができる。   The light emitting layer in the present invention has a structure in which the concentration of the hole transporting material in the light emitting layer is inclined as described above and gradually decreases from the anode side toward the cathode side. The phosphine oxide compound-containing layer in the present invention is preferably arranged adjacent to the cathode side of the light emitting layer. A region near the cathode side interface of the light emitting layer adjacent to the phosphine oxide compound-containing layer is a region having the lowest hole transporting material concentration. In the light emitting layer having a tilted structure in the present invention, the movement balance of electrons and holes in the light emitting layer is preferably adjusted, and the electron and hole efficiency can be recombined across the entire light emitting layer. Improves and the drive voltage decreases. Furthermore, since holes injected from the anode are efficiently recombined in the light emitting layer, holes do not leak from the light emitting layer to the cathode side. Therefore, the layer containing the phosphine oxide compound is not deteriorated by holes, and the reduction in driving voltage, improvement in driving durability, and improvement in luminous efficiency can be drastically improved.

1.有機EL素子構造
本発明の有機EL素子は基板上に陰極と陽極を有し、両電極の間に有機発光層(以下、単に「発光層」と称する場合がある)を含む有機化合物層を有する。発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は透明であることが好ましい。
本発明における有機化合物層の積層の形態としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と陽極との間に正孔注入層、および電子輸送層と陰極との間に電子注入層を有しても良い。
本発明におけるホスフィンオキサイド化合物含有層は、陰極と発光層との間、好ましくは電子注入層もしくは電子輸送層と発光層との間に配される。
1. Organic EL Element Structure The organic EL element of the present invention has a cathode and an anode on a substrate, and an organic compound layer including an organic light emitting layer (hereinafter sometimes simply referred to as “light emitting layer”) between both electrodes. . In view of the properties of the light emitting element, at least one of the anode and the cathode is preferably transparent.
In the present invention, the organic compound layer is preferably laminated in the order of the hole transport layer, the light emitting layer, and the electron transport layer from the anode side. Further, a hole injection layer may be provided between the hole transport layer and the anode, and an electron injection layer may be provided between the electron transport layer and the cathode.
The phosphine oxide compound-containing layer in the present invention is disposed between the cathode and the light emitting layer, preferably between the electron injection layer or the electron transport layer and the light emitting layer.

本発明の有機電界発光素子における有機化合物層の好適な態様は、陽極側から順に、少なくとも、(1)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、発光層、ホスフィンオキサイド化合物含有層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様、(2)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、ホスフィンオキサイド化合物含有層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)を有する態様である。   A preferred embodiment of the organic compound layer in the organic electroluminescence device of the present invention is, in order from the anode side, at least (1) a hole injection layer, a hole transport layer (the hole injection layer and the hole transport layer may serve as both). Good), a light emitting layer, a phosphine oxide compound-containing layer, an electron transport layer, and an electron injection layer (the electron transport layer and the electron injection layer may be combined), (2) hole injection layer, hole transport Layer (hole injection layer and hole transport layer may be combined), hole transport intermediate layer, light emitting layer, phosphine oxide compound-containing layer, electron transport layer, and electron injection layer (electron transport layer and electron injection layer) May be combined).

また、上記正孔輸送性中間層は、発光層への正孔注入を促進する機能及び電子をブロックする機能の少なくとも一方を有することが好ましい。   The hole transporting intermediate layer preferably has at least one of a function of accelerating hole injection into the light emitting layer and a function of blocking electrons.

有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、およびスプレー法等いずれによっても好適に形成することができる。   Each layer constituting the organic compound layer can be suitably formed by any of dry film forming methods such as vapor deposition and sputtering, transfer methods, printing methods, coating methods, ink jet methods, and spray methods.

次に、本発明の有機EL素子を構成する要素について詳細に説明する。   Next, the element which comprises the organic EL element of this invention is demonstrated in detail.

2.発光層
発光層は、電界印加時に、陽極、正孔注入層、正孔輸送層または正孔輸送性中間層から正孔を受け取り、陰極、電子注入層、電子輸送層または電子輸送性中間層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明に於ける発光層は、少なくとも一種の電子輸送材料と少なくとも一種の正孔輸送材料とを含み、前記電子輸送材料と前記正孔輸送材料の少なくとも一方が発光材料であり、前記発光層における前記正孔輸送材料の濃度が陽極側から前記陰極側に向かって濃度が減少していることを特徴とする。
電子輸送材料としては電子輸送性発光材料もしくは電子輸送性ホスト材料が用いられる。正孔輸送材料としては正孔輸送性発光材料もしくは正孔輸送性ホスト材料が用いられる。
2. Light-emitting layer The light-emitting layer receives holes from the anode, hole injection layer, hole transport layer, or hole transport intermediate layer when an electric field is applied, and from the cathode, electron injection layer, electron transport layer, or electron transport intermediate layer. It is a layer having a function of receiving electrons and providing a field for recombination of holes and electrons to emit light.
The light emitting layer in the present invention includes at least one electron transport material and at least one hole transport material, and at least one of the electron transport material and the hole transport material is a light emitting material, The concentration of the hole transport material decreases from the anode side toward the cathode side.
As the electron transporting material, an electron transporting light emitting material or an electron transporting host material is used. As the hole transporting material, a hole transporting light emitting material or a hole transporting host material is used.

発光層の陽極側界面付近の領域のおける前記正孔輸送材料の濃度は、前発光層組成の10質量%以上100質量%以下が好ましく、より好ましくは20質量%以上100質量%以下で、特に好ましくは30質量%以上100質量%以下である。
発光層の陰極側界面付近の領域における前記正孔輸送材料の濃度は、前発光層組成の0質量%以上50質量%以下が好ましく、より好ましくは0質量%以上25質量%以下である。
The concentration of the hole transport material in the region in the vicinity of the anode side interface of the light emitting layer is preferably 10% by mass or more and 100% by mass or less, more preferably 20% by mass or more and 100% by mass or less of the previous light emitting layer composition. Preferably they are 30 mass% or more and 100 mass% or less.
The concentration of the hole transport material in a region near the cathode side interface of the light emitting layer is preferably 0% by mass or more and 50% by mass or less, more preferably 0% by mass or more and 25% by mass or less of the previous light emitting layer composition.

前記正孔輸送材料の濃度が前記陰極側界面付近の領域における発光層組成の濃度の50質量%を超えると前記発光層から前記陰極側へ抜け出る正孔量が多くなり、発光効率、耐久性が低下する点で好ましくない。また、前記正孔輸送材料の濃度が前記陽極側界面付近の領域における発光層組成の濃度の10質量%を下回ると前記発光層へ注入される正孔量が減り、発光効率が低下する点で好ましくない。   When the concentration of the hole transport material exceeds 50% by mass of the concentration of the light emitting layer composition in the region near the cathode side interface, the amount of holes that escape from the light emitting layer to the cathode side increases, and the luminous efficiency and durability are improved. It is not preferable in terms of reduction. In addition, if the concentration of the hole transport material is less than 10% by mass of the concentration of the light emitting layer composition in the region near the anode side interface, the amount of holes injected into the light emitting layer is reduced, and the light emission efficiency is lowered. It is not preferable.

(電子輸送性発光材料)
本発明に係る発光層中の発光材料は、電子輸送性であれば、蛍光発光材料でも、燐光発光材料であっても良い。
(Electron transporting luminescent material)
The light emitting material in the light emitting layer according to the present invention may be a fluorescent light emitting material or a phosphorescent light emitting material as long as it has an electron transporting property.

(a)燐光発光材料
燐光発光材料としては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。
遷移金属原子としては、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金であり、更に好ましくはイリジウム、白金である。
ランタノイド原子としては、例えばランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、およびルテシウムが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。
(A) Phosphorescent material The phosphorescent material generally includes complexes containing transition metal atoms or lanthanoid atoms.
The transition metal atom is preferably ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, and platinum, more preferably rhenium, iridium, and platinum, and more preferably iridium, platinum. .
Examples of the lanthanoid atom include lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Among these lanthanoid atoms, neodymium, europium, and gadolinium are preferable.

錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry,Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、芳香族炭素環配位子(例えば、シクロペンタジエニルアニオン、ベンゼンアニオン、またはナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、またはフェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子など)、アルコラト配位子(例えば、フェノラト配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子であり、より好ましくは、含窒素ヘテロ環配位子である。
上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H.C. Listed by Yersin, “Photochemistry and Photophysics of Coordination Compounds”, published by Springer-Verlag, 1987, Akio Yamamoto, “Organic Metal Chemistry-Fundamentals and Applications,” published by Soukabo, 1982, etc. .
Specific ligands are preferably halogen ligands (preferably chlorine ligands), aromatic carbocyclic ligands (eg, cyclopentadienyl anion, benzene anion, or naphthyl anion), Nitrogen-containing heterocyclic ligand (eg, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, or phenanthroline), diketone ligand (eg, acetylacetone), carboxylic acid ligand (eg, acetic acid ligand) , Alcoholate ligands (eg, phenolate ligands), carbon monoxide ligands, isonitrile ligands, and cyano ligands, more preferably nitrogen-containing heterocyclic ligands.
The complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.

これらの中でも、発光材料の具体例としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、特開2001−247859、特願2000−33561、特開2002−117978、特開2002−225352、特開2002−235076、特願2001−239281、特開2002−170684、EP 1211257、特開2002−226495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−203678、特開2002−203679、特開2004−357791、特開2006−256999、特願2005−75341等の特許文献に記載の燐光発光化合物などが挙げられる。   Among these, specific examples of the light emitting material include, for example, US6303238B1, US6097147, WO00 / 57676, WO00 / 70655, WO01 / 08230, WO01 / 39234A2, WO01 / 41512A1, WO02 / 02714A2, WO02 / 15645A1, WO02 / 44189A1, Japanese Patent Application Laid-Open No. 2001-247859, Japanese Patent Application No. 2000-33561, Japanese Patent Application No. 2002-117978, Japanese Patent Application Laid-Open No. 2002-225352, Japanese Patent Application No. 2002-233501, Japanese Patent Application No. 2001-239281, Japanese Patent Application Laid-Open No. 2002-170684, Japanese Patent Application No. JP, 2002-234894, JP, 2001-247859, JP, 2001-298470, JP, 2002-173673, JP, 2002-203. 78, JP 2002-203679, JP 2004-357791, JP 2006-256999, and the like phosphorescent compounds described in patent documents such as Japanese Patent Application No. 2005-75341.

(b)蛍光発光材料
蛍光性の発光性ドーパントとしては、一般には、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、又はペンタセンなど)、8−キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、およびこれらの誘導体などを挙げることができる。
(B) Fluorescent luminescent materials Fluorescent luminescent dopants generally include benzoxazole, benzimidazole, benzothiazole, styrylbenzene, polyphenyl, diphenylbutadiene, tetraphenylbutadiene, naphthalimide, coumarin, pyran, perinone, oxa Diazole, aldazine, pyralidine, cyclopentadiene, bisstyrylanthracene, quinacridone, pyrrolopyridine, thiadiazolopyridine, cyclopentadiene, styrylamine, aromatic dimethylidin compounds, condensed polycyclic aromatic compounds (anthracene, phenanthroline, pyrene, perylene, Rubrene, pentacene, etc.), 8-quinolinol metal complexes, pyromethene complexes and various metal complexes represented by rare earth complexes, polythiophene, polyphenylene, poly Examples thereof include polymer compounds such as rephenylene vinylene, organic silanes, and derivatives thereof.

また、電子輸送性の発光材料は、好ましくは、その電子親和力(Ea)が2.5eV以上3.5eV以下であり、イオン化ポテンシャル(Ip)が5.7eV以上7.0eV以下の電子輸送性の発光材料である。
具体的には、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、白金、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテシウム錯体が挙げられ、より好ましくは、ルテニウム、ロジウム、パラジウム、又は白金錯体であり、最も好ましくは白金錯体である。
白金錯体を以下に例示するが、本発明はこれらに限定されものではない。
In addition, the electron-transporting light-emitting material preferably has an electron-transport property having an electron affinity (Ea) of 2.5 eV to 3.5 eV and an ionization potential (Ip) of 5.7 eV to 7.0 eV. It is a luminescent material.
Specifically, ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, platinum, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium complex More preferred is a ruthenium, rhodium, palladium, or platinum complex, and most preferred is a platinum complex.
Examples of platinum complexes are shown below, but the present invention is not limited thereto.

本発明に用いられる電子輸送性燐光発光材料として特に好ましくは、3座以上の配位子を有する金属錯体である。   The electron-transporting phosphorescent material used in the present invention is particularly preferably a metal complex having a tridentate or higher ligand.

(多座金属錯体)
本発明における3座以上の配位子を有する金属錯体について説明する。
1)金属イオン
該金属錯体において金属イオンに配位する原子は特に限定されないが、酸素原子、窒素原子、炭素原子、硫黄原子又はリン原子が好ましく、酸素原子、窒素原子又は炭素原子がより好ましく、窒素原子又は炭素原子が更に好ましい。
(Multidentate metal complex)
The metal complex having a tridentate or higher ligand in the present invention will be described.
1) Metal ion The atom coordinated to the metal ion in the metal complex is not particularly limited, but is preferably an oxygen atom, a nitrogen atom, a carbon atom, a sulfur atom or a phosphorus atom, more preferably an oxygen atom, a nitrogen atom or a carbon atom, More preferred are nitrogen or carbon atoms.

金属錯体中の金属イオンは、特に限定されないが、発光効率向上、耐久性向上、駆動電圧低下の観点から、遷移金属イオン、希土類金属イオンであることが好ましく、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、ロジウムイオン、ルテニウムイオン、オスミウムイオン、パラジウムイオン、銀イオン、銅イオン、コバルトイオン、亜鉛イオン、ニッケルイオン、鉛イオン、アルミニウムイオン、ガリウムイオン、または希土類金属イオン(例えば、ユーロピウムイオン、カドリニウムイオン、またはテルビウムイオンなど)が挙げられ、好ましくは、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、パラジウムイオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、ユーロピウムイオン、カドリニウムイオン、またはテルビウムイオンであり、より好ましくは、イリジウムイオン、白金イオン、レニウムイオン、タングステンイオン、ユーロピウムイオン、カドリニウムイオン、またはテルビウムイオンであり、さらに好ましくは、イリジウムイオン、白金イオン、パラジウムイオン、亜鉛イオン、アルミニウムイオン、またはガリウムイオンであり、最も好ましくは白金イオンである。   The metal ion in the metal complex is not particularly limited, but is preferably a transition metal ion or a rare earth metal ion from the viewpoint of improving luminous efficiency, improving durability, and lowering driving voltage, iridium ion, platinum ion, gold ion, Rhenium ion, tungsten ion, rhodium ion, ruthenium ion, osmium ion, palladium ion, silver ion, copper ion, cobalt ion, zinc ion, nickel ion, lead ion, aluminum ion, gallium ion, or rare earth metal ion (for example, europium) An iridium ion, a platinum ion, a gold ion, a rhenium ion, a tungsten ion, a palladium ion, a zinc ion, an aluminum ion, a gallium ion, and the like. , Europium, cadmium, or terbium, more preferably iridium, platinum, rhenium, tungsten, europium, cadmium, or terbium, and more preferably iridium. Platinum ion, palladium ion, zinc ion, aluminum ion, or gallium ion, and most preferably platinum ion.

2)配位数
本発明における3座以上の配位子を有する金属錯体としては、発光効率向上、耐久性向上の観点から、3座以上6座以下の配位子を有する金属錯体が好ましく、イリジウムイオンに代表される6配位型錯体を形成しやすい金属イオンの場合には、3座、4座、または6座の配位子を有する金属錯体がより更好ましく、白金イオンに代表される4配位型錯体を形成しやすい金属イオンの場合には、3座または4座の配位子を有する金属錯体がより好ましく、4座の配位子を有する金属錯体が更に好ましい。
2) Coordination number The metal complex having a tridentate or higher ligand in the present invention is preferably a metal complex having a tridentate or higher and a hexadentate or lower ligand from the viewpoint of improving luminous efficiency and durability. In the case of a metal ion that easily forms a hexacoordinate complex represented by iridium ion, a metal complex having a tridentate, tetradentate, or hexadentate ligand is more preferable, and platinum ion is representative. In the case of a metal ion that easily forms a tetracoordinate complex, a metal complex having a tridentate or tetradentate ligand is more preferable, and a metal complex having a tetradentate ligand is more preferable.

3)配位子
本発明における金属錯体の配位子は発光効率向上、耐久性向上の観点から、鎖状、又は、環状であることが好ましく、中心金属(例えば、後述する一般式(I)で表される化合物の場合であればM11を表す。)に窒素で配位する含窒素へテロ環(例えば、ピリジン環、キノリン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、またはトリアゾール環など)を少なくとも一つ有することが好ましい。該含窒素ヘテロ環としては、含窒素6員ヘテロ環、含窒素5員ヘテロ環であることがより好ましい。これらのヘテロ環は他の環と縮合環を形成してもよい。
3) Ligand From the viewpoint of improving luminous efficiency and durability, the ligand of the metal complex in the present invention is preferably a chain or a ring, and a central metal (for example, the general formula (I) described later) In the case of a compound represented by the formula, N 11 represents a nitrogen-containing heterocycle coordinated with nitrogen (for example, pyridine ring, quinoline ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring). Oxazole ring, thiazole ring, oxadiazole ring, thiadiazole ring, or triazole ring). The nitrogen-containing heterocycle is more preferably a nitrogen-containing 6-membered heterocycle or a nitrogen-containing 5-membered heterocycle. These heterocycles may form condensed rings with other rings.

金属錯体の配位子が鎖状であるとは、金属錯体の配位子が環状構造をとらないことを意味する(例えば、ターピリジル配位子など。)。また、金属錯体の配位子が環状であるとは、金属錯体中の複数の配位子が互いに結合して、閉じた構造形成することを意味する(例えば、フタロシアニン配位子、クラウンエーテル配位子など。)。   That the ligand of the metal complex is a chain means that the ligand of the metal complex does not have a cyclic structure (for example, a terpyridyl ligand). Further, that the ligand of the metal complex is cyclic means that a plurality of ligands in the metal complex are bonded to each other to form a closed structure (for example, phthalocyanine ligand, crown ether coordination). Etc.).

4)好ましい金属錯体の構造
本発明における金属錯体としては、以下に詳述する一般式(A)で表される有機化合物であることが好ましい。
4) Preferred Metal Complex Structure The metal complex in the present invention is preferably an organic compound represented by the general formula (A) described in detail below.

<一般式(A)で表される金属錯体>
先ず、一般式(A)で表される有機化合物について説明する。
<Metal complex represented by general formula (A)>
First, the organic compound represented by the general formula (A) will be described.

一般式(A)中、M11は金属イオンを表し、L11〜L15はそれぞれM11に配位する配位子を表す。L11とL14との間に原子群がさらに存在して環状配位子を形成してもよい。L15はL11及びL14の両方と結合して環状配位子を形成してもよい。
11、Y12、およびY13はそれぞれ連結基、単結合、または二重結合を表す。また、Y11、Y12、又はY13が連結基である場合、L11とY12、Y12とL12、L12とY11、Y11とL13、L13とY13、Y13とL14の間の結合は、それぞれ独立に、単結合又は二重結合を表す。n11は0〜4を表す。M11とL11〜L15との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。
In the general formula (A), M 11 represents a metal ion, and L 11 to L 15 each represents a ligand coordinated to M 11 . An atomic group may further exist between L 11 and L 14 to form a cyclic ligand. L 15 may combine with both L 11 and L 14 to form a cyclic ligand.
Y 11 , Y 12 and Y 13 each represent a linking group, a single bond or a double bond. When Y 11 , Y 12 , or Y 13 is a linking group, L 11 and Y 12 , Y 12 and L 12 , L 12 and Y 11 , Y 11 and L 13 , L 13 and Y 13 , Y 13 And the bond between L 14 each independently represents a single bond or a double bond. n 11 represents the 0-4. The bond between M 11 and L 11 to L 15 may be any of a coordination bond, an ionic bond, and a covalent bond.

一般式(A)で表される有機化合物について詳細に説明する。
一般式(A)中、M11は金属イオンを表す。金属イオンとしては特に限定されないが、2価または3価の金属イオンが好ましい。2価または3価の金属イオンとしては、白金イオン、イリジウムイオン、レニウムイオン、パラジウムイオン、ロジウムイオン、ルテニウムイオン、銅イオン、ユーロピウムイオン、ガドリニウムイオン、テルビウムイオンが好ましく、白金イオン、イリジウムイオン、またはユーロピウムイオンがより好ましく、白金イオン、イリジウムイオンがさらに好ましく、白金イオンが特に好ましい。
The organic compound represented by the general formula (A) will be described in detail.
In the general formula (A), M 11 represents a metal ion. Although it does not specifically limit as a metal ion, A bivalent or trivalent metal ion is preferable. As the divalent or trivalent metal ion, platinum ion, iridium ion, rhenium ion, palladium ion, rhodium ion, ruthenium ion, copper ion, europium ion, gadolinium ion, terbium ion are preferable, platinum ion, iridium ion, or Europium ions are more preferred, platinum ions and iridium ions are more preferred, and platinum ions are particularly preferred.

一般式(A)中、L11、L12、L13、及びL14は、それぞれ独立に、M11に配位する配位子を表す。L11、L12、L13、及びL14に含まれ、かつ、M11に配位する原子としては、窒素原子、酸素原子、硫黄原子、炭素原子、又はリン原子が好ましく、窒素原子、酸素原子、硫黄原子、又は炭素原子がより好ましく、窒素原子、酸素原子、又は炭素原子が更に好ましい。 In general formula (A), L 11 , L 12 , L 13 , and L 14 each independently represent a ligand that coordinates to M 11 . The atoms contained in L 11 , L 12 , L 13 , and L 14 and coordinated to M 11 are preferably a nitrogen atom, an oxygen atom, a sulfur atom, a carbon atom, or a phosphorus atom. An atom, a sulfur atom, or a carbon atom is more preferable, and a nitrogen atom, an oxygen atom, or a carbon atom is still more preferable.

11とL11、L12、L13、及びL14でそれぞれ形成される結合は、それぞれ独立に、共有結合であってもイオン結合であっても配位結合であってもよい。本発明における配位子とは、説明の便宜上、配位結合のみならず他のイオン結合、共有結合により形成された場合においても用いるものとする。
11、Y12、L12、Y11、L13、Y13、及びL14から成る配位子は、アニオン性配位子(少なくとも一つのアニオンが金属と結合する配位子)であることが好ましい。アニオン性配位子中のアニオンの数は、1〜3が好ましく、1、2がより好ましく、2がさらに好ましい。
The bonds formed by M 11 and L 11 , L 12 , L 13 , and L 14 may each independently be a covalent bond, an ionic bond, or a coordinate bond. For convenience of explanation, the ligand in the present invention shall be used not only in the case of a coordination bond but also in the case of being formed by other ionic bonds or covalent bonds.
The ligand consisting of L 11 , Y 12 , L 12 , Y 11 , L 13 , Y 13 , and L 14 is an anionic ligand (a ligand in which at least one anion binds to a metal). Is preferred. 1-3 are preferable, as for the number of anions in an anionic ligand, 1 and 2 are more preferable, and 2 is further more preferable.

11に炭素原子で配位するL11、L12、L13、及びL14としては、特に限定されないが、それぞれ独立にイミノ配位子、芳香族炭素環配位子(例えばベンゼン配位子、ナフタレン配位子、アントラセン配位子、またはフェナントラセン配位子など)、ヘテロ環配位子(例えばチオフェン配位子、ピリジン配位子、ピラジン配位子、ピリミジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、及び、それらを含む縮環体(例えばキノリン配位子、ベンゾチアゾール配位子など)およびこれらの互変異性体)が挙げられる。 L 11 , L 12 , L 13 , and L 14 coordinated to M 11 by a carbon atom are not particularly limited, but are each independently an imino ligand, an aromatic carbocyclic ligand (for example, a benzene ligand). , Naphthalene, anthracene, or phenanthracene ligands), heterocyclic ligands (eg, thiophene ligands, pyridine ligands, pyrazine ligands, pyrimidine ligands, thiazole ligands) Ligands, oxazole ligands, pyrrole ligands, imidazole ligands, pyrazole ligands, and condensed rings containing them (eg, quinoline ligands, benzothiazole ligands, etc.) and their tautomers Sex body).

11に窒素原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、含窒素へテロ環配位子(例えば、ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子、オキサジアゾール配位子、チアジアゾール配位子、及び、それらを含む縮環体(例えば、キノリン配位子、ベンズオキサゾール配位子、ベンズイミダゾール配位子など)、及び、これらの互変異性体(なお、本発明では通常の異性体以外に次のような例も互変異性体と定義する。例えば、後述する化合物(24)の5員ヘテロ環配位子、化合物(64)の末端5員ヘテロ環配位子、化合物(145)の5員ヘテロ環配位子もピロール互変異性体と定義する。)など、アミノ配位子(アルキルアミノ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばメチルアミノなどが挙げられる。)、アリールアミノ配位子(例えばフェニルアミノなどが挙げられる。)、アシルアミノ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ配位子(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、イミノ配位子など)が挙げられる。これらの配位子はさらに置換されていてもよい。 L 11 , L 12 , L 13 , and L 14 coordinated to M 11 by a nitrogen atom are not particularly limited, but each independently includes a nitrogen-containing heterocyclic ligand (eg, pyridine ligand, pyrazine coordination). Ligand, pyrimidine ligand, pyridazine ligand, triazine ligand, thiazole ligand, oxazole ligand, pyrrole ligand, imidazole ligand, pyrazole ligand, triazole ligand, oxadi Azole ligands, thiadiazole ligands, and condensed rings containing them (for example, quinoline ligands, benzoxazole ligands, benzimidazole ligands, etc.) and tautomers thereof (note that In the present invention, in addition to the usual isomers, the following examples are also defined as tautomers, for example, the 5-membered heterocyclic ligand of the compound (24) described later and the 5-membered terminal of the compound (64). Arocyclic ligands, 5-membered heterocyclic ligands of the compound (145) are also defined as pyrrole tautomers, etc.) amino ligands (alkylamino ligands (preferably having 2 to 30 carbon atoms, More preferably, it has 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include methylamino.), Arylamino ligands (for example, phenylamino), acylamino ligands (Preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino and benzoylamino), alkoxycarbonylamino ligands (preferably Has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonylamino. ), An aryloxycarbonylamino ligand (preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino). Sulfonylamino ligands (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.), imino. These ligands may be further substituted.

11に酸素原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシルオキシ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、シリルオキシ配位子(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、カルボニル配位子(例えばケトン配位子、エステル配位子、アミド配位子など)、エーテル配位子(例えばジアルキルエーテル配位子、ジアリールエーテル配位子、フリル配位子など)などが挙げられる。 L 11 , L 12 , L 13 , and L 14 coordinated to M 11 with an oxygen atom are not particularly limited, but are independently an alkoxy ligand (preferably having 1 to 30 carbon atoms, more preferably having carbon atoms). 1 to 20, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy), aryloxy ligands (preferably 6 to 30 carbon atoms, more preferably Has 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, and examples thereof include phenyloxy, 1-naphthyloxy, 2-naphthyloxy and the like, and a heterocyclic oxy ligand (preferably having 1 carbon atom). To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy, Noryloxy, etc.), acyloxy ligands (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetoxy, benzoyloxy and the like. ), A silyloxy ligand (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include trimethylsilyloxy and triphenylsilyloxy). , Carbonyl ligands (eg, ketone ligands, ester ligands, amide ligands, etc.), ether ligands (eg, dialkyl ether ligands, diaryl ether ligands, furyl ligands, etc.) Can be mentioned.

11に硫黄原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、チオカルボニル配位子(例えばチオケトン配位子、チオエステル配位子など)、又はチオエーテル配位子(例えばジアルキルチオエーテル配位子、ジアリールチオエーテル配位子、チオフリル配位子など)などが挙げられる。これらの置換配位子は更に置換されてもよい。 Although it does not specifically limit as L < 11 >, L < 12 >, L <13> , and L < 14 > coordinated to M < 11 > by a sulfur atom, Each is independently alkylthio ligand (preferably C1-C30, More preferably, carbon number. 1 to 20, particularly preferably 1 to 12 carbon atoms, for example, methylthio, ethylthio, etc.), an arylthio ligand (preferably 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably Has 6 to 12 carbon atoms, for example, phenylthio and the like, and a heterocyclic thio ligand (preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms). And examples thereof include pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio), and thiocarbo. Le ligands (e.g. thioketone ligand, etc. thioester ligands), or thioether ligands (e.g. dialkyl thioether ligands, diaryl thioether ligands, etc. thiofuryl ligand), and the like. These substituted ligands may be further substituted.

11にリン原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、ジアルキルホスフィノ基、ジアリールホスフィノ基、トリアルキルホスフィン、トリアリールホスフィン、およびホスフィニン基等が挙げられる。これらの基は更に置換されてもよい。 L 11 , L 12 , L 13 , and L 14 coordinated to M 11 with a phosphorus atom are not particularly limited, but each independently includes a dialkylphosphino group, a diarylphosphino group, a trialkylphosphine, a triarylphosphine, And a phosphinin group. These groups may be further substituted.

11及びL14は、それぞれ独立に、芳香族炭素環配位子、アルキルオキシ配位子、アリールオキシ配位子、エーテル配位子、アルキルチオ配位子、アリールチオ配位子、アルキルアミノ配位子、アリールアミノ配位子、アシルアミノ配位子、含窒素へテロ環配位子(例えばピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子、オキサジアゾール配位子、チアジアゾール配位子、又は、それらを含む縮配位子体(例えば、キノリン配位子、ベンズオキサゾール配位子、ベンズイミダゾール配位子など)、又は、これらの互変異性体など)が好ましく、芳香族炭素環配位子、アリールオキシ配位子、アリールチオ配位子、アリールアミノ配位子、並びにピリジン配位子、ピラジン配位子、イミダゾール配位子、又は、それらを含む縮配位子体(例えば、キノリン配位子、キノキサリン配位子、ベンズイミダゾール配位子など)、又は、これらの互変異性体がより好ましく、芳香族炭素環配位子、アリールオキシ配位子、アリールチオ配位子、又はアリールアミノ配位子がさらに好ましく、芳香族炭素環配位子、又はアリールオキシ配位子が特に好ましい。 L 11 and L 14 are each independently an aromatic carbocyclic ligand, alkyloxy ligand, aryloxy ligand, ether ligand, alkylthio ligand, arylthio ligand, alkylamino coordination Ligand, arylamino ligand, acylamino ligand, nitrogen-containing heterocyclic ligand (eg pyridine ligand, pyrazine ligand, pyrimidine ligand, pyridazine ligand, triazine ligand, thiazole ligand) Ligands, oxazole ligands, pyrrole ligands, imidazole ligands, pyrazole ligands, triazole ligands, oxadiazole ligands, thiadiazole ligands, or condensed ligand bodies containing them (For example, a quinoline ligand, a benzoxazole ligand, a benzimidazole ligand, or the like, or a tautomer thereof) is preferable, and an aromatic carbocyclic ligand Aryloxy ligands, arylthio ligands, arylamino ligands, and pyridine ligands, pyrazine ligands, imidazole ligands, or condensed ligand bodies containing them (for example, quinoline ligands) Quinoxaline ligand, benzimidazole ligand, etc.), or tautomers thereof, more preferably aromatic carbocyclic ligand, aryloxy ligand, arylthio ligand, or arylamino coordination A child is further preferred, and an aromatic carbocyclic ligand or an aryloxy ligand is particularly preferred.

12及びL13は、それぞれ独立に、M11と配位結合を形成する配位子が好ましく、M11と配位結合を形成する配位子としては、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、チアゾール環、オキサゾール環、ピロール環、トリアゾール環、及び、それらを含む縮環体(例えば、キノリン環、ベンズオキサゾール環、ベンズイミダゾール環、またはインドレニン環など)及び、これらの互変異性体が好ましく、ピリジン環、ピラジン環、ピリミジン環、ピロール環、及び、それらを含む縮環体(例えば、キノリン環、ベンズピロールなど)、及び、これらの互変異性体がより好ましく、ピリジン環、ピラジン環、ピリミジン環、及び、それらを含む縮環体(例えば、キノリン環など)がさらに好ましく、ピリジン環、及び、ピリジン環を含む縮環体(例えば、キノリン環など)が特に好ましい。 L 12 and L 13 each independently ligands preferably form a coordinate bond with M 11, as ligands forming a coordination bond with M 11, a pyridine ring, a pyrazine ring, a pyrimidine ring, Triazine ring, thiazole ring, oxazole ring, pyrrole ring, triazole ring, and condensed ring containing them (for example, quinoline ring, benzoxazole ring, benzimidazole ring, or indolenine ring) and their tautomerism Pyridine ring, pyrazine ring, pyrimidine ring, pyrrole ring, and condensed ring containing them (for example, quinoline ring, benzpyrrole, etc.) and tautomers thereof are more preferable, pyridine ring, More preferred are a pyrazine ring, a pyrimidine ring, and a condensed ring containing them (for example, a quinoline ring, etc.), a pyridine ring, and A condensed ring containing a pyridine ring (for example, a quinoline ring) is particularly preferable.

一般式(A)中、L15はM11に配位する配位子を表す。L15は1〜4座の配位子が好ましく、1〜4座のアニオン性配位子がより好ましい。1〜4座のアニオン性配位子としては特に限定されないが、ハロゲン配位子、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)、ピリジン配位子を含有するモノアニオン性2座配位子(例えば、ピコリン酸配位子、2−(2−ヒドロキシフェニル)−ピリジン配位子など)、L11、Y12、L12、Y11、L13、Y13、L14で形成される4座配位子が好ましく、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)、ピリジン配位子を含有するモノアニオン性2座配位子(例えばピコリン酸配位子、2−(2−ヒドロキシフェニル)−ピリジン配位子など)、L11、Y12、L12、Y11、L13、Y13、L14で形成される4座配位子がより好ましく、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)、ピリジン配位子を含有するモノアニオン性2座配位子(例えば、ピコリン酸配位子、2−(2−ヒドロキシフェニル)−ピリジン配位子など)がさらに好ましく、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)が特に好ましい。配位座の数、及び配位子の数が、金属の配位数を上回ることはない。但し、L15はL11及びL14の両方と結合して環状配位子を形成することはない。 In the general formula (A), L 15 represents a ligand coordinated to M 11 . L 15 is preferably a 1-4-dentate ligand, more preferably a 1-4-dentate anionic ligand. Although it does not specifically limit as an anionic ligand of 1-4 tetradentate, The monoanionic property containing a halogen ligand, a 1, 3- diketone ligand (for example, acetylacetone ligand etc.), and a pyridine ligand Bidentate ligand (eg, picolinic acid ligand, 2- (2-hydroxyphenyl) -pyridine ligand, etc.), L 11 , Y 12 , L 12 , Y 11 , L 13 , Y 13 , L 14 And a monoanionic bidentate ligand containing a 1,3-diketone ligand (for example, an acetylacetone ligand) or a pyridine ligand (for example, a picolinic acid ligand). A tetradentate ligand formed by L 11 , Y 12 , L 12 , Y 11 , L 13 , Y 13 , L 14 , and the like. Preferably, 1,3-diketone Ligands (eg, acetylacetone ligand), monoanionic bidentate ligands containing pyridine ligand (eg, picolinic acid ligand, 2- (2-hydroxyphenyl) -pyridine ligand, etc.) Are more preferable, and a 1,3-diketone ligand (for example, an acetylacetone ligand) is particularly preferable. The number of coordination sites and the number of ligands do not exceed the coordination number of the metal. However, L 15 does not combine with both L 11 and L 14 to form a cyclic ligand.

一般式(A)中、Y11、Y12、及びY13は、それぞれ独立に、連結基、単結合、または二重結合を表す。連結基としては、特に限定されないが、例えば、炭素原子、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子から選択される原子を含んで構成される連結基が好ましい。このような連結基の具体例としては、例えば下記のものが挙げられる。 In General Formula (A), Y 11 , Y 12 , and Y 13 each independently represent a linking group, a single bond, or a double bond. Although it does not specifically limit as a coupling group, For example, the coupling group comprised including the atom selected from a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, and a phosphorus atom is preferable. Specific examples of such a linking group include the following.

また、Y11、Y12、又はY13が連結基である場合、L11とY12、Y12とL12、L12とY11、Y11とL13、L13とY13、Y13とL14の間の結合は、それぞれ独立に、単結合又は二重結合を表す。 When Y 11 , Y 12 , or Y 13 is a linking group, L 11 and Y 12 , Y 12 and L 12 , L 12 and Y 11 , Y 11 and L 13 , L 13 and Y 13 , Y 13 And the bond between L 14 each independently represents a single bond or a double bond.

11、Y12、及びY13は、それぞれ独立に、単結合、二重結合、カルボニル連結基、アルキレン連結基、またはアルケニレン基が好ましい。Y11は、単結合、アルキレン基がより好ましく、アルキレン基がさらに好ましい。Y12及びY13は、単結合、アルケニレン基がより好ましく、単結合がさらに好ましい。 Y 11 , Y 12 , and Y 13 are each independently preferably a single bond, a double bond, a carbonyl linking group, an alkylene linking group, or an alkenylene group. Y 11 is more preferably a single bond or an alkylene group, and still more preferably an alkylene group. Y 12 and Y 13 are more preferably a single bond or an alkenylene group, and even more preferably a single bond.

12、L11、L12、及びM11で形成される環、Y11、L12、L13、及びM11で形成される環、Y13、L13、L14、及びM11で形成される環は、それぞれ環員数4〜10が好ましく、環員数5〜7がより好ましく、環員数5又は6がさらに好ましい。 Ring formed by Y 12 , L 11 , L 12 , and M 11 , Ring formed by Y 11 , L 12 , L 13 , and M 11 , Formed by Y 13 , L 13 , L 14 , and M 11 The ring to be formed preferably has 4 to 10 ring members, more preferably 5 to 7 ring members, and further preferably 5 or 6 ring members.

一般式(A)中、n11は0〜4を表す。M11が配位数4の金属の場合、n11は0であり、M11が配位数6の金属の場合、n11は1、2が好ましく、1がより好ましい。M11が配位数6でn11が1の場合L15は2座配位子を表し、M11が配位数6でn11が2の場合L15は単座配位子を表す。M11が配位数8の金属の場合、n11は1〜4が好ましく、1、2がより好ましく、1がより好ましい。M11が配位数8でn11が1の場合L15は4座配位子を表し、M11が配位数8でn11が2の場合L15は2座配位子を表す。n11が複数のときは、複数のL15は同じであっても異なっていてもよい。 In the general formula (A), n 11 represents 0 to 4. If M 11 is a metal coordination number 4, n 11 is 0, when M 11 is a metal coordination number 6, n 11 is 1, 2 is preferable, and more preferably 1. When M 11 is coordination number 6 and n 11 is 1, L 15 represents a bidentate ligand, and when M 11 is coordination number 6 and n 11 is 2, L 15 represents a monodentate ligand. When M 11 is a metal having a coordination number of 8, n 11 is preferably 1 to 4, more preferably 1, 2, and more preferably 1. When M 11 is coordination number 8 and n 11 is 1, L 15 represents a tetradentate ligand, and when M 11 is coordination number 8 and n 11 is 2, L 15 represents a bidentate ligand. When n 11 is plural, a plurality of L 15 may be different even in the same.

本発明に用いられる多座金属錯体の例としては、具体的には、例えば、以下の材料を挙げることができるが、本発明はこれらに限定されるものではない。   Specific examples of the multidentate metal complex used in the present invention include the following materials, but the present invention is not limited thereto.

(正孔輸送性発光材料)
本発明において用いられる正孔輸送性発光材料としては、正孔輸送性蛍光発光材料、正孔輸送性燐光発光材料を用いることができるが、好ましくは正孔輸送性燐光発光材料である。
(Hole-transporting light-emitting material)
As the hole transporting light emitting material used in the present invention, a hole transporting fluorescent light emitting material or a hole transporting phosphorescent light emitting material can be used, and a hole transporting phosphorescent light emitting material is preferable.

本発明に於ける正孔輸送性発光材料について説明する。
本発明の発光層に用いられる正孔輸送性発光材料としては、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャル(Ip)が5.1eV以上6.4eV以下であることが好ましく、5.4eV以上6.2eV以下であることがより好ましく、5.6eV以上6.0eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、電子親和力(Ea)が1.2eV以上3.1eV以下であることが好ましく、1.4eV以上3.0eV以下であることがより好ましく、1.8eV以上2.8eV以下であることが更に好ましい。
The hole transporting luminescent material in the present invention will be described.
The hole transporting light emitting material used for the light emitting layer of the present invention preferably has an ionization potential (Ip) of 5.1 eV or more and 6.4 eV or less from the viewpoint of improving durability and lowering driving voltage. It is more preferably 4 eV or more and 6.2 eV or less, and further preferably 5.6 eV or more and 6.0 eV or less. Further, from the viewpoint of improving durability and lowering driving voltage, the electron affinity (Ea) is preferably 1.2 eV or more and 3.1 eV or less, more preferably 1.4 eV or more and 3.0 eV or less. More preferably, it is 8 eV or more and 2.8 eV or less.

このような正孔輸送性発光材料としては、具体的には、例えば、ピロール系化合物、インドール系化合物、カルバゾール系化合物、イミダゾール系化合物、ポリアリールアルカン系化合物、アリールアミン系化合物、スチリル系化合物、スチリルアミン系化合物、チオフェン系化合物、芳香族多環縮合系化合物などのほか、金属錯体などが挙げられる。
前記金属錯体中の金属イオンは、特に限定されないが、発光効率向上、耐久性向上、駆動電圧低下の観点から、遷移金属イオン、希土類金属イオンであることが好ましく、より好ましくは、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、ロジウムイオン、ルテニウムイオン、オスミウムイオン、パラジウムイオン、銀イオン、銅イオン、コバルトイオン、ニッケルイオン、鉛イオン、希土類金属イオン(例えば、ユーロピウムイオン、ガドリニウムイオン、テルビウムイオンなど)が好ましく、更に好ましくは、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、ユーロピウムイオン、カドリニウムイオン、テルビウムイオンであり、特に好ましくは、イリジウムイオン、白金イオン、レニウムイオン、ユーロピウムイオン、ガドリニウムイオン、テルビウムイオンであり、最も好ましくは、イリジウムイオンである。イリジウムイオンを有する金属錯体の中でも特に好ましくは、炭素−Ir結合、窒素−Ir結合(この場合の結合は、配位結合、イオン結合、共有結合のいずれであってもよい)を有する金属錯体である。
Specific examples of such hole transporting light emitting materials include, for example, pyrrole compounds, indole compounds, carbazole compounds, imidazole compounds, polyarylalkane compounds, arylamine compounds, styryl compounds, In addition to styrylamine compounds, thiophene compounds, aromatic polycyclic condensation compounds, metal complexes, and the like can be given.
The metal ion in the metal complex is not particularly limited, but is preferably a transition metal ion or a rare earth metal ion, more preferably an iridium ion or platinum, from the viewpoints of improving luminous efficiency, durability, and driving voltage. Ion, gold ion, rhenium ion, tungsten ion, rhodium ion, ruthenium ion, osmium ion, palladium ion, silver ion, copper ion, cobalt ion, nickel ion, lead ion, rare earth metal ion (for example, europium ion, gadolinium ion, Terbium ions, etc.) are preferred, more preferably iridium ions, platinum ions, gold ions, rhenium ions, tungsten ions, europium ions, cadolinium ions, terbium ions, and particularly preferably iridium ions. Platinum ion, a rhenium ion, europium ion, gadolinium ion, terbium ion, most preferably iridium ion. Among metal complexes having iridium ions, particularly preferred are metal complexes having a carbon-Ir bond and a nitrogen-Ir bond (in this case, the bond may be a coordination bond, an ionic bond or a covalent bond). is there.

このような正孔輸送性発光材料の例としては、具体的には、例えば、以下の材料を挙げることができるが、これらに限定されるものではない。   Specific examples of such hole-transporting light-emitting materials include, but are not limited to, the following materials.

(電子輸送性ホスト材料)
本発明に用いられる電子輸送性ホスト材料としては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.4eV以下であることがより好ましく、2.8eV以上3.3eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが更に好ましい。
(Electron transporting host material)
The electron transporting host material used in the present invention preferably has an electron affinity Ea of 2.5 eV or more and 3.5 eV or less, from the viewpoint of improving durability and lowering driving voltage, and 2.6 eV or more and 3.4 eV or less. It is more preferable that it is 2.8 eV or more and 3.3 eV or less. Further, from the viewpoint of improving durability and reducing driving voltage, the ionization potential Ip is preferably 5.7 eV or more and 7.5 eV or less, more preferably 5.8 eV or more and 7.0 eV or less, and 5.9 eV or more. More preferably, it is 6.5 eV or less.

このような電子輸送性ホストとしては、具体的には、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。   Specific examples of such an electron transporting host include pyridine, pyrimidine, triazine, imidazole, pyrazole, triazole, oxazole, oxadiazol, fluorenone, anthraquinodimethane, anthrone, diphenylquinone, thiol. Heterocyclic tetracarboxylic anhydrides such as pyran dioxide, carbodiimide, fluorenylidenemethane, distyrylpyrazine, fluorine-substituted aromatic compounds, naphthaleneperylene, phthalocyanines, and their derivatives (form condensed rings with other rings) Or metal complexes of 8-quinolinol derivatives, metal phthalocyanines, metal complexes having benzoxazole or benzothiazol as ligands, and the like.

電子輸送性ホストとして好ましくは、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体等)であり、中でも、本発明においては耐久性の点から金属錯体化合物が好ましい。金属錯体化合物は金属に配位する少なくとも1つの窒素原子または酸素原子または硫黄原子を有する配位子をもつ金属錯体がより好ましい。
金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、またはパラジウムイオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、またはパラジウムイオンであり、更に好ましくはアルミニウムイオン、亜鉛イオン、白金イオン、またはパラジウムイオンである。
Preferred examples of the electron transporting host include metal complexes, azole derivatives (benzimidazole derivatives, imidazopyridine derivatives, etc.), and azine derivatives (pyridine derivatives, pyrimidine derivatives, triazine derivatives, etc.). To metal complex compounds are preferred. The metal complex compound is more preferably a metal complex having a ligand having at least one nitrogen atom, oxygen atom or sulfur atom coordinated to the metal.
The metal ion in the metal complex is not particularly limited, but is preferably beryllium ion, magnesium ion, aluminum ion, gallium ion, zinc ion, indium ion, tin ion, platinum ion, or palladium ion, more preferably beryllium ion, Aluminum ion, gallium ion, zinc ion, platinum ion or palladium ion, and more preferably aluminum ion, zinc ion, platinum ion or palladium ion.

前記金属錯体中に含まれる配位子としては種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer−Verlag社、H.Yersin著、1987年発行、「有機金属化学−基礎と応用−」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。   There are various known ligands contained in the metal complex. For example, “Photochemistry and Photophysics of Coordination Compounds”, Springer-Verlag, H.C. Examples include the ligands described in Yersin, published in 1987, “Organometallic Chemistry: Fundamentals and Applications”, Sakai Hanafusa, Yamamoto Akio, published in 1982, and the like.

前記配位子として、好ましくは含窒素ヘテロ環配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数3〜15であり、単座配位子であっても2座以上の配位子であっても良い。好ましくは2座以上6座以下の配位子である。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。
配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、ターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、ヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、4−ビフェニルオキシなどが挙げられる。)、
The ligand is preferably a nitrogen-containing heterocyclic ligand (preferably having 1 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 3 to 15 carbon atoms, and a monodentate ligand. Alternatively, it may be a bidentate or higher ligand, preferably a bidentate or higher and a hexadentate or lower ligand, or a bidentate or higher and lower 6 or lower ligand and a monodentate mixed ligand. preferable.
Examples of the ligand include an azine ligand (for example, pyridine ligand, bipyridyl ligand, terpyridine ligand, etc.), a hydroxyphenylazole ligand (for example, hydroxyphenylbenzimidazole coordination). And a hydroxyphenyl benzoxazole ligand, a hydroxyphenyl imidazole ligand, a hydroxyphenylimidazopyridine ligand, etc.), an alkoxy ligand (preferably having 1 to 30 carbon atoms, more preferably 1 carbon atom). To 20, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy), aryloxy ligands (preferably 6 to 30 carbon atoms, more preferably 6-20 carbon atoms, particularly preferably 6-12 carbon atoms, for example phenyl Carboxymethyl, 1-naphthyloxy, 2-naphthyloxy, 2,4,6-trimethylphenyl oxy, and 4-biphenyloxy and the like.),

ヘテロアリールオキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、およびキノリルオキシなどが挙げられる。)、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロアリールチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、および2−ベンズチアゾリルチオなどが挙げられる。)、シロキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数3〜25、特に好ましくは炭素数6〜20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、およびトリイソプロピルシロキシ基などが挙げられる。)、芳香族炭化水素アニオン配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜25、特に好ましくは炭素数6〜20であり、例えばフェニルアニオン、ナフチルアニオン、およびアントラニルアニオンなどが挙げられる。)、芳香族ヘテロ環アニオン配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜25、特に好ましくは炭素数2〜20であり、例えばピロールアニオン、ピラゾールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、およびベンゾチオフェンアニオンなどが挙げられる。)、インドレニンアニオン配位子などが挙げられ、好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、またはシロキシ配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、または芳香族ヘテロ環アニオン配位子である。 Heteroaryloxy ligand (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include pyridyloxy, pyrazyloxy, pyrimidyloxy, and quinolyloxy. ), An alkylthio ligand (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), arylthio ligands (Preferably 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio), heteroarylthio ligand (preferably 1 carbon atom) To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridylthio , 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio, etc.), a siloxy ligand (preferably having 1 to 30 carbon atoms, more preferably 3 to 25 carbon atoms). Particularly preferably, it has 6 to 20 carbon atoms, and examples thereof include a triphenylsiloxy group, a triethoxysiloxy group, and a triisopropylsiloxy group.), An aromatic hydrocarbon anion ligand (preferably having 6 carbon atoms) To 30, more preferably 6 to 25 carbon atoms, particularly preferably 6 to 20 carbon atoms, such as a phenyl anion, a naphthyl anion, an anthranyl anion, etc.), an aromatic heterocyclic anion ligand (preferably Has 1 to 30 carbon atoms, more preferably 2 to 25 carbon atoms, and particularly preferably 2 to 20 carbon atoms. Pyrrole anion, pyrazole anion, pyrazole anion, triazole anion, oxazole anion, benzoxazole anion, thiazole anion, benzothiazole anion, thiophene anion, benzothiophene anion, etc.), indolenine anion ligand, etc. , Preferably a nitrogen-containing heterocyclic ligand, aryloxy ligand, heteroaryloxy group, or siloxy ligand, more preferably a nitrogen-containing heterocyclic ligand, aryloxy ligand, siloxy coordination Or an aromatic hydrocarbon anion ligand or an aromatic heterocyclic anion ligand.

金属錯体電子輸送性ホスト材料の例としては、例えば特開2002−235076、特開2004−214179、特開2004−221062、特開2004−221065、特開2004−221068、特開2004−327313等に記載の化合物が挙げられる。   Examples of the metal complex electron transporting host material include, for example, Japanese Patent Application Laid-Open No. 2002-235076, Japanese Patent Application Laid-Open No. 2004-214179, Japanese Patent Application Laid-Open No. 2004-221062, Japanese Patent Application Laid-Open No. 2004-221068, Japanese Patent Application Laid-Open No. 2004-327313, And the compounds described.

このような電子輸送性ホスト材料としては、具体的には、例えば、以下の材料を挙げることができるが、これらに限定されるものではない。   Specific examples of such an electron transporting host material include, but are not limited to, the following materials.

電子輸送層ホスト材料としては、E−1〜E−6、E−8、E−9、E−10、E−21、またはE−22が好ましく、E−3、E−4、E−6、E−8、E−9、E−10、E−21、またはE−22がより好ましく、E−3、E−4、E−8、E−9、E−21、またはE−22が更に好ましい。   The electron transport layer host material is preferably E-1 to E-6, E-8, E-9, E-10, E-21, or E-22, and E-3, E-4, E-6. E-8, E-9, E-10, E-21, or E-22 are more preferred, and E-3, E-4, E-8, E-9, E-21, or E-22 are preferred. Further preferred.

本発明における発光層において、発光性ドーパントとして燐光発光性ドーパントを用いたとき、該燐光発光性ドーパントの最低三重項励起エネルギーT1(D)と前記複数のホスト化合物の最低励起三重項エネルギーのうち最小のもの前記T1(H)minとが、T1(H)min>T1(D)の関係を満たすことが色純度、外部量子効率、駆動耐久性の点で好ましい。   In the light emitting layer of the present invention, when a phosphorescent dopant is used as the luminescent dopant, the lowest triplet excitation energy T1 (D) of the phosphorescent dopant and the lowest excited triplet energy of the plurality of host compounds. It is preferable in terms of color purity, external quantum efficiency, and driving durability that the above T1 (H) min satisfies the relationship of T1 (H) min> T1 (D).

(正孔輸送性ホスト材料)
本発明の発光層に用いられる正孔輸送性ホスト材料としては、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.1eV以上6.4eV以下であることが好ましく、5.4eV以上6.2eV以下であることがより好ましく、5.6eV以上6.0eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが1.2eV以上3.1eV以下であることが好ましく、1.4eV以上3.0eV以下であることがより好ましく、1.8eV以上2.8eV以下であることが更に好ましい。
(Hole-transporting host material)
The hole transporting host material used in the light emitting layer of the present invention preferably has an ionization potential Ip of 5.1 eV or more and 6.4 eV or less from the viewpoint of improving durability and lowering driving voltage. It is more preferably 6.2 eV or less, and further preferably 5.6 eV or more and 6.0 eV or less. Further, from the viewpoint of improving durability and lowering driving voltage, the electron affinity Ea is preferably 1.2 eV or more and 3.1 eV or less, more preferably 1.4 eV or more and 3.0 eV or less, and 1.8 eV or more. More preferably, it is 2.8 eV or less.

このような正孔輸送性ホスト材料としては、具体的には、例えば、以下の材料を挙げることができる。
ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、ピラゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマチオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及びそれらの誘導体等が挙げられる。
中でも、インドール誘導体、カルバゾール誘導体、アザインドール誘導体、アザカルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体が好ましく、特に分子内にインドール骨格、カルバゾール骨格、アザインドール骨格、アザカルバゾール骨格および芳香族第三級アミン骨格の少なくとも一方を複数個有するものが好ましい。
このような正孔輸送性ホスト材料としての具体的化合物としては、例えば下記のものが挙げられるが、これらに限定されるものではない。
Specific examples of such a hole transporting host material include the following materials.
Pyrrole, indole, carbazole, azaindole, azacarbazole, pyrazole, imidazole, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, aromatic tertiary Amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, polysilane compounds, poly (N-vinylcarbazole), aniline copolymers, thiophene oligomer thiophene oligomers, conductive polymer oligomers such as polythiophene, organic Examples thereof include silane, carbon film, and derivatives thereof.
Among them, indole derivatives, carbazole derivatives, azaindole derivatives, azacarbazole derivatives, aromatic tertiary amine compounds, and thiophene derivatives are preferable. Those having a plurality of at least one of tertiary amine skeletons are preferred.
Specific examples of such a hole transporting host material include, but are not limited to, the following compounds.

<発光材料とホスト材料の混合比>
−正孔輸送性ホスト材料および電子輸送性発光材料の混合比
本発明に於ける正孔輸送性ホスト材料および電子輸送性発光材料の混合比率は、十分な発光強度を得つつ会合発光や濃度消光、正孔が発光層から漏れ出ることを抑制する観点から、発光層の総計として、質量比で95:5〜50:50が好ましく、90:10〜70:30がより好ましい。
−電子輸送性ホスト材料および正孔輸送性発光材料の混合比−
本発明に於ける電子輸送性ホスト材料および正孔輸送性発光材料の混合比率は、十分な発光強度を得つつ会合発光や濃度消光、正孔が発光層から漏れ出ることを抑制する観点から、発光層の総計として、質量比で5:95〜50:50が好ましく、10:90〜30:70がより好ましい。
<Mixing ratio of luminescent material and host material>
-Mixing ratio of hole-transporting host material and electron-transporting light-emitting material The mixing ratio of hole-transporting host material and electron-transporting light-emitting material in the present invention is such that associated light emission and concentration quenching are obtained while obtaining sufficient light emission intensity. From the viewpoint of suppressing leakage of holes from the light emitting layer, the total amount of the light emitting layer is preferably 95: 5 to 50:50, more preferably 90:10 to 70:30.
-Mixing ratio of electron transporting host material and hole transporting light emitting material-
In the present invention, the mixing ratio of the electron transporting host material and the hole transporting light-emitting material is associative light emission or concentration quenching while obtaining a sufficient light emission intensity, from the viewpoint of suppressing leakage of holes from the light emitting layer, The total amount of the light emitting layers is preferably 5:95 to 50:50, more preferably 10:90 to 30:70 in terms of mass ratio.

<膜厚>
発光層の膜厚としては、輝度ムラ、駆動電圧、輝度の観点から、0.03μm以上0.5μm以下であることが好ましく、0.06μm以上0.4μm以下であることが好ましい。発光層の膜厚が薄いと、高輝度で低い電圧での駆動が可能となるが、素子抵抗が小さくなることで、電圧低下による輝度変化の影響を受けやすくなり、輝度ムラの増加を招く結果となる。発光層の膜厚が厚いと、駆動電圧が高くなり、発光効率の低下を招き、用途を限定する原因となってしまう。
<Film thickness>
The thickness of the light emitting layer is preferably 0.03 μm or more and 0.5 μm or less, and more preferably 0.06 μm or more and 0.4 μm or less from the viewpoint of luminance unevenness, driving voltage, and luminance. If the light-emitting layer is thin, it can be driven with high brightness and low voltage, but the device resistance becomes small, so it is more susceptible to changes in brightness due to voltage drop, resulting in increased brightness unevenness. It becomes. If the thickness of the light emitting layer is large, the drive voltage increases, leading to a decrease in light emission efficiency and limiting the application.

<層構成>
発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。また、発光層が積層構造である場合については、積層構造を構成する各層の膜厚は特に限定されないが、各発光層の合計膜厚が前述の範囲になるようにすることが好ましい。
<Layer structure>
The light emitting layer may be one layer or two or more layers, and each layer may emit light in different emission colors. In the case where the light emitting layer has a laminated structure, the film thickness of each layer constituting the laminated structure is not particularly limited, but it is preferable that the total film thickness of each light emitting layer is in the above-described range.

3.ホスフィンオキサイド化合物を含有する層
本発明におけるホスフィンオキサイド化合物含有層は、陰極と発光層との間、好ましくは電子注入層もしくは電子輸送層と発光層との間に配される。
本発明におけるホスフィンオキサイド化合物含有層は、本発明の正孔輸送性材料が濃度傾斜して含有される発光層と、隣接して配される。これにより、駆動電圧の低下、発光効率の向上、高い駆動耐久性、を実現することが出来る。
3. Layer containing a phosphine oxide compound The phosphine oxide compound-containing layer in the present invention is disposed between the cathode and the light emitting layer, preferably between the electron injection layer or the electron transport layer and the light emitting layer.
The phosphine oxide compound-containing layer in the present invention is arranged adjacent to the light emitting layer containing the hole transporting material of the present invention in a concentration gradient. Thereby, a reduction in driving voltage, an improvement in light emission efficiency, and a high driving durability can be realized.

本発明に於けるホスフィンオキサイド化合物含有層は、発光層と直接接していることが好ましい。   The phosphine oxide compound-containing layer in the present invention is preferably in direct contact with the light emitting layer.

(ホスフィンオキサイド化合物)
次に本発明の有機電界発光素子に用いるホスフィンオキサイド化合物について、詳細に説明する。
本発明に用いられるホスフィンオキサイド化合物は、好ましくは下記一般式(I)で表される有機化合物である。
(Phosphine oxide compound)
Next, the phosphine oxide compound used for the organic electroluminescence device of the present invention will be described in detail.
The phosphine oxide compound used in the present invention is preferably an organic compound represented by the following general formula (I).

式中、R、R、およびRは、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、又はヘテロ環基を表す。 In the formula, R 1 , R 2 , and R 3 are each independently an alkyl group, alkenyl group, alkynyl group, aryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, acyl group, alkoxycarbonyl group , Aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, heterocyclic thio group, or heterocyclic group .

好ましくは、下記一般式(II)で表されるホスフィンオキサイド化合物である。   Preferably, it is a phosphine oxide compound represented by the following general formula (II).

式中、Ar、Ar、およびArは、それぞれ独立にアリール基またはヘテロ環基を表す。 In the formula, Ar 1 , Ar 2 , and Ar 3 each independently represent an aryl group or a heterocyclic group.

本発明における好ましいもう一群のホスフィンオキサイド化合物は、下記一般式(III)で表される有機化合物である。   Another preferred group of phosphine oxide compounds in the present invention are organic compounds represented by the following general formula (III).

式中、R31〜R34はそれぞれ独立にアリール基またはヘテロ環基を表す。Lは二価の連結基を表す。 In the formula, R 31 to R 34 each independently represents an aryl group or a heterocyclic group. L represents a divalent linking group.

一般式(I)について説明する。
、RおよびRは、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、及びシクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、及び3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、
The general formula (I) will be described.
R 1 , R 2 and R 3 are alkyl groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, Particularly preferably, it has 2 to 10 carbon atoms, and examples thereof include vinyl, allyl, 2-butenyl, and 3-pentenyl.), An alkynyl group (preferably 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms). , Particularly preferably having 2 to 10 carbon atoms, such as propargyl and 3-pentynyl).

アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、及びアントリルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、及びジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、及び2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、及び2−ナフチルオキシなどが挙げられる。)、 An aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms, such as phenyl, p-methylphenyl, naphthyl, and anthryl); An amino group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, and And dtolylamino), an alkoxy group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, and 2-ethyl). Hexyloxy, etc.), aryloxy groups (preferably having 6 to 30 carbon atoms, more preferred) Ku 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, and 2-naphthyloxy and the like.),

ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、及びピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、 Heterocyclic oxy group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include pyridyloxy, pyrazyloxy, pyrimidyloxy, and quinolyloxy). An acyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include acetyl, benzoyl, formyl, and pivaloyl), an alkoxycarbonyl group. (Preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 12 carbon atoms. Examples thereof include methoxycarbonyl and ethoxycarbonyl).

アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、 An aryloxycarbonyl group (preferably having a carbon number of 7 to 30, more preferably a carbon number of 7 to 20, particularly preferably a carbon number of 7 to 12, such as phenyloxycarbonyl), an acyloxy group (preferably carbon 2 to 30, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetoxy and benzoyloxy), acylamino group (preferably 2 to 30 carbon atoms, more preferably Has 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino, benzoylamino and the like, and an alkoxycarbonylamino group (preferably 2 to 30 carbon atoms, more preferably 2 carbon atoms). -20, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino Is.), An aryloxycarbonylamino group (preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, e.g., phenyloxycarbonylamino and the like.),

スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、及びフェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、及びフェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、 A sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino), a sulfamoyl group ( Preferably it is C0-30, More preferably, it is C0-20, Most preferably, it is C0-12, for example, sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenylsulfamoyl, etc. are mentioned. ), A carbamoyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, and phenylcarbamoyl. ), An alkylthio group (preferably having a carbon number of 1 to 0, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio, and arylthio groups (preferably 6 to 30 carbon atoms, more preferably 6 carbon atoms). To 20 and particularly preferably 6 to 12 carbon atoms, such as phenylthio).

ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、及び2−ベンズチアゾリルチオなどが挙げられる。)、 Heterocyclic thio group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, And 2-benzthiazolylthio and the like.

又は、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子であり、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、及びアゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、又はホスホリル基(例えばジフェニルホスホリル、ジメチルホスホリルなどが挙げられる。)である。 Or a heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom, specifically imidazolyl, pyridyl, Quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl group, azepinyl group, etc.), silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 carbon atoms) To 30 and particularly preferably 3 to 24 carbon atoms such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms such as trimethylsilyloxy, triphenylsilyloxy And the like.), Or a phosphoryl group (e.g., diphenylphosphoryl, dimethyl phosphoryl and the like.).

、RおよびRで表される基は、互いに同一でも異なっていてもよい。R、RおよびRで表される置換基として好ましくはアルキル基、アルケニル基、アルキニル基、アリール基、又はヘテロ環基であり、より好ましくはアルキル基、アリール基、又はヘテロ環基であり、特に好ましくはアリール基、ヘテロ環基である。 The groups represented by R 1 , R 2 and R 3 may be the same as or different from each other. The substituent represented by R 1 , R 2 and R 3 is preferably an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, more preferably an alkyl group, an aryl group or a heterocyclic group. And particularly preferably an aryl group or a heterocyclic group.

、RおよびRで表される置換基は、さらに置換基を有していてもよく、置換基としては、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、及びシクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、及び3−ペンテニルなどが挙げられる。)、 The substituent represented by R 1 , R 2 and R 3 may further have a substituent, and the substituent is an alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 1 carbon atoms). 20 and particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, and cyclohexyl. ), An alkenyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include vinyl, allyl, 2-butenyl, and 3-pentenyl. ),

アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、及びアントリルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、及びジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、及び2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、及び2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、及びピバロイルなどが挙げられる。)、 Alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl, 3-pentynyl, etc.), aryl group (preferably carbon 6 to 30, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyl, p-methylphenyl, naphthyl, and anthryl.), Amino group (preferably carbon It has 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, and particularly preferably 0 to 10 carbon atoms. Examples thereof include amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, and ditolylamino. ), An alkoxy group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, particularly preferred) Has 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, and 2-ethylhexyloxy), an aryloxy group (preferably 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, Particularly preferably, it has 6 to 12 carbon atoms, and examples thereof include phenyloxy, 1-naphthyloxy, 2-naphthyloxy and the like, and a heterocyclic oxy group (preferably having 1 to 30 carbon atoms, more preferably having carbon atoms). 1 to 20, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy and quinolyloxy), acyl groups (preferably 1 to 30 carbon atoms, more preferably 1 to 1 carbon atoms). 20, particularly preferably having 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, and pivaloyl Etc., and the like.),

アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、 An alkoxycarbonyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), an aryloxycarbonyl group ( Preferably it has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonyl, etc.), an acyloxy group (preferably 2 to 30 carbon atoms, More preferably, it has 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetoxy and benzoyloxy.), Acylamino group (preferably 2 to 30 carbon atoms, more preferably 2 to 2 carbon atoms). 20, particularly preferably 2 to 10 carbon atoms, such as acetylamino, benzoylamino An alkoxycarbonylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino). Aryloxycarbonylamino group (preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonylamino), sulfonylamino group ( Preferably it is C1-C30, More preferably, it is C1-C20, Most preferably, it is C1-C12, for example, methanesulfonylamino, benzenesulfonylamino, etc. are mentioned.

スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、及びフェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、及びフェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、及び2−ベンズチアゾリルチオなどが挙げられる。)、 Sulfamoyl group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenylsulfamoyl, etc. ), A carbamoyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc. An alkylthio group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms such as methylthio and ethylthio), an arylthio group. (Preferably 6 to 30 carbon atoms, more preferably 6 to 6 carbon atoms. 0, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.), a heterocyclic thio group (preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 carbon atom). -12, and examples thereof include pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, and 2-benzthiazolylthio).

スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、及びフェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、フルオロ基、クロロ基、ブロモ基、ヨード基、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、又は硫黄原子であり、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、及びアゼピニル基などが挙げられる。)、 A sulfonyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl and tosyl), a sulfinyl group (preferably having 1 carbon atom). To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido groups (preferably 1 to 30 carbon atoms, more preferably C1-C20, Most preferably, it is C1-C12, for example, ureido, methylureido, phenylureido etc. are mentioned), phosphoric acid amide groups (preferably C1-C30, more preferably carbon 1 to 20, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphoric acid amide and phenyl phosphoric acid amide. Hydroxy group, mercapto group, fluoro group, chloro group, bromo group, iodo group, cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group (Preferably having 1 to 30 carbon atoms, more preferably having 1 to 12 carbon atoms, and the hetero atom is, for example, a nitrogen atom, an oxygen atom, or a sulfur atom, specifically imidazolyl, pyridyl, quinolyl, furyl, Thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl group, azepinyl group and the like.

シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、又はホスホリル基(例えばジフェニルホスホリル、ジメチルホスホリルなどが挙げられる。)が適用できる。 A silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, such as trimethylsilyl, triphenylsilyl, etc.), a silyloxy group (preferably carbon 3 to 40, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, for example, trimethylsilyloxy, triphenylsilyloxy, etc.) or phosphoryl group (for example, diphenylphosphoryl, dimethylphosphoryl) Etc.) can be applied.

、RおよびRで表される基が有する置換基として好ましくは、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、フルオロ基、クロロ基、ブロモ基、ヨード基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基、又はホスホリル基であり、より好ましくはアルキル基、アルケニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、スルホニル基、フルオロ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基、又はホスホリル基であり、さらに好ましくはアルキル基、アリール基、アミノ基、フルオロ基、シアノ基、ヘテロ環基、シリル基、又はホスホリル基であり、さらに好ましくはアルキル基、アリール基、シアノ基、ヘテロ環基、又はホスホリル基である。 The substituent represented by the group represented by R 1 , R 2 and R 3 is preferably an alkyl group, alkenyl group, alkynyl group, aryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthio group. , Arylthio group, heterocyclic thio group, sulfonyl group, sulfinyl group, fluoro group, chloro group, bromo group, iodo group, cyano group, heterocyclic group, silyl group, silyloxy group, or phosphoryl group, more preferably alkyl Group, alkenyl group, aryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, sulfonyl group, fluoro group, cyano group, heterocyclic group, silyl group, silyloxy group, or phosphoryl group, more preferably Is an alkyl group, aryl group, amino group, fluoro group, cyano group, heterocyclic group, Ryl group or phosphoryl group, more preferably an alkyl group, aryl group, cyano group, heterocyclic group, or phosphoryl group.

一般式(I)で表される有機化合物は、より好ましくは一般式(II)で表される有機化合物である。   The organic compound represented by the general formula (I) is more preferably an organic compound represented by the general formula (II).

式中、Ar、Ar、およびArは、それぞれ独立にアリール基またはヘテロ環基を表す。 In the formula, Ar 1 , Ar 2 , and Ar 3 each independently represent an aryl group or a heterocyclic group.

次に一般式(II)について説明する。   Next, general formula (II) will be described.

式中、Ar、Ar、およびArは置換または無置換のアリール基、ヘテロ環基を表す。Ar、Ar、およびArで表されるアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、ペリレニル基、フルオランテニル基、フルオレニル基、クリセニル基、テトラセニル基、ペンタセニル基、トリフェニレニル基、及びテトラフェニレニル基などが挙げられる。これらのアリール基は置換基を有していてもよく、置換基としては、一般式(I)におけるR、R、およびRで表される基が有する置換基として挙げたものが適用でき、また好ましい範囲も同様である。 In the formula, Ar 1 , Ar 2 , and Ar 3 represent a substituted or unsubstituted aryl group or heterocyclic group. As aryl groups represented by Ar 1 , Ar 2 , and Ar 3 , phenyl group, naphthyl group, anthryl group, phenanthryl group, pyrenyl group, perylenyl group, fluoranthenyl group, fluorenyl group, chrysenyl group, tetracenyl group, Examples include a pentacenyl group, a triphenylenyl group, and a tetraphenylenyl group. These aryl groups may have a substituent, and examples of the substituent include those listed as the substituents of the groups represented by R 1 , R 2 and R 3 in the general formula (I). The preferred range is also the same.

Ar、Ar、およびArで表されるヘテロアリール基としては、ピリジル基、ピラジニル基、トリアジニル基、ピリミジニル基、ピリダジニル基、キノリル基、キノキサリニル基、フタラジニル基、キナゾリニル基、シンノリニル基、イソキノリル基、アクリジニル基、フェナントリジニル基、フェナントロリニル基、プテリジニル基、イミダゾピリジル基、ピロリル基、インドリル基、ピラゾリル基、インダゾリル基、イミダゾリル基、ベンゾイミダゾリル基、カルバゾリル基、カルボリニル基、プリニル基、フリル基、チエニル基、イソキサゾリル基、イソチアゾリル基、オキサゾリル基、チアゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、インドリジニル基、ベンゾキノリニル基、キノリジニル基、トリアゾリル基、ベンゾトリアゾリル基、及びナフチリジニル基などが挙げられる。これらのヘテロアリール基は置換基を有していてもよく、置換基としては、一般式(I)におけるR、R、およびRで表される基が有する置換基として挙げたものが適用でき、また好ましい範囲も同様である。 Heteroaryl groups represented by Ar 1 , Ar 2 , and Ar 3 include pyridyl group, pyrazinyl group, triazinyl group, pyrimidinyl group, pyridazinyl group, quinolyl group, quinoxalinyl group, phthalazinyl group, quinazolinyl group, cinnolinyl group, isoquinolyl group Group, acridinyl group, phenanthridinyl group, phenanthrolinyl group, pteridinyl group, imidazolidyl group, pyrrolyl group, indolyl group, pyrazolyl group, indazolyl group, imidazolyl group, benzimidazolyl group, carbazolyl group, carbolinyl group, purinyl group , Furyl group, thienyl group, isoxazolyl group, isothiazolyl group, oxazolyl group, thiazolyl group, benzoxazolyl group, benzothiazolyl group, indolizinyl group, benzoquinolinyl group, quinolidinyl group, triazolyl , Benzotriazolyl group, and the like naphthyridinyl group. These heteroaryl groups may have a substituent, and examples of the substituent include those listed as the substituents of the groups represented by R 1 , R 2 and R 3 in the general formula (I). The applicable range is also the same.

Ar、Ar、およびArで表される基として好ましくは、置換または無置換のフェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、フルオレニル基、ピリジル基、ピラジニル基、キノリル基、キノキサリニル基、アクリジニル基、フェナントロリニル基、又はベンゾキノリニル基であり、より好ましくは、フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、ピリジル基、ピラジニル基、キノリル基、フェナントロリニル基、又はベンゾキノリニル基である。 As the group represented by Ar 1 , Ar 2 , and Ar 3 , a substituted or unsubstituted phenyl group, naphthyl group, anthryl group, phenanthryl group, pyrenyl group, fluorenyl group, pyridyl group, pyrazinyl group, quinolyl group, A quinoxalinyl group, an acridinyl group, a phenanthrolinyl group, or a benzoquinolinyl group, more preferably a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a pyridyl group, a pyrazinyl group, a quinolyl group, a phenanthrolinyl group Or a benzoquinolinyl group.

本発明におけるホスフィンオキサイド化合物のより好ましい一群は、一般式(III)で表される有機化合物である。   A more preferred group of phosphine oxide compounds in the present invention are organic compounds represented by the general formula (III).

式中、R31〜R34は、それぞれ独立にアリール基またはヘテロ環基を表す。Lは二価の連結基を表す。 In the formula, R 31 to R 34 each independently represents an aryl group or a heterocyclic group. L represents a divalent linking group.

次に、一般式(III)について説明する。   Next, general formula (III) will be described.

一般式(III)中、R31〜R34で表されるアリール基またはヘテロ環基は、一般式(I)におけるR〜Rについて説明したアリール基またはヘテロ環基と同義であり、また好ましい範囲も同様である。Lは二価の連結基を表す。二価の連結基としては特に限定されないが、炭素原子、窒素原子、酸素原子、硫黄原子、ケイ素原子、又はハロゲン原子からなる連結基が好ましく、より好ましくは炭素原子、窒素原子、又はケイ素原子からなる連結基である。 In general formula (III), the aryl group or heterocyclic group represented by R 31 to R 34 has the same meaning as the aryl group or heterocyclic group described for R 1 to R 3 in general formula (I), and The preferable range is also the same. L represents a divalent linking group. The divalent linking group is not particularly limited, but is preferably a linking group comprising a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, or a halogen atom, more preferably a carbon atom, a nitrogen atom, or a silicon atom. A linking group.

Lで表される二価の連結基として好ましくは、p−フェニレン、m−フェニレン、o−フェニレン、ビフェニルジイル、ナフタレンジイル、フルオレンジイル、ジベンゾフランジイル、ピリジンジイル、又はピラジンジイルであり、より好ましくはビフェニルジイル、フルオレンジイル、ピリジンジイル、又はピラジンジイルである。   The divalent linking group represented by L is preferably p-phenylene, m-phenylene, o-phenylene, biphenyldiyl, naphthalenediyl, fluorenediyl, dibenzofurandyl, pyridinediyl, or pyrazinediyl, more preferably Biphenyldiyl, fluorenediyl, pyridinediyl, or pyrazinediyl.

以下に本発明に用いられるホスフィンオキサイド化合物の具体例を挙げるが、本発明の有機化合物がこれらに限定されるものではない。   Specific examples of the phosphine oxide compound used in the present invention are listed below, but the organic compound of the present invention is not limited thereto.

以下に本発明に用いられるホスフィンオキサイド化合物の具体例としては、上記の他、例えば特開2002−63989に記載の化合物段落番号化5〜化7に例示する有機化合物がある。   Specific examples of the phosphine oxide compound used in the present invention include, in addition to the above, for example, organic compounds exemplified in Compound Paragraph Nos. 5 to 7 described in JP-A No. 2002-63989.

本発明におけるホスフィンオキサイド化合物を含有する層に含有されるホスフィンオキサイド化合物は、50質量%〜100質量%含有されることが好ましく、70質量%〜100質量%含有されることがより好ましく、80質量%〜100質量%含有されることが特に好ましい。   The phosphine oxide compound contained in the layer containing the phosphine oxide compound in the present invention is preferably contained in an amount of 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and more preferably 80% by mass. It is particularly preferable that the content is from 100% to 100% by mass.

ホスフィンオキサイド化合物含有層に含有されるホスフィンオキサイド化合物以外の材料としては、電子輸送性材料、例えば後に説明する電子注入層や電子輸送層で説明する材料、先に説明した発光層の電子輸送性材料などがある。   As materials other than the phosphine oxide compound contained in the phosphine oxide compound-containing layer, an electron transporting material, for example, an electron injecting layer or an electron transporting layer described later, an electron transporting material of the light emitting layer described earlier and so on.

本発明におけるホスフィンオキサイド化合物を含有する層に用いるホスフィンオキサイド化合物の電子移動度は、発光層への十分な電子注入の観点から、1×10−5cm/Vs以上であることが好ましいが、1×10−4cm/Vs以上であればさらに好ましい。
該電子移動度は、TOF(Time of Flight)法から求めることができる。
The electron mobility of the phosphine oxide compound used in the layer containing the phosphine oxide compound in the present invention is preferably 1 × 10 −5 cm 2 / Vs or more from the viewpoint of sufficient electron injection into the light emitting layer. More preferably, it is 1 × 10 −4 cm 2 / Vs or more.
The electron mobility can be obtained from a TOF (Time of Flight) method.

本発明のホスフィンオキサイド化合物含有層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、およびスプレー法等いずれによっても好適に形成することができる。   The phosphine oxide compound-containing layer of the present invention can be suitably formed by any of dry film forming methods such as vapor deposition and sputtering, transfer methods, printing methods, coating methods, ink jet methods, and spray methods.

4.正孔注入層、正孔輸送層
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。これらの層に用いる正孔注入材料、正孔輸送材料は、低分子化合物であっても高分子化合物であってもよい。
具体的には、ピロール誘導体、カルバゾール誘導体、アザカルバゾール誘導体、インドール誘導体、アザインドール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボン、等を含有する層であることが好ましい。
4). Hole injection layer, hole transport layer The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side. The hole injection material and the hole transport material used for these layers may be a low molecular compound or a high molecular compound.
Specifically, pyrrole derivatives, carbazole derivatives, azacarbazole derivatives, indole derivatives, azaindole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl Anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, phthalocyanine compounds, porphyrin compounds, thiophene derivatives, organosilane derivatives, carbon, And the like.

本発明の有機EL素子の正孔注入層あるいは正孔輸送層には、電子受容性ドーパントを含有させることができる。正孔注入層、あるいは正孔輸送層に導入する電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。   An electron-accepting dopant can be contained in the hole injection layer or the hole transport layer of the organic EL device of the present invention. As the electron-accepting dopant introduced into the hole-injecting layer or the hole-transporting layer, an inorganic compound or an organic compound can be used as long as it has an electron-accepting property and oxidizes an organic compound.

具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモンなどのハロゲン化金属、五酸化バナジウム、および三酸化モリブデンなどの金属酸化物などが挙げられる。   Specifically, examples of the inorganic compound include metal halides such as ferric chloride, aluminum chloride, gallium chloride, indium chloride, and antimony pentachloride, metal oxides such as vanadium pentoxide, and molybdenum trioxide.

有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フラーレンなどを好適に用いることができる。
この他にも、特開平6−212153、特開平11−111463、特開平11−251067、特開2000−196140、特開2000−286054、特開2000−315580、特開2001−102175、特開2001−160493、特開2002−252085、特開2002−56985、特開2003−157981、特開2003−217862、特開2003−229278、特開2004−342614、特開2005−72012、特開2005−166637、特開2005−209643等に記載の化合物を好適に用いることが出来る。
In the case of an organic compound, a compound having a nitro group, halogen, cyano group, trifluoromethyl group or the like as a substituent, a quinone compound, an acid anhydride compound, fullerene, or the like can be preferably used.
In addition, JP-A-6-212153, JP-A-11-111463, JP-A-11-251067, JP-A-2000-196140, JP-A-2000-286054, JP-A-2000-315580, JP-A-2001-102175, JP-A-2001-2001. -160493, JP2002-252085, JP2002-56985, JP2003-157981, JP2003-217862, JP2003-229278, JP2004-342614, JP2005-72012, JP20051666667 The compounds described in JP-A-2005-209643 and the like can be preferably used.

このうちヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、またはフラーレンC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、または2,3,5,6−テトラシアノピリジンがより好ましく、テトラフルオロテトラシアノキノジメタンが特に好ましい。   Among these, hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane, tetrafluorotetracyanoquinodimethane, p-fluoranyl, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone, 2 , 5-dichlorobenzoquinone, 1,2,4,5-tetracyanobenzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5,6-dicyanobenzoquinone, p-dinitrobenzene, m-dinitrobenzene, o-dinitrobenzene, 1,4-naphthoquinone, 2,3-dichloronaphthoquinone, 1,3-dinitronaphthalene, 1,5-dinitronaphthalene, 9,10-anthraquinone, 1,3,6,8-tetranitrocarbazole, 2,4,7-trinitro-9- Luenone, 2,3,5,6-tetracyanopyridine or fullerene C60 is preferred, and hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane, tetrafluorotetracyanoquinodimethane, p-fluoranyl, p- Chloranil, p-bromanyl, 2,6-dichlorobenzoquinone, 2,5-dichlorobenzoquinone, 2,3-dichloronaphthoquinone, 1,2,4,5-tetracyanobenzene, 2,3-dichloro-5,6-dicyano Benzoquinone or 2,3,5,6-tetracyanopyridine is more preferred, and tetrafluorotetracyanoquinodimethane is particularly preferred.

これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。
These electron-accepting dopants may be used alone or in combination of two or more.
Although the usage-amount of an electron-accepting dopant changes with kinds of material, it is preferable that it is 0.01 mass%-50 mass% with respect to hole transport layer material, and it is 0.05 mass%-20 mass%. It is further more preferable and it is especially preferable that it is 0.1 mass%-10 mass%.

正孔注入層、正孔輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
正孔輸送層の厚さとしては、1nm〜200nmであるのが好ましく、5nm〜100nmであるのがより好ましく、10nm〜60nmであるのが更に好ましい。また、正孔注入層の厚さとしては、0.1nm〜500nmであるのが好ましく、0.5nm〜300nmであるのがより好ましく、1nm〜200nmであるのが更に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
The thicknesses of the hole injection layer and the hole transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.
The thickness of the hole transport layer is preferably 1 nm to 200 nm, more preferably 5 nm to 100 nm, and still more preferably 10 nm to 60 nm. In addition, the thickness of the hole injection layer is preferably 0.1 nm to 500 nm, more preferably 0.5 nm to 300 nm, and still more preferably 1 nm to 200 nm.
The hole injection layer and the hole transport layer may have a single-layer structure composed of one or more of the materials described above, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. .

5.電子注入層、電子輸送層
電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
具体的には、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、等を含有する層であることが好ましい。
5). Electron Injection Layer, Electron Transport Layer The electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side. The electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.
Specifically, pyridine derivatives, quinoline derivatives, pyrimidine derivatives, pyrazine derivatives, phthalazine derivatives, phenanthroline derivatives, triazine derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone Derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, naphthalene, perylene and other aromatic ring tetracarboxylic acid anhydrides, phthalocyanine derivatives, 8-quinolinol derivative metal complexes, Metal phthalocyanines, various metal complexes represented by metal complexes with benzoxazole and benzothiazole as ligands, organosilane derivatives represented by siloles Body, or the like is preferably a layer containing.

本発明の有機EL素子の電子注入層あるいは電子輸送層には、電子供与性ドーパントを含有させることができる。電子注入層、あるいは電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属や還元性有機化合物などが好適に用いられる。金属としては、特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、およびYbなどが挙げられる。また、還元性有機化合物としては、例えば、含窒素化合物、含硫黄化合物、含リン化合物などが挙げられる。
この他にも、特開平6−212153、特開2000−196140、特開2003−68468、特開2003−229278、特開2004−342614等に記載の材料を用いることが出来る。
The electron injection layer or the electron transport layer of the organic EL device of the present invention can contain an electron donating dopant. The electron donating dopant introduced into the electron injecting layer or the electron transporting layer only needs to have an electron donating property and a property of reducing an organic compound, such as an alkali metal such as Li or an alkaline earth metal such as Mg. Transition metals including rare earth metals and reducing organic compounds are preferably used. As the metal, a metal having a work function of 4.2 eV or less can be preferably used. Specifically, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, Cs, La, Sm, Gd , And Yb. Examples of the reducing organic compound include nitrogen-containing compounds, sulfur-containing compounds, and phosphorus-containing compounds.
In addition, materials described in JP-A-6-212153, JP-A-2000-196140, JP-A-2003-68468, JP-A-2003-229278, JP-A-2004-342614, and the like can be used.

これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。
These electron donating dopants may be used alone or in combination of two or more.
Although the usage-amount of an electron donating dopant changes with kinds of material, it is preferable that it is 0.1 mass%-99 mass% with respect to electron transport layer material, and it is 1.0 mass%-80 mass%. Is more preferable, and 2.0 mass% to 70 mass% is particularly preferable.

電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
電子輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.1nm〜50nmであるのがより好ましく、0.5nm〜20nmであるのが更に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
The thicknesses of the electron injection layer and the electron transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.
The thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm. In addition, the thickness of the electron injection layer is preferably 0.1 nm to 200 nm, more preferably 0.1 nm to 50 nm, and still more preferably 0.5 nm to 20 nm.
The electron injection layer and the electron transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.

7.基板
本発明で使用する基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
7). Substrate The substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic compound layer. Specific examples include zirconia-stabilized yttrium (YSZ), inorganic materials such as glass, polyesters such as polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, and polycycloolefin. , Organic materials such as norbornene resin and poly (chlorotrifluoroethylene).
For example, when glass is used as the substrate, alkali-free glass is preferably used as the material in order to reduce ions eluted from the glass. Moreover, when using soda-lime glass, it is preferable to use what gave barrier coatings, such as a silica. In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.

基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。   There is no restriction | limiting in particular about the shape of a board | substrate, a structure, a magnitude | size, It can select suitably according to the use, purpose, etc. of a light emitting element. In general, the shape of the substrate is preferably a plate shape. The substrate structure may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members.

基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。   The substrate may be colorless and transparent or colored and transparent, but is preferably colorless and transparent in that it does not scatter or attenuate light emitted from the organic light emitting layer.

基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
The substrate can be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.
As a material for the moisture permeation preventive layer (gas barrier layer), inorganic materials such as silicon nitride and silicon oxide are preferably used. The moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method.
When a thermoplastic substrate is used, a hard coat layer, an undercoat layer, or the like may be further provided as necessary.

8.電極
(陽極)
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
8). Electrode (Anode)
The anode usually has a function as an electrode for supplying holes to the organic compound layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element. , Can be appropriately selected from known electrode materials. As described above, the anode is usually provided as a transparent anode.

陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられ、仕事関数が4.0eV以上の材料が好ましい。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。   As a material of the anode, for example, a metal, an alloy, a metal oxide, a conductive compound, or a mixture thereof can be suitably cited, and a material having a work function of 4.0 eV or more is preferable. Specific examples of the anode material include conductive metals such as tin oxide doped with antimony and fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Metals such as oxides, gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, polythiophene, polypyrrole, etc. Organic conductive materials, and a laminate of these and ITO. Among these, conductive metal oxides are preferable, and ITO is particularly preferable from the viewpoints of productivity, high conductivity, transparency, and the like.

陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。   The anode is composed of, for example, a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, and a chemical method such as a CVD and a plasma CVD method. It can be formed on the substrate according to a method appropriately selected in consideration of suitability with the material to be processed. For example, when ITO is selected as the anode material, the anode can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.

本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。が、前記基板上に形成されるのが好ましい。この場合、陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。   In the organic electroluminescent element of the present invention, the formation position of the anode is not particularly limited and can be appropriately selected according to the use and purpose of the light emitting element. Is preferably formed on the substrate. In this case, the anode may be formed on the entire one surface of the substrate, or may be formed on a part thereof.

なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   The patterning for forming the anode may be performed by chemical etching such as photolithography, or may be performed by physical etching such as laser, or vacuum deposition or sputtering with a mask overlapped. It may be performed by a lift-off method or a printing method.

陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。   The thickness of the anode can be appropriately selected depending on the material constituting the anode and cannot be generally defined, but is usually about 10 nm to 50 μm, and preferably 50 nm to 20 μm.

陽極の抵抗値としては、10Ω/□以下が好ましく、10Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。 The resistance value of the anode is preferably 10 3 Ω / □ or less, and more preferably 10 2 Ω / □ or less. When the anode is transparent, it may be colorless and transparent or colored and transparent. In order to take out light emission from the transparent anode side, the transmittance is preferably 60% or more, and more preferably 70% or more.

なお、透明陽極については、沢田豊監修「透明電極膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。   Note that the transparent anode is described in detail in Yutaka Sawada's “New Development of Transparent Electrode Film” published by CMC (1999), and the matters described here can be applied to the present invention. In the case of using a plastic substrate having low heat resistance, a transparent anode formed using ITO or IZO at a low temperature of 150 ° C. or lower is preferable.

(陰極)
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
(cathode)
The cathode usually has a function as an electrode for injecting electrons into the organic compound layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.

陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられ、仕事関数が4.5eV以下のものが好ましい。具体例としてはアルカリ金属(たとえば、Li、Na、K、Cs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、イッテルビウム等の希土類金属、などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。   Examples of the material constituting the cathode include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof, and those having a work function of 4.5 eV or less are preferable. Specific examples include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, lithium-aluminum alloys, magnesium. -Rare earth metals such as silver alloys, indium, ytterbium, and the like. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection.

これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
Among these, as a material constituting the cathode, an alkali metal or an alkaline earth metal is preferable from the viewpoint of electron injecting property, and a material mainly composed of aluminum is preferable from the viewpoint of excellent storage stability.
The material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01 to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum alloy, etc.) Say.

なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの広報に記載の材料は、本発明においても適用することができる。   The materials for the cathode are described in detail in JP-A-2-15595 and JP-A-5-121172, and the materials described in these public relations can also be applied in the present invention.

陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。   There is no restriction | limiting in particular about the formation method of a cathode, According to a well-known method, it can carry out. For example, the cathode described above is configured from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. It can be formed according to a method appropriately selected in consideration of suitability with the material. For example, when a metal or the like is selected as the cathode material, one or more of them can be simultaneously or sequentially performed according to a sputtering method or the like.

陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   Patterning when forming the cathode may be performed by chemical etching such as photolithography, physical etching by laser, or the like, or by vacuum deposition or sputtering with the mask overlaid. It may be performed by a lift-off method or a printing method.

本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
In the present invention, the cathode formation position is not particularly limited, and may be formed on the entire organic compound layer or a part thereof.
Further, a dielectric layer made of an alkali metal or alkaline earth metal fluoride or oxide may be inserted between the cathode and the organic compound layer with a thickness of 0.1 nm to 5 nm. This dielectric layer can also be regarded as a kind of electron injection layer. The dielectric layer can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like.

陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
The thickness of the cathode can be appropriately selected depending on the material constituting the cathode and cannot be generally defined, but is usually about 10 nm to 5 μm, and preferably 50 nm to 1 μm.
Further, the cathode may be transparent or opaque. The transparent cathode can be formed by depositing a thin cathode material to a thickness of 1 nm to 10 nm and further laminating a transparent conductive material such as ITO or IZO.

9.保護層
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、TiO等の金属酸化物、SiN、SiN等の金属窒化物、MgF、LiF、AlF、CaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
9. Protective layer In the present invention, the entire organic EL device may be protected by a protective layer.
As a material contained in the protective layer, any material may be used as long as it has a function of preventing materials that promote device deterioration such as moisture and oxygen from entering the device.
Specific examples thereof include metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, and Ni, MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, and Fe 2 O. 3 , metal oxides such as Y 2 O 3 , TiO 2 , metal nitrides such as SiN x , SiN x O y , metal fluorides such as MgF 2 , LiF, AlF 3 , CaF 2 , polyethylene, polypropylene, polymethyl Monomer mixture containing methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, copolymer of chlorotrifluoroethylene and dichlorodifluoroethylene, tetrafluoroethylene and at least one comonomer Copolymer obtained by copolymerization, cyclic in the copolymer main chain Examples thereof include a fluorine-containing copolymer having a structure, a water-absorbing substance having a water absorption of 1% or more, and a moisture-proof substance having a water absorption of 0.1% or less.

保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、転写法を適用できる。   The method for forming the protective layer is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, MBE (molecular beam epitaxy), cluster ion beam, ion plating, plasma polymerization (high frequency) Excited ion plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, printing method, transfer method can be applied.

10.封止
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、シリコーンオイル類が挙げられる。
10. Sealing Furthermore, the organic electroluminescent element of this invention may seal the whole element using a sealing container.
Further, a moisture absorbent or an inert liquid may be sealed in a space between the sealing container and the light emitting element. Although it does not specifically limit as a moisture absorber, For example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, calcium chloride, magnesium chloride, copper chloride Cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, magnesium oxide and the like. The inert liquid is not particularly limited, and examples thereof include fluorinated solvents such as paraffins, liquid paraffins, perfluoroalkanes, perfluoroamines, perfluoroethers, chlorinated solvents, and silicone oils. It is done.

11.駆動
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
11. Driving The organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Can be obtained.
The driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-29080, JP-A-7-134558, JP-A-8-234658, and JP-A-8-2441047. The driving method described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429, 6023308, and the like can be applied.

12.用途
本発明の有機EL素子の用途は特に限定されないが、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明等広い分野に適用できる。
12 Applications Applications of the organic EL device of the present invention are not particularly limited, but can be applied to a wide range of fields such as mobile phone displays, personal digital assistants (PDAs), computer displays, automobile information displays, TV monitors, or general lighting.

以下に、本発明の有機EL素子の実施例について説明するが、本発明はこれら実施例により限定されるものではない。   Examples of the organic EL device of the present invention will be described below, but the present invention is not limited to these examples.

実施例1
1.有機EL素子の作製
(本発明の有機EL素子1の作製)
0.5mm厚み、2.5cm角の酸化インジウム錫(ITOと略記)を蒸着したガラス基板(ジオマテック(株)製、表面抵抗10Ω/□)を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。この透明陽極上に真空蒸着法にて以下の層を蒸着した。本発明の実施例における蒸着速度は特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。以下に記載の膜厚も水晶振動子を用いて測定したものである。
Example 1
1. Production of organic EL element (production of organic EL element 1 of the present invention)
A glass substrate (manufactured by Geomatic Co., Ltd., surface resistance 10Ω / □) on which 0.5 mm thick and 2.5 cm square indium tin oxide (denoted as ITO) is vapor-deposited is placed in a cleaning container and ultrasonically cleaned in 2-propanol. Then, UV-ozone treatment was performed for 30 minutes. The following layers were deposited on this transparent anode by vacuum deposition. The vapor deposition rate in the examples of the present invention is 0.2 nm / second unless otherwise specified. The deposition rate was measured using a quartz resonator. The film thicknesses described below were also measured using a crystal resonator.

正孔注入層:4,4’,4”−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATAと略記する)および2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン(F4−TCNQと略記する)を2−TNATAに対してF4−TCNQが1.0質量%となるように共蒸着した。厚み160nmであった。
正孔輸送層:N,N’−ジナフチル−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(α−NPDと略記する)、厚み10nm。
Hole injection layer: 4,4 ′, 4 ″ -tris (2-naphthylphenylamino) triphenylamine (abbreviated as 2-TNATA) and 2,3,5,6-tetrafluoro-7,7,8, 8-tetracyanoquinodimethane (abbreviated as F4-TCNQ) was co-deposited so that F4-TCNQ was 1.0 mass% with respect to 2-TNATA, and the thickness was 160 nm.
Hole transport layer: N, N′-dinaphthyl-N, N′-diphenyl- [1,1′-biphenyl] -4,4′-diamine (abbreviated as α-NPD), thickness 10 nm.

発光層:正孔輸送性ホスト材料N,N’−ジカルバゾリル−1,3−ベンゼン(mCPと略記する)と電子輸送性発光材料Pt−1を共蒸着し、これらの共蒸着比を蒸着進行と共に変化させた。蒸着初期の陽極側界面ではmCPの混合比率が100質量%、蒸着終了段階の陰極側界面では混合比率が25質量%となるように各成分の蒸着速度を調整した。
これらの界面の間では連続的に各成分の混合比率を変化させた。発光層の膜厚は60nmであった。
Light emitting layer: hole transporting host material N, N′-dicarbazolyl-1,3-benzene (abbreviated as mCP) and electron transporting light emitting material Pt-1 are co-evaporated, and the co-evaporation ratio is increased as the deposition proceeds. Changed. The deposition rate of each component was adjusted so that the mixing ratio of mCP was 100% by mass at the anode-side interface at the initial stage of vapor deposition, and the mixing ratio was 25% by mass at the cathode-side interface at the end of deposition.
The mixing ratio of each component was continuously changed between these interfaces. The film thickness of the light emitting layer was 60 nm.

続いて、発光層の上に、下記の電子輸送層、および電子注入層を設けた。
電子輸送層:本発明の一般式(I)の有機化合物ETA−1を厚み40nmに蒸着した。
電子注入層:LiF、厚み1nm。
Subsequently, the following electron transport layer and electron injection layer were provided on the light emitting layer.
Electron transport layer: The organic compound ETA-1 of the general formula (I) of the present invention was deposited to a thickness of 40 nm.
Electron injection layer: LiF, thickness 1 nm.

さらに、シャドウマスクによりパターニングして陰極として厚み100nmのAlを設けた。各層はいずれも抵抗加熱真空蒸着により設けた。   Furthermore, patterning was performed using a shadow mask to provide Al having a thickness of 100 nm as a cathode. Each layer was provided by resistance heating vacuum deposition.

作製した積層体を、窒素ガスで置換したグロ−ブボックス内に入れ、ステンレス製の封止缶および紫外線硬化型の接着剤(XNR5516HV、長瀬チバ製)を用いて封止した。   The produced laminate was put in a glove box substituted with nitrogen gas, and sealed using a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by CHI Nagase).

(本発明の有機EL素子2の作製)
有機EL素子1において、電子輸送層の有機化合物ETA−1をETA−2に変更し、その他は有機EL素子1と同様にして有機EL素子2を作製した。
(Preparation of the organic EL element 2 of the present invention)
In the organic EL element 1, the organic compound ETA-1 in the electron transport layer was changed to ETA-2, and the others were produced in the same manner as the organic EL element 1 to produce an organic EL element 2.

(本発明の有機EL素子3の作製)
有機EL素子1において、電子輸送層の有機化合物ETA−1をETA−3に変更し、その他は有機EL素子1と同様にして有機EL素子2を作製した。
(Preparation of the organic EL device 3 of the present invention)
In the organic EL element 1, the organic compound ETA-1 in the electron transport layer was changed to ETA-3, and the others were produced in the same manner as the organic EL element 1 to produce an organic EL element 2.

(本発明の有機EL素子4の作製)
有機EL素子1において、電子輸送層の有機化合物ETA−1をETA−4に変更し、その他は有機EL素子1と同様にして有機EL素子4を作製した。
(Preparation of the organic EL element 4 of the present invention)
In the organic EL element 1, the organic compound ETA-1 of the electron transport layer was changed to ETA-4, and the others were the same as the organic EL element 1, and the organic EL element 4 was produced.

(本発明の有機EL素子5の作製)
有機EL素子1において、発光層を下記に変更し、その他は有機EL素子1と同様にして有機EL素子5を作製した。
発光層:正孔輸送性ホスト材料mCPと電子輸送性発光材料Pt−1を共蒸着し、これらの共蒸着比を蒸着初期の陽極側界面ではmCPの混合比率が100質量%、蒸着終了段階の電子輸送層と近接する領域では混合比率が10質量%となるように各成分の蒸着速度を調整した。これらの界面の間では連続的に各成分の混合比率を変化させた。発光層の膜厚は60nmであった。
(Preparation of the organic EL element 5 of the present invention)
In the organic EL element 1, the light emitting layer was changed to the following, and the others were the same as the organic EL element 1, and the organic EL element 5 was produced.
Light-emitting layer: hole-transporting host material mCP and electron-transporting light-emitting material Pt-1 are co-evaporated, and the co-evaporation ratio is 100% by mass of mCP at the anode-side interface at the initial stage of vapor deposition. In the region close to the electron transport layer, the deposition rate of each component was adjusted so that the mixing ratio was 10% by mass. The mixing ratio of each component was continuously changed between these interfaces. The film thickness of the light emitting layer was 60 nm.

(本発明の有機EL素子6の作製)
有機EL素子1において、発光層を下記に変更し、その他は有機EL素子1と同様にして有機EL素子6を作製した。
発光層:正孔輸送性ホスト材料mCPと電子輸送性発光材料Pt−1を共蒸着し、これらの共蒸着比を蒸着初期の陽極側界面ではmCPの混合比率が100質量%、蒸着終了段階の電子輸送層と近接する領域では混合比率が50質量%となるように各成分の蒸着速度を調整した。これらの界面の間では連続的に各成分の混合比率を変化させた。発光層の膜厚は60nmであった。
(Preparation of the organic EL element 6 of the present invention)
In the organic EL element 1, the light emitting layer was changed to the following, and the others were the same as the organic EL element 1, and the organic EL element 6 was produced.
Light-emitting layer: hole-transporting host material mCP and electron-transporting light-emitting material Pt-1 are co-deposited, and the co-evaporation ratio is 100% by mass of mCP at the anode-side interface at the initial stage of vapor deposition. In the region adjacent to the electron transport layer, the deposition rate of each component was adjusted so that the mixing ratio was 50% by mass. The mixing ratio of each component was continuously changed between these interfaces. The film thickness of the light emitting layer was 60 nm.

(本発明の有機EL素子7の作製)
有機EL素子1において、発光層を下記に変更し、その他は有機EL素子1と同様にして有機EL素子7を作製した。
発光層:正孔輸送性ホスト材料mCPと電子輸送性発光材料Pt−1を共蒸着し、これらの共蒸着比を蒸着初期の陽極側界面ではmCPの混合比率が100質量%、蒸着終了段階の電子輸送層と近接する領域では混合比率が75質量%となるように各成分の蒸着速度を調整した。これらの界面の間では連続的に各成分の混合比率を変化させた。発光層の膜厚は60nmであった。
(Preparation of the organic EL element 7 of the present invention)
In the organic EL element 1, the light emitting layer was changed to the following, and the others were the same as the organic EL element 1, and the organic EL element 7 was produced.
Light-emitting layer: hole-transporting host material mCP and electron-transporting light-emitting material Pt-1 are co-evaporated, and the co-evaporation ratio is 100% by mass of mCP at the anode-side interface at the initial stage of vapor deposition. The vapor deposition rate of each component was adjusted so that the mixing ratio was 75% by mass in the region adjacent to the electron transport layer. The mixing ratio of each component was continuously changed between these interfaces. The film thickness of the light emitting layer was 60 nm.

(本発明の有機EL素子8の作製)
有機EL素子1において、発光層を下記に変更し、その他は有機EL素子1と同様にして有機EL素子8を作製した。
発光層:電子輸送性ホスト材料のAluminum(III)bis(2−methyl−8−quinolinato)4−phenylphenolate(BAlqと略称する)と正孔輸送性発光材料のIr(piq)を共蒸着した。これらの共蒸着比を蒸着進行と共に変化させた。蒸着初期の陽極側界面ではIr(piq)の混合比率が100質量%、蒸着終了段階の電子輸送層と近接する領域ではIr(piq)の混合比率が8質量%となるように各成分の蒸着速度を調整した。これらの界面の間では連続的に各成分の混合比率を変化させた。発光層の膜厚は60nmであった。
(Preparation of the organic EL element 8 of the present invention)
In the organic EL element 1, the light emitting layer was changed to the following, and the others were the same as the organic EL element 1, and the organic EL element 8 was produced.
Light-emitting layer: Aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (abbreviated as BAlq) as an electron transporting host material and Ir (piq) 3 as a hole transporting light-emitting material were co-evaporated. These co-deposition ratios were changed as the deposition progressed. 100% by weight mixing ratio of Ir (piq) 3 is deposited early on the anode side interface components as the mixing ratio of Ir (piq) 3 of 8 wt% in the area close to the electron transport layer the beginning of the deposition; The deposition rate was adjusted. The mixing ratio of each component was continuously changed between these interfaces. The film thickness of the light emitting layer was 60 nm.

(比較の有機EL素子Aの作製)
有機EL素子1において、発光層を下記に変更した。その他は有機EL素子1と同様にして比較の有機EL素子Aを作製した。
(Production of Comparative Organic EL Element A)
In the organic EL element 1, the light emitting layer was changed to the following. Others were the same as the organic EL element 1, and the comparative organic EL element A was produced.

発光層:mCPと発光材料Pt−1を共蒸着した。mCPに対して発光材料Pt−1の混合比率が発光層全域で均一に15質量%となるように各成分の蒸着速度を調整した。発光層の膜厚は60nmであった。   Light emitting layer: mCP and light emitting material Pt-1 were co-evaporated. The deposition rate of each component was adjusted so that the mixing ratio of the light emitting material Pt-1 to mCP was uniformly 15% by mass throughout the light emitting layer. The film thickness of the light emitting layer was 60 nm.

(比較の有機EL素子Bの作製)
本発明の有機EL素子1において、電子輸送層を下記に変更し、さらに発光層と電子輸送層との間に下記正孔ブロック層を設けた。その他は本発明の有機EL素子1と同様にして比較の有機EL素子Bを作製した。
(Production of Comparative Organic EL Element B)
In the organic EL device 1 of the present invention, the electron transport layer was changed to the following, and the following hole blocking layer was provided between the light emitting layer and the electron transport layer. Other than that, the organic EL element B for comparison was produced in the same manner as the organic EL element 1 of the present invention.

正孔ブロック層:バソキュプロイン(BCPと略称する)を厚み10nmに蒸着した。
電子輸送層:トリス(8−ヒドロキシキノリナート)アルミニウム(Alqと略記する)、厚み40nm。
Hole blocking layer: Bathocuproine (abbreviated as BCP) was deposited to a thickness of 10 nm.
Electron transport layer: tris (8-hydroxyquinolinate) aluminum (abbreviated as Alq 3 ), thickness 40 nm.

(比較の有機EL素子Cの作製)
有機EL素子8において、電子輸送層を下記に変更し、さらに発光層と電子輸送層との間に下記正孔ブロック層を設けた。その他は有機EL素子8と同様にして比較の有機EL素子Cを作製した。
(Production of comparative organic EL element C)
In the organic EL element 8, the electron transport layer was changed to the following, and the following hole blocking layer was provided between the light emitting layer and the electron transport layer. Others were the same as the organic EL element 8, and the comparative organic EL element C was produced.

正孔ブロック層:バソキュプロイン(BCPと略称する)を厚み10nmに蒸着した。
電子輸送層:トリス(8−ヒドロキシキノリナート)アルミニウム(Alqと略記する)、厚み60nm。
Hole blocking layer: Bathocuproine (abbreviated as BCP) was deposited to a thickness of 10 nm.
Electron transport layer: Tris (8-hydroxyquinolinate) aluminum (abbreviated as Alq 3 ), thickness 60 nm.

実施例に用いた有機化合物の構造を下記に示す。   The structure of the organic compound used in the examples is shown below.

2.性能評価結果
得られた比較有機EL素子および本発明の有機EL素子を同一条件で下記の手段によって外部量子効率および駆動耐久性を測定した。
2. Performance Evaluation Results External quantum efficiency and driving durability of the obtained comparative organic EL device and the organic EL device of the present invention were measured under the same conditions by the following means.

《駆動電圧》
輝度360cd/mに達する直流電圧を駆動電圧とした。
<Drive voltage>
A DC voltage reaching a luminance of 360 cd / m 2 was used as a driving voltage.

《外部量子効率の測定方法》
作製した発光素子をKEITHLEY製ソ−スメジャ−ユニット2400型を用いて、直流電圧を発光素子に印加し発光させた。本発明の素子1〜7と比較の素子A,Bは青色発光を示した。本発明の素子8と比較の素子Cは、赤色発光を示した。
電圧を調整して、輝度360cd/mになるように発光させ、その発光スペクトルと光量をトプコン社製輝度計SR−3を用いて測定し、発光スペクトル、光量と測定時の電流から外部量子効率を計算した。
<Method for measuring external quantum efficiency>
The produced light emitting element was made to emit light by applying a DC voltage to the light emitting element using a source measure unit type 2400 manufactured by KEITHLEY. The devices A and B of the present invention and the comparative devices A and B showed blue light emission. The element 8 of the present invention and the comparative element C showed red light emission.
The voltage is adjusted to emit light so that the luminance is 360 cd / m 2 , the emission spectrum and the light amount are measured using a luminance meter SR-3 manufactured by Topcon Corporation, and the external quantum is calculated from the emission spectrum, the light amount, and the current at the time of measurement. Efficiency was calculated.

《駆動耐久性率の測定方法》
各素子を輝度360cd/mになるように直流電圧を印加し、連続駆動して輝度が180cd/mになるまでの輝度半減時間を測定した。この輝度半減時間をもってして駆動耐久性の指標とした。
<< Measurement method of driving durability ratio >>
A direct current voltage was applied to each element so as to have a luminance of 360 cd / m 2, and the device was continuously driven to measure the luminance half time until the luminance reached 180 cd / m 2 . This luminance half time was used as an index of driving durability.

得られた結果を表1に示した。
本発明の素子1〜7と比較の素子A,Bは共に発光材料として電子輸送性発光材料Pt−1を用いているが、本発明の素子はいずれも駆動電圧が低く、駆動耐久性が顕著に改良された。比較の素子Bに比べて比較の素子Aは駆動電圧が低下したが、駆動耐久性が低いままであった。それに対して本発明の素子1〜7は比較の素子Aよりさらに低い駆動電圧で、極めて高い駆動耐久性を示した。
一方、正孔輸送性発光材料Ir(piq)を用いた本発明の素子8と比較の素子Cを比較すると、本発明の素子5は駆動電圧が大きく下がり、駆動耐久性は同等であった。
以上の結果から本発明により、駆動電圧が大幅に低下し、かつ発光効率、耐久性も大幅に向上した極めて優れた発光素子を得ることができることがわかった。
The obtained results are shown in Table 1.
Both the elements 1 and 7 of the present invention and the comparative elements A and B use the electron transporting light emitting material Pt-1 as the light emitting material, but the elements of the present invention both have low driving voltage and remarkable driving durability. Improved. Although the driving voltage of the comparative element A was lower than that of the comparative element B, the driving durability remained low. On the other hand, the elements 1 to 7 of the present invention showed extremely high driving durability at a lower driving voltage than the comparative element A.
On the other hand, when the device 8 of the present invention using the hole transporting light-emitting material Ir (piq) 3 is compared with the device C of the present invention, the drive voltage of the device 5 of the present invention is greatly reduced and the driving durability is equivalent. .
From the above results, it has been found that according to the present invention, an extremely excellent light emitting device in which the driving voltage is greatly reduced and the light emission efficiency and durability are greatly improved can be obtained.

Claims (13)

一対の電極間に発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、前記発光層と陰極の間に、ホスフィンオキサイド化合物を含有する層を有し、かつ前記発光層が少なくとも一種の電子輸送材料と、少なくとも一種の正孔輸送材料とを含有し、前記電子輸送材料と前記正孔輸送材料の少なくとも一方が発光材料であって、前記発光層において前記正孔輸送材料の濃度が、前記陽極から前記陰極に向かって減少していることを特徴とする有機電界発光素子。   An organic electroluminescence device having at least one organic layer including a light emitting layer between a pair of electrodes, the layer containing a phosphine oxide compound between the light emitting layer and the cathode, and the light emitting layer at least One kind of electron transport material and at least one kind of hole transport material, and at least one of the electron transport material and the hole transport material is a light emitting material, and the concentration of the hole transport material in the light emitting layer Is reduced from the anode toward the cathode. 前記発光層の前記陰極側界面付近の領域における前記正孔輸送材料の濃度が、前記発光層の前記陽極側界面付近の領域における正孔輸送材料の濃度に対して0%以上50%以下であることを特徴とする請求項1に記載の有機電界発光素子。   The concentration of the hole transport material in a region near the cathode side interface of the light emitting layer is 0% or more and 50% or less with respect to the concentration of the hole transport material in a region near the anode side interface of the light emitting layer. The organic electroluminescent element according to claim 1. 前記ホスフィンオキサイド化合物を含有する層が前記発光層に接していることを特徴とする請求項1又は請求項2に記載の有機電界発光素子。   The organic electroluminescent element according to claim 1, wherein the layer containing the phosphine oxide compound is in contact with the light emitting layer. 前記ホスフィンオキサイド化合物が下記一般式(I)で表される有機化合物であることを特徴とする請求項1〜請求項3のいずれか1項に記載の有機電界発光素子:

(式中、R、R、およびRは、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、又はヘテロ環基を表す。)。
The organic luminescence device according to any one of claims 1 to 3, wherein the phosphine oxide compound is an organic compound represented by the following general formula (I):

Wherein R 1 , R 2 and R 3 are each independently an alkyl group, alkenyl group, alkynyl group, aryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, acyl group, alkoxycarbonyl Group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, heterocyclic thio group, or heterocyclic group To express.).
前記一般式(I)で表されるホスフィンオキサイド化合物が、下記一般式(II)で表される有機化合物であることを特徴とする請求項4に記載の有機電界発光素子:

(式中、Ar、Ar、およびArは、それぞれ独立にアリール基またはヘテロ環基を表す。)。
The organic electroluminescent element according to claim 4, wherein the phosphine oxide compound represented by the general formula (I) is an organic compound represented by the following general formula (II):

(In the formula, Ar 1 , Ar 2 , and Ar 3 each independently represents an aryl group or a heterocyclic group).
前記一般式(II)で表されるホスフィンオキサイド化合物が、下記一般式(III)で表される有機化合物であることを特徴とする請求項5に記載の有機電界発光素子:

(式中、R31〜R34はそれぞれ独立にアリール基またはヘテロ環基を表す。Lは二価の連結基を表す。)。
The organic electroluminescent element according to claim 5, wherein the phosphine oxide compound represented by the general formula (II) is an organic compound represented by the following general formula (III):

(Wherein R 31 to R 34 each independently represents an aryl group or a heterocyclic group; L represents a divalent linking group).
前記正孔輸送材料が正孔輸送性発光材料であることを特徴とする請求項1〜請求項6のいずれか1項に記載の有機電界発光素子。   The organic electroluminescent element according to claim 1, wherein the hole transporting material is a hole transporting light emitting material. 前記正孔輸送材料が正孔輸送性ホスト材料であることを特徴とする請求項1〜請求項6のいずれか1項に記載の有機電界発光素子。   The organic electroluminescent element according to any one of claims 1 to 6, wherein the hole transport material is a hole transportable host material. 前記電子輸送材料が電子輸送性発光材料であることを特徴とする請求項1〜請求項6及び請求項8のいずれか1項に記載の有機電界発光素子。   The organic electroluminescent element according to claim 1, wherein the electron transporting material is an electron transporting light emitting material. 前記電子輸送材料が電子輸送性ホスト材料であることを特徴とする請求項1〜請求項7のいずれか1項に記載の有機電界発光素子。   The organic electroluminescent element according to claim 1, wherein the electron transporting material is an electron transporting host material. 前記発光材料が3座以上の配位子を有する金属錯体であることを特徴とする請求項1〜請求項10のいずれか1項に記載の有機電界発光素子。   11. The organic electroluminescent element according to claim 1, wherein the light emitting material is a metal complex having a tridentate or higher ligand. 前記発光材料が下記一般式(A)で表される発光材料であることを特徴とする請求項11に記載の有機電界発光素子:
(一般式(A)中、M11は金属イオンを表し、L11〜L15はそれぞれM11に配位する配位子を表す。L11とL14との間に原子群がさらに存在して環状配位子を形成してもよい。L15はL11及びL14の両方と結合して環状配位子を形成してもよい。Y11、Y12、Y13はそれぞれ連結基、単結合、または二重結合を表す。また、Y11、Y12、又はY13が連結基である場合、L11とY12、Y12とL12、L12とY11、Y11とL13、L13とY13、Y13とL14の間の結合は、それぞれ独立に、単結合又は二重結合を表す。n11は0〜4を表す。M11とL11〜L15との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。)。
The organic light emitting device according to claim 11, wherein the light emitting material is a light emitting material represented by the following general formula (A):
(In the general formula (A), M 11 represents a metal ion, and L 11 to L 15 each represent a ligand coordinated to M 11. An atomic group further exists between L 11 and L 14. L 15 may be bonded to both L 11 and L 14 to form a cyclic ligand, Y 11 , Y 12 and Y 13 are each a linking group, Represents a single bond or a double bond, and when Y 11 , Y 12 , or Y 13 is a linking group, L 11 and Y 12 , Y 12 and L 12 , L 12 and Y 11 , Y 11 and L 13 , L 13 and Y 13 , and the bond between Y 13 and L 14 each independently represents a single bond or a double bond, n 11 represents 0 to 4. M 11 and L 11 to L 15 These bonds may be any of coordination bond, ionic bond, and covalent bond.)
前記3座以上の配位子を有する金属錯体が白金錯体であることを特徴とする請求項11又は請求項12に記載の有機電界発光素子。   The organic electroluminescent element according to claim 11 or 12, wherein the metal complex having a tridentate or higher ligand is a platinum complex.
JP2007241624A 2007-09-18 2007-09-18 Organic electroluminescent element Pending JP2009076508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241624A JP2009076508A (en) 2007-09-18 2007-09-18 Organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241624A JP2009076508A (en) 2007-09-18 2007-09-18 Organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2009076508A true JP2009076508A (en) 2009-04-09

Family

ID=40611240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241624A Pending JP2009076508A (en) 2007-09-18 2007-09-18 Organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2009076508A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086925A (en) * 2009-09-16 2011-04-28 Mitsubishi Chemicals Corp Photoelectric conversion element material, and photoelectric conversion element and solar cell
EP2887416A1 (en) 2013-12-23 2015-06-24 Novaled GmbH N-doped semiconducting material comprising phosphine oxide matrix and metal dopant
EP3109919A1 (en) 2015-06-23 2016-12-28 Novaled GmbH N-doped semiconducting material comprising polar matrix and metal dopant
EP3109915A1 (en) 2015-06-23 2016-12-28 Novaled GmbH Organic light emitting device comprising polar matrix and metal dopant
EP3109916A1 (en) 2015-06-23 2016-12-28 Novaled GmbH Organic light emitting device comprising polar matrix, metal dopant and silver cathode
WO2016207228A1 (en) 2015-06-23 2016-12-29 Novaled Gmbh N-doped semiconducting material comprising polar matrix and metal dopant

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086925A (en) * 2009-09-16 2011-04-28 Mitsubishi Chemicals Corp Photoelectric conversion element material, and photoelectric conversion element and solar cell
EP2887416A1 (en) 2013-12-23 2015-06-24 Novaled GmbH N-doped semiconducting material comprising phosphine oxide matrix and metal dopant
EP3109919A1 (en) 2015-06-23 2016-12-28 Novaled GmbH N-doped semiconducting material comprising polar matrix and metal dopant
EP3109915A1 (en) 2015-06-23 2016-12-28 Novaled GmbH Organic light emitting device comprising polar matrix and metal dopant
EP3109916A1 (en) 2015-06-23 2016-12-28 Novaled GmbH Organic light emitting device comprising polar matrix, metal dopant and silver cathode
WO2016207228A1 (en) 2015-06-23 2016-12-29 Novaled Gmbh N-doped semiconducting material comprising polar matrix and metal dopant
KR20180019731A (en) * 2015-06-23 2018-02-26 노발레드 게엠베하 N-doped semiconductive materials including polar matrices and metal dopants
JP2018524812A (en) * 2015-06-23 2018-08-30 ノヴァレッド ゲーエムベーハー N-type doped semiconductor material comprising a polar matrix and a metal dopant
JP2018527740A (en) * 2015-06-23 2018-09-20 ノヴァレッド ゲーエムベーハー Organic light emitting device comprising a polar matrix and a metal dopant
US10749115B2 (en) 2015-06-23 2020-08-18 Novaled Gmbh N-doped semiconducting material comprising polar matrix and metal dopant
JP2021132218A (en) * 2015-06-23 2021-09-09 ノヴァレッド ゲーエムベーハー Organic light emitting device including polar matrix and metal dopant
JP2021145144A (en) * 2015-06-23 2021-09-24 ノヴァレッド ゲーエムベーハー N-type doped semiconductor material containing polar matrix and metal dopant
KR102581918B1 (en) * 2015-06-23 2023-09-21 노발레드 게엠베하 N-doped semiconducting material with polar matrix and metal dopant
JP7443286B2 (en) 2015-06-23 2024-03-05 ノヴァレッド ゲーエムベーハー Organic light emitting devices containing polar matrices and metal dopants

Similar Documents

Publication Publication Date Title
JP5782000B2 (en) Organic electroluminescence device
JP5624270B2 (en) Organic electroluminescence device
JP5497284B2 (en) White organic electroluminescence device
JP5014036B2 (en) Organic electroluminescence device
JP5282260B2 (en) Organic electroluminescence device
EP2174364B1 (en) Organic electroluminescent device
US20080233433A1 (en) Organic electroluminescent device
JP5551369B2 (en) Organic electroluminescence device
JP2009016579A (en) Organic electroluminescent element and manufacturing method
JP2010161356A (en) Organic electroluminescence element and light-emitting device
JP2009032989A (en) Organic electroluminescent element
JP2009076834A (en) Organic electroluminescednt device, and new indole derivative
JP2009076835A (en) Organic electroluminescent device, and new indole derivative
JP2008244012A (en) Organic electroluminescent element
JP2009004753A (en) Organic electroluminescent device
JP2010074111A (en) Organic electroluminescent element
JP2010129252A (en) Organic electroluminescent device
JP5441634B2 (en) Organic electroluminescence device
JP2009076508A (en) Organic electroluminescent element
JP5211282B2 (en) Organic electroluminescence device
JP5478818B2 (en) Organic electroluminescence device
JP5722291B2 (en) Organic electroluminescence device
JP2009231801A (en) Organic electroluminescent element
JP5300255B2 (en) Organic electroluminescence device
JP5551370B2 (en) Organic electroluminescence device