JP2009075038A - Pressure sensitive material - Google Patents

Pressure sensitive material Download PDF

Info

Publication number
JP2009075038A
JP2009075038A JP2007246694A JP2007246694A JP2009075038A JP 2009075038 A JP2009075038 A JP 2009075038A JP 2007246694 A JP2007246694 A JP 2007246694A JP 2007246694 A JP2007246694 A JP 2007246694A JP 2009075038 A JP2009075038 A JP 2009075038A
Authority
JP
Japan
Prior art keywords
particles
pressure
sensitive material
particle size
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007246694A
Other languages
Japanese (ja)
Other versions
JP5263643B2 (en
Inventor
Kentaro Ino
健太郎 猪野
Hideko Fukushima
英子 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007246694A priority Critical patent/JP5263643B2/en
Publication of JP2009075038A publication Critical patent/JP2009075038A/en
Application granted granted Critical
Publication of JP5263643B2 publication Critical patent/JP5263643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new pressure sensitive material functioning based on a principle different from a piezo resistance effect used in a conventional pressure sensitive material, and to particularly provide a pressure sensitive material having excellent pressure sensitivity capable of being used under a condition of high temperature and high pressure. <P>SOLUTION: This pressure sensitive material is so constituted that a base material having first particles as a main component includes, dispersed therein, second particles as aggregation particles with voids having conductivity different from that of the first particles. A void ratio of the aggregation particles as the second particles is in a range from 25 vol.% to 55 vol.%. The pressure sensitive material has a characteristic that the electric resistance is varied depending on change of a mutual contact condition of the second particles due to a pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧力を印加すると電気抵抗率が変化する感圧材料に関する。   The present invention relates to a pressure-sensitive material whose electrical resistivity changes when pressure is applied.

従来から、金属または半導体素子を用いた圧力または感圧材料が一般的に使用されており、中でもシリコン単結晶からなる半導体感圧材料は、金属歪ゲージと比較し、加圧時の電気抵抗変化が大きく圧力感度が数桁優れることから幅広い応用がなされている。しかしながら、従来の半導体感圧材料は機械的強度が弱く、高圧下では単体で使用することが出来ないため耐圧容器に組み込んで測定を行っており、検出装置の構成が複雑になるとともにコスト高となる問題があった。また、150℃を超える高温下ではその電気特性から圧力を検出することができなくなるという問題があった。   Conventionally, pressure or pressure-sensitive materials using metals or semiconductor elements have been generally used. Among them, semiconductor pressure-sensitive materials made of silicon single crystal have a change in electrical resistance when pressurized compared to metal strain gauges. Is widely used because of its large pressure sensitivity and several orders of magnitude. However, conventional semiconductor pressure-sensitive materials have low mechanical strength and cannot be used alone under high pressure, so measurements are incorporated into pressure-resistant containers, making the configuration of the detection device complicated and costly. There was a problem. In addition, there is a problem that the pressure cannot be detected from the electrical characteristics at a high temperature exceeding 150 ° C.

この問題を解決するため高温・高圧下で使用できる感圧材料に関する研究が種々なされており、その一例が特許文献1に開示されている。特許文献1の感圧材料は、SiとCを反応させ、SiCを析出させた、Siを主成分とする多結晶セラミックス材料であり、Siを主成分とする多結晶セラミックス材料に析出させたSiCの有するピエゾ抵抗効果、すなわち、材料に圧力を加えると電気抵抗が変化する現象を利用して圧力を検出するものであり、主成分であるSiが高強度であるため耐圧容器等で感圧材料を保護しなくても高圧下で使用可能となり、耐熱性にも優れたSiとSiCから構成されているので高温下での圧力検出が可能となる。 In order to solve this problem, various researches have been made on pressure-sensitive materials that can be used under high temperature and high pressure, and an example thereof is disclosed in Patent Document 1. The pressure-sensitive material of Patent Document 1 is a polycrystalline ceramic material containing Si 3 N 4 as a main component in which Si 3 N 4 and C are reacted to precipitate SiC, and Si 3 N 4 is the main component. The pressure is detected by utilizing the piezoresistance effect of SiC deposited on the polycrystalline ceramic material, that is, the phenomenon that the electrical resistance changes when pressure is applied to the material. The main component Si 3 N 4 is Because it is high strength, it can be used under high pressure without protecting the pressure sensitive material with a pressure vessel, etc., and it is composed of Si 3 N 4 and SiC with excellent heat resistance, so pressure detection at high temperature is possible. It becomes possible.

また、特許文献1と類似した構成の耐放電性複合材料が特許文献2に開示されている。特許文献2の耐放電性複合材料は、例えばSi等からなる絶縁性セルの中にカーボン等からなる導電性粒子を分散させ、所定の電気抵抗値を発現させたものであり、絶縁性セルに導電性粒子を3次元網目状に分散させる事により導電パスが形成され、この導電性粒子の添加量によって電気抵抗値が制御される。
特開2004-20355号公報 特開2001-316183号公報
Patent Document 2 discloses a discharge-resistant composite material having a structure similar to that of Patent Document 1. The discharge-resistant composite material of Patent Document 2 is obtained by dispersing conductive particles made of carbon or the like in an insulating cell made of, for example, Si 3 N 4 to develop a predetermined electric resistance value. A conductive path is formed by dispersing conductive particles in a three-dimensional network in the conductive cell, and the electric resistance value is controlled by the amount of the conductive particles added.
JP 2004-20355 A JP 2001-316183 A

本発明は、従来の感圧材料で利用されるピエゾ抵抗効果ではない別原理に基づく新規な感圧材料を提供すること、特に、高温・高圧下でも使用可能な優れた圧力感度を有する感圧材料を提供することを目的としている。   The present invention provides a novel pressure-sensitive material based on another principle that is not a piezoresistive effect used in conventional pressure-sensitive materials, in particular, pressure-sensitive material having excellent pressure sensitivity that can be used even under high temperature and high pressure. The purpose is to provide materials.

本発明は、第1の粒子を主体とした母材中に前記第1の粒子とは導電性が異なる第2の粒子が空隙を有した凝集粉として分散した感圧材料であって、前記第2の粒子の凝集粉の空隙率が25vol%以上、55vol%以下であり、前記第2の粒子同士の加圧による接触状態の変化により電気抵抗が変化する特性を有する感圧材料である。ここで空隙率は下記の式により算出される。
空隙率=Vvac/(Vvac+V)・・・(数式1)
感圧材料の密度=((V×d)+(V×d))/(Vvac+V+V)・・・(数式2)
vac:第2の粒子中の空隙の体積
:第1の粒子の体積
:第2の粒子の体積
:第1の粒子の密度
:第2の粒子の密度
The present invention is a pressure-sensitive material in which a second particle having a different conductivity from the first particle is dispersed in a base material mainly composed of the first particle as an agglomerated powder having a void. 2 is a pressure-sensitive material having a characteristic that the porosity of the agglomerated powder of the particles 2 is 25 vol% or more and 55 vol% or less, and the electric resistance is changed by the change of the contact state due to the pressurization of the second particles. Here, the porosity is calculated by the following equation.
Porosity = V vac / (V vac + V 2 ) (Equation 1)
Density of pressure-sensitive material = ((V 1 × d 1 ) + (V 2 × d 2 )) / (V vac + V 1 + V 2 ) (Equation 2)
V vac : volume of voids in the second particle V 1 : volume of the first particle V 2 : volume of the second particle
d 1 : density of the first particles d 2 : density of the second particles

本発明の感圧材料1は図1(a)に示すように、第1の粒子から構成される母材11の中に第2の粒子が凝集粉12として分散している。第2の粒子の凝集粉12の一部を拡大して模式的に示したのが図1(b)と(c)である。それぞれに空隙23,33が存在しているのが特徴である。かかる感圧材料によれば、図1(b)に示す感圧材料に圧力が作用していない又は圧力が低い状態に対し、同図(c)に示す作用する圧力が増加した状態では、第2の粒子34から構成される凝集粉12内の空隙33がつぶれて第2の粒子34同士の接触面積が増加するなど両者の接触状態が変化する。この作用する圧力に応じた接触状態の変化により第2の粒子24(34)同士の界面の接触抵抗が変化し、その結果、作用する圧力に応じて感圧材料の電気抵抗が変化する。この時、前記第2の粒子24からなる凝集粉12内の空隙率が25vol%以上であることで加圧時の第2の粒子同士の接触面積変化が大きくなるため高い圧力感度を有した感圧材料を得ることができる。また、この空隙率が55vol%より高いと加圧時に凝集体が変形しすぎて、加圧を解除しても加圧前の状態に戻らなくなってしまい、初期抵抗値が変わってゼロ点がずれたり、材料が破壊してしまうなどの問題が生じる。   In the pressure-sensitive material 1 of the present invention, as shown in FIG. 1A, second particles are dispersed as agglomerated powder 12 in a base material 11 composed of first particles. FIGS. 1B and 1C schematically show an enlarged part of the aggregated powder 12 of the second particles. The feature is that the air gaps 23 and 33 exist respectively. According to such a pressure-sensitive material, in the state where the pressure acting on the pressure-sensitive material shown in FIG. 1 (b) is not acting or the pressure is low, The contact state between the two particles 34 changes, for example, the gap 33 in the agglomerated powder 12 composed of the two particles 34 is crushed and the contact area between the second particles 34 increases. The contact resistance at the interface between the second particles 24 (34) changes due to the change in the contact state according to the acting pressure, and as a result, the electrical resistance of the pressure-sensitive material changes according to the acting pressure. At this time, since the change in the contact area between the second particles at the time of pressurization is increased because the porosity in the aggregated powder 12 made of the second particles 24 is 25 vol% or more, a feeling having high pressure sensitivity. A pressure material can be obtained. Also, if this porosity is higher than 55 vol%, the agglomerates will be deformed too much at the time of pressurization and will not return to the state before pressurization even when the pressurization is released, the initial resistance value will change and the zero point will shift. Or the material is destroyed.

このように、上記感圧材料では導電性粒子等のピエゾ抵抗効果を利用するのではなく、第2の導電性粒子同士の接触界面における接触状態の変化、具体的に言えば接触抵抗の変化を利用して圧力を検出するので、従来のピエゾ抵抗効果を利用する感圧材料に比べて第1の粒子又は第2の粒子を広い範囲から選択することができ、工業生産上有利である。   As described above, the pressure-sensitive material does not use the piezoresistance effect of the conductive particles or the like, but changes the contact state at the contact interface between the second conductive particles, specifically, changes in the contact resistance. Since the pressure is detected by using, the first particle or the second particle can be selected from a wide range as compared with the conventional pressure-sensitive material using the piezoresistance effect, which is advantageous in industrial production.

さらに上記感圧材料において、前記第2の粒子の結晶粒径が10nm以上、100nm未満であることが好ましい。この粒子径の計測方法はTEM写真より結晶粒子の径を100個測定し、その平均値より算出される値である。結晶粒径の測定方法は、粒子における最も長いところを測定した値を長軸径とし、最も短いところを測定した値を短軸径とし、その2つの値の平均値を1つの粒子の結晶粒径とした。そして得られた100個の数値の個数平均値を結晶粒径とした。第2の粒子の結晶粒径を100nm未満とすることで単位体積当たりの結晶粒子の数が増えると共に比表面積も増加し、第2の粒子24同士による加圧時の接触面積変化が大きくなることで電気抵抗変化も大きくなり、より圧力感度の高い感圧材料を得ることができる。また、結晶粒径が小さいと焼結を阻害するため、第2の粒子内の空隙率も高くなり、高い圧力感度が得られる。結晶粒径が10nmよりも小さい粒子は製造が難しく、実質的に入手困難であり高コストになるために好ましくない。   Furthermore, in the pressure-sensitive material, it is preferable that the second particles have a crystal grain size of 10 nm or more and less than 100 nm. This particle diameter measurement method is a value calculated from an average value obtained by measuring 100 crystal particle diameters from a TEM photograph. The crystal grain size is measured by measuring the longest part of the particle as the major axis diameter, and measuring the shortest part as the minor axis diameter. The average of the two values is the crystal grain of one particle. The diameter. The number average value of the 100 numerical values obtained was taken as the crystal grain size. By making the crystal grain size of the second particles less than 100 nm, the number of crystal particles per unit volume increases and the specific surface area also increases, and the change in contact area during pressurization between the second particles 24 increases. As a result, the electrical resistance change also increases, and a pressure-sensitive material with higher pressure sensitivity can be obtained. Moreover, since sintering is inhibited when the crystal grain size is small, the porosity in the second particles is also increased, and high pressure sensitivity is obtained. Particles having a crystal grain size smaller than 10 nm are not preferable because they are difficult to produce, are substantially difficult to obtain, and are expensive.

さらに加えて上記感圧材料において、前記第2の粒子の粒度分布から算出される体積平均粒径が0.05μm以上、5.2μm以下であることが好ましい。この粒度分布測定はレーザー回折・散乱式測定装置(例えば堀場製作所製、型番LA−920)を用いて行い、ここでの平均粒径とは粒度分布における累積50体積%径のd50のことである。これら粒度分布から算出される平均粒径の値は第2の粒子が凝集してなる凝集粉の大きさである。すなわち、粒径の小さな第2の粒子の1次粒子が凝集して大きな2次粒子として存在していることを示している。この測定は原料の段階で行うものであるが、第2の粒子は空隙を有した凝集粉の状態で母材中に分散させるために、主に難焼結材料から構成され、凝集粉は焼結の過程ではほとんど焼結されずに、焼結体中でも原料の状態とほぼ同じ状態で分散されている。この凝集粉の大きさが0.05μmよりも小さいと凝集粉内に存在する第2の粒子の数が少なく、第2の粒子同士の界面の面積が小さくなるために、加圧時の第2の粒子同士の接触面積変化が少なくなり高い圧力感度が得られない。また、凝集粉の平均粒径が5.2μmよりも大きいと、凝集粉の分布が偏在し易く、材料の均質性が悪くなったり機械強度の低下が起こりやすいため好ましくない。凝集粉の平均粒径の上限は好ましくは5.0μmである。   In addition, in the pressure-sensitive material, the volume average particle size calculated from the particle size distribution of the second particles is preferably 0.05 μm or more and 5.2 μm or less. This particle size distribution measurement is performed using a laser diffraction / scattering type measuring device (for example, model number LA-920, manufactured by Horiba, Ltd.), and the average particle size here is d50 having a cumulative 50 volume% diameter in the particle size distribution. . The value of the average particle diameter calculated from these particle size distributions is the size of the agglomerated powder obtained by aggregating the second particles. That is, the primary particles of the second particles having a small particle diameter are aggregated to exist as large secondary particles. This measurement is performed at the raw material stage, but the second particles are mainly composed of a hardly sintered material in order to disperse in the base material in the form of agglomerated powder having voids. In the sintering process, it is hardly sintered and is dispersed in the sintered body in almost the same state as the raw material. If the size of the aggregated powder is smaller than 0.05 μm, the number of second particles present in the aggregated powder is small, and the area of the interface between the second particles is small. The change in the contact area between the particles is reduced, and high pressure sensitivity cannot be obtained. In addition, if the average particle size of the aggregated powder is larger than 5.2 μm, the distribution of the aggregated powder tends to be unevenly distributed, and the homogeneity of the material tends to deteriorate or the mechanical strength tends to decrease. The upper limit of the average particle diameter of the aggregated powder is preferably 5.0 μm.

さらに加えて上記感圧材料において、前記第2の粒子がカーボン、炭化珪素及びこれらの複合物で構成される複合化合物の一種またはそれらの二種以上を含むことが望ましい。第2の粒子を難焼結性のカーボンや炭化珪素から選定することで容易に第2の導電性粒子中に空隙を導入することができる。   In addition, in the pressure-sensitive material, it is desirable that the second particles include one or more of composite compounds composed of carbon, silicon carbide, and a composite thereof. By selecting the second particles from hardly sinterable carbon or silicon carbide, voids can be easily introduced into the second conductive particles.

さらに加えて上記感圧材料において、前記第1の粒子が、炭化珪素、窒化珪素、炭化チタン、サイアロン、窒化アルミニウム、アルミナ、ムライト、ジルコニア、マグネシア、コージェライト、アルミニウムチタネートのいずれか一種またはそれらの二種以上を含むことが好ましい。これら機械強度が高く、高温においても化学的に安定している材料からなる粒子を選択することにより、高温・高圧に対する抵抗力は母材が負担するので、より高圧・高温にも耐えうる感圧材料が構成される。   In addition, in the pressure-sensitive material, the first particles may be any one of silicon carbide, silicon nitride, titanium carbide, sialon, aluminum nitride, alumina, mullite, zirconia, magnesia, cordierite, aluminum titanate, or a combination thereof. It is preferable that 2 or more types are included. By selecting particles made of materials that have high mechanical strength and are chemically stable even at high temperatures, the base material bears the resistance to high temperatures and high pressures. The material is composed.

さらに加えて前記第1の粒子が窒化珪素、前記第2の粒子がカーボンであることが好ましい。母材を構成する第1の粒子を、高温下における機械的強度、および化学的安定性の極めて高い窒化珪素とし、第2の粒子を難焼結性で空隙を導入しやすいカーボンとすることにより、特に高温・高圧下において高い耐久性と、高い圧力感度を具現可能な感圧材料が構成される。   In addition, it is preferable that the first particles are silicon nitride and the second particles are carbon. By making the first particles constituting the base material silicon nitride having extremely high mechanical strength and chemical stability at high temperatures, and making the second particles carbon that hardly sinters and easily introduces voids. In particular, a pressure-sensitive material capable of realizing high durability and high pressure sensitivity at high temperatures and high pressures is constructed.

本発明によれば、第1の粒子を主体とした母材中に前記第1の粒子とは導電性が異なる第2の粒子が空隙を有した凝集粉として分散した感圧材料であって、前記第2の粒子の凝集粉の空隙率が25vol%以上、55vol%以下であり、前記第2の粒子同士の加圧による接触状態の変化により電気抵抗が変化する特性を有する新規な感圧材料を提供できる。この新規な感圧材料は、広い範囲から材料を選定できること、また第2の粒子の凝集粉の空隙率を25vol%以上、55vol%以下として第2の粒子同士の接触面積変化を大きくすることで高い圧力感度を有した感圧材料を得ることができる。また、上記態様の感圧材料によれば、第1の粒子を耐熱性に優れた所定の機械的強度を有する材料から選定することで、高温・高圧下において高い圧力感度を備えた感圧材料を提供できる。   According to the present invention, a pressure sensitive material in which a second particle having a different conductivity from the first particle is dispersed as an aggregated powder having voids in a base material mainly composed of the first particle, Novel pressure-sensitive material having a characteristic that the porosity of the aggregated powder of the second particles is 25 vol% or more and 55 vol% or less, and the electric resistance is changed by the change of the contact state due to the pressurization of the second particles. Can provide. This new pressure-sensitive material can be selected from a wide range, and the porosity of the agglomerated powder of the second particles is set to 25 vol% or more and 55 vol% or less to increase the contact area change between the second particles. A pressure-sensitive material having high pressure sensitivity can be obtained. Moreover, according to the pressure sensitive material of the said aspect, the pressure sensitive material provided with the high pressure sensitivity under high temperature and high pressure by selecting the 1st particle | grains from the material which has the predetermined mechanical strength excellent in heat resistance. Can provide.

本発明をその実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。   The present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(実施例1)
実施例1は第1の粒子に絶縁性の窒化珪素、第2の粒子に炭化珪素を用いた例である。α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、β-SiC粉末(住友大阪セメント製、結晶粒径30nm)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は94.0:6.0である。第2の粒子となるβ−SiC粉末は、TEMによる結晶粒径観察では30nm、凝集粉の平均粒径はレーザー回折・散乱式粒度分布測定装置(堀場製作所製、型番LA−920)で測定したところ1.2μmの値が得られた。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作製した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力20MPa、窒素雰囲気中で焼結した。得られた焼結体を電気抵抗率評価用として3mm角、長さ12mmの試験片に加工した。電気抵抗率評価用試料には、3mm角の面に厚さ1mmのCu電極をロー付けし、該Cu電極にΦ0.6mmのCuリード線をハンダ付けした。
[評価方法]
密度測定は東洋精機製作所製の密度測定装置(型番D−H)を用いて行い、(1)(2)式より空隙率を算出した。電気抵抗変化率の測定は、3mm×12mmの面を100MPaの圧力で加圧しながら日置電機製の抵抗計3541を用いて25℃、200℃の条件で電気抵抗測定を行った。また、100MPaの印加後、外観に異常がないかを目視にて確認した。なお、以下の実施例2〜17及び比較例1〜2でも同様な方法で評価した。
[測定結果]
測定結果を表1に示す。空隙率は27vol.%、電気抵抗変化率はそれぞれ0.010%/MPa(25℃)、0.011%/MPa(200℃)であった。
(Example 1)
Example 1 is an example in which insulating silicon nitride is used for the first particles and silicon carbide is used for the second particles. 38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of β-SiC powder (manufactured by Sumitomo Osaka Cement, crystal particle size 30 nm), sintered Weighed 6.0 g of Al 2 O 3 (manufactured by Koyo Chemical Co., model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by Koyo Chemical Co., model number: YYO01PA) as auxiliary agents, and performed ball mill mixing in ethanol. It was. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 94.0: 6.0. The β-SiC powder as the second particles was 30 nm in the crystal particle size observation by TEM, and the average particle size of the agglomerated powder was measured with a laser diffraction / scattering type particle size distribution analyzer (manufactured by Horiba, model number LA-920). However, a value of 1.2 μm was obtained. After drying the mixed powder, a compact having a diameter of 36 mm and a thickness of 10 mm was produced at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 20 MPa. The obtained sintered body was processed into a 3 mm square test piece having a length of 12 mm for evaluation of electrical resistivity. A 1 mm thick Cu electrode was brazed to a 3 mm square surface of the electrical resistivity evaluation sample, and a Φ 0.6 mm Cu lead wire was soldered to the Cu electrode.
[Evaluation methods]
Density measurement was performed using a density measuring device (model number DH) manufactured by Toyo Seiki Seisakusho, and the porosity was calculated from equations (1) and (2). The rate of change in electrical resistance was measured under conditions of 25 ° C. and 200 ° C. using a resistance meter 3541 made by Hioki Electric while pressing a 3 mm × 12 mm surface with a pressure of 100 MPa. Further, after applying 100 MPa, it was visually confirmed whether there was any abnormality in the appearance. In addition, the following methods 2-17 and Comparative Examples 1-2 were also evaluated in the same manner.
[Measurement result]
Table 1 shows the measurement results. The porosity was 27 vol.%, And the electric resistance change rates were 0.010% / MPa (25 ° C.) and 0.011% / MPa (200 ° C.), respectively.

実施例2〜7は第1の粒子に絶縁性の窒化珪素、第2の粒子にカーボンを用い、TEMで算出されるカーボンの結晶粒径を15〜122nmまで変化させた例である。
(実施例2)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製トーカブラック、型番:#3885)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Examples 2 to 7 are examples in which insulating silicon nitride is used for the first particles, carbon is used for the second particles, and the crystal grain size of carbon calculated by TEM is changed from 15 to 122 nm.
(Example 2)
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (Tokai Black, model number: # 3885), sintering aid As agents, 6.0 g of Al 2 O 3 (manufactured by Koyo Chemical Co., model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by Koyo Chemical Co., model number: YYO01PA) were weighed and ball milled in ethanol. . Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

(実施例3)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製トーカブラック、型番:#3845)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Example 3
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (Tokai Black, model number: # 3845), sintering aid As agents, 6.0 g of Al 2 O 3 (manufactured by Koyo Chemical Co., model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by Koyo Chemical Co., model number: YYO01PA) were weighed and ball milled in ethanol. . Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

(実施例4)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製トーカブラック、型番:#3800)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Example 4
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (Tokai Black, model number: # 3800), sintering aid As agents, 6.0 g of Al 2 O 3 (manufactured by Koyo Chemical Co., model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by Koyo Chemical Co., model number: YYO01PA) were weighed and ball milled in ethanol. . Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

(実施例5)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製カーボンブラック、型番:G−SHP)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
(Example 5)
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (carbon black manufactured by Tokai Carbon, model number: G-SHP), sintered As an auxiliary agent, weighed 6.0 g of Al 2 O 3 (manufactured by high purity chemical, model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by high purity chemical, model number: YYO01PA), and performed ball mill mixing in ethanol. It was. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

(実施例6)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製アクアブラック、型番:162)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Example 6
α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm) 38.0 g, C powder (Tokai Carbon Aqua Black, model number: 162), 3.0 g, sintering aid As a result, 6.0 g of Al 2 O 3 (manufactured by Koyo Chemical Co., model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by Koyo Chemical Co., model number: YYO01PA) were weighed and mixed in a ball mill in ethanol. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

(実施例7)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製トーカブラック、型番:TA)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
(Example 7)
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (Tokai Black, model number: TA), sintering aid As a result, 6.0 g of Al 2 O 3 (manufactured by high purity chemical, model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by high purity chemical, model number: YYO01PA) were weighed and mixed in a ball mill in ethanol. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

実施例8は第1の粒子にSi、第2の粒子にCを用い、焼結圧力を下げて空隙率を高くした例である。
(実施例8)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製アクアブラック、型番:#3800)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力10MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Example 8 is an example in which Si 3 N 4 is used for the first particles and C is used for the second particles, and the porosity is increased by lowering the sintering pressure.
(Example 8)
α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm) 38.0 g, C powder (Tokai Carbon Aqua Black, model number: # 3800) 3.0 g, sintering aid As agents, 6.0 g of Al 2 O 3 (manufactured by Koyo Chemical Co., model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by Koyo Chemical Co., model number: YYO01PA) were weighed and ball milled in ethanol. . Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The compact was sintered in a nitrogen atmosphere in a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 10 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

実施例9は第1の粒子にSiC、第2の粒子にCを用いた例である。
(実施例9)
α-SiC粉末(屋久島電工製、型番:SH−7、)を38.0g、C粉末(東海カーボン製トーカブラック、型番:#3800)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Example 9 is an example in which SiC is used for the first particles and C is used for the second particles.
Example 9
38.0 g of α-SiC powder (manufactured by Yakushima Denko, model number: SH-7), 3.0 g of C powder (Tokai Black, model number: # 3800), Al 2 O 3 (sintering aid) 6.0 g of high-purity chemicals, model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by high-purity chemicals, model number: YYO01PA) were weighed and mixed in a ball mill in ethanol. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

実施例10〜11は、母材となる第1の粒子に導電性の窒化珪素、第二の粒子に凝集しにくいカーボンを用いた例である。
(実施例10)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製トーカブラック、型番:#8500/F)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Examples 10 to 11 are examples in which conductive silicon nitride is used for the first particles serving as the base material and carbon that hardly aggregates is used for the second particles.
(Example 10)
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (Tokai Black, model number: # 8500 / F) As a binder, weigh 6.0 g of Al 2 O 3 (manufactured by high purity chemical, model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by high purity chemical, model number: YYO01PA), and mix in a ball mill in ethanol. went. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

(実施例11)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製トーカブラック、型番:#7550SB/F)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Example 11
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (Tokai Black, model number: # 7550SB / F) As a binder, weigh 6.0 g of Al 2 O 3 (manufactured by high purity chemical, model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by high purity chemical, model number: YYO01PA), and mix in a ball mill in ethanol. went. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

実施例12から14は、母材となる第1の粒子に導電性の窒化珪素、第二の粒子に凝集しやすいカーボンを用いた例である。
(実施例12)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製トーカブラック、型番:SHR)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Examples 12 to 14 are examples in which conductive silicon nitride is used for the first particles as the base material and carbon that easily aggregates is used for the second particles.
(Example 12)
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (Tokai Black, model number: SHR), sintering aid As a result, 6.0 g of Al 2 O 3 (manufactured by high purity chemical, model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by high purity chemical, model number: YYO01PA) were weighed and mixed in a ball mill in ethanol. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

(実施例13)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製トーカブラック、型番:G−SHY)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
(Example 13)
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (Tokai carbon-made Toka Black, model number: G-SHY), sintered Weighed 6.0 g of Al 2 O 3 (manufactured by Koyo Chemical Co., model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by Koyo Chemical Co., model number: YYO01PA) as auxiliary agents, and performed ball mill mixing in ethanol. It was. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

(実施例14)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製トーカブラック、型番:G−SHP)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。今回の測定には影響は無かったが、測定後の外観検査で試料に微小なクラックが見られ、これを超える高圧での使用は困難であることが分かった。
(Example 14)
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (Tokai Black, model number: G-SHP), sintered As an auxiliary agent, weighed 6.0 g of Al 2 O 3 (manufactured by high purity chemical, model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by high purity chemical, model number: YYO01PA), and performed ball mill mixing in ethanol. It was. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results. Although there was no effect on this measurement, it was found that the appearance inspection after the measurement showed minute cracks in the sample, making it difficult to use at higher pressures.

実施例15〜17は第1の粒子を変えて第2の粒子にCを用いた例である。
(実施例15)
Al粉末(住友大阪セメント製、型番:AKP−50)を44.0g、C粉末(東海カーボン製トーカブラック、型番:#3800)を3.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Examples 15 to 17 are examples in which C is used as the second particle by changing the first particle.
(Example 15)
44.0 g of Al 2 O 3 powder (manufactured by Sumitomo Osaka Cement, model number: AKP-50), 3.0 g of C powder (Tokai Black, model number: # 3800), Y 2 O 3 (manufactured by High Purity Chemical) , Model number: YYO01PA) was weighed and ball milled in ethanol. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

(実施例16)
ZrO粉末(東ソー製、型番:TZ−3YE)を72.0g、C粉末(東海カーボン製トーカブラック、型番:#3800)を8.0g、エタノール中でボールミル混合を行った。ここで第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
Example 16
Ball mill mixing was performed in 72.0 g of ZrO 2 powder (manufactured by Tosoh, model number: TZ-3YE), 8.0 g of C powder (Tokai Carbon, model number: # 3800), and ethanol in ethanol. Here, the volume ratio of the first particles to the second particles is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

(実施例17)
TiC粉末(高純度化学製)を38.0g、C粉末(東海カーボン製トーカブラック、型番:#3800)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。
(Example 17)
38.0 g of TiC powder (manufactured by high purity chemical), 3.0 g of C powder (Tokai Black made by Tokai Carbon, model number: # 3800), Al 2 O 3 (manufactured by high purity chemical, model number: ALO05PA) as a sintering aid ), 3.0 g of Y 2 O 3 (manufactured by Koyo Chemical Co., Ltd., model number: YYO01PA) was weighed and mixed in a ball mill in ethanol. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results.

比較例1は、母材となる第1の粒子に導電性の窒化珪素、第二の粒子に結晶粒径の大きなカーボンを用いた例である。
(比較例1)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(日本黒鉛製、型番:ACB−150)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力30MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。結晶粒径が50μmと大きいため、凝集体の空隙率が22.9vol%と低く、第2の粒子同士の接触面積変化も小さくなり、電気抵抗変化率は0.007%/MPaと低い値となった。
Comparative Example 1 is an example in which conductive silicon nitride is used for the first particles as the base material and carbon having a large crystal grain size is used for the second particles.
(Comparative Example 1)
α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm) 38.0 g, C powder (manufactured by Nippon Graphite, model number: ACB-150), 3.0 g, sintering aid As a result, 6.0 g of Al 2 O 3 (manufactured by Koyo Chemical Co., model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by Koyo Chemical Co., model number: YYO01PA) were weighed and mixed in a ball mill in ethanol. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 30 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results. Since the crystal grain size is as large as 50 μm, the porosity of the aggregate is as low as 22.9 vol%, the change in contact area between the second particles is small, and the rate of change in electrical resistance is as low as 0.007% / MPa. became.

比較例2は第1の粒子に絶縁性の窒化珪素、第2の粒子にカーボンを使用し、焼結圧力を下げて第2の粒子の空隙率を高くした例である。
(比較例2)
α-Si粉末(宇部興産製、型番:E10、平均粒径0.5μm)を38.0g、C粉末(東海カーボン製、型番:#3800)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。ここで助材を含む第1の粒子と第2の粒子の体積比率は91.4:8.6である。第2の粒子となるC粉末は、TEMによる結晶粒径観察、およびレーザー回折・散乱式粒度分布測定装置で得られた凝集粉の平均粒径を表1に示した。混合粉を乾燥した後、100MPaの圧力でΦ36mm、厚さ10mmの成形体を作成した。その成形体を、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力5MPa、窒素雰囲気中で焼結した。得られた焼結体から実施例1と同一寸法の試験片を加工し、同一方法で評価した。測定結果を表1に示す。凝集体の空隙率が58.0vol%と高く、材料の強度が弱くなり測定後に試料が破損してしまった。
Comparative Example 2 is an example in which insulating silicon nitride is used for the first particles and carbon is used for the second particles, and the porosity of the second particles is increased by lowering the sintering pressure.
(Comparative Example 2)
38.0 g of α-Si 3 N 4 powder (manufactured by Ube Industries, model number: E10, average particle size 0.5 μm), 3.0 g of C powder (manufactured by Tokai Carbon, model number: # 3800), as a sintering aid 6.0 g of Al 2 O 3 (manufactured by high purity chemical, model number: ALO05PA) and 3.0 g of Y 2 O 3 (manufactured by high purity chemical, model number: YYO01PA) were weighed and ball mill mixed in ethanol. Here, the volume ratio of the first particles and the second particles containing the auxiliary material is 91.4: 8.6. Table 1 shows the average particle size of the agglomerated powder obtained by observing the crystal particle size by TEM and the laser diffraction / scattering particle size distribution analyzer. After the mixed powder was dried, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared at a pressure of 100 MPa. The molded body was sintered in a nitrogen atmosphere by a hot press at a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 5 MPa. A test piece having the same dimensions as in Example 1 was processed from the obtained sintered body and evaluated by the same method. Table 1 shows the measurement results. The porosity of the aggregate was as high as 58.0 vol%, the strength of the material was weakened, and the sample was damaged after the measurement.

本発明の実施例によればいずれの構成であっても、電気抵抗変化率が0.010%/MPa以上と圧力感度が高く、200℃の高温、100MPaの高圧下でも圧力検知可能な感圧材料が実現された。また、実施例1〜17及び比較例1,2より、第2の粒子の凝集粉の空隙率が25〜55vol%の範囲以外のときは0.010%/MPa以上の高い電気抵抗変化率が得られなかったり、機械強度不足で材料にクラックが入って使用できなくなることを示した。さらに実施例2〜7では、TEMにより算出される第2の粒子の結晶粒径が10nm以上、100nm以下であれば0.015%/MPa以上の高い電気抵抗変化率が得られることを示した。さらに実施例10〜14では、粒度分布から算出される平均粒径が0.05μm以上、5μm以下であれば0.015%/MPa以上の高い電気抵抗変化率が得られることを示した。   According to the embodiment of the present invention, even in any configuration, the pressure sensitivity is as high as 0.010% / MPa or more, and the pressure sensitivity is capable of detecting pressure even at a high temperature of 200 ° C. and a high pressure of 100 MPa. The material was realized. Further, from Examples 1 to 17 and Comparative Examples 1 and 2, when the porosity of the aggregated powder of the second particles is outside the range of 25 to 55 vol%, a high electric resistance change rate of 0.010% / MPa or more is obtained. It was not obtained or it was shown that the material could not be used due to cracks in the mechanical strength. Furthermore, in Examples 2 to 7, it was shown that a high electric resistance change rate of 0.015% / MPa or more can be obtained if the crystal grain size of the second particles calculated by TEM is 10 nm or more and 100 nm or less. . Further, in Examples 10 to 14, it was shown that when the average particle size calculated from the particle size distribution is 0.05 μm or more and 5 μm or less, a high electric resistance change rate of 0.015% / MPa or more can be obtained.

本発明の感圧材料は静水圧の計測や高温・高圧下での圧力検知が可能である。また、自動車のエンジン内の圧力計測(筒内圧力センサ)、ディーゼルエンジンのインジェクターに燃料を供給するコモンレールの圧力計測に適用可能であり、さらに、高圧タンクや高圧ボンベの静水圧計測にも利用できる。   The pressure-sensitive material of the present invention can measure hydrostatic pressure and detect pressure under high temperature and high pressure. It can also be used for pressure measurement in automobile engines (in-cylinder pressure sensor), pressure measurement on common rails that supply fuel to diesel engine injectors, and also for hydrostatic pressure measurement in high-pressure tanks and cylinders. .

本発明の感圧材料の検出原理を示す模式図である。It is a schematic diagram which shows the detection principle of the pressure sensitive material of this invention.

符号の説明Explanation of symbols

1 感圧材料
11 第1の粒子から構成される母材
12 第2の粒子の凝集粉
23,33 空隙
24,34 第2の粒子
DESCRIPTION OF SYMBOLS 1 Pressure sensitive material 11 Base material comprised from 1st particle | grain 12 Aggregate powder 23,33 of 2nd particle | grains 24,34 2nd particle | grain

Claims (6)

第1の粒子を主体とした母材中に前記第1の粒子とは導電性が異なる第2の粒子が空隙を有した凝集粉として分散した感圧材料であって、前記第2の粒子の凝集粉の空隙率が25vol%以上、55vol%以下であり、前記第2の粒子同士の加圧による接触状態の変化により電気抵抗が変化する特性を有する感圧材料。   A pressure sensitive material in which a second particle having a different conductivity from the first particle is dispersed as an agglomerated powder having voids in a base material mainly composed of the first particle, A pressure-sensitive material having a characteristic that the porosity of the aggregated powder is 25 vol% or more and 55 vol% or less, and the electric resistance is changed by a change in a contact state by pressurization between the second particles. 前記第2の粒子の結晶粒径が10nm以上、100nm未満である請求項1に記載の感圧材料。   The pressure-sensitive material according to claim 1, wherein the crystal grain size of the second particles is 10 nm or more and less than 100 nm. 前記第2の粒子の粒度分布から算出される前記凝集粉の平均粒径が0.05μm以上、5.2μm以下である請求項1又は2に記載の感圧材料。   The pressure-sensitive material according to claim 1 or 2, wherein an average particle diameter of the aggregated powder calculated from a particle size distribution of the second particles is 0.05 µm or more and 5.2 µm or less. 前記第2の粒子がカーボン、炭化珪素及びこれらの複合物で構成される複合化合物の一種またはそれらの二種以上を含む請求項1乃至3の何れかに記載の感圧材料。   The pressure-sensitive material according to any one of claims 1 to 3, wherein the second particles include one or more of a composite compound composed of carbon, silicon carbide, and a composite thereof. 前記第1の粒子が、炭化珪素、窒化珪素、炭化チタン、サイアロン、窒化アルミニウム、アルミナ、ムライト、ジルコニア、マグネシア、コージェライト、アルミニウムチタネートのいずれか一種またはそれらの二種以上を含む請求項1乃至4の何れかに記載の感圧材料。   The first particles include one or more of silicon carbide, silicon nitride, titanium carbide, sialon, aluminum nitride, alumina, mullite, zirconia, magnesia, cordierite, and aluminum titanate. 4. The pressure-sensitive material according to any one of 4 above. 前記第1の粒子が窒化珪素、前記第2の粒子がカーボンである請求項5に記載の感圧材料。
The pressure-sensitive material according to claim 5, wherein the first particles are silicon nitride and the second particles are carbon.
JP2007246694A 2007-09-25 2007-09-25 Pressure sensitive material Expired - Fee Related JP5263643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246694A JP5263643B2 (en) 2007-09-25 2007-09-25 Pressure sensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246694A JP5263643B2 (en) 2007-09-25 2007-09-25 Pressure sensitive material

Publications (2)

Publication Number Publication Date
JP2009075038A true JP2009075038A (en) 2009-04-09
JP5263643B2 JP5263643B2 (en) 2013-08-14

Family

ID=40610134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246694A Expired - Fee Related JP5263643B2 (en) 2007-09-25 2007-09-25 Pressure sensitive material

Country Status (1)

Country Link
JP (1) JP5263643B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052864A (en) * 2010-08-31 2012-03-15 Chiba Univ High-sensitivity distortion sensor with metal surface treatment applied nano filler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815210A (en) * 1981-07-20 1983-01-28 信越ポリマ−株式会社 Pressure sensitive resistance element
JPS58209810A (en) * 1982-05-31 1983-12-06 横浜ゴム株式会社 Pressure sensitive conductive elastomer sheet and method of producing same
JP2000105153A (en) * 1998-07-28 2000-04-11 Denso Corp Pressure-sensitive conversion device
JP2001074574A (en) * 1999-09-07 2001-03-23 Fujikura Kasei Co Ltd Contact detector
JP2006308414A (en) * 2005-04-28 2006-11-09 Japan Fine Ceramics Center Maximum displacement memory device
JP2006349656A (en) * 2005-05-16 2006-12-28 Hitachi Metals Ltd Pressure-detecting element
JP2007107963A (en) * 2005-10-12 2007-04-26 Toyota Central Res & Dev Lab Inc Dynamic quantity sensor element, and resistance paste material used therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815210A (en) * 1981-07-20 1983-01-28 信越ポリマ−株式会社 Pressure sensitive resistance element
JPS58209810A (en) * 1982-05-31 1983-12-06 横浜ゴム株式会社 Pressure sensitive conductive elastomer sheet and method of producing same
JP2000105153A (en) * 1998-07-28 2000-04-11 Denso Corp Pressure-sensitive conversion device
JP2001074574A (en) * 1999-09-07 2001-03-23 Fujikura Kasei Co Ltd Contact detector
JP2006308414A (en) * 2005-04-28 2006-11-09 Japan Fine Ceramics Center Maximum displacement memory device
JP2006349656A (en) * 2005-05-16 2006-12-28 Hitachi Metals Ltd Pressure-detecting element
JP2007107963A (en) * 2005-10-12 2007-04-26 Toyota Central Res & Dev Lab Inc Dynamic quantity sensor element, and resistance paste material used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052864A (en) * 2010-08-31 2012-03-15 Chiba Univ High-sensitivity distortion sensor with metal surface treatment applied nano filler

Also Published As

Publication number Publication date
JP5263643B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
Russo et al. Design of a laminated ceramic composite for improved strength and toughness
Chakravarty et al. Spark plasma sintering of magnesia‐doped alumina with high hardness and fracture toughness
Skorokhod Processing, Microstructure, and Mechanical Properties of B4C―TiB2 Particulate Sintered Composites. Part II. Fracture and Mechanical Properties
Bai et al. Fabrication and characterization of Si3N4 reinforced Al2O3-based ceramic tool materials
Basu et al. Development of WC–ZrO2 nanocomposites by spark plasma sintering
Abyzov Aluminum oxide and alumina ceramics (review). Part 2. Foreign manufacturers of alumina ceramics. Technologies and research in the field of alumina ceramics
Yang et al. Effects of TaSi2 addition on room temperature mechanical properties of ZrB2-20SiC composites
EP1340970A1 (en) Mechanical quantity sensor element, load sensor element, acceleration sensor element, and pressure sensor element
US5322823A (en) Ceramic composites and process for its production
Rafferty et al. Properties of zirconia-toughened-alumina prepared via powder processing and colloidal processing routes
Ikegami et al. Influence of magnesia on sintering stress of alumina
JP5263643B2 (en) Pressure sensitive material
EP0930490B1 (en) High sensitivity sensor for detecting a mechanical quantity
Yang et al. Microstructure and Mechanical Properties of Sinter–Post‐HIPed Si3N4–SiC Composites
JP2006349656A (en) Pressure-detecting element
JP5263641B2 (en) Pressure-sensitive body, pressure-sensitive element, and pressure detection method using the same
JP5825955B2 (en) Method for producing boron nitride / silicon carbide composite sintered body
JP2004043197A (en) Process for producing ceramic slurry, ceramic green sheet and ceramic sintered compact
US5324693A (en) Ceramic composites and process for manufacturing the same
JP2006226769A (en) Composite ceramic material for pressure sensor and pressure sensor using the same
Liu et al. Effect of residual porosity and pore structure on the mechanical strength of SiC Al2O3 Y2O3
Šajgalík et al. Layered composites with self-diagnostic ability
JP4124413B2 (en) Mechanical quantity sensor element
Xiangqing et al. Consolidation and properties of ultrafine binderless cemented carbide by spark plasma sintering
JP2007033383A (en) Pressure detection element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5263643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees