JP2007033383A - Pressure detection element - Google Patents

Pressure detection element Download PDF

Info

Publication number
JP2007033383A
JP2007033383A JP2005220727A JP2005220727A JP2007033383A JP 2007033383 A JP2007033383 A JP 2007033383A JP 2005220727 A JP2005220727 A JP 2005220727A JP 2005220727 A JP2005220727 A JP 2005220727A JP 2007033383 A JP2007033383 A JP 2007033383A
Authority
JP
Japan
Prior art keywords
conductor
pressure
detection element
pressure detection
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005220727A
Other languages
Japanese (ja)
Inventor
Kentaro Ino
健太郎 猪野
Kenji Akihama
賢治 秋濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005220727A priority Critical patent/JP2007033383A/en
Publication of JP2007033383A publication Critical patent/JP2007033383A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure detection element based on a new principle that has improved pressure sensitivity and can be used even under high temperature and high pressure. <P>SOLUTION: The pressure detection element comprises a first conductor having one surface to which pressure operates and the other surface that opposes the surface; a second conductor, having a first surface to which pressure operates and the other surface that opposes the surface and adheres to the other surface of the first conductor; electrodes provided on the other surfaces of the first and second conductors; and a conductor connected to the electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧力検出素子に関するものであり、特に高圧高温下において使用するに好適な圧力検出素子に係るものである。   The present invention relates to a pressure detection element, and particularly to a pressure detection element suitable for use under high pressure and high temperature.

従来から、圧力検出素子または荷重検出素子として金属式歪ゲージや半導体素子が一般的に使用されている。特に、シリコン単結晶を用いた半導体圧力検出素子は、金属式歪ゲージと比較し感度が数桁優れることから幅広い応用がなされている。しかしながら、シリコン単結晶を用いた半導体圧力検出素子は、シリコン単結晶の温度に対する検出特性が高温では劣化するため150℃以上では圧力の測定ができないという問題があった。加えて、半導体圧力検出素子は機械的強度が弱く、高圧下では単体で使用することが出来ないため耐圧容器に組み込んで測定を行っており、圧力検出装置の構成が複雑になりコスト高となる問題があった。   Conventionally, a metal strain gauge or a semiconductor element is generally used as a pressure detection element or a load detection element. In particular, semiconductor pressure sensing elements using silicon single crystals have a wide range of applications because their sensitivity is several orders of magnitude better than metal strain gauges. However, the semiconductor pressure detection element using a silicon single crystal has a problem that the pressure cannot be measured at 150 ° C. or higher because the detection characteristic with respect to the temperature of the silicon single crystal deteriorates at a high temperature. In addition, the semiconductor pressure sensing element is weak in mechanical strength and cannot be used as a single unit under high pressure, so measurements are incorporated into a pressure-resistant container, which complicates the structure of the pressure sensing device and increases costs. There was a problem.

この問題を解決するために、高温高圧下での使用に耐えうる圧力検出素子の研究が数多くなされており、その一例が特許文献1に開示されている。特許文献1に開示された圧力検出素子は、SiCを析出させたSiを主成分とする多結晶セラミックス材料を用いた半導体圧力検出素子であり、圧力を加えると電気抵抗が変化するSiCのピエゾ抵抗効果を利用して圧力を検出している。この圧力検出素子はSiとCを焼結反応させSiCを析出させることにより製造される。 In order to solve this problem, many researches have been made on pressure detecting elements that can withstand use under high temperature and high pressure, and an example thereof is disclosed in Patent Document 1. The pressure detection element disclosed in Patent Document 1 is a semiconductor pressure detection element using a polycrystalline ceramic material mainly composed of Si 3 N 4 on which SiC is deposited, and an SiC whose electric resistance changes when pressure is applied. The pressure is detected using the piezoresistive effect. This pressure detection element is manufactured by sintering Si 3 N 4 and C to precipitate SiC.

かかる圧力検出素子によれば、高強度のセラミックス材料であるSiを主成分とするので耐圧容器等に組み込まなくても高い圧力を測定可能であり、かつ、150℃以上の高温でも圧力検出素子が酸化等で性能劣化すること無く測定可能であるという利点がある。しかしながら、この圧力検出素子を発明者が作成し確認したところによれば、この圧力検出素子は、圧力変化に対する電気抵抗の変化量すなわち圧力感度が低いという問題があった。
特開2004-20355号公報
According to such a pressure detection element, Si 3 N 4 which is a high-strength ceramic material is a main component, so that a high pressure can be measured without being incorporated in a pressure vessel or the like, and the pressure can be measured even at a high temperature of 150 ° C. or higher. There is an advantage that the detection element can be measured without deterioration of performance due to oxidation or the like. However, according to the fact that the inventor created and confirmed this pressure detection element, this pressure detection element has a problem that the amount of change in electrical resistance with respect to the pressure change, that is, the pressure sensitivity is low.
JP 2004-20355 A

本発明は、上記従来の問題を解決するため発明者が鋭意検討してなされたものであり、優れた圧力感度を有する新しい原理に基づく圧力検出素子を提供することを第1の目的とし、さらに、高温・高圧下でも使用可能な圧力検出素子を提供することを第2の目的としている。     The present invention has been made by the inventor's earnest study in order to solve the above-described conventional problems. The first object of the present invention is to provide a pressure detection element based on a new principle having excellent pressure sensitivity. A second object is to provide a pressure detecting element that can be used even under high temperature and high pressure.

以下、本発明について、その実施態様に基づき理解のため図面1〜4を参照し説明する。
本発明に係る第1態様の圧力検出素子は、図1(a)に示すように、少なくとも、圧力が作用する受圧面(一面)111と該受圧面111に相対する密接面(他面)112を備えた第1導電体11と、圧力が作用する受圧面(一面)121と該受圧面121に相対するとともに前記第1導電体11の密接面112に密着する密接面(他面)122を備えた第2導電体12と、前記第1導電体11と第2導電体12の受圧面111、121の夫々に設けられた電極14と、前記電極14に接続された導線15とで構成されている。なお、上記密接とは、第1導電体11と第2導電体12とが着離自在に機械的に密着されている状態をいう。かかる第1態様の圧力検出素子1によれば、第1導電体11と第2導電体12との密接面112、122が密接されてなる接触界面13には電気的な抵抗、すなわち接触抵抗が形成される。そして、第1導電体11と第2導電体12との受圧面111、121に圧力Pが作用すると、該接触抵抗が圧力Pの大きさより変化する。
Hereinafter, the present invention will be described with reference to FIGS.
As shown in FIG. 1A, the pressure detection element according to the first aspect of the present invention includes at least a pressure receiving surface (one surface) 111 on which pressure acts and a close contact surface (other surface) 112 facing the pressure receiving surface 111. A pressure-sensitive surface (one surface) 121 on which pressure acts, and a contact surface (other surface) 122 that is opposed to the pressure-receiving surface 121 and is in close contact with the contact surface 112 of the first conductor 11. A second conductor 12 provided; electrodes 14 provided on the pressure-receiving surfaces 111 and 121 of the first conductor 11 and the second conductor 12; and a conductor 15 connected to the electrode 14. ing. Note that the close contact refers to a state in which the first conductor 11 and the second conductor 12 are mechanically in close contact with each other. According to the pressure detection element 1 of the first aspect, the contact interface 13 formed by bringing the contact surfaces 112 and 122 between the first conductor 11 and the second conductor 12 into close contact has an electrical resistance, that is, a contact resistance. It is formed. When the pressure P acts on the pressure receiving surfaces 111 and 121 of the first conductor 11 and the second conductor 12, the contact resistance changes depending on the magnitude of the pressure P.

ここで、第1態様の圧力検出素子1において、圧力により電気抵抗が変化する原理を、第一態様の圧力検出素子1の電気的な等価回路図である図1(b)に基づいて説明する。図中、符号R1は第1導電体11の電気抵抗、符号R2は第2導電体12の電気抵抗、符号R3は接触界面13における抵抗を示しており、抵抗R1とR2は、第1導電体11及び第2導電体12の固有の抵抗であるので一定であるが、抵抗R3は、上記のように圧力Pの大きさで抵抗値が変化する可変抵抗である。この抵抗R3は第1導電体11と第2導電体12の接触状態に依存するため、圧力変化に対して非常に大きな変化を示す。この回路において全体の抵抗をR4とすると、抵抗R4の抵抗値は、抵抗R1〜R3が直列で配置されているのでR1〜R3抵抗値の和となる。ここで、上記構成の圧力検出素子1では、抵抗R3の抵抗値は圧力Pが低い場合には高く、圧力が増加するに従って低くなる。したがって、この回路全体の抵抗R4は、圧力Pの増減にともなう抵抗R3の抵抗値の変化に基づき変化する。もって、第1導電体11と第2導電体12とが密接してなる接触界面13を有する上記構成の圧力検出素子1は、圧力Pの変化により接触界面13の抵抗R3が変化するという原理に基づく圧力感度を有することとなる。   Here, in the pressure detection element 1 of the first aspect, the principle that the electric resistance changes with pressure will be described based on FIG. 1B which is an electrical equivalent circuit diagram of the pressure detection element 1 of the first aspect. . In the figure, symbol R1 indicates the electrical resistance of the first conductor 11, symbol R2 indicates the electrical resistance of the second conductor 12, symbol R3 indicates the resistance at the contact interface 13, and the resistors R1 and R2 are the first conductor. The resistance R3 is a variable resistance whose resistance value varies with the magnitude of the pressure P as described above. Since this resistance R3 depends on the contact state between the first conductor 11 and the second conductor 12, it shows a very large change with respect to the pressure change. Assuming that the overall resistance in this circuit is R4, the resistance value of the resistor R4 is the sum of the R1 to R3 resistance values because the resistors R1 to R3 are arranged in series. Here, in the pressure detection element 1 configured as described above, the resistance value of the resistor R3 is high when the pressure P is low, and decreases as the pressure increases. Therefore, the resistance R4 of the entire circuit changes based on a change in the resistance value of the resistance R3 as the pressure P increases or decreases. Therefore, the pressure detecting element 1 having the above-described configuration having the contact interface 13 in which the first conductor 11 and the second conductor 12 are in close contact with each other has a principle that the resistance R3 of the contact interface 13 changes due to the change of the pressure P. It will have a pressure sensitivity based on it.

本発明に係る第2態様の圧力検出素子は、図2(a)に示すように、圧力が作用する受圧面(一面)211と該受圧面に相対する密接面(他面)212を備えた第1導電体21と、圧力が作用する受圧面(一面)221と該受圧面に相対するとともに前記第1導電体の密接面212に密着する密接面(他面)222を備えた第2導電体22と、前記第1導電体21において該第1導電体21の受圧面211及び密接面212以外の部分に設けられた一対の電極24と、前記電極24に接続された導線25とを有する圧力検出素子2である。かかる第2態様の圧力検出素子2によれば、第1導電体21と第2導電体22との密接面212、222が密接されてなる接触界面23には電気的な抵抗、すなわち接触抵抗が形成される。そして、第1導電体21と第2導電体22との受圧面211、221に圧力Pが作用すると、該接触抵抗が圧力Pの大きさより変化する。   As shown in FIG. 2A, the pressure detection element according to the second aspect of the present invention includes a pressure receiving surface (one surface) 211 on which pressure acts and a close contact surface (other surface) 212 opposite to the pressure receiving surface. A second conductor having a first conductor 21, a pressure-receiving surface (one surface) 221 on which pressure acts, and a contact surface (other surface) 222 that faces the pressure-receiving surface and contacts the contact surface 212 of the first conductor. A body 22, a pair of electrodes 24 provided in a portion of the first conductor 21 other than the pressure-receiving surface 211 and the close contact surface 212 of the first conductor 21, and a conductive wire 25 connected to the electrode 24. This is the pressure detection element 2. According to the pressure detection element 2 of the second aspect, the contact interface 23 formed by bringing the contact surfaces 212 and 222 between the first conductor 21 and the second conductor 22 into close contact has an electrical resistance, that is, a contact resistance. It is formed. When the pressure P acts on the pressure receiving surfaces 211 and 221 of the first conductor 21 and the second conductor 22, the contact resistance changes depending on the magnitude of the pressure P.

ここで第2態様の圧力検出素子において、圧力によって電気抵抗が変化する原理を、圧力検出素子2の電気的な等価回路である図2(b)に基づいて説明する。図中の符号R1は第1導電体21の電気抵抗、符号R2は第2導電体22の電気抵抗、符号R3が接触界面23における接触抵抗を示している。この回路において全体の抵抗をR4とすると、R4の抵抗値は、数式 1/R4=1/R1+1/(R2+R3) で表すことができる。
この回路において抵抗R1とR2はそれぞれ第1導電体21、第2導電体22の固有の電気抵抗であり一定値であり、抵抗R3は、圧力Pが小さい状態では抵抗値が大きく、圧力が増加するにつれて抵抗値が減少する可変抵抗である。この抵抗R3の値は、接触界面23の接触状態に依存し圧力変化に対して非常に大きな抵抗変化を示す。つまり、圧力Pが0に近い状態では接触抵抗R3は無限大に近いほど大きいので、ほとんどの電流は抵抗R1(すなわち第1導電体21)を通じたルートで流れ、回路全体の抵抗R4の値は抵抗R1とほぼ同じになる。一方、受圧面111、121に圧力Pが作用すると、接触界面23が密着して抵抗R3が減少するため、抵抗R1のみならず抵抗R3及びR2(すなわち接触界面23と第2導電体22)を通じたルート(以下バイパス回路という。)にも並列して電流が流れるようになる。そして、圧力Pが増加すると接触抵抗R3が減少しバイパス回路を流れる電流が大きくなるので、上記数式右辺におけるバイパス回路の電気抵抗(1/(R2+R3))が変化し、そのため、抵抗R1〜R3の合成抵抗である回路全体の電気抵抗R4は大きく変化する。もって、第1導電体21と第2導電体22とが密接してなる接触界面23を有する上記構成の圧力検出素子2は、圧力Pの作用により形成されるバイパス回路の抵抗値が、圧力Pの変化により変化するという原理に基づく圧力感度を有することとなる。
Here, in the pressure detection element of the second aspect, the principle that the electric resistance changes depending on the pressure will be described based on FIG. 2B which is an electrical equivalent circuit of the pressure detection element 2. In the figure, symbol R1 indicates the electrical resistance of the first conductor 21, symbol R2 indicates the electrical resistance of the second conductor 22, and symbol R3 indicates the contact resistance at the contact interface 23. In this circuit, if the overall resistance is R4, the resistance value of R4 can be expressed by the following equation: 1 / R4 = 1 / R1 + 1 / (R2 + R3).
In this circuit, the resistors R1 and R2 are specific electric resistances of the first conductor 21 and the second conductor 22, respectively, and are constant values. The resistor R3 has a large resistance value when the pressure P is small, and the pressure increases. This is a variable resistor whose resistance value decreases as the time passes. The value of the resistance R3 depends on the contact state of the contact interface 23 and shows a very large resistance change with respect to the pressure change. That is, in the state where the pressure P is close to 0, the contact resistance R3 is larger as it approaches infinity, so most of the current flows through the route through the resistor R1 (that is, the first conductor 21), and the value of the resistance R4 of the entire circuit is It becomes almost the same as the resistor R1. On the other hand, when the pressure P acts on the pressure receiving surfaces 111 and 121, the contact interface 23 is brought into close contact with and the resistance R3 is reduced. Therefore, not only the resistance R1 but also the resistances R3 and R2 (that is, the contact interface 23 and the second conductor 22). The current also flows in parallel with the other route (hereinafter referred to as a bypass circuit). When the pressure P increases, the contact resistance R3 decreases and the current flowing through the bypass circuit increases, so the electrical resistance (1 / (R2 + R3)) of the bypass circuit on the right side of the formula changes, and therefore the resistances R1 to R3 The electrical resistance R4 of the entire circuit, which is a combined resistance, varies greatly. Therefore, the pressure detection element 2 having the above-described configuration having the contact interface 23 in which the first conductor 21 and the second conductor 22 are in close contact with each other has a resistance value of the bypass circuit formed by the action of the pressure P. It has pressure sensitivity based on the principle that it changes with the change of.

上記第1態様又は第2態様の圧力検出素子1,2において、第1導電体11、21がセラミックス、第2導電体12、22が金属で構成されていれば好ましい。第1導電体11、21をセラミックスとすることにより、高い圧力まで測定することが可能となり、第2導電体12、22を導電率の高い金属を使用することにより、優れた圧力感度の圧力検出素子1,2を得ることができるからである。ここで第1導電体11,21のセラミックスの材質としてはカーボン、炭化珪素、酸化錫、酸化インジウム、酸化銀、酸化銅、IV、V、VI族の遷移金属元素の炭化物、窒化物、ホウ化物、珪化物、酸化物及びこれらの化合物で構成される複合化合物の一種またはそれらの二種以上を含むものを使用することができる。さらに、窒化珪素、サイアロン、窒化アルミニウム、アルミナ、イットリア、ムライト、ジルコニア、マグネシア、コージェライト、アルミニウムチタネートのいずれか一種またはそれらの二種以上を含む絶縁性の化合物に、導電性の前記セラミックスや金属粒子を分散させた導電性セラミックスを使用することができる。第2導電体12、22の金属元素としては遷移金属元素、インジウム、錫のいずれか一種またはそれらの二種以上を含む合金を使用することができる。   In the pressure detection elements 1 and 2 of the first aspect or the second aspect, it is preferable that the first conductors 11 and 21 are made of ceramics and the second conductors 12 and 22 are made of metal. By using ceramics as the first conductors 11 and 21, it becomes possible to measure up to a high pressure, and by using a metal having high conductivity as the second conductors 12 and 22, pressure detection with excellent pressure sensitivity. This is because the elements 1 and 2 can be obtained. Here, the ceramic materials of the first conductors 11 and 21 are carbon, silicon carbide, tin oxide, indium oxide, silver oxide, copper oxide, carbides, nitrides and borides of group IV, V and VI transition metal elements. , Silicides, oxides, and composite compounds composed of these compounds, or those containing two or more of them can be used. Furthermore, the conductive ceramics or metal is added to an insulating compound containing at least one of silicon nitride, sialon, aluminum nitride, alumina, yttria, mullite, zirconia, magnesia, cordierite, and aluminum titanate. Conductive ceramics in which particles are dispersed can be used. As the metal element of the second conductors 12 and 22, any one of transition metal elements, indium and tin, or an alloy containing two or more of them can be used.

上記第1態様又は第2態様の圧力検出素子1,2において、第1導電体11、21と第2導電体12、22がセラミックスで構成されていれば好ましい。第1導電体11,21と第2導電体12、22を共にセラミックスで構成することによって、高圧下においても圧力を検出することが可能となり、且つ高温下でもセラミックスは化学的に安定で変質しにくいために高温下でも圧力を検出することが可能な圧力検出素子を得ることができるからである。ここで第1導電体11、21及び第2導電体12、22のセラミックスの材質としては、カーボン、炭化珪素、酸化錫、酸化インジウム、酸化銀、酸化銅、IV、V、VI族の遷移金属元素の炭化物、窒化物、ホウ化物、珪化物、酸化物及びこれらの化合物で構成される複合化合物の一種またはそれらの二種以上を含むものを使用することができる。さらに、窒化珪素、サイアロン、窒化アルミニウム、アルミナ、イットリア、ムライト、ジルコニア、マグネシア、コージェライト、アルミニウムチタネートのいずれか一種またはそれらの二種以上を含む絶縁性の化合物に導電性の前記セラミックスや金属粒子を分散させた導電性セラミックスを使用することができる。   In the pressure detection elements 1 and 2 of the first aspect or the second aspect, it is preferable that the first conductors 11 and 21 and the second conductors 12 and 22 are made of ceramics. By configuring both the first conductors 11 and 21 and the second conductors 12 and 22 with ceramics, it becomes possible to detect pressure even under high pressure, and the ceramics are chemically stable and altered even at high temperatures. This is because it is difficult to obtain a pressure detection element capable of detecting pressure even at high temperatures. Here, the ceramic materials of the first conductors 11 and 21 and the second conductors 12 and 22 are carbon, silicon carbide, tin oxide, indium oxide, silver oxide, copper oxide, IV, V, and VI group transition metals. Elemental carbides, nitrides, borides, silicides, oxides, and composite compounds composed of these compounds or those containing two or more of them can be used. Further, the ceramics and metal particles that are electrically conductive to an insulating compound containing one or more of silicon nitride, sialon, aluminum nitride, alumina, yttria, mullite, zirconia, magnesia, cordierite, and aluminum titanate. It is possible to use conductive ceramics in which is dispersed.

上記第1態様又は第2態様の圧力検出素子1、2において、第1導電体11、21は、圧力により電気抵抗が変化する性質すなわちピエゾ抵抗効果を有するものであれば好ましい。第1導電体11、21としてピエゾ抵抗効果を有する材料例えばシリコン単結晶、炭化珪素などを選択することにより、上記第1態様又は第2態様の圧力検出素子1,2の接触抵抗やバイパス回路による圧力に対する電気抵抗の変化が第1導電体11、21自体の圧力に対する電気抵抗の変化に相乗し、さらに優れた圧力感度を有する圧力検出素子1、2を得ることができるからである。   In the pressure detection elements 1 and 2 of the first aspect or the second aspect, it is preferable that the first conductors 11 and 21 have a property that the electric resistance changes with pressure, that is, a piezoresistance effect. By selecting a material having a piezoresistance effect, such as silicon single crystal, silicon carbide, or the like, as the first conductors 11 and 21, depending on the contact resistance and bypass circuit of the pressure detecting elements 1 and 2 of the first aspect or the second aspect. This is because the change in the electric resistance with respect to the pressure synergizes with the change in the electric resistance with respect to the pressure of the first conductors 11 and 21 itself, and the pressure detecting elements 1 and 2 having further excellent pressure sensitivity can be obtained.

上記第1態様又は第2態様の圧力検出素子において、第2導電体の密接面は第1導電体の密接面と、両端部のみで密接するよう構成されていることが望ましい。本第3態様の圧力検出素子3について図3に示す。圧力検出素子3は、上記圧力検出素子2と同様な第1導電体31、電極34及び導線35とを有するとともに、紙面において水平方向に導線35を通じて流れる電流の通電方向において中央部が凹状に除去されてなる第2導電体32とを有し、第2導電体32の両端部に形成された密接面322と第1導電体31の密接面312が密接して接触界面33が形成される構成となっている。かかる構造の圧力検出素子3によれば、上記第1態様及び第2態様の圧力検出素子1、2に比べて第1導電体31と第2導電体32との接触する面積が減少し、接触界面33における接触面圧が高くなるので、密接面33における圧力の変化に対する電気抵抗の変化量が大きくなり(すなわち可変抵抗R3の変化率が大きくなり)、その結果、優れた圧力感度の圧力検出素子を得ることができる。   In the pressure detection element of the first aspect or the second aspect, it is desirable that the contact surface of the second conductor is configured to be in close contact with the contact surface of the first conductor only at both ends. The pressure detection element 3 of the third aspect is shown in FIG. The pressure detecting element 3 has the same first conductor 31, electrode 34 and conductive wire 35 as the pressure detecting element 2, and the central portion is removed in a concave shape in the energizing direction of the current flowing through the conductive wire 35 in the horizontal direction on the paper surface. The contact surface 33 is formed by bringing the contact surface 322 formed at both ends of the second conductor 32 into close contact with the contact surface 312 of the first conductor 31. It has become. According to the pressure detection element 3 having such a structure, the contact area between the first conductor 31 and the second conductor 32 is reduced as compared with the pressure detection elements 1 and 2 of the first aspect and the second aspect. Since the contact surface pressure at the interface 33 is increased, the amount of change in electrical resistance with respect to the change in pressure at the close contact surface 33 is increased (that is, the rate of change of the variable resistor R3 is increased). An element can be obtained.

さらに、上記第2態様の圧力検出素子において、圧力が作用する受圧面(一面)と該受圧面に相対するとともに前記第1導電体の受圧面に密着する密接面(他面)を備えた第3導電体を有する構成とすることが望ましい。本第4態様の圧力検出素子4について図4に示す。圧力検出素子4は、上記第2態様の圧力検出素子と同様な構成の第1導電体21、第2導電体2、電極24及び導線25と、圧力Pが作用する受圧面431と該受圧面431に相対するとともに第1導電体21の受圧面211に密着する密接面432を備えた第3導電体43とで構成されている。このように第1導電体21を介して第2導電体22と同様な第3導電体43を設けることで、上記説明したバイパス回路が第1導電体21と第3導電体43の間にも形成され、その結果、圧力変化に対する電気抵抗の変化量が更に増加するので、より高い圧力感度を有する圧力検出素子を得ることができる。   Furthermore, the pressure detecting element according to the second aspect includes a pressure receiving surface (one surface) on which pressure acts and a close contact surface (other surface) opposite to the pressure receiving surface and in close contact with the pressure receiving surface of the first conductor. A structure having three conductors is desirable. The pressure detection element 4 of the fourth aspect is shown in FIG. The pressure detection element 4 includes a first conductor 21, a second conductor 2, an electrode 24, and a conductor 25 having the same configuration as the pressure detection element of the second aspect, a pressure receiving surface 431 on which the pressure P acts, and the pressure receiving surface. And a third conductor 43 provided with a close contact surface 432 that is in close contact with the pressure receiving surface 211 of the first conductor 21. In this way, by providing the third conductor 43 similar to the second conductor 22 via the first conductor 21, the bypass circuit described above is interposed between the first conductor 21 and the third conductor 43. As a result, the amount of change in electrical resistance with respect to a pressure change is further increased, so that a pressure detection element having higher pressure sensitivity can be obtained.

上記説明したように、本発明によれば、第1導電体と第2導電体との機械的な接触を利用して圧力を検出する新規な圧力検出素子を提供することができる。かかる圧力検出素子は構造が比較的シンプルであり、第1導電体又は第2導電体のいずれかを金属で構成することにより優れた圧力感度を有する圧力検出素子を提供できるとともに、第1導電体及び第2導電体をセラミックスで構成することにより高温・高圧下でも使用可能な比較的高い圧力感度を有する圧力検出素子を提供することができる。   As described above, according to the present invention, it is possible to provide a novel pressure detection element that detects a pressure using mechanical contact between the first conductor and the second conductor. Such a pressure detection element has a relatively simple structure, and can provide a pressure detection element having excellent pressure sensitivity by constituting either the first conductor or the second conductor with a metal, and the first conductor. And the pressure detection element which has the comparatively high pressure sensitivity which can be used also under high temperature and a high pressure can be provided by comprising a 2nd conductor with ceramics.

以下、本発明を、その実施例によって具体的に説明する。なお、以下説明する実施例1は上記実施態様1の、実施例2〜13及び比較例2,3は上記実施態様2の、実施例14は上記実施態様3の、実施例15、16は上記実施態様4の圧力検出素子1〜4を実施した例である。   Hereinafter, the present invention will be specifically described with reference to examples. In addition, Example 1 described below is the above-described Embodiment 1, Examples 2 to 13 and Comparative Examples 2 and 3 are the above Embodiment 2, Example 14 is the above Embodiment 3, and Examples 15 and 16 are the above. It is the example which implemented the pressure detection elements 1-4 of Embodiment 4. FIG.

(実施例1):実施態様1
実施例1は、第1導電体11、第2導電体12ともにセラミックスであるSiCを用いた例である。
第1導電体11と第2導電体12の製造方法について説明する。第1導電体11、第2導電体12として、SiCタブレット(高純度化学製、純度2N)を3mm×3mm×12mmの角棒状に加工したものを準備した。第1導電体11、第2導電体12ともに、3mm×12mmの一面を受圧面111、121とし、該受圧面111、121にCu電極14をロウ付けした。次いで、そのCu電極14に導線でありΦ0.6mmのCuリード線15をハンダで接続した。その後、第1導電体11の密接面112に第2導電体12の密接面122を密接させ、圧力検出素子1を完成した。
次に、完成した圧力検出素子1の銅リード線15にミリオームメータを接続し、上記受圧面111、121に所定の圧力変化を作用させ電気抵抗率の変化率を測定し、圧力検出素子1の圧力感度を評価した。測定条件は、1)圧力変化:0〜20MPa、2)測定温度:25℃、200℃、である。測定結果を表1に示す。なお、以下実施例2〜16及び比較例1〜3でも同様な方法で、完成した圧力検出素子2,3の評価を行なった。
(Example 1): Embodiment 1
Example 1 is an example in which SiC, which is ceramic, is used for both the first conductor 11 and the second conductor 12.
A method for manufacturing the first conductor 11 and the second conductor 12 will be described. As the 1st conductor 11 and the 2nd conductor 12, what processed the SiC tablet (product made from high purity chemical, purity 2N) in the shape of a 3 mm x 3 mm x 12 mm square bar was prepared. In each of the first conductor 11 and the second conductor 12, one surface of 3 mm × 12 mm was used as pressure receiving surfaces 111 and 121, and the Cu electrode 14 was brazed to the pressure receiving surfaces 111 and 121. Next, a Cu lead wire 15 having a diameter of 0.6 mm was connected to the Cu electrode 14 with solder. Thereafter, the contact surface 122 of the second conductor 12 was brought into close contact with the contact surface 112 of the first conductor 11 to complete the pressure detecting element 1.
Next, a milliohm meter is connected to the copper lead wire 15 of the completed pressure detection element 1, a predetermined pressure change is applied to the pressure receiving surfaces 111 and 121, and the rate of change in electrical resistivity is measured. Pressure sensitivity was evaluated. The measurement conditions are 1) pressure change: 0 to 20 MPa, 2) measurement temperature: 25 ° C., 200 ° C. The measurement results are shown in Table 1. In the following Examples 2 to 16 and Comparative Examples 1 to 3, the completed pressure detection elements 2 and 3 were evaluated by the same method.

(実施例2):実施態様2
実施例2は、第1導電体21としてセラミックスであるSiC、第2導電体22として金属であるCuを使用した例である。
第1導電体21は、次のようにして作成した。β−SiC粉末(高純度化学製、型番:SII01FA)を45g、焼結助剤としてAlO3(高純度化学製、型番:ALO05PA)を3.5g及びY2O3(高純度化学製、型番:YYO01PA)を1.5g秤量し、エタノール中でボールミル混合を行い、混合粉を得た。混合粉を乾燥して乾燥粉を得、次いで乾燥粉を成型しΦ36mm×厚さ10mmの成型体を作成した。成型体を、焼結温度1800℃、保持時間2時間、加圧力50MPaにて窒素雰囲気中でホットプレス焼結を行い、焼結体を作成した。焼結体を、3mm×3mm×12mmの角棒状に加工し、これを第1導電体21として使用した。
第2導電体22は、Cuタブレット(高純度化学製、型番:CUE01CA)を3mm×3mm×12mmの角棒状に加工したものを使用した。
上記第1導電体21及び第2導電体22を組み立てて圧力検出素子2を作製した。第1導電体21の3mm×12mmの一面を受圧面211と、受圧面211に相対する面を密接面212とし、該受圧面211と密接面212とを含まない面、本実施例の場合には3mm×3mmの2面にそれぞれ厚さ1mmのCu電極24をロウ付けした。次いで、該Cu電極24に導線であるΦ0.6mmのCuリード線25をハンダで接続した。その後、第1導電体21と第2導電体22の密接面212、222同士を密着させて圧力検出素子2を完成し、上記と同様に圧力感度を測定した。なお、上記圧力検出素子2の組立方法は、以下の実施例3〜14及び16並びに比較例2,3でも同様である。
(Example 2): Embodiment 2
Example 2 is an example in which SiC as ceramic is used as the first conductor 21 and Cu as metal is used as the second conductor 22.
The first conductor 21 was prepared as follows. 45 g of β-SiC powder (manufactured by high purity chemical, model number: SII01FA), 3.5 g of Al 2 O3 (manufactured by high purity chemical, model number: ALO05PA) as a sintering aid and Y2O3 (manufactured by high purity chemical, model number: YYO01PA) ) Was weighed and ball milled in ethanol to obtain a mixed powder. The mixed powder was dried to obtain a dried powder, and then the dried powder was molded to form a molded body having a diameter of 36 mm and a thickness of 10 mm. The compact was subjected to hot press sintering in a nitrogen atmosphere at a sintering temperature of 1800 ° C., a holding time of 2 hours, and an applied pressure of 50 MPa to prepare a sintered body. The sintered body was processed into a 3 mm × 3 mm × 12 mm square bar shape, and this was used as the first conductor 21.
The 2nd conductor 22 used what processed Cu tablet (product made from high purity chemical, model number: CUE01CA) in the shape of a square bar of 3 mm x 3 mm x 12 mm.
The first conductor 21 and the second conductor 22 were assembled to produce the pressure detection element 2. In the case of this embodiment, one surface of the first conductor 21 is a pressure receiving surface 211 and a surface opposite to the pressure receiving surface 211 is a contact surface 212, and the surface does not include the pressure reception surface 211 and the contact surface 212. Were brazed with 1 mm thick Cu electrodes 24 on two surfaces of 3 mm × 3 mm. Next, a lead wire 25 having a diameter of 0.6 mm, which is a conductive wire, was connected to the Cu electrode 24 with solder. Thereafter, the close contact surfaces 212 and 222 of the first conductor 21 and the second conductor 22 were brought into close contact with each other to complete the pressure detection element 2, and the pressure sensitivity was measured in the same manner as described above. The method for assembling the pressure detection element 2 is the same in the following Examples 3 to 14 and 16 and Comparative Examples 2 and 3.

(実施例3):実施態様2
実施例3は、第1導電体21としてSiC、第2導電体22として金属であるAlを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を第1導電体21として使用した。第2導電体22として、Alタブレット(高純度化学製、型番:AlE01CA)を3mm×3mm×12mmの角棒状に加工したものを使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
(Example 3): Embodiment 2
Example 3 is an example in which SiC is used as the first conductor 21 and Al which is a metal is used as the second conductor 22.
A SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21. As the 2nd conductor 22, what processed Al tablet (product made from high purity chemical, model number: AlE01CA) in the shape of a square bar of 3 mm x 3 mm x 12 mm was used. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例4):実施態様2
実施例4は、第1導電体21としてSiC、第2導電体22として金属であるNiを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を第1導電体21として使用した。第2導電体22として、Niタブレット(高純度化学製、型番:NiE01CA)を3mm×3mm×12mmの角棒状に加工したものを使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
(Example 4): Embodiment 2
Example 4 is an example in which SiC is used as the first conductor 21 and Ni which is a metal is used as the second conductor 22.
A SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21. As the 2nd conductor 22, what processed Ni tablet (product made from high purity chemical, model number: NiE01CA) in the shape of a square bar of 3 mm x 3 mm x 12 mm was used. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例5):実施態様2
実施例5は、第1導電体21としてSiC、第2導電体22として金属であるAuを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を第1導電体21として使用した。第2導電体22として、Auタブレット(高純度化学製、型番:AuE01CA)を3mm×3mm×12mmの角棒状に加工したものを使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
Example 5: Embodiment 2
Example 5 is an example in which SiC is used as the first conductor 21 and Au, which is a metal, is used as the second conductor 22.
A SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21. As the 2nd conductor 22, what processed Au tablet (product made from high purity chemical, model number: AuE01CA) in the shape of a 3 mm x 3 mm x 12 mm square bar was used. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例6):実施態様2
実施例6は、第1導電体21としてCによって導電性を付与したセラミックスであるSi、第2導電体22としてCuを使用した例である。
第1導電体21は、次のようにして作成した。α‐Si粉末(平均粒径2μm)を38.0g、C粉末(高純度化学製、型番:CCE01PA)を3.0g、焼結助剤としてAl(高純度化学製、型番:ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。乾燥後Φ36mm、厚さ10mmの成形体を作成し、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力50MPa、窒素雰囲気中で焼結を行った。得られた焼結体を実施例2と同一寸法に加工し、第1導電体21として使用した。
第2導電体22として、Cuタブレット(高純度化学製、型番:CUE01CA)を3mm×3mm×12mmの角棒状に加工したものを使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
Example 6: Embodiment 2
Example 6 is an example in which Si 3 N 4 , which is a ceramic provided with conductivity by C, is used as the first conductor 21, and Cu is used as the second conductor 22.
The first conductor 21 was prepared as follows. α-Si 3 N 4 powder (average particle size 2 μm) 38.0 g, C powder (manufactured by high purity chemical, model number: CCE01PA) 3.0 g, Al 2 O 3 (manufactured by high purity chemical, Model No .: ALO05PA) 6.0 g, Y 2 O 3 (manufactured by Koyo Chemical Co., Ltd. model number: YYO01PA) was weighed and ball milled in ethanol. After drying, a molded product having a diameter of 36 mm and a thickness of 10 mm was prepared, and sintered by a hot press in a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 50 MPa, and a nitrogen atmosphere. The obtained sintered body was processed into the same dimensions as in Example 2 and used as the first conductor 21.
As the 2nd conductor 22, what processed Cu tablet (product made from high purity chemical, model number: CUE01CA) in the shape of a square bar of 3 mm x 3 mm x 12 mm was used. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例7):実施態様2
実施例7は、第1導電体21としてSiC、第2導電体22としてSiを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を第1導電体21として使用した。また、実施例6と同様な方法で作製したSi焼結体を第2導電体22として使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
Example 7: Embodiment 2
Example 7 is an example in which SiC is used as the first conductor 21 and Si 3 N 4 is used as the second conductor 22.
A SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21. Further, a Si 3 N 4 sintered body produced by the same method as in Example 6 was used as the second conductor 22. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例8):実施態様2
実施例8は、第1導電体21としてSiC、第2導電体22としてセラミックスであるWCを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を第1導電体21として使用した。第2導電体22として、WCのタブレット(高純度化学製、純度2N)を3mm×3mm×12mmの角棒状に加工したものを使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
Example 8: Embodiment 2
In Example 8, SiC is used as the first conductor 21 and WC, which is ceramic, is used as the second conductor 22.
A SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21. As the second conductor 22, a WC tablet (manufactured by Koyo Chemical Co., Ltd., purity 2N) processed into a square bar shape of 3 mm × 3 mm × 12 mm was used. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例9):実施態様2
実施例9は、第1導電体21としてSiC、第2導電体22としてセラミックスであるTiNを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を第1導電体21として使用した。第2導電体22として、TiNのタブレット(高純度化学製、純度2N)を3mm×3mm×12mmの角棒状に加工したものを使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
Example 9: Embodiment 2
Example 9 is an example in which SiC is used as the first conductor 21 and TiN which is ceramics is used as the second conductor 22.
A SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21. As the second conductor 22, a TiN tablet (manufactured by High Purity Chemical, purity 2N) processed into a square bar shape of 3 mm × 3 mm × 12 mm was used. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例10):実施態様2
実施例10は、第1導電体21、第2導電体22共にSiCを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を第1導電体21及び第2導電体22として使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
Example 10: Embodiment 2
Example 10 is an example in which SiC is used for both the first conductor 21 and the second conductor 22.
A SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21 and the second conductor 22. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例11):実施態様2
実施例11は、第1導電体21、第2導電体22共にSiを使用した例である。
実施例6と同様な方法で作製したSi焼結体を第1導電体21及び第2導電体22として使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
Example 11: Embodiment 2
Example 11 is an example in which Si 3 N 4 is used for both the first conductor 21 and the second conductor 22.
A Si 3 N 4 sintered body produced by the same method as in Example 6 was used as the first conductor 21 and the second conductor 22. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例12):実施態様2
実施例12は、第1導電体21としてピエゾ抵抗効果を有するSiCを含有するSiセラミックスを使用し、第2導電体22としてSiCを使用した例である。
第1導電体21は次のように作製した。α‐Si粉末(平均粒径2μm)を32.0g、C粉末(高純度化学製、型番:CCE01PA)を9.0g秤量し、カーボンのるつぼに入れて1500℃×2時間、Ar雰囲気で仮焼した。仮焼粉に、焼結助剤として焼結助剤として高純度化学製Al(ALO05PA)を6.0g、Y(高純度化学製、型番:YYO01PA)を3.0g秤量し、エタノール中でボールミル混合を行った。乾燥後、Φ36mm、厚さ10mmの成形体を作成し、ホットプレスにて、焼結温度1650℃、保持時間2時間、加圧力50MPa、窒素雰囲気中で焼結を行った。この焼結体を3mm×3mm×12mmの角棒状に加工し、第1導電体21として使用した。
実施例2と同様な方法で作製したSiC焼結体を第2導電体22として使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
Example 12: Embodiment 2
Example 12 is an example in which Si 3 N 4 ceramics containing SiC having a piezoresistance effect is used as the first conductor 21 and SiC is used as the second conductor 22.
The first conductor 21 was produced as follows. α-Si 3 N 4 powder (average particle diameter 2 [mu] m) and 32.0 g, C powder (Wako Pure Chemical Industries, Ltd., model number: CCE01PA) was 9.0g weighed, 1500 ° C. × 2 hours placed in a carbon crucible, Ar It was calcined in the atmosphere. To the calcined powder, 6.0 g of high purity chemical Al 2 O 3 (ALO05PA) as a sintering aid and 3.0 g of Y 2 O 3 (high purity chemical, model number: YYO01PA) as a sintering aid are weighed. Then, ball mill mixing was performed in ethanol. After drying, a molded body having a diameter of 36 mm and a thickness of 10 mm was prepared, and sintered by a hot press in a sintering temperature of 1650 ° C., a holding time of 2 hours, a pressing force of 50 MPa, and a nitrogen atmosphere. This sintered body was processed into a 3 mm × 3 mm × 12 mm square bar shape and used as the first conductor 21.
A SiC sintered body produced by the same method as in Example 2 was used as the second conductor 22. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例13):実施態様2
実施例13は、第1導電体21、第2導電体22共にCuを使用した例である。
第1導電体21及び第2導電体22として、Cuタブレット(高純度化学製、型番:CuE01CA)を3mm×3mm×12mmの角棒状に加工したものを使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
Example 13: Embodiment 2
Example 13 is an example in which Cu is used for both the first conductor 21 and the second conductor 22.
As the 1st conductor 21 and the 2nd conductor 22, what processed Cu tablet (product made from high purity chemical, model number: CuE01CA) in the shape of a 3 mm x 3 mm x 12 mm square bar was used. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(実施例14):実施態様3
実施例14は、第1導電体31としてSiCを使用し、第2導電体32としてSiCを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を実施例2と同一寸法の角棒状に加工し、第1導電体31として使用した。第2導電体33として、実施例2と同様の方法で作製したSiC焼結体を、図3に示すように、3×12mmの面の中央部から3×6mmの面積に深さ0.2mmの溝を入れ、両端部にて3×3mmの面積がそれぞれ残るようにコの字型に加工したものを使用した。
第1導電体31にCu電極34をロウ付けし、Cu電極34にリード線35を接続し、第1導電体31の密接面311と第2導電体32の密接面322とを密接させて圧力検出素子3を組み立て、圧力感度を評価した。測定結果を表1に示す。
Example 14: Embodiment 3
Example 14 is an example in which SiC is used as the first conductor 31 and SiC is used as the second conductor 32.
A SiC sintered body produced by the same method as in Example 2 was processed into a square bar shape having the same dimensions as in Example 2, and used as the first conductor 31. As the second conductor 33, a SiC sintered body produced by the same method as in Example 2 was used, as shown in FIG. 3, from the center of the 3 × 12 mm surface to an area of 3 × 6 mm and a depth of 0.2 mm. Were used and processed into a U shape so that an area of 3 × 3 mm remained at both ends.
The Cu electrode 34 is brazed to the first conductor 31, the lead wire 35 is connected to the Cu electrode 34, and the close contact surface 311 of the first conductor 31 and the close contact surface 322 of the second conductor 32 are brought into close contact with each other. The detection element 3 was assembled and the pressure sensitivity was evaluated. Table 1 shows the measurement results.

(実施例15):実施態様4
実施例15は、第1導電体21としてSiC、第2導電体22としてCu、第3導電体43としてCuを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を第1導電体21として使用した。第2導電体22及び第3導電体43として、Cuタブレット(高純度化学製、型番:CUE01CA)を3mm×3mm×12mmの角棒状に加工したものを使用した。
上記第1導電体21、第2導電体22及び第3導電体43を組み立てて圧力検出素子4を作製した。第1〜第3導電体21、22、43のそれぞれの3mm×12mmの一面を受圧面211、221、431とし、受圧面211、221、431に相対する面を密接面212、222、432と定めた。次いで、第1導電体21の3mm×3mmの両端面に厚さ1mmのCu電極24をロウ付けし、Cu電極24に導線であるΦ0.6mmのCuリード線25をハンダで接続した。次いで、第1導電体21の密接面212と第2導電体22の密接面222を密接させるとともに第1導電体21の受圧面211に第3導電体43の密接面432を密接させ圧力検出素子4を組み立てた。そして、実施例2と同様に圧力感度を測定した。測定結果を表1に示す。
Example 15: Embodiment 4
In Example 15, SiC is used as the first conductor 21, Cu is used as the second conductor 22, and Cu is used as the third conductor 43.
A SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21. As the 2nd conductor 22 and the 3rd conductor 43, what processed Cu tablet (product made from high purity chemical, model number: CUE01CA) in the shape of a 3 mm x 3 mm x 12 mm square bar was used.
The first conductor 21, the second conductor 22, and the third conductor 43 were assembled to produce the pressure detection element 4. One surface of each of the first to third conductors 21, 22, 43 is 3 mm × 12 mm as pressure receiving surfaces 211, 221, 431, and surfaces facing the pressure receiving surfaces 211, 221, 431 are contact surfaces 212, 222, 432, Determined. Next, a Cu electrode 24 having a thickness of 1 mm was brazed to both end faces of 3 mm × 3 mm of the first conductor 21, and a Cu lead wire 25 having a diameter of 0.6 mm as a conducting wire was connected to the Cu electrode 24 with solder. Next, the contact surface 212 of the first conductor 21 and the contact surface 222 of the second conductor 22 are brought into close contact with each other, and the contact surface 432 of the third conductor 43 is brought into contact with the pressure receiving surface 211 of the first conductor 21. 4 was assembled. Then, the pressure sensitivity was measured in the same manner as in Example 2. Table 1 shows the measurement results.

(実施例16):実施態様4
実施例16は、第1導電体21、第2導電体22及び第3導電体43共にSiCを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を第1導電体21、第2導電体22及び第3導電体として使用し、実施例15と同様の方法で圧力検出素子4を作製し、圧力感度を測定した。測定結果を表1に示す。
Example 16: Embodiment 4
Example 16 is an example in which SiC is used for all of the first conductor 21, the second conductor 22, and the third conductor 43.
The SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21, the second conductor 22, and the third conductor, and the pressure detecting element 4 was produced by the same method as in Example 15. The pressure sensitivity was measured. Table 1 shows the measurement results.

(比較例1)
実施例12と同様の方法で作製したSi焼結体を3mm×3mm×12mmの角棒状に加工し、3mm×3mmの両端面に電極24をロウ付けし、リード線25を接続し圧力検出素子を作製した。そして、実施例2と同条件で3mm×12mmの面に圧力をかけ、圧力感度を評価した。測定結果を表1に示す。
(Comparative Example 1)
Processing the Si 3 N 4 sintered body was produced in the same manner as in Example 12 to square rod of 3mm × 3mm × 12mm, the electrode 24 is brazed to both end surfaces of 3 mm × 3 mm, to connect the lead wire 25 A pressure detection element was produced. Then, pressure was applied to a 3 mm × 12 mm surface under the same conditions as in Example 2 to evaluate pressure sensitivity. The measurement results are shown in Table 1.

(比較例2):実施態様2
比較例2は、第1導電体21としてSiCを使用し、第2導電体22に非導電性のSiを使用した例である。
実施例2と同様の方法で作製したSiC焼結体を第1導電体21として使用した。第2導電体22として、Siタブレット(高純度化学製、純度2N)を3mm×3mm×12mmの角棒状に加工したものを使用した。
そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
(Comparative Example 2): Embodiment 2
Comparative Example 2 is an example in which SiC is used as the first conductor 21 and non-conductive Si 3 N 4 is used as the second conductor 22.
A SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21. A second electrical conductor 22, using Si 3 N 4 tablets (Wako Pure Chemical Industries, Ltd., purity 2N) those obtained by processing the square rod of 3mm × 3mm × 12mm.
As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

(比較例3):実施態様2
比較例3は、第1導電体21としてSiCを使用し、第2導電体22として第1導電体21よりも電気抵抗が177倍高いSiを使用した例である。
実施例2と同様な方法で作製したSiC焼結体を第1導電体21として使用した。実施例14と同様な方法で作製したSi焼結体を第2導電体22として使用した。そして実施例2と同様に、第1導電体21にCu電極24をロウ付けし、Cu電極24にリード線25を接続し、次いで、第1導電体21と第2導電体22とを密接して圧力検出素子2を組み立て、圧力感度を評価した。測定結果を表1に示す。
(Comparative Example 3): Embodiment 2
Comparative Example 3 is an example in which SiC is used as the first conductor 21 and Si 3 N 4 having an electric resistance 177 times higher than that of the first conductor 21 is used as the second conductor 22.
A SiC sintered body produced by the same method as in Example 2 was used as the first conductor 21. A Si 3 N 4 sintered body produced by the same method as in Example 14 was used as the second conductor 22. As in the second embodiment, the Cu electrode 24 is brazed to the first conductor 21, the lead wire 25 is connected to the Cu electrode 24, and then the first conductor 21 and the second conductor 22 are brought into close contact with each other. Then, the pressure detection element 2 was assembled and the pressure sensitivity was evaluated. The measurement results are shown in Table 1.

Figure 2007033383
Figure 2007033383

本発明の実施例1では第1導電体と第2導電体の接触抵抗を利用することで優れた圧力感度を持った圧力検出素子が得られることを示した。実施例2〜15ではバイパス回路の接触抵抗を利用し、優れた圧力感度を持った圧力検出素子が得られることを示した。実施例2〜5ではSiCに導電性の高い金属を組み合わせることによって常温以下で優れた圧力感度を持った圧力検出素子が得られる事を示した。実施例6ではSiCだけでなくSiに導電性の高い金属を組み合わせても優れた圧力感度を持った圧力検出素子が得られることを示した。実施例7〜11ではセラミックス同士を組み合わせる事により、高温でも接触界面が酸化せず良好な接触界面が得られ、高温においても優れた圧力感度を持った圧力検出素子が得られる事を示した。実施例12では第1導電体自体に圧力に対して電気抵抗が変化する素子を採用することによって、より優れた圧力感度を持った圧力検出素子が得られる事を示した。実施例13では第1導電体と第2導電体をともに金属で構成しても優れた圧力感度をもった圧力検出素子が得られることを示した。実施例14では第2導電体をコの字型に加工する事により、密接する面積を減らしてバイパス回路を形成する面の受ける圧力を高める事により、優れた圧力感度を持った圧力検出素子が得られる事を示した。実施例15、16ではバイパス回路を二つにすることでさらに優れた圧力感度を持った圧力検出素子が得られることを示した。
一方、比較例1は特許文献1に開示された方法で作製した試料であり、電気抵抗の圧力依存性は−0.02%/MPaと本発明に比べて高い圧力感度が得られない事を示した。比較例2、3では第2導電体に電気抵抗が高い材料を使用した場合は、接触界面における電気抵抗R3が小さくなっても、R1の値に比べてR2が非常に大きいためバイパス回路の電気抵抗が高く、結果全体の電気抵抗R4はほとんど変化せず優れた圧力感度は得られないことを示した。
In Example 1 of the present invention, it was shown that a pressure detecting element having excellent pressure sensitivity can be obtained by using the contact resistance between the first conductor and the second conductor. In Examples 2 to 15, it was shown that a pressure detection element having excellent pressure sensitivity can be obtained by using the contact resistance of the bypass circuit. In Examples 2 to 5, it was shown that a pressure detecting element having excellent pressure sensitivity at room temperature or lower can be obtained by combining SiC with a highly conductive metal. In Example 6, it was shown that a pressure detecting element having excellent pressure sensitivity can be obtained by combining not only SiC but also Si 3 N 4 with a highly conductive metal. In Examples 7 to 11, it was shown that by combining ceramics with each other, the contact interface was not oxidized even at a high temperature and a good contact interface was obtained, and a pressure detecting element having excellent pressure sensitivity was obtained even at a high temperature. In Example 12, it was shown that a pressure detecting element having better pressure sensitivity can be obtained by adopting an element whose electric resistance varies with pressure as the first conductor itself. In Example 13, it was shown that a pressure detecting element having excellent pressure sensitivity can be obtained even if both the first conductor and the second conductor are made of metal. In Example 14, the pressure sensing element having excellent pressure sensitivity is obtained by processing the second conductor into a U-shape, thereby reducing the contact area and increasing the pressure received by the surface forming the bypass circuit. It showed that it was obtained. In Examples 15 and 16, it was shown that a pressure detecting element having further excellent pressure sensitivity can be obtained by using two bypass circuits.
On the other hand, Comparative Example 1 is a sample prepared by the method disclosed in Patent Document 1, and the pressure dependency of electrical resistance is -0.02% / MPa, which means that a high pressure sensitivity cannot be obtained compared to the present invention. Indicated. In Comparative Examples 2 and 3, when a material having a high electrical resistance is used for the second conductor, even if the electrical resistance R3 at the contact interface is small, R2 is very large compared to the value of R1, so that The resistance was high, and the overall electrical resistance R4 was almost unchanged, indicating that excellent pressure sensitivity could not be obtained.

本発明の圧力センサ材料は、圧力に対する電気抵抗率の変化率が大きく、構成を変えれば高温・高圧化でも測定可能で、機械強度が高く耐久性・信頼性に優れるという特徴を有している。そのため、自動車のエンジン内の圧力計測(筒内圧力センサ)、ディーゼルエンジンのインジェクターに燃料を供給するコモンレールの圧力計測に適用可能である。   The pressure sensor material of the present invention has a characteristic that the rate of change of electrical resistivity with respect to pressure is large, and can be measured even at high temperatures and pressures by changing the configuration, and has high mechanical strength and excellent durability and reliability. . Therefore, it is applicable to pressure measurement in a car engine (cylinder pressure sensor) and pressure measurement of a common rail that supplies fuel to an injector of a diesel engine.

本発明に係る第1態様の圧力検出素子の模式図及びその電気的等価回路図である。It is the schematic diagram of the pressure detection element of the 1st aspect which concerns on this invention, and its electrical equivalent circuit schematic. 本発明に係る第2態様の圧力検出素子の模式図及びその電気的等価回路図である。It is the schematic diagram of the pressure detection element of the 2nd aspect which concerns on this invention, and its electrical equivalent circuit schematic. 本発明に係る第3態様の圧力検出素子の模式図である。It is a schematic diagram of the pressure detection element of the 3rd aspect which concerns on this invention. 本発明に係る第4態様の圧力検出素子の模式図である。It is a schematic diagram of the pressure detection element of the 4th aspect which concerns on this invention.

符号の説明Explanation of symbols

1 (2,3):圧力検出素子
11 (21、31):第1導電体
12 (22、31):第2導電体
13 (23、33):密接面
14 (24、34):電極
15 (25、35):導線
111(211):第1導電体の受圧面
112(212):第1導電体の密接面
121(221):第2導電体の受圧面
122(222):第2導電体の密接面
1 (2, 3): Pressure detecting element 11 (21, 31): First conductor 12 (22, 31): Second conductor 13 (23, 33): Close contact surface 14 (24, 34): Electrode 15 (25, 35): Conductor 111 (211): Pressure receiving surface of the first conductor 112 (212): Close contact surface of the first conductor 121 (221): Pressure receiving surface of the second conductor 122 (222): Second Close contact surface of conductor

Claims (7)

圧力が作用する一面と該一面に相対する他面を備えた第1導電体と、圧力が作用する一面と該一面に相対するとともに前記第1導電体の他面に密着する他面を備えた第2導電体と、前記第1導電体と第2導電体の一面の夫々に設けられた電極と、前記電極に接続された導線とを有する圧力検出素子。 A first conductor having a surface on which pressure is applied and another surface opposite to the one surface; a surface on which pressure is applied; and another surface facing the other surface and in close contact with the other surface of the first conductor. A pressure detection element comprising: a second conductor; an electrode provided on each of one surface of the first conductor and the second conductor; and a conductive wire connected to the electrode. 圧力が作用する一面と該一面に相対する他面を備えた第1導電体と、圧力が作用する一面と該一面に相対するとともに前記第1導電体の他面に密着する他面を備えた第2導電体と、前記第1導電体において該第1導電体の一面及び他面以外の部分に設けられた一対の電極と、前記電極に接続された導線とを有する圧力検出素子。 A first conductor having a surface on which pressure acts and another surface opposite to the one surface; a surface on which pressure acts; and another surface facing the other surface and in close contact with the other surface of the first conductor. A pressure detection element comprising: a second conductor; a pair of electrodes provided on a portion of the first conductor other than one surface and the other surface of the first conductor; and a conductive wire connected to the electrode. 前記第1導電体がセラミックスであり、前記第2導電体が金属である請求項2に記載の圧力検出素子。 The pressure detection element according to claim 2, wherein the first conductor is ceramics and the second conductor is metal. 前記第1導電体及び第2導電体がセラミックスである請求項2に記載の圧力検出素子。 The pressure detection element according to claim 2, wherein the first conductor and the second conductor are ceramics. 前記第1導電体がピエゾ抵抗効果を有する請求項2に記載の圧力検出素子。 The pressure detection element according to claim 2, wherein the first conductor has a piezoresistive effect. 前記第2導電体の他面は前記第1導電体の他面と、両端部のみで密接している請求項2に記載の圧力検出素子。 The pressure sensing element according to claim 2, wherein the other surface of the second conductor is in close contact with the other surface of the first conductor only at both ends. 圧力が作用する一面と該一面に相対するとともに前記第1導電体の一面に密着する他面を備えた第3導電体を有する請求項2に記載の圧力検出素子。 The pressure detecting element according to claim 2, further comprising: a third conductor having one surface on which pressure acts and another surface facing the one surface and closely contacting one surface of the first conductor.
JP2005220727A 2005-07-29 2005-07-29 Pressure detection element Pending JP2007033383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220727A JP2007033383A (en) 2005-07-29 2005-07-29 Pressure detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220727A JP2007033383A (en) 2005-07-29 2005-07-29 Pressure detection element

Publications (1)

Publication Number Publication Date
JP2007033383A true JP2007033383A (en) 2007-02-08

Family

ID=37792817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220727A Pending JP2007033383A (en) 2005-07-29 2005-07-29 Pressure detection element

Country Status (1)

Country Link
JP (1) JP2007033383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224671A (en) * 2007-03-13 2008-09-25 Robert Bosch Gmbh Sensor device for measuring pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224671A (en) * 2007-03-13 2008-09-25 Robert Bosch Gmbh Sensor device for measuring pressure

Similar Documents

Publication Publication Date Title
US8730002B2 (en) Non-conducting zirconium dioxide
US5844122A (en) Sensor with output correcting function
JP2012064960A (en) Electric structure element, its manufacturing method, and usage of structure element
EP3002269B1 (en) Joined body and method for manufacturing the same
EP1340970A1 (en) Mechanical quantity sensor element, load sensor element, acceleration sensor element, and pressure sensor element
JP2007033383A (en) Pressure detection element
JP2006349656A (en) Pressure-detecting element
WO2016080120A1 (en) Particulate matter detection sensor
CN108369845B (en) Thermistor and device using the same
US10883192B2 (en) Sintered electrically conductive oxide for oxygen sensor electrode, and oxygen sensor using the same
JP4107235B2 (en) Mechanical sensor structure
JP5263641B2 (en) Pressure-sensitive body, pressure-sensitive element, and pressure detection method using the same
WO2009128403A1 (en) Thermistor material for use in a reducing atmosphere
JP4067295B2 (en) Mechanical sensor element structure
US11177059B2 (en) Film resistor and thin-film sensor
JP4638565B2 (en) Highly sensitive mechanical sensor material
EP3460430B1 (en) Temperature sensor and temperature measuring device
JP2006226769A (en) Composite ceramic material for pressure sensor and pressure sensor using the same
JP4124413B2 (en) Mechanical quantity sensor element
JP2008002831A (en) Pressure detecting element
JP2008041888A (en) Thermistor material
White Advances in thick-film sensors
JP2008164559A (en) Pressure detection circuit
JP3393261B2 (en) Porcelain composition for thermistor
JP2007205778A (en) Pressure sensing element