JP2009074116A - Method for cooling skid pipe in heating furnace, and method for manufacturing metal plate using the same - Google Patents

Method for cooling skid pipe in heating furnace, and method for manufacturing metal plate using the same Download PDF

Info

Publication number
JP2009074116A
JP2009074116A JP2007242250A JP2007242250A JP2009074116A JP 2009074116 A JP2009074116 A JP 2009074116A JP 2007242250 A JP2007242250 A JP 2007242250A JP 2007242250 A JP2007242250 A JP 2007242250A JP 2009074116 A JP2009074116 A JP 2009074116A
Authority
JP
Japan
Prior art keywords
cooling water
heating furnace
temperature
skid pipe
skid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007242250A
Other languages
Japanese (ja)
Inventor
Yusuke Kanekuni
祐介 金國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007242250A priority Critical patent/JP2009074116A/en
Publication of JP2009074116A publication Critical patent/JP2009074116A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cooling a skid pipe in a heating furnace, which prevents Langelier index from being poorly adjusted because of cooling water having a high temperature in the heating furnace, and can surely prevent the skid pipe from being plugged, and to provide a method for manufacturing a metal plate using the same. <P>SOLUTION: This cooling method comprises the steps of: embedding a thermocouple 105 in skid pipes of a fixed skid 103 and a moving skid 104 in the heating furnace 10, and measuring the temperature of the cooling water in the skid pipe (203); calculating correction values of M-alkalinity and pH due to the movement of the equilibrium of a bicarbonate ion from a difference between the measured temperature of the cooling water and the temperature of the cooling water in a water supply position 222 (204); calculating the Langelier index of the cooling water in the skid pipe from thus determined temperature and correction values of M-alkalinity and pH (201); calculating an amount of an alkali agent to be charged (219); and charging the alkali agent from a charging device 214 on the basis of the result. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属片を加熱する加熱炉のスキッドパイプ冷却方法に関し、特にウォーキングビーム式連続加熱炉のスキッドパイプが閉塞してしまうのを防止する方法に関する。   The present invention relates to a method for cooling a skid pipe of a heating furnace for heating a metal piece, and more particularly to a method for preventing the skid pipe of a walking beam type continuous heating furnace from being blocked.

一例として、図2に示すような帯鋼の熱間圧延ライン100の加熱炉10の場合を例にとる。   As an example, the case of the heating furnace 10 of the hot rolling line 100 of the steel strip as shown in FIG. 2 is taken as an example.

熱間圧延とは、一般的に、連続鋳造または造塊、分塊によって製造されたスラブ状の金属材料を加熱炉にて数百〜千数百℃に加熱した後、熱間圧延ライン上に抽出し、一対または複数対のロールで挟圧しつつそのロールを回転させることで、薄く延ばし、コイル状に巻き取る一連のプロセスである。   Hot rolling is generally a slab-like metal material produced by continuous casting, ingot-making, or ingoting, heated in a heating furnace to several hundred to several hundreds of degrees Celsius, and then placed on a hot rolling line. It is a series of processes of extracting and winding thinly and winding it into a coil shape by rotating the roll while pinching with a pair or a plurality of pairs of rolls.

加熱炉10により数百〜千数百℃に加熱された厚み150〜300mmの金属材料(以下、被圧延材)8は、粗圧延機12、仕上圧延機18により厚み0.8〜25mmまで圧延されて金属板(金属帯)状に薄く延ばされ、冷却関連設備26により冷却されたのち、コイラー24によりコイル状に巻き取られる。   A metal material 8 having a thickness of 150 to 300 mm (hereinafter referred to as a material to be rolled) heated to several hundred to several hundreds of degrees Celsius by the heating furnace 10 is rolled to a thickness of 0.8 to 25 mm by a roughing mill 12 and a finishing mill 18. After being thinly extended into a metal plate (metal strip) shape and cooled by the cooling-related equipment 26, the coiler 24 takes up the coil.

7はテーブルロール、23はランナウトテーブル、14はクロップシャー、16はデスケーリング装置である。このほか、被圧延材8の温度、寸法(厚さ、幅)、形状などを測定する各種センサが、熱間圧延ライン100の随所に設置されている。   7 is a table roll, 23 is a run-out table, 14 is a crop shear, and 16 is a descaling device. In addition, various sensors for measuring the temperature, dimensions (thickness, width), shape, and the like of the material 8 to be rolled are installed at various locations on the hot rolling line 100.

50は制御装置、70はプロセスコンピュータ、90はビジネスコンピュータである。   50 is a control device, 70 is a process computer, and 90 is a business computer.

加熱炉10の一例として、図3に示すようなウォーキングビーム式連続加熱炉の場合を例にとって説明する。   As an example of the heating furnace 10, a case of a walking beam type continuous heating furnace as shown in FIG. 3 will be described as an example.

101はバーナ、102は炉壁であり、103が固定スキッド、104が移動スキッドである。   101 is a burner, 102 is a furnace wall, 103 is a fixed skid, and 104 is a moving skid.

加熱炉10内の温度は多くの場合1100℃以上、被圧延材8の材質によっては1300℃にも達する場合があるため、加熱炉10内で鋼片を下から支える固定スキッド103,移動スキッド104は、内部が水冷される。   In most cases, the temperature in the heating furnace 10 is 1100 ° C. or higher, and may reach 1300 ° C. depending on the material of the material 8 to be rolled. Therefore, the fixed skid 103 and the moving skid 104 that support the steel slab from below in the heating furnace 10. The inside is water cooled.

この水冷のための冷却水の通る経路がスキッドパイプであるが、スキッドパイプは、循環式の冷却水によって内部が冷却される。   A path through which the cooling water for water cooling passes is a skid pipe, and the inside of the skid pipe is cooled by circulating cooling water.

このような条件でスキッドパイプの内部が水冷されると、冷却水中の溶存酸素とスキッドパイプ内面の鉄との間で酸化反応が起こり、継時的に腐食が進行する。   When the inside of the skid pipe is water-cooled under such conditions, an oxidation reaction occurs between dissolved oxygen in the cooling water and iron on the inner surface of the skid pipe, and corrosion progresses over time.

特に、循環式の冷却水を循環させる系の様式が開放循環系の場合、大気中の酸素が吸収されるため、前述の酸化反応とそれに伴う腐食は一層促進される。   In particular, when the system of circulating the circulating cooling water is an open circulation system, oxygen in the atmosphere is absorbed, so that the above-described oxidation reaction and accompanying corrosion are further promoted.

また、循環式の冷却水の場合、放冷による水分の蒸発に伴って、冷却水中の塩素イオンや硫酸イオンなどの物質が濃縮されやすく、その分、腐食が助長されやすい。   Further, in the case of circulating cooling water, substances such as chlorine ions and sulfate ions in the cooling water are likely to be concentrated with the evaporation of water due to cooling, and corrosion is easily promoted accordingly.

腐食によって生じた酸化生成物は、冷却水を循環させる系のいたるところに堆積したり、層状になったりするが、放置しておくと、先述のスキッドパイプの場合は特に顕著であるが、冷却水の通る経路の閉塞と、それに伴う伝熱障害を引き起こし、重大な設備トラブルにつながる場合がある。   Oxidation products produced by corrosion accumulate throughout the system circulating the cooling water or become layered, but if left untreated, this is particularly noticeable in the case of the above-mentioned skid pipes. This may cause a blockage of the water path and the associated heat transfer failure, leading to serious equipment troubles.

一方、冷却水中のカルシウム硬度やpHが高い場合、冷却水の温度が上昇すると、冷却水中の炭酸イオンとカルシウムイオンが飽和して、炭酸カルシウムとして冷却水の通る経路および経路上にある各機器の表面に析出する。   On the other hand, when the calcium hardness and pH in the cooling water are high, when the temperature of the cooling water rises, carbonate ions and calcium ions in the cooling water are saturated, and the route of the cooling water as calcium carbonate and the devices on the route Precipitate on the surface.

炭酸カルシウムが過剰に析出すると、腐食によって生じた酸化生成物と同様に、冷却水の通る経路の閉塞と、それに伴う伝熱障害を引き起こし、重大な設備トラブルにつながる場合がある。   If calcium carbonate is excessively precipitated, the oxidation water product caused by corrosion may cause a blockage of the passage through which the cooling water passes and a heat transfer failure associated therewith, resulting in a serious equipment trouble.

上記のような、冷却水の水質に起因した、冷却水の通る経路および経路上にある各機器の腐食や閉塞の問題に対し、冷却水の腐食性、炭酸カルシウム析出性をあらわす指標である、ランゲリア指数を用いて、水質管理を行う方法がある。   It is an index that shows the corrosiveness of cooling water and calcium carbonate precipitation for the problem of corrosion and blockage of each device on the path due to the water quality of the cooling water as described above. There is a method of water quality management using the Langeria index.

すなわち、ランゲリア指数を適切な値の範囲に入るよう調整する目的で、アルカリ剤などの薬剤を冷却水中に投入することにより、腐食性の低い、あるいは炭酸カルシウム析出性の低い水質に改善し、これを冷却水として使用する方法である。   That is, for the purpose of adjusting the Langeria index to be within the appropriate range, by introducing a chemical such as an alkaline agent into the cooling water, the water quality can be improved to a low corrosive property or a low calcium carbonate precipitation property. Is used as cooling water.

ランゲリア指数を腐食性の指標とした方法として、冷却水に対し、アルカリ剤に代表されるpH調整剤を投入する方法がある。   As a method using the Langeria index as a corrosive index, there is a method in which a pH adjusting agent typified by an alkaline agent is added to cooling water.

特許文献1に記載の方法は、各種用水または排水の管路の腐食防止のために、水の腐食性を低下させようとするものであり、ランゲリア指数が小さく、腐食性の高い水にカルシウム塩及びアルカリ剤の片方あるいは両方を注入して、用水の腐食性を低下させる方法である。   The method described in Patent Document 1 attempts to reduce the corrosiveness of water in order to prevent corrosion of various water or drainage pipes, and has a low Langerian index and calcium salt in highly corrosive water. In addition, one or both of the alkaline agent and the alkaline agent are injected to reduce the corrosiveness of the service water.

また、特許文献2に記載の方法は、淡水の腐食性を低下させる方法として、pHを7以下にした上で、塩化カルシウムおよび炭酸水素ナトリウムを注入することで、pHとランゲリア指数を調整し、腐食性を低下させる方法である。   In addition, the method described in Patent Document 2 adjusts pH and Langeria index by injecting calcium chloride and sodium bicarbonate after reducing pH to 7 or less as a method for reducing the corrosivity of fresh water, This is a method of reducing the corrosiveness.

これらの方法はいずれも、冷却水の腐食性をランゲリア指数によって数値化し、アルカリ剤投入を行うことで水質を改善しようとするものである。   All of these methods attempt to improve the water quality by quantifying the corrosiveness of the cooling water using the Langeria index and introducing an alkaline agent.

特許文献3に記載の方法は、図4に示すように、砂濾過池212の後や浄水池215など大気に開放された、これから供給しようとする水のある位置(給水位置)で、水のpH,温度,濁度,色度,導電率を測定し、Mアルカリ度,カルシウム硬度を推定するとともに、ランゲリア指数を求めようとするものである。   As shown in FIG. 4, the method described in Patent Document 3 has a position where water is to be supplied (water supply position) that is open to the atmosphere after the sand filtration pond 212 or the water purification pond 215. The pH, temperature, turbidity, chromaticity, and conductivity are measured to estimate M alkalinity and calcium hardness, and to obtain the Langeria index.

従来の加熱炉のスキッドパイプ冷却方法も特許文献3のものと考え方は大体同じである。   A conventional method for cooling a skid pipe of a heating furnace is substantially the same as that of Patent Document 3.

図5に示すごとく、沈殿池(特許文献3では砂濾過池)212にて不純物を除去された冷却水は、特許文献3にはない冷却塔220にて温度を低下させられた後、特許文献3にはない高架水槽221にくみ上げられ、加熱炉10のスキッド104,105に向け供給されるが、給水位置222でpH,温度,Mアルカリ度が測定され(特許文献3では水質計器202による)、それを基にランゲリア指数を求め(特許文献3ではL1測定,演算装置201による)、求めたランゲリア指数を基にアルカリ剤投入量を演算し(特許文献3ではpH制御装置219による)、投入装置(特許文献3では後アルカリ注入)214から冷却水中にアルカリ剤を投入する点で、特許文献3のものと共通する。。
特開平06−287777号公報 特開2004−034001号公報 特許第3385767号公報
As shown in FIG. 5, the cooling water from which impurities have been removed in the sedimentation basin (sand filter basin in Patent Document 3) 212 is lowered in temperature in a cooling tower 220 that is not in Patent Document 3, and then the Patent Document The water is pumped up to an elevated water tank 221 not included in 3 and supplied to the skids 104 and 105 of the heating furnace 10, but the pH, temperature, and M alkalinity are measured at the water supply position 222 (in Patent Document 3, the water quality meter 202 is used). Based on this, the Langeria index is obtained (L1 measurement and calculation device 201 in Patent Document 3), and the amount of alkali agent charged is calculated based on the obtained Langelia index (pH control device 219 in Patent Document 3) and charged. It is the same as that in Patent Document 3 in that an alkali agent is introduced into the cooling water from the device (post-alkali injection in Patent Document 3) 214. .
Japanese Patent Laid-Open No. 06-287777 JP 2004-034001 A Japanese Patent No. 3385767

しかしながら、加熱炉内のような1300℃もの高温に達する環境下では、冷却水の温度も相当に上昇するため、温度で決定される炭酸化学種の第一解離定数および第二解離定数が変化し、化学平衡が重炭酸イオン濃度減小および炭酸イオン濃度上昇の方向に移動するとともに、水素イオン濃度が上昇し、pHが低下する。   However, in an environment that reaches as high as 1300 ° C. as in a heating furnace, the temperature of the cooling water also rises considerably, so that the first dissociation constant and the second dissociation constant of the carbon dioxide species determined by the temperature change. As the chemical equilibrium moves in the direction of decreasing bicarbonate ion concentration and increasing carbonate ion concentration, the hydrogen ion concentration increases and the pH decreases.

一方、温度上昇によって、炭酸イオンとカルシウムイオンの溶解度積は低下する。   On the other hand, the solubility product of carbonate ions and calcium ions decreases with increasing temperature.

このような変化により、総合的には、高温になるほど炭酸カルシウムの許容飽和度は低下し、炭酸カルシウムが析出しやすい。   Overall, due to such changes, the allowable saturation of calcium carbonate decreases as the temperature increases, and calcium carbonate tends to precipitate.

それゆえ、従来のように、給水位置での冷却水の温度測定結果を基に、ランゲリア指数を求め、さらにそれを基にアルカリ剤を投入してその調整を行うと、加熱炉スキッドパイプの内部ではもっと冷却水の温度が上昇し、炭酸カルシウムが析出しやすいため、スキッドパイプの閉塞が生じやすい、という問題がある。   Therefore, as in the conventional case, when the Langerian index is obtained based on the temperature measurement result of the cooling water at the water supply position, and the alkali agent is added and adjusted based on the result, the inside of the heating furnace skid pipe Then, since the temperature of the cooling water rises more and calcium carbonate tends to precipitate, there is a problem that the skid pipe is likely to be blocked.

本発明は、従来技術のかような問題を解決するべくなされたものであり、加熱炉内の冷却水の温度の高さからくる、ランゲリア指数の調整不良を防止し、スキッドパイプの閉塞を確実に防止できる、加熱炉のスキッドパイプ冷却方法およびそれを用いた金属板の製造方法を提供することを目的とする。   The present invention has been made to solve such problems as in the prior art, and prevents misalignment of the Langeria index resulting from the high temperature of the cooling water in the heating furnace, and reliably blocks the skid pipe. An object of the present invention is to provide a method of cooling a skid pipe of a heating furnace and a method of manufacturing a metal plate using the same.

すなわち、本発明は、加熱炉のスキッドパイプ内の冷却水の温度を測定して、該温度測定結果に基づいて前記冷却水のMアルカリ度とpHを演算し、該Mアルカリ度と該pHの演算結果を用いてスキッドパイプ内のランゲリア指数を演算し、該ランゲリア指数の演算結果に基づいてアルカリ剤投入量を決定する。   That is, the present invention measures the temperature of the cooling water in the skid pipe of the heating furnace, calculates the M alkalinity and pH of the cooling water based on the temperature measurement result, and calculates the M alkalinity and the pH. Using the calculation result, the Langelia index in the skid pipe is calculated, and the amount of alkaline agent input is determined based on the calculation result of the Langeria index.

好適な形態としては、加熱炉のスキッドパイプに熱電対を埋め込み、スキッドパイプ内の冷却水の温度を測定して、給水位置で測定した冷却水の温度との差から、重炭酸イオンの平衡移動による、Mアルカリ度の補正値、pHの補正値を演算し、前記スキッドパイプ内の冷却水の温度、前記Mアルカリ度の補正値、前記pHの補正値から、前記スキッドパイプ内の冷却水のランゲリア指数を演算し、該ランゲリア指数に基づいてアルカリ剤投入量を演算し、該アルカリ剤投入量の演算結果に基づいて、投入装置からアルカリ剤を投入する。   As a suitable form, a thermocouple is embedded in the skid pipe of the heating furnace, the temperature of the cooling water in the skid pipe is measured, and the equilibrium transfer of bicarbonate ions from the difference from the temperature of the cooling water measured at the water supply position The correction value of M alkalinity and the correction value of pH are calculated, and the cooling water in the skid pipe is calculated from the temperature of cooling water in the skid pipe, the correction value of M alkalinity, and the correction value of pH. A Langeria index is calculated, an alkaline agent charging amount is calculated based on the Langeria index, and an alkaline agent is charged from a charging device based on the calculation result of the alkaline agent charging amount.

本発明によれば、加熱炉内の冷却水の温度の高さからくる、ランゲリア指数の調整不良を防止し、スキッドパイプの閉塞を確実に防止できる、加熱炉のスキッドパイプ冷却方法およびそれを用いた金属板の製造方法を提供できる。   According to the present invention, a method for cooling a skid pipe in a heating furnace, which can prevent a misalignment of the Langeria index resulting from the high temperature of the cooling water in the heating furnace, and can reliably prevent the clogging of the skid pipe, and uses the same. A method for manufacturing a metal plate can be provided.

発明者らは、加熱炉のスキッドパイプ内の冷却水の温度を測定して、該温度測定結果に基づいて前記冷却水のMアルカリ度とpHを演算し、該Mアルカリ度と該pHの演算結果を用いてスキッドパイプ内のランゲリア指数を演算し、該ランゲリア指数の演算結果に基づいてアルカリ剤投入量を決定することで、炭酸カルシウムの析出と、それによるスキッドパイプの閉塞を防止できることを見出した。 The inventors measure the temperature of the cooling water in the skid pipe of the heating furnace, calculate the M alkalinity and pH of the cooling water based on the temperature measurement result, and calculate the M alkalinity and the pH. Using the results, calculate the Langelia index in the skid pipe, and determine the amount of alkaline agent input based on the calculation result of the Langeria index, and found that calcium carbonate precipitation and resulting skid pipe blockage can be prevented. It was.

図1に、本発明の実施の形態の一例を示す。   FIG. 1 shows an example of an embodiment of the present invention.

スキッドパイプ内に熱電対105を埋め込み、スキッドパイプ内の冷却水の温度を測定するユニット(203)を新たに設置する。   A thermocouple 105 is embedded in the skid pipe, and a unit (203) for measuring the temperature of the cooling water in the skid pipe is newly installed.

また、測定した冷却水の温度と、給水位置での冷却水の温度との差から、重炭酸イオンの平衡移動による、Mアルカリ度とpHの補正値を演算する(204)。   Also, a correction value for M alkalinity and pH due to the equilibrium movement of bicarbonate ions is calculated from the difference between the measured temperature of the cooling water and the temperature of the cooling water at the water supply position (204).

このようにして求めた温度、Mアルカリ度、pHの補正後の値から、スキッドパイプ内の冷却水のランゲリア指数を演算し(201)、該ランゲリア指数に基づいてアルカリ剤投入量を演算する(219)。   From the corrected values of temperature, M alkalinity, and pH determined in this manner, a Langelier index of the cooling water in the skid pipe is calculated (201), and the amount of alkali agent charged is calculated based on the Langeria index ( 219).

その結果に基づいて、投入装置214からアルカリ剤を投入する。   Based on the result, an alkaline agent is charged from the charging device 214.

熱電対105には、耐熱性と防水性を兼ね備えたものを使用する。熱電対105は、スキッドパイプ内面に沿って配線するが、配線は、十分に断熱、防水することが必要である。熱電対105は、信頼性を確保したい観点から、3箇所以上に取り付け、それらの平均電圧を以て温度に換算するのが好ましい。   A thermocouple 105 having both heat resistance and waterproofness is used. The thermocouple 105 is wired along the inner surface of the skid pipe, but the wiring needs to be sufficiently insulated and waterproof. From the viewpoint of ensuring reliability, the thermocouple 105 is preferably attached to three or more locations, and the average voltage thereof is converted into temperature.

また、スキッドパイプの外部には断熱材を配するものの、断熱材の効果は定量的に把握することは困難であり、しかも、断熱材が部分的に脱落したり、減肉したりする場合もある。   In addition, although heat insulating material is arranged outside the skid pipe, it is difficult to quantitatively grasp the effect of the heat insulating material, and the heat insulating material may partially fall off or be thinned. is there.

しかるに、本発明のように、スキッドパイプ内の冷却水の温度測定結果を基に、ランゲリア指数を求め、さらにそれを基にアルカリ剤を投入してその調整を行えば、ランゲリア指数の調整不良を解消し、スキッドパイプの閉塞を確実に防止できる。   However, as in the present invention, if the Langelia index is obtained based on the measurement result of the temperature of the cooling water in the skid pipe, and further adjusted by adding an alkali agent based on the Langelia index, poor adjustment of the Langeria index can be achieved. This eliminates the possibility of blocking the skid pipe.

給水位置222での冷却水の温度と、スキッドパイプ内の冷却水の温度との差による、Mアルカリ度と、pHの各補正値を演算し、出力するユニット(204)も新たに設置する。   A unit (204) that calculates and outputs correction values for M alkalinity and pH based on the difference between the temperature of the cooling water at the water supply position 222 and the temperature of the cooling water in the skid pipe is also installed.

さらに、給水位置222での冷却水の温度は、従来と同様に測定されるが、スキッドパイプ内の冷却水の温度との差を演算し、出力するためのユニット(205)も新たに設置する。   Further, the temperature of the cooling water at the water supply position 222 is measured in the same manner as before, but a unit (205) for calculating and outputting the difference from the temperature of the cooling water in the skid pipe is also newly installed. .

演算は、別途あらかじめ実験によって得たデータに基づいて作成した、テーブルを参照することによって行われ、演算された、Mアルカリ度と、pHの各補正値を出力する。   The calculation is performed by referring to a table separately created based on data obtained by experiment in advance, and the calculated M alkalinity and pH correction values are output.

給水位置222でのMアルカリ度とpHとは、従来と同様に測定されるが、これらの値に、上記演算された補正値を反映し、スキッドパイプ内の冷却水のMアルカリ度とpHとして出力する。   The M alkalinity and pH at the water supply position 222 are measured in the same manner as in the past. However, these values reflect the calculated correction value, and the M alkalinity and pH of the cooling water in the skid pipe are as follows. Output.

以上のように演算され、出力されたスキッドパイプ内のMアルカリ度、pH、温度を入力として、スキッドパイプ内の冷却水のランゲリア指数を演算する(201)。演算はノーデル法によるランゲリア指数簡易演算法による。   Using the M alkalinity, pH, and temperature in the skid pipe calculated and output as described above as input, the Langelia index of the cooling water in the skid pipe is calculated (201). The calculation is based on the simple calculation method of Langeria index by the Nodel method.

ノーデル法とはランゲリア指数を簡便に計算するために一般的に用いられるもので、
ランゲリア指数=水のpH値−pHs値
=水のpH値−{(9.3+A値+B値)−(C値+D値)}
・・・ 式(1)
で与えられる式(1)により、ランゲリア指数を計算できる。
The Nodel method is commonly used to conveniently calculate the Langeria index,
Langeria index = pH value of water-pHs value
= PH value of water-{(9.3 + A value + B value)-(C value + D value)}
... Formula (1)
The Langeria index can be calculated by the equation (1) given by

ここに、A値〜D値は、試液である水を蒸発させたところに残る蒸発残留物の量、水温、カルシウム硬度、Mアルカリ度の実測値を基に、別表1,2,3,4の対応関係より求まる値である。   Here, the A value to the D value are shown in Tables 1, 2, 3, and 4 based on the measured amounts of evaporation residue, water temperature, calcium hardness, and M alkalinity remaining after evaporation of water as the test solution. It is a value obtained from the correspondence relationship.

Figure 2009074116
Figure 2009074116

Figure 2009074116
Figure 2009074116

Figure 2009074116
Figure 2009074116

Figure 2009074116
Figure 2009074116

求められたランゲリア指数から、アルカリ剤の投入量を演算する(219)。演算は、別途あらかじめ実験によって得たデータに基づいて作成した、テーブルを参照することによって行う。   The amount of alkali agent charged is calculated from the obtained Langeria index (219). The calculation is performed by referring to a table created separately based on data obtained by experiment in advance.

これらの測定および演算は、アルカリ剤の投入量を決定するために行われるが、各測定値および演算結果は、保守性を確保するために、コンピュータの端末などで常時モニタリングできるようにしておくことが望ましい。   These measurements and calculations are performed to determine the amount of alkaline agent input, but each measured value and calculation result should be constantly monitored by a computer terminal or the like to ensure maintainability. Is desirable.

表5に示すごとく、本発明を1年間、帯鋼の熱間圧延ライン100の操業に適用すると(本発明例)、ランゲリア指数の調整を全く行わない場合(水質調整なし)や、特許文献3のような方法をそのまま加熱炉のスキッドパイプ冷却に適用した場合(従来例)と比べ、ランゲリア指数の調整不良を防止でき、スキッドパイプの閉塞を確実に防止できることがわかる。 As shown in Table 5, when the present invention is applied to the operation of the hot rolling line 100 of steel strip for one year (example of the present invention), the Langeria index is not adjusted at all (no water quality adjustment), or Patent Document 3 It can be seen that, compared with the case where the above method is applied as it is to the cooling of the skid pipe of the heating furnace (conventional example), poor adjustment of the Langeria index can be prevented, and the blocking of the skid pipe can be surely prevented.

Figure 2009074116
Figure 2009074116

アルカリ剤は、水酸化ナトリウムや水酸化カルシウムなどでよいが、ここでは、水酸化ナトリウムを用いている。 The alkali agent may be sodium hydroxide or calcium hydroxide, but here, sodium hydroxide is used.

なお、本発明は、帯鋼の熱間圧延ライン100のみならず、同じように加熱炉を備えた厚板の圧延ラインのほか、鋼以外の各種の金属板の製造ラインの加熱炉に適用可能であることはいうまでもない。   The present invention can be applied not only to the hot rolling line 100 for strip steel, but also to a heating furnace for a production line for various metal plates other than steel, as well as a thick plate rolling line equipped with a heating furnace. Needless to say.

本発明の実施の形態の一例について説明するための線図Diagram for explaining an example of an embodiment of the present invention 熱間圧延ラインの一例を説明するための線図Diagram for explaining an example of a hot rolling line 加熱炉の一例を説明するための線図Diagram for explaining an example of a heating furnace 従来技術について説明するための線図Diagram for explaining the prior art 従来技術について説明するための線図Diagram for explaining the prior art

符号の説明Explanation of symbols

7 テーブルロール
8 被圧延材
9 幅プレス
10 加熱炉
12 粗圧延機
135 エッジャーロール
14 クロップシャー
15 仕上入側温度計
16 デスケーリング装置
18 仕上圧延機
19 ワークロール
19A バックアップロール
20 ルーパ
21 仕上出側温度計
22 仕上出側板厚計
23 ランナウトテーブル
24 コイラー
25 コイラー入側温度計
50 制御装置
70 プロセスコンピュータ
90 ビジネスコンピュータ
100 熱間圧延ライン
101 バーナ
102 炉壁
103 固定スキッド
104 移動スキッド
105 熱電対
201 L1測定,演算装置
202 水質計器
203 スキッドパイプ内冷却水温度測定ユニット
204 補正値演算ユニット
205 演算ユニット
211 沈殿水
212 沈殿池(砂濾過池)
213 濾過水
214 後アルカリ注入
215 浄水池
216 浄水
217 配水池
219 pH制御装置
220 冷却塔
221 高架水槽
222 給水位置
A 搬送方向
7 Table roll 8 Rolled material 9 Width press 10 Heating furnace 12 Rough rolling mill 135 Edger roll 14 Crop shear 15 Finishing side thermometer 16 Finishing scale 18 Finishing rolling mill 19 Work roll 19A Backup roll 20 Looper 21 Finishing side Thermometer 22 Finishing side thickness gauge 23 Runout table 24 Coiler 25 Coiler inlet side thermometer 50 Controller 70 Process computer 90 Business computer 100 Hot rolling line 101 Burner 102 Furnace wall 103 Fixed skid 104 Moving skid 105 Thermocouple 201 L1 measurement , Arithmetic device 202 water quality meter 203 skid pipe cooling water temperature measurement unit 204 correction value arithmetic unit 205 arithmetic unit 211 sedimentation water 212 sedimentation basin (sand filtration basin)
213 Filtered water 214 After alkali injection 215 Water purification tank 216 Water purification 217 Water distribution tank 219 pH control device 220 Cooling tower 221 Elevated water tank 222 Water supply position A Transport direction

Claims (3)

加熱炉のスキッドパイプ内の冷却水の温度を測定して、該温度測定結果に基づいて前記冷却水のMアルカリ度とpHを演算し、該Mアルカリ度と該pHの演算結果を用いてスキッドパイプ内のランゲリア指数を演算し、該ランゲリア指数の演算結果に基づいてアルカリ剤投入量を決定することを特徴とする加熱炉のスキッドパイプ冷却方法。 The temperature of the cooling water in the skid pipe of the heating furnace is measured, the M alkalinity and pH of the cooling water are calculated based on the temperature measurement result, and the skid is calculated using the calculation result of the M alkalinity and the pH A method for cooling a skid pipe in a heating furnace, comprising: calculating a Langelia index in a pipe and determining an input amount of an alkaline agent based on a calculation result of the Langeria index. 加熱炉のスキッドパイプに熱電対を埋め込み、スキッドパイプ内の冷却水の温度を測定して、給水位置で測定した冷却水の温度との差から、重炭酸イオンの平衡移動による、Mアルカリ度の補正値、pHの補正値を演算し、前記スキッドパイプ内の冷却水の温度、前記Mアルカリ度の補正値、前記pHの補正値から、前記スキッドパイプ内の冷却水のランゲリア指数を演算し、該ランゲリア指数に基づいてアルカリ剤投入量を演算し、該アルカリ剤投入量の演算結果に基づいて、投入装置からアルカリ剤を投入することを特徴とする加熱炉のスキッドパイプ冷却方法。 A thermocouple is embedded in the skid pipe of the heating furnace, and the temperature of the cooling water in the skid pipe is measured. From the difference from the temperature of the cooling water measured at the water supply position, Calculating a correction value, a correction value of pH, and calculating a Langeria index of the cooling water in the skid pipe from the temperature of the cooling water in the skid pipe, the correction value of the M alkalinity, and the correction value of the pH; A method for cooling a skid pipe in a heating furnace, wherein an alkali agent input amount is calculated based on the Langelier index, and an alkali agent is charged from a charging device based on a calculation result of the alkali agent input amount. 前記請求項1または2の加熱炉のスキッドパイプ冷却方法を用いた金属板の製造方法。 A method for producing a metal plate using the method for cooling a skid pipe of a heating furnace according to claim 1 or 2.
JP2007242250A 2007-09-19 2007-09-19 Method for cooling skid pipe in heating furnace, and method for manufacturing metal plate using the same Pending JP2009074116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242250A JP2009074116A (en) 2007-09-19 2007-09-19 Method for cooling skid pipe in heating furnace, and method for manufacturing metal plate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242250A JP2009074116A (en) 2007-09-19 2007-09-19 Method for cooling skid pipe in heating furnace, and method for manufacturing metal plate using the same

Publications (1)

Publication Number Publication Date
JP2009074116A true JP2009074116A (en) 2009-04-09

Family

ID=40609378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242250A Pending JP2009074116A (en) 2007-09-19 2007-09-19 Method for cooling skid pipe in heating furnace, and method for manufacturing metal plate using the same

Country Status (1)

Country Link
JP (1) JP2009074116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140036363A (en) * 2012-09-11 2014-03-26 재단법인 포항산업과학연구원 Apparatus for heat recovery of furnace
CN115418587A (en) * 2022-08-10 2022-12-02 上高县宏大镍业有限公司 Ferronickel production is with quick cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140036363A (en) * 2012-09-11 2014-03-26 재단법인 포항산업과학연구원 Apparatus for heat recovery of furnace
KR101594902B1 (en) 2012-09-11 2016-02-29 재단법인 포항산업과학연구원 Apparatus for heat recovery of furnace
CN115418587A (en) * 2022-08-10 2022-12-02 上高县宏大镍业有限公司 Ferronickel production is with quick cooling system

Similar Documents

Publication Publication Date Title
US11668535B2 (en) Cooling water monitoring and control system
RU2008139906A (en) METHOD AND INSTALLATION FOR INTEGRATED MONITORING AND CONTROL OF THE STRIP OF THE STRIP AND THE STRIP PROFILE
TWI602624B (en) Method for manufacturing hot-rolled steel sheet, apparatus for setting position of steel plate, setting method of steel plate cutting position, and method for manufacturing steel plate
KR102628369B1 (en) Cooling water monitoring and control system
JP2010221230A (en) Method of setting leveling of plate mill
JP2009074116A (en) Method for cooling skid pipe in heating furnace, and method for manufacturing metal plate using the same
JPS61220793A (en) Method for monitoring and controlling water quality
CN107442749B (en) A kind of detection method in crystallizer flow field
JP2010005688A (en) Method of determining condition of bearing of table roller
KR20130002432A (en) System for measuring slab size
JP2010066132A (en) Method of controlling temperature in continuous annealing furnace, and continuous annealing furnace
CN104174659B (en) A kind of big pressure rolling temperature control method of wick-containing
JP2018091608A (en) Circulation water type cooling facility and corrosion suppression method of circulation water type cooling facility
JP5417892B2 (en) Continuous casting method for steel slabs
Schmitt et al. Effect of anions and cations on the pit initiation in CO2 corrosion of iron and steel
JP2002296268A (en) Method of evaluating water quality, and system for controlling water quality
JP2015168875A (en) Water quality management method for skid pipe cooling water
JP2011173153A (en) Cooling controller for thick steel plate, cooling control method, and manufacturing method
CN115592083A (en) Bias flow detection method and device for submerged nozzle of slab crystallizer
JP4349177B2 (en) Steel extraction temperature prediction method for continuous heating furnace
JP5108692B2 (en) Sheet width control apparatus and control method for hot rolling mill
CN111519194B (en) Cold-rolled sheet manufacturing process
KR20160149745A (en) Method for calculating optimal injection rate of corrosion inhibitor using by Langelier Index applied system for evaluating corrosion inhibition of raw water
KR100568346B1 (en) A method for controlling the bar temperature by predicting the rougher delivery temperature
CN112139261A (en) Target tapping temperature prediction control method for hot rolling heating furnace