JP2009074103A - Electromagnetic stirring apparatus for liquid metal controlling particle entrainment from liquid metal surface - Google Patents

Electromagnetic stirring apparatus for liquid metal controlling particle entrainment from liquid metal surface Download PDF

Info

Publication number
JP2009074103A
JP2009074103A JP2007241150A JP2007241150A JP2009074103A JP 2009074103 A JP2009074103 A JP 2009074103A JP 2007241150 A JP2007241150 A JP 2007241150A JP 2007241150 A JP2007241150 A JP 2007241150A JP 2009074103 A JP2009074103 A JP 2009074103A
Authority
JP
Japan
Prior art keywords
liquid metal
magnetic field
stirring
moving magnetic
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007241150A
Other languages
Japanese (ja)
Inventor
Shoji Taniguchi
尚司 谷口
Kazuyuki Ueno
和之 上野
Shinichi Shimazaki
真一 嶋▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2007241150A priority Critical patent/JP2009074103A/en
Publication of JP2009074103A publication Critical patent/JP2009074103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic stirring apparatus for liquid metal capable of effectively entraining particles from the liquid metal surface or conversely, applying stirring to the inside of the liquid metal while preventing entrainment of the particles from the liquid metal surface. <P>SOLUTION: This electromagnetic apparatus is provided with a vessel 3 for the liquid metal, a coil 2 for generating a vertically moving magnetic field arranged at the outside of the vessel, and a coil 1 for generating a rotationary moving magnetic field, arranged at further outside of the coil 2 for generating the vertically moving magnetic field. The surface of the liquid metal 4 is kept static and flat by simultaneously applying the rotationary moving magnetic field stirring and lower-directional vertical moving magnetic field stirring to the inside of the liquid metal, and the particles on the surface of the liquid metal 4 can be stirred without being entrained into the liquid metal 4. The particles on the surface of the liquid metal 4 can efficiently be mixed into the liquid metal 4, by singly applying the upper-directional vertical moving magnetic field stirring to the inside of the liquid metal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液体金属の攪拌装置に関し、特に電磁攪拌装置を用いた攪拌装置に関する。   The present invention relates to a liquid metal stirring device, and more particularly to a stirring device using an electromagnetic stirring device.

金属精錬の分野において、液体金属液面より粒子を巻き込ませるためには、機械式攪拌(KR法など)が用いられている(例えば、非特許文献1参照)。これは攪拌羽根を液体金属中で回転させて、固体精練剤を液体金属内部に巻き込ませる手法であるが、高温液体金属による攪拌羽根の損傷が問題となっている。   In the field of metal refining, mechanical agitation (KR method or the like) is used to entrain particles from the liquid metal liquid surface (for example, see Non-Patent Document 1). This is a technique in which the stirring blade is rotated in the liquid metal and the solid scouring agent is entrained in the liquid metal, but the stirring blade is damaged by the high temperature liquid metal.

また、固体精練剤を効率よく巻き込ませるために、液体金属液面近傍に攪拌羽根を設置して、液面に浮上している固体精練剤を直接攪拌羽根で叩き込むようにしているが、そのために液体金属液面が過度に擾乱されて液滴の飛散(スプラッシュ)が発生し、これも大きな問題となっている。   Also, in order to efficiently entrain the solid scouring agent, a stirring blade is installed in the vicinity of the liquid metal liquid surface, and the solid scouring agent floating on the liquid surface is directly struck with the stirring blade. The liquid metal liquid surface is disturbed excessively and droplets are splashed, which is also a big problem.

電磁力を用いた液体金属の電磁撹拌装置は、溶融金属と非接触で撹拌を行うことができるため、高温の溶融金属に多く用いられている(例えば、特許文献1乃至3、非特許文献2乃至4参照)。例えば、回転移動磁界攪拌によって巻き込ませる手法(例えば、非特許文献2参照)では、非常に高い回転速度を与える必要があり、液面の変形が大きくなってしまうという問題がある。また、液体金属の内部を撹拌することを主眼としたもの(例えば、特許文献1参照)もあり、液体金属液面の制御、特に液体金属液面の粒子の巻き込みに着目したものではない。   Liquid metal electromagnetic stirring devices using electromagnetic force can be stirred without contact with molten metal, and are therefore often used for high-temperature molten metal (for example, Patent Documents 1 to 3 and Non-Patent Document 2). To 4). For example, in the method involving rolling by rotating moving magnetic field stirring (see, for example, Non-Patent Document 2), it is necessary to give a very high rotational speed, and there is a problem that the deformation of the liquid level becomes large. In addition, there is one that focuses on stirring the inside of the liquid metal (see, for example, Patent Document 1), and does not focus on the control of the liquid metal liquid level, in particular, the entrainment of particles on the liquid metal liquid level.

一方、精錬反応が終了した後は、従来の手法では、液面からの粒子巻き込みを防止しつつ液体金属内部を効率よく攪拌することが著しく困難であり、攪拌そのものを停止、ないしは攪拌強度を弱くする必要があった。   On the other hand, after the refining reaction is completed, it is extremely difficult to efficiently stir the inside of the liquid metal while preventing particle entrainment from the liquid surface with the conventional method, and the stirring itself is stopped or the stirring strength is weakened. There was a need to do.

原田昭二,中村博己,小平悟史,片山治男,加藤久樹,西正明,「機械撹拌式脱硫装置(KR インペラー)用耐火物の延命化」,鉄と鋼,1987年,73,p.169Shoji Harada, Hiromi Nakamura, Satoshi Kodaira, Haruo Katayama, Hisaki Kato, Masaaki Nishi, “Extending the life of refractories for mechanically agitated desulfurization equipment (KR impeller)”, Iron and Steel, 1987, 73, p.169 特開昭54−163729号公報Japanese Patent Laid-Open No. 54-163729 特開2003−220323号公報JP 2003-220323 A 特開2007−144501号公報JP 2007-144501 A Yu. Gelfgat, M. Skopis and J. Grabis, “Electromagnetic funnel for stirring up solid reagents into molten metals”, Proc. Joint 15th Riga and 6th PAMIR Int. Conf., Riga, 2005, 2, p.19Yu. Gelfgat, M. Skopis and J. Grabis, “Electromagnetic funnel for stirring up solid reagents into molten metals”, Proc. Joint 15th Riga and 6th PAMIR Int. Conf., Riga, 2005, 2, p.19 綾田研三,「移動磁界の利用技術」,第129-130回西山記念講座,1990年,p.130Kenzo Ayada, “Utilization technology of moving magnetic field”, 129-130 Nishiyama Memorial Lecture, 1990, p.130 谷口尚司,上野和之,嶋▲崎▼真一,大久保光治,安藤努,笠原奉文,「回転磁界と移動磁界の同時印加による液体金属の電磁攪拌」,鉄と鋼,2006年,92,p.8Naoji Taniguchi, Kazuyuki Ueno, Shima Shinzaki, Mitsuji Okubo, Tsutomu Ando, Norifumi Kasahara, “Electromagnetic Stirring of Liquid Metals by Simultaneous Application of Rotating Magnetic Field and Moving Magnetic Field”, Iron and Steel, 2006, 92, p. 8

本発明は、このような課題に着目してなされたもので、液体金属の液面から粒子を効率よく巻き込んだり、あるいは逆に、液面からの粒子の巻き込みを防止しつつ液体金属内部に攪拌を印加することができる液体金属の電磁撹拌装置を提供することを目的としている。   The present invention has been made paying attention to such a problem, and the particles are efficiently entrained from the liquid surface of the liquid metal, or conversely, the liquid metal is agitated while preventing the particles from being entrained from the liquid surface. An object of the present invention is to provide a liquid metal electromagnetic stirrer that can apply.

本発明に係る液体金属の電磁撹拌装置は、液体金属用の容器と、前記容器の外側に設けた垂直移動磁界発生用コイルと、前記垂直移動磁界発生用コイルのさらに外側に設けた回転移動磁界発生用コイルとを有し、前記垂直移動磁界発生用コイルと、前記回転移動磁界発生用コイルとは、その電流をそれぞれ独立に制御でき、垂直方向電磁力と回転方向電磁力とを単独もしくは同時に印加可能であり、前記垂直移動磁界発生用コイルの結線を変更することにより、垂直移動磁界の移動する方向を上向きまたは下向きに変更し、垂直方向の電磁力の向きを制御可能であり、回転移動磁界攪拌および下方向垂直移動磁界攪拌を同時に加えることにより、前記液体金属の液面を静穏かつ平坦に保ち、前記液体金属液面の粒子を前記液体金属内に巻き込むことなく攪拌を加えることができるよう構成されていることを、特徴とする。   A liquid metal electromagnetic stirring device according to the present invention includes a liquid metal container, a vertical moving magnetic field generating coil provided outside the container, and a rotational moving magnetic field provided further outside the vertical moving magnetic field generating coil. The vertical moving magnetic field generating coil and the rotary moving magnetic field generating coil can control their currents independently, and the vertical direction electromagnetic force and the rotational direction electromagnetic force can be used independently or simultaneously. By changing the connection of the vertical moving magnetic field generating coil, the direction in which the vertical moving magnetic field moves can be changed upward or downward, and the direction of the electromagnetic force in the vertical direction can be controlled. By simultaneously applying magnetic field agitation and downward vertical moving magnetic field agitation, the liquid metal liquid surface is kept calm and flat, and particles of the liquid metal liquid surface are entrained in the liquid metal. That is configured to be able to add stirring without, characterized.

本発明に係る液体金属の電磁撹拌装置は、上方向垂直移動磁界攪拌を単独で加えることにより、前記液体金属液面の粒子を、効率よく前記液体金属内に混入させることができるよう構成されていることが好ましい。また、本発明に係る液体金属の電磁撹拌装置は、攪拌の途中において、前記回転移動磁界攪拌および前記下方向垂直移動磁界攪拌を同時に加えた状態と、前記上方向垂直移動磁界攪拌を単独で加えた状態を、随時変更可能であることが好ましい。本発明に係る液体金属の電磁撹拌装置で、前記液体金属用の容器内に保持されている前記液体金属液面の高さ方向の位置は、前記垂直移動磁界発生用コイルの上端部付近に設定されていることが好ましい。本発明に係る液体金属の電磁撹拌装置で、前記液体金属液面の粒子は、固体精練剤、スラグ滴、フラックス、金属酸化物、気泡、複合材用強化粒子などを含んでいてもよい。   The liquid metal electromagnetic stirrer according to the present invention is configured so that particles on the liquid metal liquid surface can be efficiently mixed into the liquid metal by adding the upward vertical moving magnetic field stirring alone. Preferably it is. In addition, the liquid metal electromagnetic stirring device according to the present invention includes a state in which the rotational moving magnetic field stirring and the downward vertical moving magnetic field stirring are simultaneously applied in the middle of stirring, and the upward vertical moving magnetic field stirring is added alone. It is preferable that the state can be changed at any time. In the liquid metal electromagnetic stirring device according to the present invention, the height direction position of the liquid metal liquid surface held in the liquid metal container is set near the upper end of the vertical moving magnetic field generating coil. It is preferable that In the liquid metal electromagnetic stirrer according to the present invention, the particles on the liquid metal liquid surface may contain solid scouring agent, slag droplets, flux, metal oxide, bubbles, reinforcing particles for composite material, and the like.

本発明では、回転移動磁界撹拌と垂直方向移動磁界撹拌とを組み合わせることによって、液体金属液面の制御、特に液体金属液面の粒子の巻き込みを制御することに成功した。
上方向垂直移動磁界攪拌を単独で印加することにより、液面において周囲から中心に巻き込むような流れを生じさせ、粒子を効率よく液体金属内部に巻き込ませることができる。さらに、攪拌方式を下方向垂直移動磁界攪拌および回転移動磁界攪拌の同時印加に変更することにより、粒子を巻き込むことなく、液体金属内部の攪拌を可能にする。
本発明では、液体金属と非接触の電磁攪拌を用いているため、攪拌羽根の損傷などの問題は存在しない。また、液体金属液面を極度に擾乱させることがないため、液体金属の液滴の飛散(スプラッシュ)もほとんど見られない。
The present invention succeeded in controlling the liquid metal liquid level, in particular, controlling the entrainment of particles on the liquid metal liquid level, by combining the rotary moving magnetic field stirring and the vertical moving magnetic field stirring.
By applying the upward vertical moving magnetic field stirring alone, a flow that wraps around from the periphery to the center on the liquid surface is generated, and the particles can be efficiently entrapped inside the liquid metal. Furthermore, by changing the stirring method to simultaneous application of the downward vertical moving magnetic field stirring and the rotational moving magnetic field stirring, the liquid metal can be stirred without involving particles.
In the present invention, electromagnetic stirring that is not in contact with the liquid metal is used, so there is no problem such as damage to the stirring blades. Further, since the liquid metal liquid surface is not extremely disturbed, the liquid metal droplets are hardly scattered (splash).

本発明により、液体金属の液面から粒子を効率よく巻き込んだり、あるいは逆に、液面からの粒子の巻き込みを防止しつつ液体金属内部に攪拌を印加することが可能になる。これらの攪拌方法は、運転中であっても随時変更可能であり、粒子を含む液体金属の攪拌プロセスの様々な要求に対応することが可能である。   According to the present invention, it becomes possible to efficiently entrain particles from the liquid surface of the liquid metal, or conversely, to apply stirring to the inside of the liquid metal while preventing particles from being entrained from the liquid surface. These stirring methods can be changed at any time even during operation, and can meet various requirements of the stirring process of the liquid metal containing particles.

以下、図面に基づき本発明の実施の形態について説明する。
[電磁攪拌装置の構成]
図1に、本発明による電磁攪拌装置の構成例を示す。電磁攪拌装置は、回転移動磁界発生用コイル1および垂直移動磁界発生用コイル2からなっており、その内側に液体金属用容器3が設置される。液体金属4の液面の高さ方向の位置は、電磁撹拌装置の上端部付近に設定してある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Configuration of electromagnetic stirring device]
In FIG. 1, the structural example of the electromagnetic stirring apparatus by this invention is shown. The electromagnetic stirrer is composed of a rotary moving magnetic field generating coil 1 and a vertical moving magnetic field generating coil 2, and a liquid metal container 3 is installed inside thereof. The position in the height direction of the liquid level of the liquid metal 4 is set near the upper end of the electromagnetic stirring device.

図2および図3に、垂直移動磁界発生用コイル2に印加する三相電流の構成例と、移動磁界の動きを示す。図2のように電流を印加した場合は、移動磁界の移動方向5は上向きとなり、液体金属用容器3の側壁面近傍の液体金属4が、上方向に駆動させられる(図2中の液体金属の運動方向6参照)。一方、図3のように電流を印加した場合は、移動磁界の移動方向5は下向きとなり、液体金属用容器3の側壁面近傍の液体金属4が、下方向に駆動させられる(図3中の液体金属の運動方向6参照)。   2 and 3 show a configuration example of the three-phase current applied to the vertical moving magnetic field generating coil 2 and the movement of the moving magnetic field. When a current is applied as shown in FIG. 2, the moving direction 5 of the moving magnetic field is upward, and the liquid metal 4 near the side wall surface of the liquid metal container 3 is driven upward (the liquid metal in FIG. 2). Motion direction 6). On the other hand, when current is applied as shown in FIG. 3, the moving direction 5 of the moving magnetic field is downward, and the liquid metal 4 near the side wall surface of the liquid metal container 3 is driven downward (in FIG. 3). Liquid metal motion direction 6).

図2の上方向垂直移動磁界攪拌と、図3の下方向垂直移動磁界攪拌は、三相電流7のU相とW相を入れ替えることによって、お互いに変更することが可能である。そのため、これらの攪拌方法を運転中に容易に変更することができる。   The upward vertical moving magnetic field stirring in FIG. 2 and the downward vertical moving magnetic field stirring in FIG. 3 can be changed from each other by exchanging the U phase and the W phase of the three-phase current 7. Therefore, these stirring methods can be easily changed during operation.

本発明の実施の形態の電磁攪拌装置の攪拌方法としては、(イ)回転移動磁界攪拌の単独印加、(ロ)上方向垂直移動磁界攪拌の単独印加、(ハ)下方向垂直移動磁界攪拌の単独印加、(ニ)回転移動磁界攪拌および上方向垂直移動磁界攪拌の同時印加、(ホ)回転移動磁界攪拌および下方向垂直移動磁界攪拌の同時印加の5種類の組み合わせが存在し、かつ、これらの攪拌方法を運転中に容易に変更することができる。   As the stirring method of the electromagnetic stirrer according to the embodiment of the present invention, (b) a single application of the rotational moving magnetic field stirring, (b) a single application of the upward vertical moving magnetic field stirring, and (c) a downward vertical moving magnetic field stirring. There are five combinations of single application, (d) simultaneous application of rotational moving magnetic field stirring and upward vertical moving magnetic field stirring, and (e) simultaneous application of rotational moving magnetic field stirring and downward vertical moving magnetic field stirring, and these The stirring method can be easily changed during operation.

[電磁力の数値計算]
本発明による電磁攪拌装置によって発生する電磁力を把握するために、数値計算による電磁場解析を行った。図4〜6に、電磁場解析の結果の一例を示す。
図4は、液体金属の水平断面内における電磁力の分布である。(イ)回転移動磁界攪拌の単独印加においては、液体金属内部に回転方向の電磁力が印加されていることが分かる。
図5および図6は、液体金属の垂直断面内における電磁力分布である。図5に示すように、(ロ)上方向垂直移動磁界攪拌の単独印加では、液体金属内部に上方向の電磁力が、図6に示すように、(ハ)下方向垂直移動磁界攪拌の単独印加においては、液体金属内部に下方向の電磁力が印加されていることが分かる。
[Numerical calculation of electromagnetic force]
In order to grasp the electromagnetic force generated by the electromagnetic stirrer according to the present invention, an electromagnetic field analysis by numerical calculation was performed. 4-6 shows an example of the result of an electromagnetic field analysis.
FIG. 4 shows the distribution of electromagnetic force in the horizontal cross section of the liquid metal. (A) It can be seen that in the single application of the rotational moving magnetic field stirring, an electromagnetic force in the rotational direction is applied inside the liquid metal.
5 and 6 are electromagnetic force distributions in the vertical cross section of the liquid metal. As shown in FIG. 5, (b) in the single application of the upward vertical moving magnetic field stirring, the upward electromagnetic force is generated inside the liquid metal, as shown in FIG. In application, it can be seen that a downward electromagnetic force is applied to the inside of the liquid metal.

液体金属は、これらの電磁力によって非接触で駆動されている。そのため、本電磁攪拌装置は、高温の液体金属に適用しても装置の熱損傷などの問題がなく、さらに金属の凝固過程であっても適用可能である。   The liquid metal is driven in a non-contact manner by these electromagnetic forces. Therefore, even if this electromagnetic stirring apparatus is applied to a high-temperature liquid metal, there is no problem such as thermal damage of the apparatus, and it can be applied even during the solidification process of the metal.

この電磁場解析の妥当性を検証するため、磁束密度についてガウスメータによる実測値と比較検討を行った。その結果の一例を、図7および図8に示す。
図7は、回転移動磁界攪拌の単独印加によって発生する磁束密度の半径方向成分(実効値)である。回転移動磁界の場合、磁界が液体金属を貫通しているため、液体金属内部においてほぼ均一な磁束密度となっていることが分かる。
図8は、垂直移動磁界攪拌の単独印加によって発生する磁束密度の半径方向成分(実効値)である。垂直移動磁界は、中心軸上(r=0mm)でほぼゼロとなっており、コイルの近傍において磁束密度が大きくなっている。
図7および図8ともに、計算値と実測値とはよく一致しており、数値計算によって電磁攪拌装置により発生する電磁力を精度よく予測することが可能であることが分かる。
In order to verify the validity of this electromagnetic field analysis, the magnetic flux density was compared with the measured value using a gauss meter. An example of the result is shown in FIGS.
FIG. 7 shows the radial component (effective value) of the magnetic flux density generated by the single application of the rotating magnetic field stirring. In the case of the rotationally moving magnetic field, it can be seen that the magnetic field penetrates the liquid metal, so that the magnetic flux density is almost uniform inside the liquid metal.
FIG. 8 shows the radial component (effective value) of the magnetic flux density generated by the single application of vertical moving magnetic field stirring. The vertical moving magnetic field is almost zero on the central axis (r = 0 mm), and the magnetic flux density is large in the vicinity of the coil.
Both FIG. 7 and FIG. 8 show that the calculated value and the actually measured value are in good agreement, and it is understood that the electromagnetic force generated by the electromagnetic stirring device can be accurately predicted by numerical calculation.

[流れ場の数値計算]
数値計算で得られた電磁力を用いて、液体金属の流れ場および圧力場の数値計算を行った。その結果を、図9〜13に示す。
図9に示すように、(イ)回転移動磁界攪拌の単独印加においては、垂直断面内には流れはほとんど発生しておらず回転流れが主体であり、全体として剛体回転に近い流れとなっている。回転による遠心力のために、圧力は外側の方が高くなっている。
図10に示すように、(ロ)上方向垂直移動磁界攪拌の単独印加においては、液体金属は容器の側壁面に沿って液面まで上昇し、液面において周囲から中心へと流れ込むような流れとなっている。圧力は液面近傍で最も高くなっている。
[Numerical calculation of flow field]
Using the electromagnetic force obtained by numerical calculation, numerical calculation of the flow field and pressure field of liquid metal was performed. The results are shown in FIGS.
As shown in FIG. 9, (a) in the single application of rotating magnetic field stirring, almost no flow is generated in the vertical cross section, and the flow is mainly the rotation, and the flow as a whole is close to rigid body rotation. Yes. Due to the centrifugal force due to rotation, the pressure is higher on the outside.
As shown in FIG. 10, (b) in the single application of the vertical vertical magnetic field stirring, the liquid metal rises to the liquid level along the side wall surface of the container and flows from the periphery to the center on the liquid level. It has become. The pressure is highest near the liquid level.

図11に示すように、(ハ)下方向垂直移動磁界攪拌の単独印加においては、液体金属は容器の側壁面に沿って容器の底部まで下降し、液面においては中心から周囲へと湧き出すような流れとなっている。圧力は容器底部で最も高くなっている。
図12に示すように、(ニ)回転移動磁界攪拌および上方向垂直移動磁界攪拌の同時印加では、液体金属は容器の側壁面に沿って上昇しながら、強い回転流れとなっていることが分かる。圧力は液体金属上部の容器側壁面近傍で最も高くなっている。
図13に示すように、(ホ)回転移動磁界攪拌および下方向垂直移動磁界攪拌の同時印加の場合は、液体金属は容器の側壁面に沿って下降しながら、弱い回転流れとなっていることが分かる。圧力は液体金属下部の容器側壁面近傍で最も高くなっている。
As shown in FIG. 11, (c) In the single application of the vertical magnetic field stirring in the downward direction, the liquid metal descends to the bottom of the container along the side wall surface of the container, and springs from the center to the periphery on the liquid level. It is like this. The pressure is highest at the bottom of the container.
As shown in FIG. 12, it can be seen that (d) in the simultaneous application of the rotational moving magnetic field stirring and the upward vertical moving magnetic field stirring, the liquid metal rises along the side wall surface of the container and becomes a strong rotational flow. . The pressure is highest near the side wall surface of the container above the liquid metal.
As shown in FIG. 13, in the case of (e) simultaneous application of rotating and moving magnetic field stirring and downward vertical moving magnetic field stirring, the liquid metal is weakly rotating while descending along the side wall surface of the container. I understand. The pressure is highest near the side wall surface of the container below the liquid metal.

[ガラスビーズ巻き込みの観察実験]
流れ場の数値計算と同じ実験条件のもとで、粒子の巻き込み実験を行った。実験に用いた装置を、図14に示す。実験は、液体金属4の液体ガリウム(密度6090kg/m3)の液面に、直径5.1mmのガラスビーズ8(密度2480kg/m3、液体ガリウム中での終末浮上速度300mm/s)を浮かべ、5種類の方法で攪拌を行った。
図15〜図19に、実験中の液体金属液面の様子を示す。
[Observation experiment involving glass beads]
A particle entrainment experiment was performed under the same experimental conditions as the numerical calculation of the flow field. The apparatus used for the experiment is shown in FIG. In the experiment, glass beads 8 with a diameter of 5.1 mm (density 2480 kg / m 3 , terminal levitation speed in liquid gallium 300 mm / s) were floated on the surface of liquid gallium (density 6090 kg / m 3 ) of liquid metal 4 Stirring was performed by five methods.
15 to 19 show the state of the liquid metal liquid surface during the experiment.

図15に示すように、(イ)回転移動磁界攪拌の単独印加の場合は、液体金属の液面は全体として剛体回転をしているのみで、液面に浮上している粒子が内部に巻き込まれる様子はほとんど見られなかった。
図16に示すように、(ロ)上方向垂直移動磁界攪拌の単独印加では、液体金属の液面において周囲から中心へと巻き込むような流れが生じている。液面に浮上している粒子はこの流れにのって液体金属内部に巻き込まれており、液面にはほとんど粒子は見られない。
図17に示すように、(ハ)下方向垂直移動磁界攪拌の単独印加の場合、液体金属の液面において中央から湧き出すような流れとなっている。この流れに乗って、液面に浮上している粒子の一部が、液体金属内部に巻き込まれている。
As shown in FIG. 15, (a) in the case of single application of rotational moving magnetic field stirring, the liquid surface of the liquid metal is only rotating as a whole as a whole, and particles floating on the liquid surface are caught inside. There was almost no appearance.
As shown in FIG. 16, (b) in the single application of the upward vertical moving magnetic field stirring, there is a flow in which the liquid surface of the liquid metal is drawn from the periphery to the center. The particles floating on the liquid surface are entrained in the liquid metal along this flow, and almost no particles are seen on the liquid surface.
As shown in FIG. 17, (c) in the case of single application of stirring in the downward vertical moving magnetic field, the flow is such that the liquid surface of the liquid metal springs from the center. A part of the particles floating on the surface of the liquid are caught in the liquid metal.

図18に示すように、(ニ)回転移動磁界攪拌および上方向垂直移動磁界攪拌の同時印加では、回転移動磁界攪拌による液面中央の凹みが、上方向垂直移動磁界攪拌の流れによってさらに大きくなり、全体として強い回転流れになっている。粒子は液面で回転しているため、遠心力により液体中央部に集まって、そこから上方向垂直移動磁界攪拌の流れによって液体内部に巻き込まれている。
図19に示すように、(ホ)回転移動磁界攪拌および下方向垂直移動磁界攪拌の同時印加の場合、回転移動磁界攪拌による液面中央の凹みが、下方向垂直移動磁界攪拌による液面中央における湧き出しによって矯正され、液面は平坦かつ静穏に保たれている。そのため、液面に浮上している粒子はあまり動かず、液体金属内部にはほとんど巻き込まれていない。
As shown in FIG. 18, (d) in the simultaneous application of the rotational moving magnetic field stirring and the upward vertical moving magnetic field stirring, the dent at the center of the liquid surface due to the rotational moving magnetic field stirring is further increased by the flow of the upward vertical moving magnetic field stirring. As a whole, the rotating flow is strong. Since the particles are rotating on the liquid surface, they gather at the center of the liquid by centrifugal force, and are entrained inside the liquid by the upward vertical magnetic field stirring flow.
As shown in FIG. 19, in the case of simultaneous application of (e) rotational moving magnetic field stirring and downward vertical moving magnetic field stirring, the dent in the liquid level center due to rotational moving magnetic field stirring is Corrected by springing, the liquid level is kept flat and calm. For this reason, the particles floating on the liquid surface do not move so much and are hardly caught inside the liquid metal.

図15〜図19の実験から観察された液面の流動状態は、図9〜13の数値計算の結果と一致しており、電磁攪拌装置による流れ場を数値計算によって再現することが可能であることが分かる。   The flow state of the liquid level observed from the experiments of FIGS. 15 to 19 coincides with the numerical calculation results of FIGS. 9 to 13, and the flow field by the electromagnetic stirring device can be reproduced by the numerical calculation. I understand that.

[ガラスビーズ巻き込みの定量評価]
以上の粒子巻き込みの観察結果を、より定量的に評価するため、直径1.2mmのガラスビーズ8(密度2200kg/m3、液体ガリウム中での終末浮上速度130mm/s)を浮かべ、液体金属4の液体ガリウム内部に巻き込まれたガラスビーズ8の個数を計測した。ガラスビーズ8の採取は、ガラスビーズ採取器(サンプラー)9により、液体金属用容器3の中心線上で、液体金属用容器3の底から液高さの約1/3の場所で行っている。ガラスビーズ8の採取の様子を、図20に示す。
[Quantitative evaluation of entrainment of glass beads]
In order to more quantitatively evaluate the observation results of the above particle entrainment, glass beads 8 having a diameter of 1.2 mm (density 2200 kg / m 3 , final levitation speed in liquid gallium 130 mm / s) were floated, and the liquid metal 4 The number of glass beads 8 wound inside the liquid gallium was measured. The glass beads 8 are collected by a glass bead collector (sampler) 9 on the center line of the liquid metal container 3 at a position about 1/3 of the liquid height from the bottom of the liquid metal container 3. FIG. 20 shows how the glass beads 8 are collected.

図21は、得られた結果をまとめたものである。図21より、(イ)回転移動磁界攪拌の単独印加、および(ホ)回転移動磁界攪拌および下方向垂直移動磁界攪拌の同時印加の場合は、ガラスビーズはほとんど液体ガリウム内部に巻き込まれていないことがわかる。一方で、もっとも効率よくガラスビーズを巻き込んでいるのは、(ロ)上方向垂直移動磁界攪拌の単独印加の場合であり、次いで(ニ)回転移動磁界攪拌および上方向垂直移動磁界攪拌の同時印加、(ハ)下方向垂直移動磁界攪拌の単独印加の順である。   FIG. 21 summarizes the results obtained. From FIG. 21, in the case of (a) independent application of rotating moving magnetic field stirring and (e) simultaneous application of rotating moving magnetic field stirring and downward vertical moving magnetic field stirring, almost no glass beads are caught in the liquid gallium. I understand. On the other hand, glass beads are most efficiently involved in the case of (b) single application of vertical vertical magnetic field stirring, and then (d) simultaneous application of rotary magnetic field stirring and vertical vertical magnetic field stirring. (C) It is the order of single application of the downward vertical moving magnetic field stirring.

すなわち、液体金属の液面から粒子を効率よく巻き込むためには、(ロ)上方向垂直移動磁界攪拌の単独印加が最も優れている。
一方で、液体金属の液面にある粒子を巻き込まずに攪拌を行うためには、(ホ)回転移動磁界攪拌および下方向垂直移動磁界攪拌の同時印加が優れていることが分かる。この攪拌法は、液面を平坦かつ静穏に保ち、粒子巻き込みを防止しつつ、攪拌を印加することが可能である。
That is, in order to efficiently entrain particles from the liquid surface of the liquid metal, (b) single application of upward vertical moving magnetic field stirring is most excellent.
On the other hand, it can be seen that (e) simultaneous application of rotational moving magnetic field stirring and downward vertical moving magnetic field stirring is excellent in order to perform stirring without entraining particles on the liquid metal surface. In this stirring method, it is possible to apply stirring while keeping the liquid level flat and quiet and preventing particle entrainment.

[まとめ]
本発明による液体金属の液面からの粒子巻き込みは、従来のKR法などによる機械式攪拌などとは異なり、液体金属と非接触で行うことができるため、攪拌羽根の損傷の問題は存在しない。また液体金属液面を過度に擾乱させることがないため、液体金属の液滴の飛散(スプラッシュ)もほとんど見られない。さらに、凝固時にも適用できるため、半溶融凝固体(スラリー)の製造時における金属酸化物の液面からの巻き込み防止にも応用可能であるという利点を有している。
[Summary]
Unlike the conventional mechanical stirring by the KR method or the like, the particle entrainment from the liquid surface according to the present invention can be performed without contact with the liquid metal, so that there is no problem of damage to the stirring blade. Further, since the liquid metal liquid surface is not excessively disturbed, the liquid metal droplets are hardly scattered (splash). Furthermore, since it can be applied also during solidification, it has an advantage that it can also be applied to prevent the metal oxide from being entrained from the liquid surface during the production of a semi-molten solidified body (slurry).

本発明の実施の形態の液体金属の電磁攪拌装置を示す斜視図および断面図である。It is the perspective view and sectional drawing which show the liquid metal electromagnetic stirring apparatus of embodiment of this invention. 図1に示す液体金属の電磁攪拌装置の垂直移動磁界発生用コイルの、上方向垂直移動磁界攪拌時の結線および移動磁界の動きを示す断面図である。It is sectional drawing which shows the connection and movement of a moving magnetic field at the time of a vertical moving magnetic field stirring of the vertical moving magnetic field generation coil of the liquid metal electromagnetic stirring apparatus shown in FIG. 図1に示す液体金属の電磁攪拌装置の垂直移動磁界発生用コイルの、下方向垂直移動磁界攪拌時の結線および移動磁界の動きを示す断面図である。It is sectional drawing which shows the connection at the time of the downward vertical movement magnetic field stirring of the coil for vertical movement magnetic field generation of the liquid metal electromagnetic stirring apparatus shown in FIG. 1, and a movement of a movement magnetic field. 図1に示す液体金属の電磁攪拌装置の、回転移動磁界攪拌によって液体金属内部に発生する電磁力(ローレンツ力密度)の数値計算結果(電流条件:40Hz、17.6A、液体金属:溶融ガリウム)を示す横断面図である。The numerical calculation results (current conditions: 40 Hz, 17.6 A, liquid metal: molten gallium) of the electromagnetic force (Lorentz force density) generated inside the liquid metal by the rotating moving magnetic field stirring of the liquid metal electromagnetic stirring device shown in FIG. It is a cross-sectional view shown. 図1に示す液体金属の電磁攪拌装置の、上方向垂直移動磁界攪拌によって液体金属内部に発生する電磁力(ローレンツ力密度)の数値計算結果(電流条件:65Hz、25.8A、液体金属:溶融ガリウム)を示す縦断面図である。Numerical calculation results of the electromagnetic force (Lorentz force density) generated in the liquid metal by the vertical vertical magnetic field stirring of the liquid metal electromagnetic stirrer shown in Fig. 1 (current conditions: 65Hz, 25.8A, liquid metal: molten gallium FIG. 図1に示す液体金属の電磁攪拌装置の、下方向垂直移動磁界攪拌によって液体金属内部に発生する電磁力(ローレンツ力密度)の数値計算結果(電流条件:65Hz、25.8A、液体金属:溶融ガリウム)を示す縦断面図である。Numerical calculation results of the electromagnetic force (Lorentz force density) generated in the liquid metal by the downward vertical moving magnetic field stirring of the liquid metal electromagnetic stirrer shown in Fig. 1 (current conditions: 65Hz, 25.8A, liquid metal: molten gallium FIG. 図1に示す液体金属の電磁攪拌装置の、回転移動磁界発生用コイルによって発生する磁束密度の数値計算結果と実測値との比較(電流条件:60Hz、10A)を示すグラフである。2 is a graph showing a comparison (current condition: 60 Hz, 10 A) between a numerical calculation result of magnetic flux density generated by a coil for generating a rotationally moving magnetic field and an actual measurement value of the liquid metal electromagnetic stirrer shown in FIG. 1. 図1に示す液体金属の電磁攪拌装置の、下方向垂直移動磁界発生用コイルによって発生する磁束密度の数値計算結果と実測値の比較(電流条件:60Hz、20A)を示すグラフである。It is a graph which shows the comparison (current conditions: 60Hz, 20A) of the numerical calculation result of the magnetic flux density generated with the coil for the downward vertical movement magnetic field generation | occurrence | production of the liquid metal electromagnetic stirring apparatus shown in FIG. 図1に示す液体金属の電磁攪拌装置の、回転移動磁界攪拌の単独印加によって液体金属内部に発生する流れ場および圧力場の数値計算結果を示す縦断面図である。It is a longitudinal cross-sectional view which shows the numerical calculation result of the flow field and pressure field which generate | occur | produce in a liquid metal by the single application of a rotational movement magnetic field stirring of the liquid metal electromagnetic stirring apparatus shown in FIG. 図1に示す液体金属の電磁攪拌装置の、上方向垂直移動磁界攪拌の単独印加によって液体金属内部に発生する流れ場および圧力場の数値計算結果を示す縦断面図である。It is a longitudinal cross-sectional view which shows the numerical calculation result of the flow field and pressure field which generate | occur | produce inside a liquid metal by the single application of an upward vertical moving magnetic field stirring of the liquid metal electromagnetic stirring apparatus shown in FIG. 図1に示す液体金属の電磁攪拌装置の、下方向垂直移動磁界攪拌の単独印加によって液体金属内部に発生する流れ場および圧力場の数値計算結果を示す縦断面図である。It is a longitudinal cross-sectional view which shows the numerical calculation result of the flow field and pressure field which generate | occur | produce in a liquid metal by the single application of a downward vertical movement magnetic field stirring of the liquid metal electromagnetic stirring apparatus shown in FIG. 図1に示す液体金属の電磁攪拌装置の、回転移動磁界攪拌および上方向垂直移動磁界攪拌の同時印加によって発生する流れ場および圧力場の数値計算結果を示す縦断面図である。It is a longitudinal cross-sectional view which shows the numerical calculation result of the flow field and pressure field which generate | occur | produce by the simultaneous application of rotational moving magnetic field stirring and upward vertical moving magnetic field stirring of the liquid metal electromagnetic stirring apparatus shown in FIG. 図1に示す液体金属の電磁攪拌装置の、回転移動磁界攪拌および下方向垂直移動磁界攪拌の同時印加によって発生する流れ場および圧力場の数値計算結果を示す縦断面図である。It is a longitudinal cross-sectional view which shows the numerical calculation result of the flow field and pressure field which generate | occur | produce by the simultaneous application of rotational movement magnetic field stirring and downward vertical movement magnetic field stirring of the liquid metal electromagnetic stirring apparatus shown in FIG. 図1に示す液体金属の電磁攪拌装置の、粒子の巻き込み実験での使用状態を示す断面図である。It is sectional drawing which shows the use condition in the particle entrainment experiment of the liquid metal electromagnetic stirring apparatus shown in FIG. 図14に示す液体金属の電磁攪拌装置の、回転移動磁界攪拌の単独印加の場合の液体金属への粒子巻き込み状態を示す斜視図である。It is a perspective view which shows the particle entrainment state in the liquid metal in the case of single application of the rotational movement magnetic field stirring of the electromagnetic stirring apparatus of the liquid metal shown in FIG. 図14に示す液体金属の電磁攪拌装置の、上方向垂直移動磁界攪拌の単独印加の場合の液体金属への粒子巻き込み状態を示す斜視図である。It is a perspective view which shows the particle entrainment state in the liquid metal in the case of single application of the upward vertical moving magnetic field stirring of the liquid metal electromagnetic stirring apparatus shown in FIG. 図14に示す液体金属の電磁攪拌装置の、下方向垂直移動磁界攪拌の単独印加の場合の液体金属への粒子巻き込み状態を示す斜視図である。It is a perspective view which shows the particle entrainment state in the liquid metal in the case of single application of the downward vertical movement magnetic field stirring of the liquid metal electromagnetic stirring apparatus shown in FIG. 図14に示す液体金属の電磁攪拌装置の、回転移動磁界攪拌および上方向垂直移動磁界攪拌の同時印加の場合の液体金属への粒子巻き込み状態を示す斜視図である。It is a perspective view which shows the particle entrainment state in the liquid metal in the case of simultaneous application of rotational movement magnetic field stirring and upward vertical movement magnetic field stirring of the liquid metal electromagnetic stirring apparatus shown in FIG. 図14に示す液体金属の電磁攪拌装置の、回転移動磁界攪拌および下方向垂直移動磁界攪拌の同時印加の場合の液体金属への粒子巻き込み状態を示す斜視図である。It is a perspective view which shows the particle entrainment state in the liquid metal in the case of simultaneous application of rotational movement magnetic field stirring and downward vertical movement magnetic field stirring of the liquid metal electromagnetic stirring apparatus shown in FIG. 図14に示す液体金属の電磁攪拌装置の、粒子のサンプリング状態を示す断面図である。It is sectional drawing which shows the sampling state of particle | grains of the liquid metal electromagnetic stirring apparatus shown in FIG. 図20に示す液体金属の電磁攪拌装置の、各種の攪拌方法による粒子巻き込み量をまとめたテーブルである。It is the table which put together the amount of particle | grain entrainment by the various stirring methods of the liquid metal electromagnetic stirring apparatus shown in FIG.

符号の説明Explanation of symbols

1 回転移動磁界発生用コイル
2 垂直移動磁界発生用コイル
3 液体金属用容器
4 液体金属
5 移動磁界の移動方向
6 液体金属の運動方向
7 三相電流
8 ガラスビーズ
9 ガラスビーズ採取器

DESCRIPTION OF SYMBOLS 1 Coil for rotational magnetic field generation 2 Coil for vertical magnetic field generation 3 Liquid metal container 4 Liquid metal 5 Movement direction of moving magnetic field 6 Movement direction of liquid metal 7 Three-phase current 8 Glass beads 9 Glass bead collector

Claims (5)

液体金属用の容器と、前記容器の外側に設けた垂直移動磁界発生用コイルと、前記垂直移動磁界発生用コイルのさらに外側に設けた回転移動磁界発生用コイルとを有し、
前記垂直移動磁界発生用コイルと、前記回転移動磁界発生用コイルとは、その電流をそれぞれ独立に制御でき、垂直方向電磁力と回転方向電磁力とを単独もしくは同時に印加可能であり、
前記垂直移動磁界発生用コイルの結線を変更することにより、垂直移動磁界の移動する方向を上向きまたは下向きに変更し、垂直方向の電磁力の向きを制御可能であり、
回転移動磁界攪拌および下方向垂直移動磁界攪拌を同時に加えることにより、前記液体金属の液面を静穏かつ平坦に保ち、前記液体金属液面の粒子を前記液体金属内に巻き込むことなく攪拌を加えることができるよう構成されていることを、
特徴とする液体金属の電磁撹拌装置。
A liquid metal container, a vertical moving magnetic field generating coil provided outside the container, and a rotational moving magnetic field generating coil provided further outside the vertical moving magnetic field generating coil,
The vertical moving magnetic field generating coil and the rotating moving magnetic field generating coil can independently control their currents, and the vertical electromagnetic force and the rotational electromagnetic force can be applied individually or simultaneously,
By changing the connection of the vertical moving magnetic field generating coil, the direction of movement of the vertical moving magnetic field can be changed upward or downward, and the direction of the electromagnetic force in the vertical direction can be controlled.
By simultaneously applying rotating moving magnetic field stirring and downward vertical moving magnetic field stirring, the liquid surface of the liquid metal is kept calm and flat, and stirring is performed without entraining the particles of the liquid metal liquid surface into the liquid metal. That it is configured to
A liquid metal electromagnetic stirring device.
上方向垂直移動磁界攪拌を単独で加えることにより、前記液体金属液面の粒子を、効率よく前記液体金属内に混入させることができるよう構成されていることを、特徴とする請求項1記載の液体金属の電磁攪拌装置。   2. The structure according to claim 1, wherein the liquid metal liquid surface particles can be efficiently mixed into the liquid metal by independently applying the upward vertical moving magnetic field stirring. Liquid metal electromagnetic stirring device. 攪拌の途中において、前記回転移動磁界攪拌および前記下方向垂直移動磁界攪拌を同時に加えた状態と、前記上方向垂直移動磁界攪拌を単独で加えた状態を、随時変更可能であることを、特徴とする請求項2記載の液体金属の電磁攪拌装置。   In the middle of stirring, the state in which the rotational moving magnetic field stirring and the downward vertical moving magnetic field stirring are simultaneously applied and the state in which the upward vertical moving magnetic field stirring is added alone can be changed as needed. The electromagnetic stirring apparatus for liquid metal according to claim 2. 前記液体金属用の容器内に保持されている前記液体金属液面の高さ方向の位置は、前記垂直移動磁界発生用コイルの上端部付近に設定されていることを、特徴とする請求項1、2または3記載の液体金属の電磁攪拌装置。   2. The position in the height direction of the liquid metal liquid surface held in the liquid metal container is set in the vicinity of an upper end portion of the vertical moving magnetic field generating coil. 2. An electromagnetic stirring device for liquid metal according to 2 or 3. 前記液体金属液面の粒子は、固体精練剤、スラグ滴、フラックス、金属酸化物、気泡、複合材用強化粒子を含むことを、特徴とする請求項1、2、3または4記載の液体金属の電磁攪拌装置。
5. The liquid metal according to claim 1, wherein the liquid metal liquid surface particles include solid scouring agent, slag droplets, flux, metal oxide, bubbles, and reinforcing particles for composite material. Electromagnetic stirring device.
JP2007241150A 2007-09-18 2007-09-18 Electromagnetic stirring apparatus for liquid metal controlling particle entrainment from liquid metal surface Pending JP2009074103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241150A JP2009074103A (en) 2007-09-18 2007-09-18 Electromagnetic stirring apparatus for liquid metal controlling particle entrainment from liquid metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241150A JP2009074103A (en) 2007-09-18 2007-09-18 Electromagnetic stirring apparatus for liquid metal controlling particle entrainment from liquid metal surface

Publications (1)

Publication Number Publication Date
JP2009074103A true JP2009074103A (en) 2009-04-09

Family

ID=40609371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241150A Pending JP2009074103A (en) 2007-09-18 2007-09-18 Electromagnetic stirring apparatus for liquid metal controlling particle entrainment from liquid metal surface

Country Status (1)

Country Link
JP (1) JP2009074103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8608370B1 (en) * 2009-04-02 2013-12-17 Inductotherm Corp. Combination holding furnace and electromagnetic stirring vessel for high temperature and electrically conductive fluid materials
DE202017104485U1 (en) 2016-07-28 2017-08-11 Aida Engineering, Ltd. Apparatus for producing a shaped metal body by electromagnetic stirring
DE202017104483U1 (en) 2016-07-28 2017-08-14 Aida Engineering, Ltd. Apparatus for producing metal moldings

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220323A (en) * 2002-01-31 2003-08-05 Univ Tohoku Electromagnetic stirring device and electromagnetic stirring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220323A (en) * 2002-01-31 2003-08-05 Univ Tohoku Electromagnetic stirring device and electromagnetic stirring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013007970; 谷口 尚司 他5名: '回転磁界と移動磁界の同時印加による溶融金属の電磁攪拌' 鉄と鋼 Vol.92 No.6, 20060601, p.364-p.371, 社団法人 日本鉄鋼協会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8608370B1 (en) * 2009-04-02 2013-12-17 Inductotherm Corp. Combination holding furnace and electromagnetic stirring vessel for high temperature and electrically conductive fluid materials
DE202017104485U1 (en) 2016-07-28 2017-08-11 Aida Engineering, Ltd. Apparatus for producing a shaped metal body by electromagnetic stirring
DE202017104483U1 (en) 2016-07-28 2017-08-14 Aida Engineering, Ltd. Apparatus for producing metal moldings
US20180029111A1 (en) * 2016-07-28 2018-02-01 Aida Engineering, Ltd. Metal molded body manufacturing apparatus by electromagnetic stirring

Similar Documents

Publication Publication Date Title
JP2009074103A (en) Electromagnetic stirring apparatus for liquid metal controlling particle entrainment from liquid metal surface
TMJ et al. The determination of the minimum and operational gas flow rates for sidewall blowing in the AOD-converter
JP4961787B2 (en) Hot metal desulfurization method
JP2011132566A (en) Desulfurization method for molten iron
JP2011042815A (en) Method for desulfurizing molten iron
TWI554738B (en) Method and arrangement for vortex reduction in a metal making process
JP2009127111A (en) Method for desulfurizing molten iron
JP6119954B2 (en) Hot metal desulfurization treatment method
JP4986383B2 (en) Hot metal desulfurization method
JP2013256692A (en) Method of recovering copper from copper smelting slag
CA2025688C (en) Method of and apparatus for removing non-metallic inclusions from molten metal
JP5401938B2 (en) Hot metal desulfurization method
JP2015218390A (en) Desulfurization method of molten pig iron using combination of mechanical stirring and gas stirring
JP5978850B2 (en) Hot metal pretreatment method and stirring body for hot metal pretreatment
JP5347817B2 (en) Hot metal desulfurization method
JP2007144501A (en) Method for removing inclusion in molten metal and inclusion removing device for molten metal
KR101423604B1 (en) Molten steel processing apparatus and the method thereof
KR102090215B1 (en) Processing apparatus for molten metal
JP2014177674A (en) Agitator for refinery and method of refining molten iron
JP2006255759A (en) Method for continuously casting steel
JP5791234B2 (en) Continuous casting method for steel slabs
JP3589075B2 (en) Ladle for molten metal and method for refining molten metal
JPH1192811A (en) Refinement of molten metal
JP3750515B2 (en) Method of stirring molten metal
JP3427055B2 (en) Degassing method and molten steel stirrer in simple degassing equipment for molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A521 Written amendment

Effective date: 20100907

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A02 Decision of refusal

Effective date: 20130702

Free format text: JAPANESE INTERMEDIATE CODE: A02