JP2009073965A - Phosphor thin film and film forming method of the same - Google Patents
Phosphor thin film and film forming method of the same Download PDFInfo
- Publication number
- JP2009073965A JP2009073965A JP2007245075A JP2007245075A JP2009073965A JP 2009073965 A JP2009073965 A JP 2009073965A JP 2007245075 A JP2007245075 A JP 2007245075A JP 2007245075 A JP2007245075 A JP 2007245075A JP 2009073965 A JP2009073965 A JP 2009073965A
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- sputtering
- phosphor thin
- baaleu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
本発明は、蛍光体薄膜とその成膜方法に関し、さらに詳しくは、組成式がBaAl2S4:Euで表される化合物からのみ発光させることができ、すなわち蛍光の発光波長の長波長へのシフトが小さく、かつ発光強度が高い特性を有する、無機EL(エレクトロルミネッセンス)及びPDP(プラズマデスプレイパネル)用として良好な、色純度が良く高輝度の蛍光体薄膜と、それを、硫化水素ガスを使用することなく形成することができる成膜方法に関する。 The present invention relates to a phosphor thin film and a film forming method thereof, and more specifically, can emit light only from a compound whose composition formula is represented by BaAl 2 S 4 : Eu, that is, to increase the emission wavelength of fluorescence to a long wavelength. A phosphor thin film having good color purity and high brightness, suitable for inorganic EL (electroluminescence) and PDP (plasma display panel), having a small shift and high emission intensity, and hydrogen sulfide gas. The present invention relates to a film forming method that can be formed without using the film.
近年、コンピュータのモニター及び携帯機器の表示素子として、無機EL素子の開発が盛んに行われている。この中で、特に、無機EL素子の蛍光体薄膜として高輝度の青色蛍光体を用いてフルカラー表示を行う方法が提案され、その実用化が注目されている。これまでに開発された有望な蛍光体薄膜としては、組成式がBaAl2S4:Euで表される化合物を主体とする薄膜が挙げられている。これは、組成式がBaAl2S4で表される半導体材料を母体材料として発光中心となる元素(Eu)を置換させたものである。例えば、BaAl2S4からなる母体材料に、Ba格子位置の0.03〜0.10原子%に当たる分のEuSが添加された蛍光体薄膜は色純度が良く、無機EL用蛍光体として期待されている。 In recent years, inorganic EL elements have been actively developed as display elements for computer monitors and portable devices. Among them, a method for performing full-color display using a high-luminance blue phosphor as a phosphor thin film of an inorganic EL element has been proposed, and its practical application has attracted attention. As a promising phosphor thin film developed so far, a thin film mainly composed of a compound whose composition formula is represented by BaAl 2 S 4 : Eu is cited. This is obtained by substituting an element (Eu) serving as a light emission center by using a semiconductor material whose composition formula is represented by BaAl 2 S 4 as a base material. For example, a phosphor thin film in which EuS corresponding to 0.03-0.10 atomic% of Ba lattice position is added to a base material made of BaAl 2 S 4 has good color purity, and is expected as a phosphor for inorganic EL. ing.
このような蛍光体薄膜の製造方法としては、硫化水素ガスをスパッタリングガス中に含む反応性スパッタ法、構成する各元素を含む蒸気ガスを供給して膜を形成する反応性蒸着法、分子線エピタキシー法、化学的気相成長法等が行われていた(例えば、特許文献1参照。)。また、組成式がBaAl2S4:Euで表される化合物(以下、「BaAl2S4:Eu化合物」と呼称する場合がある。)からなる焼結体ターゲットを用いて、アルゴンと硫化水素の混合ガス中でスパッタリングする方法が提案されている(例えば、特許文献2参照。)。
また、組成式が少なくともバリウムのような2価金属元素、アルミニウムのような3価金属元素及びイオウにより表せる母体材料と発光中心材料とを含有し、酸素の含有割合が5質量%以下であり、さらに硫化亜鉛を含有するターゲットを用いて、亜鉛をスパッタリング中に蒸発させ膜中にイオウを補填する方法が開示されている(例えば、特許文献3参照)。
また、組成がバリウムのような2価金属元素、アルミニウムのような3価金属元素により表せる合金ターゲットを硫化水素中でスパッタリングする方法が開示されている(特許文献4)。
As a method for producing such a phosphor thin film, a reactive sputtering method in which hydrogen sulfide gas is contained in a sputtering gas, a reactive vapor deposition method in which a vapor gas containing each constituent element is supplied to form a film, molecular beam epitaxy And chemical vapor deposition have been performed (see, for example, Patent Document 1). In addition, using a sintered body target composed of a compound whose composition formula is represented by BaAl 2 S 4 : Eu (hereinafter sometimes referred to as “BaAl 2 S 4 : Eu compound”), argon and hydrogen sulfide A method of sputtering in a mixed gas is proposed (for example, see Patent Document 2).
In addition, the composition formula includes at least a divalent metal element such as barium, a trivalent metal element such as aluminum, and a base material that can be represented by sulfur and an emission center material, and the oxygen content ratio is 5% by mass or less. Furthermore, a method is disclosed in which zinc is evaporated during sputtering by using a target containing zinc sulfide and sulfur is filled in the film (for example, see Patent Document 3).
Further, a method is disclosed in which an alloy target whose composition can be expressed by a divalent metal element such as barium or a trivalent metal element such as aluminum is sputtered in hydrogen sulfide (Patent Document 4).
ところで、昨今のディスプレイ画面の大型化にともない、大型化が容易なスパッタリング法によって、色純度がよく、かつ輝度が高い蛍光体薄膜が望まれ、そのため、このような蛍光体薄膜の成膜に好適な成膜方法が求められている。 By the way, with the recent increase in the size of display screens, a phosphor thin film with good color purity and high brightness is desired by a sputtering method that is easy to increase in size. Therefore, it is suitable for film formation of such a phosphor thin film. There is a need for a suitable film formation method.
しかしながら、従来行なわれている、BaAl2S4:Eu化合物からなる焼結体ターゲット又はBaAl:Eu合金ターゲットを硫化水素中でスパッタリングする蛍光体薄膜作成法には、解決すべき技術的課題が残されている。
例えば、組成がバリウムのような2価金属元素、アルミニウムのような3価金属元素により表せる合金ターゲットを硫化水素中でスパッタリングする方法では、スパッタ中に硫化水素を添加するため、スパッタ装置から硫化水素ガスが漏洩しないように特殊なパッキンを使用したり、漏洩時に硫化水素ガス検知したり、ボンベを自動的に閉じるなどの安全対策が必要である。またアルゴンプラズマで硫化水素が分解、発生したイオウがチャンバーや真空系を汚染する。特に配管、真空イオンゲージや真空弁にイオウが付着すると真空排気速度低下、イオンゲージの断線や真空弁のガス漏洩が発生するためメンテナンス性が悪く量産し難い。また、成膜速度も遅い。
However, the conventional phosphor thin film forming method in which a sintered body target made of a BaAl 2 S 4 : Eu compound or a BaAl: Eu alloy target is sputtered in hydrogen sulfide has a technical problem to be solved. Has been.
For example, in a method in which an alloy target whose composition is represented by a divalent metal element such as barium or a trivalent metal element such as aluminum is sputtered in hydrogen sulfide, hydrogen sulfide is added during sputtering, so that hydrogen sulfide is added from the sputtering apparatus. Safety measures such as using special packing to prevent gas leakage, detecting hydrogen sulfide gas at the time of leakage, and automatically closing the cylinder are necessary. Moreover, hydrogen sulfide is decomposed by argon plasma, and the generated sulfur contaminates the chamber and the vacuum system. In particular, if sulfur adheres to the piping, vacuum ion gauge, or vacuum valve, the vacuum exhaust speed decreases, the ion gauge is disconnected, or the gas leakage of the vacuum valve occurs, resulting in poor maintainability and difficulty in mass production. Moreover, the film forming speed is also slow.
以上の状況から、組成式がBaAl2S4:Euで表される化合物を主体として含む、色純度が良く高輝度の蛍光体薄膜を、硫化水素ガスを使用することなく形成することができる成膜方法が求められている。 From the above situation, it is possible to form a phosphor thin film having a high color purity and a high luminance, which mainly contains a compound represented by the composition formula BaAl 2 S 4 : Eu, without using hydrogen sulfide gas. There is a need for a membrane method.
本発明の目的は、上記の従来技術の問題点に鑑み、組成式がBaAl2S4:Euで表される化合物からのみ発光させることができ、すなわち蛍光の発光波長の長波長へのシフトが小さく、かつ発光強度が高い特性を有する、無機EL(エレクトロルミネッセンス)及びPDP(プラズマデスプレイパネル)用として良好な、色純度が良く高輝度の蛍光体薄膜と、それを、硫化水素ガスを使用することなく形成することができる成膜方法を提供することにある。 An object of the present invention is to make it possible to emit light only from a compound whose composition formula is represented by BaAl 2 S 4 : Eu in view of the above-mentioned problems of the prior art, that is, the shift of the emission wavelength of fluorescence to a long wavelength A phosphor thin film which is small and has a high emission intensity, is suitable for inorganic EL (electroluminescence) and PDP (plasma display panel), has good color purity and high brightness, and uses hydrogen sulfide gas It is an object of the present invention to provide a film forming method that can be formed without any problems.
本発明者は、上記目的を達成するために、組成式:BaAl2S4:Euで表される化合物相を主体として含む蛍光体薄膜とその成膜方法において、鋭意研究を重ねた結果、特定の組成式で表される膜組成を有する、組成式:BaAl2S4:Euで表される化合物相のみからなる化合物組織を有する硫化物薄膜では、組成式がBaAl2S4:Eu化合物からのみ発光させることができ、蛍光の発光波長の長波長へのシフトが小さく、かつ発光強度が高い特性を有するので色純度が良く、高輝度の青色蛍光体薄膜が得られることを見出した。なお、ここに記載の「相」とは、例えば、「BaAl2S4相」は、組成式がBaAl2S4で表される化合物からなる析出相であることを意味する。 In order to achieve the above object, the present inventor has conducted extensive research on a phosphor thin film mainly comprising a compound phase represented by the composition formula: BaAl 2 S 4 : Eu and a method for forming the phosphor thin film. In a sulfide thin film having a compound structure consisting only of a compound phase represented by a composition formula: BaAl 2 S 4 : Eu, having a film composition represented by the following composition formula, the composition formula is derived from a BaAl 2 S 4 : Eu compound. It has been found that a blue phosphor thin film with good color purity and high brightness can be obtained because it can emit light only, has a characteristic that the shift of the emission wavelength of fluorescence to a long wavelength is small, and the emission intensity is high. The “phase” described here means, for example, that “BaAl 2 S 4 phase” is a precipitated phase composed of a compound whose composition formula is represented by BaAl 2 S 4 .
また、その成膜方法において、スパッタリング成膜する際に、まず、硫化亜鉛の焼結体からなるターゲットを用いて、特定の基板温度で硫化亜鉛膜を成膜し、続いて硫化亜鉛膜の上に、バリウム、アルミニウム及びユウロピウムから構成され、特定組成で表される合金ターゲットを用いて、特定の基板温度でバリウム、アルミニウム及びユウロピウムからなる合金膜を成膜し、さらに、特定の条件で硫化亜鉛をスパッタリングしたところ、硫化亜鉛(ZnS)がBaAlEu合金と反応し、ZnSが分解し合金が硫化されると共に亜鉛が蒸発し、上記組成の硫化物薄膜が形成され、この方法で色純度が良く高輝度の青色蛍光体薄膜を得ることができることを見出した。本発明はこれらの知見により完成した。 Further, in the film formation method, when sputtering film formation is performed, first, a zinc sulfide film is formed at a specific substrate temperature using a target made of a sintered body of zinc sulfide, and then on the zinc sulfide film. In addition, an alloy film composed of barium, aluminum and europium is formed at a specific substrate temperature using an alloy target composed of barium, aluminum and europium and having a specific composition, and zinc sulfide is formed under specific conditions. As a result of sputtering, zinc sulfide (ZnS) reacts with the BaAlEu alloy, ZnS decomposes and the alloy is sulfided, and zinc evaporates to form a sulfide thin film having the above composition. It has been found that a blue phosphor thin film with brightness can be obtained. The present invention has been completed based on these findings.
すなわち、本発明の第1の発明によれば、亜鉛、バリウム、アルミニウム、イオウ及びユウロピウムから構成される次の組成式:
Znx0Bax1Alx2Sx3Eux4
(式中、x0〜x4は、下記の(1)〜(5)に示す要件を満たす。)
で表される硫化物から形成される蛍光体薄膜であって、
その化合物組織は、組成式:BaAl2S4:Euで表される化合物相を主体として含む相からなることを特徴とする蛍光体薄膜が提供される。
(1) 0.01≦x0≦0.02
(2) x1+x4=1
(3) 2.01≦x2≦3.0
(4) 4.0<x3≦4.3
(5) 0.03≦x4≦0.10
That is, according to the first invention of the present invention, the following composition formula consisting of zinc, barium, aluminum, sulfur and europium:
Zn x0 Ba x1 Al x2 S x3 Eu x4
(In the formula, x0 to x4 satisfy the requirements shown in the following (1) to (5).)
A phosphor thin film formed from a sulfide represented by:
There is provided a phosphor thin film characterized in that the compound structure is composed of a phase mainly including a compound phase represented by a composition formula: BaAl 2 S 4 : Eu.
(1) 0.01 ≦ x0 ≦ 0.02
(2) x1 + x4 = 1
(3) 2.01 ≦ x2 ≦ 3.0
(4) 4.0 <x3 ≦ 4.3
(5) 0.03 ≦ x4 ≦ 0.10
また、本発明の第2の発明によれば、下記の焼結体ターゲット(A)を用いて、アルゴンガス雰囲気下に、基板温度を300〜600℃に保ちながら硫化亜鉛層を成膜し、次いで該硫化亜鉛層の上に、下記の焼結体ターゲット(B)を用いて、アルゴンガス雰囲気下に、基板温度を400〜650℃に保ちながらBaAlEu合金層をスパッタリング成膜し、続いて、該BaAlEu合金層の上に、下記の焼結体ターゲット(A)を用いて、基板温度を550〜720℃に保ちながら、硫化亜鉛のスパッタ量が、該BaAlEu合金層中のバリウムのモル数の4.0〜4.2倍になるように硫化亜鉛をスパッタリングすることを特徴とする第1の発明の蛍光体薄膜の成膜方法が提供される。
(A)硫化亜鉛から構成される。
(B)バリウム、アルミニウム、及びユウロピウムから構成される組成式:Bay1Aly2Euy3 (但し、式中、y1〜y3は、y1+y3=1、1.5≦y2≦3.0、0.03≦y3≦0.10、の各要件を満たす。)で表される合金から構成される。
According to the second invention of the present invention, a zinc sulfide layer is formed while maintaining the substrate temperature at 300 to 600 ° C. in an argon gas atmosphere using the following sintered body target (A), Next, a BaAlEu alloy layer is formed on the zinc sulfide layer by sputtering using the following sintered body target (B) under an argon gas atmosphere while maintaining the substrate temperature at 400 to 650 ° C., On the BaAlEu alloy layer, the following sintered body target (A) was used, and while maintaining the substrate temperature at 550 to 720 ° C., the sputtering amount of zinc sulfide was the number of moles of barium in the BaAlEu alloy layer. There is provided a phosphor thin film deposition method according to the first invention, characterized in that zinc sulfide is sputtered so as to be 4.0 to 4.2 times.
(A) It is comprised from zinc sulfide.
(B) barium, aluminum, and the composition formula consists europium: Ba y1 Al y2 Eu y3 (In the formula, Y1 to Y3 are, y1 + y3 = 1,1.5 ≦ y2 ≦ 3.0,0.03 ≦ y3 ≦ 0.10 is satisfied.).
以上から明らかなように、本発明の蛍光体薄膜は、第1の発明において、所定の組成式で表される膜組成を有し、かつその化合物組織は、組成式:BaAl2S4:Euで表される化合物相を主体とする硫化物薄膜であるので、組成式がBaAl2S4:Euで表される化合物からのみ発光させ、蛍光の発光波長の長波長へのシフトが小さく、かつ発光強度が高い特性を有するので色純度が良く、さらに亜鉛濃度が低いため、ZnS相は勿論のことZnAl2S4相も検出されないので、高輝度の青色蛍光体薄膜である。 As is clear from the above, the phosphor thin film of the present invention has a film composition represented by a predetermined composition formula in the first invention, and the compound structure is the composition formula: BaAl 2 S 4 : Eu. Since the sulfide thin film is mainly composed of the compound phase represented by formula (1), light is emitted only from the compound represented by the composition formula BaAl 2 S 4 : Eu, and the shift of the fluorescence emission wavelength to a long wavelength is small, and Since it has a characteristic of high emission intensity, color purity is good, and since the zinc concentration is low, not only the ZnS phase but also the ZnAl 2 S 4 phase is not detected, so that it is a high-luminance blue phosphor thin film.
また、本発明の蛍光体薄膜の成膜方法である第2の発明によれば、ZnSから構成される焼結体ターゲット(A)を用いて、上記成膜条件でZnS層を成膜し、次いで所定の組成を有するBaAlEu合金から構成される焼結体ターゲット(B)を用いてBaAlEu合金膜を成膜して、続いて、その上に、焼結体ターゲット(A)を用いて、ZnSをスパッタリングすることにより、ZnSがBaAlEu合金膜と反応して分解し、BaAlEu合金膜の硫化と亜鉛の蒸発が生じて、上記薄膜を形成することができるので、無機EL及びPDP用として良好な、色純度が良く高輝度の蛍光体薄膜を得ることができる。
しかも、基板温度を550℃以上の温度に保ちながら硫化亜鉛をスパッタリングし反応させるので、反応で生じた亜鉛の残留がなく、膜中の亜鉛濃度が低下する。同時に、成膜速度も大きくなり安定した成膜を行うことができる。さらに、硫化水素ガスを添加しないので、スパッタ装置の安全対策が軽減される。また、スパッタリング時にプラズマによる硫化水素の分解とイオウの発生がないのでイオウによるスパッタリングチャンバー及び真空排気配管の汚染をなくすることができる。これらのことより、その工業的価値は極めて大きい。
Further, according to the second invention, which is a method for forming a phosphor thin film of the present invention, a ZnS layer is formed under the above film formation conditions using a sintered body target (A) composed of ZnS, Next, a BaAlEu alloy film is formed using a sintered body target (B) composed of a BaAlEu alloy having a predetermined composition, and then a ZnS film is formed thereon using a sintered body target (A). By sputtering, ZnS reacts with the BaAlEu alloy film and decomposes, and the BaAlEu alloy film is sulfided and zinc is evaporated, so that the thin film can be formed. Therefore, it is favorable for inorganic EL and PDP use. A phosphor thin film with good color purity and high brightness can be obtained.
Moreover, since zinc sulfide is sputtered and reacted while the substrate temperature is maintained at a temperature of 550 ° C. or higher, there is no residual zinc generated by the reaction, and the zinc concentration in the film decreases. At the same time, the deposition rate is increased and stable deposition can be performed. Furthermore, since no hydrogen sulfide gas is added, safety measures for the sputtering apparatus are reduced. Further, since there is no decomposition of hydrogen sulfide and generation of sulfur by plasma during sputtering, contamination of the sputtering chamber and the vacuum exhaust pipe by sulfur can be eliminated. From these things, the industrial value is very large.
以下、本発明の蛍光体薄膜とその成膜方法について詳細に説明する。
1.蛍光体薄膜
本発明の蛍光体薄膜は、亜鉛、バリウム、アルミニウム、イオウ及びユウロピウムから構成される次の組成式:Znx0Bax1Alx2Sx3Eux4(式中、x0〜x4は、下記の(1)〜(5)に示す要件を満たす。)で表される硫化物から形成される蛍光体薄膜であって、その化合物組織は、組成式:BaAl2S4:Euで表される化合物相を主体として含む相からなることを特徴とする。
(1) 0.01≦x0≦0.02
(2) x1+x4=1
(3) 2.01≦x2≦3.0
(4) 4.0<x3≦4.3
(5) 0.03≦x4≦0.10
Hereinafter, the phosphor thin film and the film forming method of the present invention will be described in detail.
1. Phosphor thin film The phosphor thin film of the present invention has the following composition formula composed of zinc, barium, aluminum, sulfur and europium: Zn x0 Ba x1 Al x2 S x3 Eu x4 (wherein x0 to x4 are the following) (1) to the phosphor thin film formed from the sulfide represented by (5), wherein the compound structure is a compound represented by the composition formula: BaAl 2 S 4 : Eu. It is characterized by comprising a phase mainly containing a phase.
(1) 0.01 ≦ x0 ≦ 0.02
(2) x1 + x4 = 1
(3) 2.01 ≦ x2 ≦ 3.0
(4) 4.0 <x3 ≦ 4.3
(5) 0.03 ≦ x4 ≦ 0.10
本発明の蛍光体薄膜において、薄膜の化合物組織が、組成式:BaAl2S4:Euで表される化合物相を主体とすることが重要である。これによって、無機EL及びPDP用として良好な、色純度が良い蛍光体薄膜が得られる。 In the phosphor thin film of the present invention, it is important that the compound structure of the thin film is mainly composed of a compound phase represented by the composition formula: BaAl 2 S 4 : Eu. As a result, a phosphor thin film having good color purity and good for inorganic EL and PDP can be obtained.
すなわち、通常、硫化物のスパッタリングにおいては、ターゲット組成と膜組成とを比較すると、BaとAlの比が大きく変動している。例えば、ターゲットのAl/Baモル比が2.2の場合、膜のAl/Baモル比は2.05〜2.10程度に変動する。このように、膜のBaとAlの組成比がAl過剰側になると、膜中にBaAl4S7相が形成されるため、蛍光の発光波長が5nm程度長波長側にシフトし、さらに発光強度も2割程度低下している。
これに対して、本発明ではZnS層とBaAlEu合金膜を別々に成膜し、その上にZnSをスパッタするため組成の制御性が非常に良い。
That is, normally, in the sputtering of sulfide, when the target composition and the film composition are compared, the ratio of Ba and Al varies greatly. For example, when the Al / Ba molar ratio of the target is 2.2, the Al / Ba molar ratio of the film varies from about 2.05 to 2.10. Thus, when the composition ratio of Ba and Al in the film is on the Al-excess side, a BaAl 4 S 7 phase is formed in the film, so that the fluorescence emission wavelength is shifted to the long wavelength side by about 5 nm, and the emission intensity is further increased. Is also about 20% lower.
On the other hand, in the present invention, the ZnS layer and the BaAlEu alloy film are separately formed, and ZnS is sputtered thereon, so that the controllability of the composition is very good.
また、上記薄膜の組成は、組成式:Znx0Bax1Alx2Sx3Eux4で表され、該式中のx0〜x4は、下記の(1)〜(5)で示される関係式を満足することが重要である。これによって、膜中の亜鉛濃度が低いので、無機EL及びPDP用として良好な、特に高輝度の蛍光体薄膜が得られる。
(1) 0.01≦x0≦0.02
(2) x1+x4=1
(3) 2.01≦x2≦3.0
(4) 4.0<x3≦4.3
(5) 0.03≦x4≦0.10
The composition of the thin film is represented by a composition formula: Zn x0 Ba x1 Al x2 S x3 Eu x4 , and x0 to x4 in the formula satisfy the following relational expressions (1) to (5). It is important to. As a result, since the zinc concentration in the film is low, a phosphor thin film having particularly high luminance, which is good for inorganic EL and PDP, can be obtained.
(1) 0.01 ≦ x0 ≦ 0.02
(2) x1 + x4 = 1
(3) 2.01 ≦ x2 ≦ 3.0
(4) 4.0 <x3 ≦ 4.3
(5) 0.03 ≦ x4 ≦ 0.10
まず、亜鉛の組成比(x0)は、0.01≦x0≦0.02の関係式を満足する。この範囲内において、特に高輝度の膜が形成される。すなわち、亜鉛の組成比が0.02を超えると、亜鉛の薄膜中への残留量が多いため、ZnAl2S4相のほかにZnS相も形成されるので、発光強度が低下し輝度が悪くなる。一方、亜鉛の組成比が0.01未満では、BaAlEu合金の全部と反応できないため、膜中に未反応な部分が形成され、蛍光の発光強度が小さくなり、輝度が悪くなるため好ましくない。 First, the composition ratio (x0) of zinc satisfies the relational expression of 0.01 ≦ x0 ≦ 0.02. Within this range, a particularly bright film is formed. That is, when the composition ratio of zinc exceeds 0.02, since the amount of zinc remaining in the thin film is large, a ZnS phase is formed in addition to the ZnAl 2 S 4 phase. Become. On the other hand, if the composition ratio of zinc is less than 0.01, it cannot react with all of the BaAlEu alloy, so that an unreacted portion is formed in the film, the fluorescence emission intensity is reduced, and the luminance is deteriorated.
バリウムの組成比(x1)とユウロピウムの組成比(x4)は、x1+x4=1と、0.03≦x4≦0.10の関係式を満足する。すなわち、ユウロピウムは、蛍光体薄膜の蛍光を発する元素であり、組成式がBaAl2S4で表される母体材料のBaの格子位置を置換している。ユウロピウム(Eu)は、バリウム(Ba)に対して組成比が0.03〜0.10になるように添加される。Euの組成比が0.03未満では、蛍光の発光強度が低くなり、輝度が悪くなるため好ましくない。一方、Euの組成比が0.10を超えると、前記母体材料の結晶性が悪くなるため好ましくない。 The composition ratio (x1) of barium and the composition ratio (x4) of europium satisfy the relational expressions x1 + x4 = 1 and 0.03 ≦ x4 ≦ 0.10. That is, europium is an element that emits fluorescence of the phosphor thin film, and replaces the lattice position of Ba of the base material whose composition formula is represented by BaAl 2 S 4 . Europium (Eu) is added so that the composition ratio is 0.03 to 0.10 with respect to barium (Ba). If the composition ratio of Eu is less than 0.03, the emission intensity of fluorescence is lowered and the luminance is deteriorated. On the other hand, if the Eu composition ratio exceeds 0.10, the crystallinity of the base material deteriorates, such being undesirable.
また、アルミニウムの組成比(x2)は、2.01≦x2≦3.0である。すなわち、Alの組成比が2.01未満では、Ba含有比が高い組成式がBa2Al2S5で表される化合物相が蛍光体薄膜中に生成し、蛍光のピーク波長が長波長側にずれるため色純度が悪くなる。一方、Alの組成比が3.0を超えると、組成式がBaAl4S7で表される化合物相が蛍光体薄膜中に生成し、前記母体材料の発光強度が低下し輝度が悪くなるため好ましくない。 The composition ratio (x2) of aluminum is 2.01 ≦ x2 ≦ 3.0. That is, when the Al composition ratio is less than 2.01, a compound phase having a high Ba content ratio represented by Ba 2 Al 2 S 5 is generated in the phosphor thin film, and the fluorescence peak wavelength is longer. Therefore, the color purity is deteriorated. On the other hand, if the Al composition ratio exceeds 3.0, a compound phase represented by the composition formula BaAl 4 S 7 is generated in the phosphor thin film, and the emission intensity of the base material is lowered and the luminance is deteriorated. It is not preferable.
また、イオウの組成比(x3)は、4.0<x3≦4.3である。すなわち、化学量論組成である4より多い組成比とする。イオウの組成比が4.0以下では、前記母体材料の形成が困難になる。一方、イオウの組成比が4.3を超えると、膜中にイオウが析出する、Baの多硫化物ができやすくなるので、上記薄膜の化合物組織の形成が安定しないため好ましくない。 Moreover, the composition ratio (x3) of sulfur is 4.0 <x3 ≦ 4.3. That is, the composition ratio is greater than 4 which is the stoichiometric composition. When the composition ratio of sulfur is 4.0 or less, it becomes difficult to form the base material. On the other hand, if the composition ratio of sulfur exceeds 4.3, sulfur is precipitated in the film, and it becomes easy to form a polysulfide of Ba. This is not preferable because the formation of the compound structure of the thin film is not stable.
2.蛍光体薄膜の成膜方法
本発明の蛍光体薄膜を得るための成膜方法としては、下記の焼結体ターゲット(A)を用いて、アルゴンガス雰囲気下に、基板温度を300〜600℃に保ちながら硫化亜鉛層を成膜し、次いで該硫化亜鉛層の上に、下記の焼結体ターゲット(B)を用いて、アルゴンガス雰囲気下に、基板温度を400〜650℃に保ちながらBaAlEu合金層をスパッタリング成膜し、続いて、該BaAlEu合金層の上に、下記の焼結体ターゲット(A)を用いて、基板温度を550〜720℃に保ちながら、硫化亜鉛のスパッタ量が、該BaAlEu合金層中のバリウムのモル数の4.0〜4.2倍になるように硫化亜鉛をスパッタリングすることを特徴とする。
(A)硫化亜鉛から構成される。
(B)バリウム、アルミニウム、及びユウロピウムから構成される組成式:Bay1Aly2Euy3 (但し、式中、y1〜y3は、y1+y3=1、1.5≦y2≦3.0、0.03≦y3≦0.10、の各要件を満たす。)で表される合金から構成される。
2. Method for Forming Phosphor Thin Film As a film forming method for obtaining the phosphor thin film of the present invention, the substrate temperature is set to 300 to 600 ° C. in an argon gas atmosphere using the following sintered body target (A). A zinc sulfide layer is formed while maintaining, and then a BaAlEu alloy is maintained on the zinc sulfide layer using the following sintered body target (B) while maintaining the substrate temperature at 400 to 650 ° C. in an argon gas atmosphere. The layer was formed by sputtering. Subsequently, on the BaAlEu alloy layer, the following sintered body target (A) was used, while maintaining the substrate temperature at 550 to 720 ° C., the sputtering amount of zinc sulfide was Zinc sulfide is sputtered so as to be 4.0 to 4.2 times the number of moles of barium in the BaAlEu alloy layer.
(A) It is comprised from zinc sulfide.
(B) barium, aluminum, and the composition formula consists europium: Ba y1 Al y2 Eu y3 (In the formula, Y1 to Y3 are, y1 + y3 = 1,1.5 ≦ y2 ≦ 3.0,0.03 ≦ y3 ≦ 0.10 is satisfied.).
上記成膜方法では、例えば、ZnSから構成される焼結体ターゲット(A)とBaAlEu合金から構成される焼結体ターゲット(B)の2つのターゲットをスパッタリング装置の2つのカソードに装着し、それらをスパッタリングする手段が適している。このように1つのソースから、基板にZnSとBaAlEu合金を供給することにより、膜中の組成、及び成膜速度が安定し、再現性良く成膜することができる。 In the film forming method, for example, two targets of a sintered body target (A) composed of ZnS and a sintered body target (B) composed of a BaAlEu alloy are mounted on two cathodes of a sputtering apparatus, and these A means for sputtering is suitable. In this way, by supplying ZnS and BaAlEu alloy to the substrate from one source, the composition in the film and the film formation rate are stabilized, and the film can be formed with good reproducibility.
上記基板としては、特に限定されるものではなく、LCD用の無アルカリガラス又はPDP用のソーダライムガラス基板などのガラス基板、或いはガラス基板上に電極層と誘電体層が積層された基板が用いられる。また、小型の表示基板には、シリコン基板を用いても良い。 The substrate is not particularly limited, and a glass substrate such as a non-alkali glass for LCD or a soda-lime glass substrate for PDP, or a substrate in which an electrode layer and a dielectric layer are laminated on a glass substrate is used. It is done. A silicon substrate may be used as a small display substrate.
上記スパッタリングに用いる装置としては、マグネトロンRFスパッタリング装置、例えば、アネルバ(株)製のSPF210H、ULVAC製のMB04−1055等を用いて、所定のアルゴンガス圧下で通常の成膜条件下で行われる。 As an apparatus used for the sputtering, a magnetron RF sputtering apparatus, for example, SPF210H manufactured by Anerva Co., Ltd., MB04-1055 manufactured by ULVAC, or the like is used, and the film formation is performed under a normal argon film pressure under a predetermined argon gas pressure.
上記成膜方法において、まず、ZnSから構成される焼結体ターゲット(A)を用いて、アルゴンガス雰囲気下に、基板温度を300〜600℃、好ましくは350℃〜500℃の温度に保ちながら硫化亜鉛層を成膜する。すなわち、ZnSの成膜は室温でも可能であるが、室温で成膜された硫化亜鉛膜が加熱されるときには、ZnS結晶粒が生成し、それが基板から離脱しやすくなる。この離脱された粉末は、基板などに付着してピンホールの原因となる。スパッタリング時に上記温度範囲に基板を保持することにより、成膜された硫化亜鉛層と基板との密着性が向上するため、基板からのZnS結晶粒の離脱は改善される。
ここで用いるZnSはスパッタリング速度が速く、しかも組成ずれもおき難いのでスパッタリング法での成膜に好適な材料である。ここで、スパッタリング時の雰囲気としては、アルゴンガス雰囲気であるので、硫化水素を添加する場合のように、アルゴンプラズマで分解発生したイオウがチャンバー及び真空系を汚染する恐れがない。
In the film forming method, first, the sintered body target (A) composed of ZnS is used, and the substrate temperature is maintained at a temperature of 300 to 600 ° C., preferably 350 to 500 ° C. in an argon gas atmosphere. A zinc sulfide layer is formed. That is, although the ZnS film can be formed at room temperature, when the zinc sulfide film formed at room temperature is heated, ZnS crystal grains are generated and easily detached from the substrate. The detached powder adheres to the substrate and causes pinholes. By maintaining the substrate in the above temperature range during sputtering, the adhesion between the deposited zinc sulfide layer and the substrate is improved, so that the separation of ZnS crystal grains from the substrate is improved.
ZnS used here is a material suitable for film formation by sputtering because it has a high sputtering rate and hardly causes a compositional deviation. Here, since the atmosphere during sputtering is an argon gas atmosphere, there is no possibility that sulfur decomposed and generated by argon plasma will contaminate the chamber and the vacuum system as in the case of adding hydrogen sulfide.
上記焼結体ターゲット(A)の製造方法としては、特に限定されるものではなく、例えば、硫化亜鉛粉末を焼結する方法が用いられる。上記硫化亜鉛粉末としては、特に限定されるものではなく、純度99.9重量%以上、及び平均粒径3〜20μmの市販の粉末が用いられる。上記焼結方法としては、特に限定されるものではなく、例えば、硫化亜鉛粉末をカーボン製等の成形型に入れ、アルゴンガス雰囲気下でホットプレス中、或いは雰囲気制御可能な管状炉中で焼結する。上記焼結温度としては、850〜1200℃、好ましくは900〜1100℃である。すなわち、焼結温度が850℃未満では、焼結が進行しないため焼結体密度が低く、また焼結体強度も低いためターゲットとしての取り扱いが難しい。一方、焼結温度が1200℃を超えると、硫化亜鉛が昇華して、均一なターゲットが得られない。 The method for producing the sintered body target (A) is not particularly limited, and for example, a method of sintering zinc sulfide powder is used. The zinc sulfide powder is not particularly limited, and commercially available powder having a purity of 99.9% by weight or more and an average particle size of 3 to 20 μm is used. The sintering method is not particularly limited. For example, zinc sulfide powder is placed in a mold made of carbon or the like, and is sintered in a hot-pressed atmosphere under an argon gas atmosphere or in a tubular furnace whose atmosphere can be controlled. To do. As said sintering temperature, it is 850-1200 degreeC, Preferably it is 900-1100 degreeC. That is, when the sintering temperature is less than 850 ° C., the sintering does not proceed, so the density of the sintered body is low, and the strength of the sintered body is also low, so that it is difficult to handle as a target. On the other hand, when the sintering temperature exceeds 1200 ° C., zinc sulfide is sublimated and a uniform target cannot be obtained.
次いで、上記硫化亜鉛層の上に、上記BaAlEu合金から構成される焼結体ターゲット(B)を用いて、アルゴンガス雰囲気下に、基板温度を400〜650℃に保ちながらBaAlEu合金層をスパッタリング成膜する。この焼結体ターゲットは、金属ターゲットであるので、直流、高周波のどちらのスパッタリングでも成膜することができるので、高速に成膜することが可能である。ここで、スパッタリング時の雰囲気としては、アルゴンガス雰囲気であるので、硫化水素を添加する場合のように、アルゴンプラズマで分解発生したイオウがチャンバー及び真空系を汚染する恐れがない。 Next, a BaAlEu alloy layer is formed on the zinc sulfide layer by sputtering using the sintered body target (B) composed of the BaAlEu alloy while maintaining the substrate temperature at 400 to 650 ° C. in an argon gas atmosphere. Film. Since this sintered body target is a metal target, it can be formed by either direct current or high frequency sputtering, so that it can be formed at high speed. Here, since the atmosphere during sputtering is an argon gas atmosphere, there is no possibility that sulfur decomposed and generated by argon plasma contaminates the chamber and the vacuum system as in the case of adding hydrogen sulfide.
このときスパッタリング時に基板を400〜650℃の温度に加熱する。すなわち、基板の温度が400℃未満では、下地のZnS層と反応しない。一方、基板の温度が650℃を超えると、BaAlEu合金層中のバリウムが反応してZnS面側でBaSを形成し、一方表面側ではバリウムの蒸発が起こるため、組成が均一にならないので好ましくない。 At this time, the substrate is heated to a temperature of 400 to 650 ° C. during sputtering. That is, when the substrate temperature is less than 400 ° C., it does not react with the underlying ZnS layer. On the other hand, when the temperature of the substrate exceeds 650 ° C., barium in the BaAlEu alloy layer reacts to form BaS on the ZnS surface side, and vaporization of barium occurs on the other side, which is not preferable because the composition does not become uniform. .
上記BaAlEu合金から構成される焼結体ターゲット(B)としては、バリウム、アルミニウム、及びユウロピウムから構成される組成式:Bay1Aly2Euy3で表され、式中のy1〜y3は、y1+y3=1、1.5≦y2≦3.0、0.03≦y3≦0.10、の各要件を満たすものが用いられる。
ここで、y2に関しては、1.5≦y2≦3.0の要件を満足する。すなわち、y2が1.5未満では、最終的に得られる蛍光体膜に望まれる化合物相であるBaAl2S4が得られない。これは、過剰なアルミニウムは、アニール時に硫化アルミニウムとして蒸発するか、或いは亜鉛と反応してZnBaAl2S5となる。ただし、ZnBaAl2S5は、輝度への影響は少ないので、ZnS層の上に成膜されるBaAlEu合金層中のAlは過剰な組成であることが望ましい。一方、y2が3.0を超えると、最終的に得られる蛍光体膜にBaAl4S7相が残留するため輝度が低下する。
The sintered body target (B) composed of the BaAlEu alloy is represented by a composition formula composed of barium, aluminum, and europium: Ba y1 Al y2 Eu y3 , where y1 to y3 are y1 + y3 = Those satisfying the requirements of 1, 1.5 ≦ y2 ≦ 3.0 and 0.03 ≦ y3 ≦ 0.10 are used.
Here, regarding y2, the requirement of 1.5 ≦ y2 ≦ 3.0 is satisfied. That is, when y2 is less than 1.5, BaAl 2 S 4 which is a compound phase desired for the finally obtained phosphor film cannot be obtained. This is because excess aluminum evaporates as aluminum sulfide during annealing or reacts with zinc to become ZnBaAl 2 S 5 . However, since ZnBaAl 2 S 5 has little influence on the luminance, it is desirable that Al in the BaAlEu alloy layer formed on the ZnS layer has an excessive composition. On the other hand, when y2 exceeds 3.0, the luminance is lowered because the BaAl 4 S 7 phase remains in the finally obtained phosphor film.
上記焼結体ターゲット(B)の製造方法としては、特に限定されるものではなく、例えば、バリウム、アルミニウム、及びユウロピウムを所定量熔解して合金化する。次に、粉砕し、篩にかけて50〜200μmの原料粉末を作成する。この原料粉末を型詰めし、アルゴンガス雰囲気下で真空ホットプレスを用いて焼結する。 The method for producing the sintered body target (B) is not particularly limited, and for example, barium, aluminum, and europium are melted and alloyed by a predetermined amount. Next, it grind | pulverizes and sifts and produces 50-200 micrometers raw material powder. This raw material powder is packed and sintered using a vacuum hot press in an argon gas atmosphere.
続いて、上記BaAlEu合金層の上に、焼結体ターゲット(A)を用いて、基板温度を550〜720℃に保ちながらZnSをスパッタリングし、蛍光体薄膜を作成する。ここで、ZnSのスパッタリングは、次の化学式(1)を基本として、バリウムとアルミニウムの硫化を狙っている。
化学式(1):BaAl2+4ZnS=BaAl2S4+4Zn
なお、下地のZnS層の表面はBaAl2のスパッタ時に分解し、Baの一部を硫化するが、Alを硫化することは困難である。したがって、ZnSのスパッタ量は、該BaAlEu合金層中のバリウムのモル数の4.0〜4.2倍になるように調整することが望まれる。なお、スパッタ量は、室温でZnSとBaAlEu合金膜を別々に成膜して膜重量を測定してスパッタ速度を求め、スパッタ時間で調整した。
Subsequently, on the BaAlEu alloy layer, ZnS is sputtered while maintaining the substrate temperature at 550 to 720 ° C. using the sintered body target (A), thereby forming a phosphor thin film. Here, sputtering of ZnS aims at sulfurization of barium and aluminum based on the following chemical formula (1).
Chemical formula (1): BaAl 2 + 4ZnS = BaAl 2 S 4 + 4Zn
Note that the surface of the underlying ZnS layer is decomposed when BaAl 2 is sputtered, and a part of Ba is sulfided, but it is difficult to sulfide Al. Therefore, it is desirable to adjust the sputtering amount of ZnS so as to be 4.0 to 4.2 times the number of moles of barium in the BaAlEu alloy layer. The sputtering amount was adjusted by the sputtering time by separately forming a ZnS and BaAlEu alloy film at room temperature and measuring the film weight to determine the sputtering rate.
すなわち、ZnSのスパッタ量が、4.0未満ではBaAlEu合金層が硫化できない。一方、4.2倍を超えると、過剰なZnやZnSが膜中に残存するため好ましくない。また、基板温度が550℃未満では、硫化膜が作成できないため好ましくない。一方、基板温度が720℃を超えると、反応が均一に進行せず、部分的に焼けたような跡ができるため好ましくない。また、この温度範囲で、ZnSがBaAlEu合金と反応して生成するZnを蒸発させることができる。 That is, if the sputtering amount of ZnS is less than 4.0, the BaAlEu alloy layer cannot be sulfided. On the other hand, if it exceeds 4.2 times, excess Zn and ZnS remain in the film, which is not preferable. Moreover, if the substrate temperature is less than 550 ° C., a sulfide film cannot be formed, which is not preferable. On the other hand, when the substrate temperature exceeds 720 ° C., the reaction does not proceed uniformly, and a trace of partial burning is not preferable. Also, in this temperature range, Zn produced by the reaction of ZnS with the BaAlEu alloy can be evaporated.
以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた焼結体及び膜の組成、焼結体の組織、スパッタリングで得られた膜の蛍光の発光波長と輝度の評価方法は、以下の通りである。
(1)焼結体及び膜の組成の分析:ICP発光分析法で行った。
(2)焼結体の組織の同定:X線回折法(XRD)で行った。
(3)膜の蛍光の発光波長測定:分光蛍光強度計(ジャスコ製FP−6500ST)で測定し、ピーク波長を求めた。
(4)膜の輝度の測定:分光蛍光強度計(ジャスコ製FP−6500ST)で測定し、ピーク波長での発光強度を求めた。発光強度を相対比較して相対輝度とした。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. The sintered body and film composition used in the examples and comparative examples, the structure of the sintered body, and the fluorescence emission wavelength and luminance evaluation method of the film obtained by sputtering are as follows.
(1) Analysis of composition of sintered body and film: ICP emission analysis was performed.
(2) Identification of the structure of the sintered body: It was carried out by X-ray diffraction (XRD).
(3) Measurement of fluorescence emission wavelength of film: Measurement was carried out with a spectrofluorescence intensity meter (FP-6500ST manufactured by Jusco) to obtain a peak wavelength.
(4) Measurement of film luminance: Measured with a spectrofluorometer (FP-6500ST manufactured by Jusco), and the emission intensity at the peak wavelength was determined. Relative luminance was compared to obtain relative luminance.
また、実施例及び比較例で用いたスパッタリング方法としては、下記の[スパッタリング方法]の通りである。
[スパッタリング方法]
ターゲットをマグネトロンRFスパッタリング装置(ULVAC製、MB04−1055)のカソードに取り付けて、成膜を行った。ロータリーポンプで2Paまで引いた後、さらに分子ターボポンプで2×10−5Paまで真空に引いた。その後Arガスを入れてスパッタリング圧力0.35Pa、スパッタリングパワー(RF電力)100Wの条件で放電させた。
なお、ターゲットを取り付け後、約60分間プリスパッタを行って表面層を除去した。また、基板には2インチのシリコン基板を用い、得られるZnS層の膜厚が約300nm、またBaAlEu合金層の膜厚が約200nmとなるように成膜した。また、BaAlEu合金薄膜上への硫化亜鉛のスパッタ量は、各実施例又は比較例で所望量になるようにスパッタ時間を調整した。
The sputtering method used in the examples and comparative examples is as described in [Sputtering method] below.
[Sputtering method]
The target was attached to the cathode of a magnetron RF sputtering apparatus (manufactured by ULVAC, MB04-1055) to form a film. After pulling to 2 Pa with a rotary pump, the vacuum was further pulled to 2 × 10 −5 Pa with a molecular turbo pump. Thereafter, Ar gas was put in and discharged under the conditions of a sputtering pressure of 0.35 Pa and a sputtering power (RF power) of 100 W.
After the target was attached, pre-sputtering was performed for about 60 minutes to remove the surface layer. Further, a 2-inch silicon substrate was used as the substrate, and the resulting ZnS layer was formed to a thickness of about 300 nm and the BaAlEu alloy layer was formed to a thickness of about 200 nm. Moreover, the sputtering time was adjusted so that the sputtering amount of zinc sulfide on the BaAlEu alloy thin film became a desired amount in each example or comparative example.
また、実施例及び比較例で用いた焼結体ターゲット(A)、(B)は、それぞれ下記の製造方法により得られたものである。
[焼結体ターゲット(A)の製造]
まず、ZnS粉末(堺化学製)を用いて、これを遠心ボールミル(フリッチュ社製)で粉砕した後、真空ホットプレス(大亜真空製)を用いてアルゴンガス中1050℃の温度で焼結した。その後、得られた焼結体の表面を100μm研磨した後、直径2インチ(50mm)のターゲットを製造した。
Moreover, the sintered compact target (A) and (B) used by the Example and the comparative example were obtained with the following manufacturing method, respectively.
[Manufacture of sintered compact target (A)]
First, using ZnS powder (manufactured by Sakai Chemical), this was pulverized with a centrifugal ball mill (manufactured by Fritsch), and then sintered in a argon gas at a temperature of 1050 ° C. using a vacuum hot press (manufactured by Daiya Vacuum). . Thereafter, the surface of the obtained sintered body was polished by 100 μm, and then a target having a diameter of 2 inches (50 mm) was produced.
[焼結体ターゲット(B)の製造]
Ba(ケメタル製2N)とAl(高純度化学製4N)、Eu(高純度化学製3N)を所定量熔解して合金化した。次にスタンプミルで粉砕、篩にかけて50〜200μmの原料粉末を作成した。この原料粉末を型詰めし、真空ホットプレス(大亜真空製)を用いてアルゴンガス中850℃の温度で焼結した。その後、得られた焼結体の表面を100μm研磨した後、直径2インチ(50mm)のターゲットを製造した。ターゲットの組成はBay1Aly2Euy3として、y1=0.94、y2=2.2、y3=0.06であった。
[Manufacture of sintered compact target (B)]
Ba (2N made by Kemetall), Al (4N made by high-purity chemical), and Eu (3N made by high-purity chemical) were melted in predetermined amounts to form an alloy. Next, it was pulverized by a stamp mill and sieved to prepare a raw material powder of 50 to 200 μm. This raw material powder was packaged and sintered at a temperature of 850 ° C. in an argon gas using a vacuum hot press (manufactured by Daia Vacuum). Thereafter, the surface of the obtained sintered body was polished by 100 μm, and then a target having a diameter of 2 inches (50 mm) was produced. The composition of the target was Ba y1 Al y2 Eu y3 , and y1 = 0.94, y2 = 2.2, and y3 = 0.06.
(実施例1)
上記ターゲットを用いて、上記[スパッタリング方法]に従ってスパッタリングを行ない、基板温度400℃でZnS層を成膜し、次いでその上に基板温度600℃でBaAlEu合金層を成膜した。続いて、BaAlEu合金層の上に、基板温度を700℃にして、硫化亜鉛をスパッタリングして、蛍光体薄膜を得た。ここで、硫化亜鉛のスパッタ量としては、室温でZnSとBaAlEu合金膜を別々に成膜して膜重量を測定しスパッタ速度を求め、バリウムのモル数の4.0倍になるようにスパッタ時間を調整した。
その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。結果を、それぞれ表1、2、3に示す。なお、表1の組成は、BaとEuを加えたものを1.00として、組成比を示した。また、表2では、X線回折法での化合物のピークが、表中の記号で、○は検出されたこと、×は検出されないことを表す。
Example 1
Sputtering was performed using the above target in accordance with the above [Sputtering method] to form a ZnS layer at a substrate temperature of 400 ° C., and then a BaAlEu alloy layer was formed thereon at a substrate temperature of 600 ° C. Subsequently, a phosphor thin film was obtained by sputtering zinc sulfide on the BaAlEu alloy layer at a substrate temperature of 700 ° C. Here, the sputtering amount of zinc sulfide is such that ZnS and BaAlEu alloy films are separately formed at room temperature, the film weight is measured, the sputtering speed is obtained, and the sputtering time is set to 4.0 times the number of moles of barium. Adjusted.
Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. The results are shown in Tables 1, 2, and 3, respectively. In addition, the composition of Table 1 shows the composition ratio, assuming that Ba and Eu are added to 1.00. In Table 2, the peak of the compound in the X-ray diffraction method is a symbol in the table, where ◯ indicates that it is detected and × indicates that it is not detected.
(実施例2)
BaAlEu合金層上へ硫化亜鉛をスパッタリングする際の基板温度を600℃にしたこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。結果を、それぞれ表1、2、3に示す。
(Example 2)
A phosphor thin film was obtained in the same manner as in Example 1 except that the substrate temperature at the time of sputtering zinc sulfide onto the BaAlEu alloy layer was 600 ° C. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. The results are shown in Tables 1, 2, and 3, respectively.
(実施例3)
BaAlEu合金層の成膜時の基板温度を550℃にしたこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。結果を、それぞれ表1、2、3に示す。
(Example 3)
A phosphor thin film was obtained in the same manner as in Example 1 except that the substrate temperature during the formation of the BaAlEu alloy layer was 550 ° C. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. The results are shown in Tables 1, 2, and 3, respectively.
(実施例4)
ZnS層の成膜時の基板温度を500℃にしたこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。結果を、それぞれ表1、2、3に示す。
Example 4
A phosphor thin film was obtained in the same manner as in Example 1 except that the substrate temperature during the formation of the ZnS layer was 500 ° C. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. The results are shown in Tables 1, 2, and 3, respectively.
(実施例5)
BaAlEu合金層上へ硫化亜鉛をスパッタリングする際、上記硫化亜鉛のスパッタ量が4.15倍であったこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。結果を、それぞれ表1、2、3に示す。
(Example 5)
When zinc sulfide was sputtered onto the BaAlEu alloy layer, a phosphor thin film was obtained in the same manner as in Example 1 except that the sputtering amount of zinc sulfide was 4.15 times. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. The results are shown in Tables 1, 2, and 3, respectively.
(比較例1)
BaAlEu合金層上へ硫化亜鉛をスパッタリングする際の基板温度を760℃にしたこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。なお、得られた膜は中央部が変色し、膜が薄くなっていた。また、蛍光は疎らで均一な蛍光は観察されなかった。結果を、それぞれ表1、2、3に示す。
(Comparative Example 1)
A phosphor thin film was obtained in the same manner as in Example 1 except that the substrate temperature at the time of sputtering zinc sulfide onto the BaAlEu alloy layer was changed to 760 ° C. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. The obtained film was discolored in the center and the film was thin. Moreover, the fluorescence was sparse and uniform fluorescence was not observed. The results are shown in Tables 1, 2, and 3, respectively.
(比較例2)
BaAlEu合金層上へ硫化亜鉛をスパッタリングする際の基板温度を500℃にしたこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。なお、蛍光は観察されなかった。結果を、それぞれ表1、2、3に示す。
(Comparative Example 2)
A phosphor thin film was obtained in the same manner as in Example 1 except that the substrate temperature when sputtering zinc sulfide onto the BaAlEu alloy layer was 500 ° C. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. In addition, fluorescence was not observed. The results are shown in Tables 1, 2, and 3, respectively.
(比較例3)
BaAlEu合金層の成膜時の基板温度を300℃にしたこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。なお、蛍光は観察されなかった。結果を、それぞれ表1、2、3に示す。
(Comparative Example 3)
A phosphor thin film was obtained in the same manner as in Example 1 except that the substrate temperature during the formation of the BaAlEu alloy layer was 300 ° C. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. In addition, fluorescence was not observed. The results are shown in Tables 1, 2, and 3, respectively.
(比較例4)
BaAlEu合金層の成膜時の基板温度を700℃にしたこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。なお、蛍光は観察されなかった。結果を、それぞれ表1、2、3に示す。
(Comparative Example 4)
A phosphor thin film was obtained in the same manner as in Example 1 except that the substrate temperature during the formation of the BaAlEu alloy layer was 700 ° C. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. In addition, fluorescence was not observed. The results are shown in Tables 1, 2, and 3, respectively.
(比較例5)
ZnS層の成膜時の基板温度を100℃にしたこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。膜は部分的に剥離したため評価することができなかった。
(Comparative Example 5)
A phosphor thin film was obtained in the same manner as in Example 1 except that the substrate temperature during the formation of the ZnS layer was 100 ° C. The film could not be evaluated because it partially peeled.
(比較例6)
ZnS層の成膜時の基板温度を650℃にしたこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。なお、蛍光は観察されなかった。結果を、それぞれ表1、2、3に示す。
(Comparative Example 6)
A phosphor thin film was obtained in the same manner as in Example 1 except that the substrate temperature during the formation of the ZnS layer was 650 ° C. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. In addition, fluorescence was not observed. The results are shown in Tables 1, 2, and 3, respectively.
(比較例7)
BaAlEu合金層上へ硫化亜鉛をスパッタリングする際、上記硫化亜鉛のスパッタ量が3.5であったこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。結果を、それぞれ表1、2、3に示す。
(Comparative Example 7)
When sputtering zinc sulfide onto the BaAlEu alloy layer, a phosphor thin film was obtained in the same manner as in Example 1 except that the sputtering amount of zinc sulfide was 3.5. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. The results are shown in Tables 1, 2, and 3, respectively.
(比較例8)
BaAlEu合金層上へ硫化亜鉛をスパッタリングする際、上記硫化亜鉛のスパッタ量が4.5であったこと以外は実施例1と同様に行ない、蛍光体薄膜を得た。その後、上記評価方法に従って、得られた膜の組成、膜の組織、及び膜の蛍光の発光波長と輝度とを求めた。結果を、それぞれ表1、2、3に示す。
(Comparative Example 8)
When sputtering zinc sulfide onto the BaAlEu alloy layer, a phosphor thin film was obtained in the same manner as in Example 1 except that the sputtering amount of zinc sulfide was 4.5. Then, according to the said evaluation method, the composition of the obtained film | membrane, the structure | tissue of a film | membrane, and the fluorescence emission wavelength and the brightness | luminance of the film | membrane were calculated | required. The results are shown in Tables 1, 2, and 3, respectively.
(比較例9)
従来法による成膜状況を確認するため、上記焼結体ターゲット(B)を用いて、基板温度を600℃とし、硫化水素ガスを0.5Pa流し、さらにArガスを加えてガス圧を0.8Pa、RFパワー100ワットで成膜を行った。
その結果、蛍光体層成膜速度は、実施例1のBaAlEu合金層の成膜速度と比較すると22%と低かった。また、硫化水素がプラズマで分解されるため、成膜直後に真空度を測定するイオンゲージが点灯できない、またスパッタを2時間行うと排気用の配管にイオウが付着する等の問題があった。すなわち、このような従来法による硫化水素ガス中のスパッタリング法では、イオウによるトラブルが発生するとともに、成膜速度が著しく低くかった。
(Comparative Example 9)
In order to confirm the state of film formation according to the conventional method, the sintered body target (B) is used, the substrate temperature is set to 600 ° C., hydrogen sulfide gas is allowed to flow at 0.5 Pa, Ar gas is further added, and the gas pressure is set to 0. Film formation was performed at 8 Pa and RF power of 100 watts.
As a result, the phosphor layer deposition rate was as low as 22% compared to the deposition rate of the BaAlEu alloy layer of Example 1. In addition, since hydrogen sulfide is decomposed by plasma, there is a problem that an ion gauge for measuring a vacuum degree cannot be turned on immediately after film formation, and sulfur is attached to an exhaust pipe when sputtering is performed for 2 hours. That is, in the sputtering method in hydrogen sulfide gas by such a conventional method, troubles due to sulfur occurred and the film formation rate was extremely low.
表1、2、3より、実施例1〜5では、ターゲット、雰囲気、基板温度等の成膜条件で本発明の方法に従って行われ、形成された蛍光体薄膜の化合物組織がBaAl2S4相の単相であり、かつ膜の組成が本発明の条件を満足しているので、蛍光の発光波長の長波長へのシフトが小さく、かつ輝度が高い特性を有することが分かる。これにより、色純度が良く、かつ高輝度の蛍光体薄膜が達成される。なお、実施例1〜5では、硫化水素ガスを用いないので、これに伴うトラブルは発生しなかった。 From Tables 1, 2, and 3, in Examples 1 to 5, the compound structure of the phosphor thin film formed according to the method of the present invention under the film forming conditions such as the target, atmosphere, and substrate temperature is the BaAl 2 S 4 phase. It can be seen that since the composition of the film satisfies the conditions of the present invention, the shift of the fluorescence emission wavelength to a long wavelength is small and the luminance is high. Thereby, a phosphor thin film with good color purity and high brightness is achieved. In Examples 1-5, since hydrogen sulfide gas was not used, troubles associated therewith did not occur.
これに対して、比較例1〜4、6〜8では、成膜時の基板温度又は硫化亜鉛のスパッタ量のいずれかが本発明の方法の条件に従って行われなかったので、膜の組成又は化合物組織において満足すべき結果が得られないことが分かる。そのため、蛍光は観察されても、微弱であった。また、比較例5では、膜が部分的に剥離したため評価することができなかった。 On the other hand, in Comparative Examples 1-4 and 6-8, either the substrate temperature during film formation or the sputtering amount of zinc sulfide was not performed according to the conditions of the method of the present invention. It turns out that satisfactory results are not obtained in the organization. Therefore, even if the fluorescence was observed, it was weak. In Comparative Example 5, the film could not be evaluated because the film was partially peeled off.
以上より明らかなように、本発明の蛍光体膜とその成膜方法は、無機EL及びPDP用として色純度が良く、高い輝度の蛍光体薄膜とその成膜方法として好適である。 As is clear from the above, the phosphor film of the present invention and the film forming method thereof are suitable for inorganic EL and PDPs and have a good color purity and a high-luminance phosphor thin film and a film forming method thereof.
Claims (2)
Znx0Bax1Alx2Sx3Eux4
(式中、x0〜x4は、下記の(1)〜(5)に示す要件を満たす。)
で表される硫化物から形成される蛍光体薄膜であって、
その化合物組織は、組成式:BaAl2S4:Euで表される化合物相を主体として含む相からなることを特徴とする蛍光体薄膜。
(1) 0.01≦x0≦0.02
(2) x1+x4=1
(3) 2.01≦x2≦3.0
(4) 4.0<x3≦4.3
(5) 0.03≦x4≦0.10 The following composition formula consisting of zinc, barium, aluminum, sulfur and europium:
Zn x0 Ba x1 Al x2 S x3 Eu x4
(In the formula, x0 to x4 satisfy the requirements shown in the following (1) to (5).)
A phosphor thin film formed from a sulfide represented by:
A phosphor thin film characterized in that the compound structure is composed of a phase mainly comprising a compound phase represented by a composition formula: BaAl 2 S 4 : Eu.
(1) 0.01 ≦ x0 ≦ 0.02
(2) x1 + x4 = 1
(3) 2.01 ≦ x2 ≦ 3.0
(4) 4.0 <x3 ≦ 4.3
(5) 0.03 ≦ x4 ≦ 0.10
(A)硫化亜鉛から構成される。
(B)バリウム、アルミニウム、及びユウロピウムから構成される組成式:Bay1Aly2Euy3 (但し、式中、y1〜y3は、y1+y3=1、1.5≦y2≦3.0、0.03≦y3≦0.10、の各要件を満たす。)で表される合金から構成される。 Using the following sintered body target (A), a zinc sulfide layer was formed while maintaining the substrate temperature at 300 to 600 ° C. in an argon gas atmosphere, and then the following sintering was performed on the zinc sulfide layer. Using the body target (B), a BaAlEu alloy layer was formed by sputtering while maintaining the substrate temperature at 400 to 650 ° C. in an argon gas atmosphere. Subsequently, the following sintered body was formed on the BaAlEu alloy layer. Using target (A), while maintaining the substrate temperature at 550 to 720 ° C., the amount of zinc sulfide sputtered was 4.0 to 4.2 times the number of moles of barium in the BaAlEu alloy layer. The method for forming a phosphor thin film according to claim 1, wherein zinc is sputtered.
(A) It is comprised from zinc sulfide.
(B) barium, aluminum, and the composition formula consists europium: Ba y1 Al y2 Eu y3 (In the formula, Y1 to Y3 are, y1 + y3 = 1,1.5 ≦ y2 ≦ 3.0,0.03 ≦ y3 ≦ 0.10 is satisfied.).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007245075A JP2009073965A (en) | 2007-09-21 | 2007-09-21 | Phosphor thin film and film forming method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007245075A JP2009073965A (en) | 2007-09-21 | 2007-09-21 | Phosphor thin film and film forming method of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009073965A true JP2009073965A (en) | 2009-04-09 |
Family
ID=40609262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007245075A Pending JP2009073965A (en) | 2007-09-21 | 2007-09-21 | Phosphor thin film and film forming method of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009073965A (en) |
-
2007
- 2007-09-21 JP JP2007245075A patent/JP2009073965A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | The mechanisms of blue emission from ZnO films deposited on glass substrate by rf magnetron sputtering | |
TWI294906B (en) | ||
JP2006509911A (en) | Composite sputtering target and phosphor deposition method | |
Bae et al. | Photoluminescence characteristics of Li-doped Y2O3: Eu3+ thin film phosphors | |
WO2005085493A1 (en) | Reactive metal sources and deposition method for thioaluminate phosphors | |
JP4827099B2 (en) | Powder phosphor and method for manufacturing the same, and light emitting device, display device and fluorescent lamp having powder phosphor | |
JP2009073965A (en) | Phosphor thin film and film forming method of the same | |
Chung et al. | Luminescent properties of CaTiO3: Pr thin-film phosphor deposited on ZnO/ITO/glass substrate | |
US7556721B2 (en) | Thiosilicate phosphor compositions and deposition methods using barium-silicon vacuum deposition sources for deposition of thiosilicate phosphor films | |
JP2011021159A (en) | Thin film and film-depositing method, and thin film phosphor obtained by the method | |
JPH0760738B2 (en) | Method for manufacturing electroluminescent light-emitting film | |
JP2007146034A (en) | Thin film of fluorescent substance and method for forming film thereof | |
JP2008156495A (en) | Fluorophor thin film and method of forming the same | |
JP5339683B2 (en) | Method of manufacturing phosphor film using multi-source vacuum deposition method | |
Choi et al. | Cathode luminescence characteristics of ZnGa2O4 phosphor thin films with the doped activator | |
JP4457972B2 (en) | Sulfide sintered body target and manufacturing method thereof | |
JP2007153996A (en) | Method for producing fluorescent substance and fluorescent substance produced thereby | |
Kim et al. | Enhancement of cathodoluminescence of ZnGa 2 O 4: Mn thin-film phosphor by energetic particle bombardment | |
JP2007308629A (en) | Fluorophor thin film and film forming method of the same | |
Jeong et al. | Enhanced green emission in ZnGa 2 O 4: Mn thin film phosphors by Se doping | |
Yi et al. | Photoluminescence behavior of ZnGa2O4− xSex: Mn2+ thin film phosphors | |
JP2006265449A (en) | Sulfide sintered compact target and its production method | |
JP5145490B2 (en) | Method for manufacturing phosphor for inorganic EL | |
Yang et al. | Efficiency enhancement by aluminum addition to CaTiO3: Pr3+ phosphor thin films | |
JP2006335915A (en) | Powdery phosphor, method for producing the same and luminescent device using the same |