JP2009071105A - Variable resistor element, and memory device - Google Patents

Variable resistor element, and memory device Download PDF

Info

Publication number
JP2009071105A
JP2009071105A JP2007239011A JP2007239011A JP2009071105A JP 2009071105 A JP2009071105 A JP 2009071105A JP 2007239011 A JP2007239011 A JP 2007239011A JP 2007239011 A JP2007239011 A JP 2007239011A JP 2009071105 A JP2009071105 A JP 2009071105A
Authority
JP
Japan
Prior art keywords
electrodes
limit value
electric field
variable resistance
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007239011A
Other languages
Japanese (ja)
Other versions
JP5194667B2 (en
Inventor
Tsunenori Shiimoto
恒則 椎本
Shuichiro Yasuda
周一郎 保田
Satoshi Sasaki
智 佐々木
Katsuhisa Araya
勝久 荒谷
Tomohito Tsushima
朋人 対馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007239011A priority Critical patent/JP5194667B2/en
Publication of JP2009071105A publication Critical patent/JP2009071105A/en
Application granted granted Critical
Publication of JP5194667B2 publication Critical patent/JP5194667B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable resistor element which can get rid of an increase of an erase time even if increasing an area to increase the rewritable number of time. <P>SOLUTION: The variable resistor element includes electrodes 11, 14 opposed each other and a variable resistor layer which is formed at least in the opposed region of electrodes 11, 14 and its resistance value changes corresponding to the direction of electric field produced between the electrodes 11, 14 by applying a voltage to electrodes 11, 14. The electrodes 11, 14 have a shape different from a perfect circle or a square. When deforming the opposed portion of the electrodes 11, 14 to a perfect circle or a square which has an area same as the area of the opposed portion of the electrodes 11, 14. The electrodes have a shape and size so that a difference between an upper limit value and lower limit value of inside strength distribution of the electric field produced in the opposed region of electrodes 11, 14 is smaller than a difference between an upper limit value and lower limit value of inside strength distribution of the electric field produced in the deformed opposed region of its two electrodes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、印加された電場の向きに応じて抵抗値の変化する可変抵抗層を有する可変抵抗素子およびそれを備えた記憶装置に関する。   The present invention relates to a variable resistance element having a variable resistance layer whose resistance value changes according to the direction of an applied electric field, and a memory device including the variable resistance element.

コンピュータ等の情報機器においては、高速動作の可能な高密度のDRAM(Dynamic Random Access Memory)が広く用いられている。しかし、DRAMにおいては、電子機器に用いられる一般的な論理回路や信号処理回路などと比較して製造プロセスが複雑なため、製造コストが高いという問題がある。また、DRAMは、電源を切ると情報が消えてしまう揮発性メモリであり、頻繁にリフレッシュ動作を行う必要がある。   In information devices such as computers, a high-density DRAM (Dynamic Random Access Memory) capable of high-speed operation is widely used. However, a DRAM has a problem that its manufacturing cost is high because a manufacturing process is more complicated than a general logic circuit or signal processing circuit used in an electronic device. A DRAM is a volatile memory in which information is lost when the power is turned off, and it is necessary to frequently perform a refresh operation.

そこで、電源を切っても情報の消えない不揮発性メモリとして、例えば、FeRAM(Ferroelectric Random Access Memory;強誘電体メモリ)や、MRAM(Magnetoresistive Random Access Memory;磁気記憶素子)などが提案されている。これらのメモリでは、電力を供給しなくても書き込んだ情報を長時間保持し続けることが可能であり、また、リフレッシュ動作を行う必要がないので、その分だけ消費電力を低減することができる。しかし、FeRAMにおいては微細化が容易ではないという問題があり、MRAMにおいては書き込み電流が大きいという問題があった(例えば、非特許文献1参照。)。     Thus, for example, FeRAM (Ferroelectric Random Access Memory) and MRAM (Magnetoresistive Random Access Memory) have been proposed as non-volatile memories whose information does not disappear even when the power is turned off. In these memories, it is possible to keep the written information for a long time without supplying power, and it is not necessary to perform a refresh operation, so that power consumption can be reduced correspondingly. However, FeRAM has a problem that miniaturization is not easy, and MRAM has a problem that a write current is large (see, for example, Non-Patent Document 1).

そこで、データの書込み速度の高速化に適したメモリとして、例えば、図11、図12に示したような新しいタイプの記憶装置が提案されている。   Thus, for example, a new type of storage device as shown in FIGS. 11 and 12 has been proposed as a memory suitable for increasing the data writing speed.

図11は、新しいタイプの記憶装置のメモリセル100を拡大して表したものである。このメモリセル100は、可変抵抗素子110と、トランジスタ120(スイッチング素子)とを備えている。図12は、可変抵抗素子110の断面構成を表したものである。可変抵抗素子110は、電極111、導体膜112、絶縁体膜113および電極114をこの順に積層して形成されたものである。電極111がソース線Sに電気的に接続され、電極114がトランジスタ120のドレイン(図示せず)に電気的に接続されている。トランジスタ120のソース(図示せず)がビット線Bに電気的に接続され、トランジスタ120のゲート(図示せず)がワード線Wに電気的に接続されている。   FIG. 11 is an enlarged view of the memory cell 100 of a new type of storage device. The memory cell 100 includes a variable resistance element 110 and a transistor 120 (switching element). FIG. 12 illustrates a cross-sectional configuration of the variable resistance element 110. The variable resistance element 110 is formed by laminating an electrode 111, a conductor film 112, an insulator film 113, and an electrode 114 in this order. The electrode 111 is electrically connected to the source line S, and the electrode 114 is electrically connected to the drain (not shown) of the transistor 120. A source (not shown) of the transistor 120 is electrically connected to the bit line B, and a gate (not shown) of the transistor 120 is electrically connected to the word line W.

この記憶装置では、導体膜112から絶縁体膜113に向かって電流が流れるように電極114および電極111に電圧を印加すると、絶縁体膜113が低抵抗に変化してデータが書き込まれ、絶縁体膜113から導体膜112に向かって電流が流れるように電極114および電極111に電圧を印加すると、絶縁体膜113が高抵抗に変化してデータが消去される。   In this memory device, when a voltage is applied to the electrode 114 and the electrode 111 so that a current flows from the conductor film 112 toward the insulator film 113, the insulator film 113 changes to a low resistance and data is written. When a voltage is applied to the electrode 114 and the electrode 111 so that a current flows from the film 113 toward the conductor film 112, the insulator film 113 changes to a high resistance and data is erased.

この記憶装置では、従来の不揮発性メモリ等と比較して、単純な構造でメモリセルを構成することができるため、素子のサイズ依存性がなく、大きい信号を得ることができるため、スケーリングに強いという特長を有する。また、抵抗変化によるデータ書込み速度を例えば5ナノ秒程度と速くすることができ、また低電圧(例えば1V程度)かつ低電流(例えば20μA程度)で動作させることができるという利点を有する。   In this memory device, a memory cell can be configured with a simple structure as compared with a conventional non-volatile memory or the like, so that a large signal can be obtained without depending on the size of the element, so that it is resistant to scaling. It has the feature. In addition, the data writing speed due to the resistance change can be increased to, for example, about 5 nanoseconds, and it can be operated at a low voltage (for example, about 1 V) and a low current (for example, about 20 μA).

日経エレクトロニクス,2007.7.16号,p.98Nikkei Electronics, 2007.7.7.16, p. 98

しかし、上記した新しいタイプの記憶装置では、導体膜112および絶縁体膜113の材料や製法によっては、書換え可能回数が少なくなる場合がある。ここで、書換え回数とは、可変抵抗素子110に対して書込および消去を繰り返し行うことを指しており、書換え可能回数とは、例えば、図13に示したように、書込抵抗Rwと、消去抵抗Reとの差が急激に減少したときの書換え回数を指している。もっとも、上記のような場合には、図14に示したように、セル面積を大きくする(図14の横軸の右側に変位させる)ことにより、書換え可能回数を増やすことが可能ではあるが、ただ漫然と面積を大きくすると消去時間が極端に増大してしまうという問題があった。   However, in the above-described new type of memory device, the number of rewritable times may be reduced depending on the material and manufacturing method of the conductor film 112 and the insulator film 113. Here, the number of rewrites refers to repeated writing and erasing with respect to the variable resistance element 110, and the number of rewritable times includes, for example, the write resistance Rw, as shown in FIG. This indicates the number of times of rewriting when the difference from the erasing resistance Re decreases rapidly. However, in the above case, as shown in FIG. 14, it is possible to increase the number of rewritable times by increasing the cell area (displacement to the right side of the horizontal axis in FIG. 14). However, there was a problem that the erase time would increase drastically if the area was increased.

本発明はかかる問題点に鑑みてなされたもので、その目的は、書換え繰返し回数を大きくするためにセル面積を大きくした場合であっても、消去時間の増大量を少なくすることの可能な可変抵抗素子およびそれを備えた記憶装置を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a variable that can reduce the increase in erase time even when the cell area is increased in order to increase the number of rewrite cycles. It is an object to provide a resistance element and a memory device including the resistance element.

本発明の可変抵抗素子は、少なくとも一部が互いに近接して対向する2つの電極と、少なくとも2つの電極の近接対向領域内に形成され、かつ2つの電極に電圧を印加することにより2つの電極の間に生じる電場の向きに応じて抵抗値が変化する可変抵抗層とを備えたものである。ここで、2つの電極の近接対向部分は、真円形および正方形とは異なる形状となっている。さらに、2つの電極の近接対向部分は、2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差が、2つの電極の近接対向部分を2つの電極の近接対向部分の面積と等しい面積を有する真円形または正方形に変形したときに、その変形した2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差よりも小さくなるような形状および大きさとなっている。   The variable resistance element according to the present invention includes at least a part of two electrodes facing each other in close proximity to each other, and at least two electrodes formed in a close facing region of the two electrodes, and applying two voltages to the two electrodes And a variable resistance layer whose resistance value changes according to the direction of the electric field generated between the two. Here, the adjacent opposing portions of the two electrodes have a shape different from a perfect circle and a square. Further, the proximity facing portion of the two electrodes has a difference between the upper limit value and the lower limit value of the in-plane intensity distribution of the electric field generated in the proximity facing region of the two electrodes. More than the difference between the upper limit value and the lower limit value of the in-plane intensity distribution of the electric field generated in the proximity facing region of the two deformed electrodes when deformed into a perfect circle or square having the same area as the area of the proximity facing portion The shape and size are small.

本発明の記憶装置は、上記可変抵抗素子と、上記可変抵抗素子の一方の電極に電気的に接続された第1配線と、上記可変抵抗素子の他方の電極に電気的に接続された第2配線と、第1配線に直列挿入され、かつ2つの電極の間に印加する電圧を制御するスイッチング素子とを備えたものである。   The memory device of the present invention includes the variable resistance element, a first wiring electrically connected to one electrode of the variable resistance element, and a second wiring electrically connected to the other electrode of the variable resistance element. A wiring and a switching element that is inserted in series with the first wiring and that controls a voltage applied between the two electrodes are provided.

本発明の可変抵抗素子および記憶装置では、2つの電極の近接対向部分は、真円形および正方形とは異なる形状となっており、さらに、2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差が、2つの電極の近接対向部分を2つの電極の近接対向部分の面積と等しい面積を有する真円形または正方形に変形したときに、その変形した2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差よりも小さくなるような形状および大きさとなっている。これにより、2つの電極の端縁への電界集中が緩和するので、可変抵抗層に印加される電界の面内強度分布がより均一となり、かつ可変抵抗層に印加される電界の強度の平均値がより大きくなる。   In the variable resistance element and the storage device of the present invention, the proximity facing portion of the two electrodes has a shape different from a perfect circle and a square, and further, the in-plane strength of the electric field generated in the proximity facing region of the two electrodes When the difference between the upper limit value and the lower limit value of the distribution deforms the proximity facing portion of the two electrodes into a perfect circle or square having an area equal to the area of the proximity facing portion of the two electrodes, the two deformed electrodes The shape and size are smaller than the difference between the upper limit value and the lower limit value of the in-plane intensity distribution of the electric field generated in the adjacent opposing region. Thereby, since the electric field concentration on the edges of the two electrodes is relaxed, the in-plane intensity distribution of the electric field applied to the variable resistance layer becomes more uniform, and the average value of the electric field strength applied to the variable resistance layer Becomes larger.

本発明の可変抵抗素子および記憶装置によれば、可変抵抗層に印加される電界の面内強度分布がより均一となり、かつ可変抵抗層に印加される電界の強度の平均値がより大きくなるようにしたので、書換え繰返し回数を大きくするためにセル面積を大きくした場合であっても、消去時間の増大量を少なくすることができる。   According to the variable resistance element and the memory device of the present invention, the in-plane intensity distribution of the electric field applied to the variable resistance layer becomes more uniform, and the average value of the electric field strength applied to the variable resistance layer becomes larger. Therefore, even if the cell area is increased in order to increase the number of rewrite cycles, the increase in the erase time can be reduced.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の一実施の形態に係る記憶装置は、メモリセル1を記憶単位としてマトリクス状に配置したものである。図1は、この記憶装置のメモリセル1を拡大して表したものである。このメモリセル1は、可変抵抗素子10と、トランジスタ20(スイッチング素子)とを備えている。   A storage device according to an embodiment of the present invention is configured by arranging memory cells 1 as a storage unit in a matrix. FIG. 1 is an enlarged view of the memory cell 1 of this storage device. The memory cell 1 includes a variable resistance element 10 and a transistor 20 (switching element).

図2は、可変抵抗素子10の断面構成を表したものである。可変抵抗素子10は、電極11、導体膜12、絶縁体膜13(可変抵抗層)および電極14をこの順に積層して形成されたものである。電極11がソース線Sに電気的に接続され、電極14がトランジスタ20のドレイン(図示せず)に電気的に接続されている。トランジスタ20のソース(図示せず)がビット線Bに電気的に接続され、トランジスタ20のゲート(図示せず)がワード線Wに電気的に接続されている。   FIG. 2 illustrates a cross-sectional configuration of the variable resistance element 10. The variable resistance element 10 is formed by laminating an electrode 11, a conductor film 12, an insulator film 13 (variable resistance layer), and an electrode 14 in this order. The electrode 11 is electrically connected to the source line S, and the electrode 14 is electrically connected to the drain (not shown) of the transistor 20. The source (not shown) of the transistor 20 is electrically connected to the bit line B, and the gate (not shown) of the transistor 20 is electrically connected to the word line W.

ここで、電極11,14は、例えば、アルミニウム(Al)、銅(Cu)、タングステン(W)などの金属材料により構成されている。絶縁体膜13は、例えば、金属材料、希土類元素、これらの混合物の酸化物あるいは窒化物、または半導体材料からなり、後述するように2つの電極(電極11,14)に電圧を印加することにより2つの電極の間に生じる電場の向きに応じて抵抗値が変化する機能を有している。   Here, the electrodes 11 and 14 are made of, for example, a metal material such as aluminum (Al), copper (Cu), or tungsten (W). The insulator film 13 is made of, for example, a metal material, a rare earth element, an oxide or nitride of a mixture thereof, or a semiconductor material, and a voltage is applied to the two electrodes (electrodes 11 and 14) as described later. It has a function of changing the resistance value in accordance with the direction of the electric field generated between the two electrodes.

導体膜12は、例えば、Cu、AgおよびZnのうち少なくとも一種類の金属元素と、Te、SおよびSeのうち少なくとも一種類のカルコゲン元素とを含んで構成されており、例えば、CuTeSi、GeSbTeSi、CuGeTeSi、AgGeTeSi、AgTeSi、ZnTeSi、ZnGeTeSi、CuSSi、CuGeSSi、CuSeSi、CuGeSeSi等からなる。   The conductor film 12 includes, for example, at least one metal element of Cu, Ag, and Zn and at least one chalcogen element of Te, S, and Se. For example, the CuTeSi, GeSbTeSi, It consists of CuGeTeSi, AgGeTeSi, AgTeSi, ZnTeSi, ZnGeTeSi, CuSSi, CuGeSSi, CuSeSi, CuGeSeSi and the like.

ここで、Cu、Ag、Znは、陽イオンとなったときに、導体膜12内や、絶縁体膜13内を移動しやすい元素である。また、Teは、導体膜12の抵抗値を、可変抵抗素子10がオンしたときの絶縁体膜13の抵抗値よりも小さくすることの可能な元素である。そのため、導体膜12において、カルコゲン元素としてTeを用いた場合には、抵抗値が大きく変化する部分を絶縁体膜13に限定することができ、メモリ動作の安定性を向上させることができる。また、導体膜12において、陽イオンとなる元素としてCuを用い、さらに、カルコゲン元素としてTeを用いた場合には、導体膜12の抵抗値を、可変抵抗素子10がオンしたときの絶縁体膜13の抵抗値よりも十分に小さくすることができるので、メモリ動作の安定性をより向上させることができる。   Here, Cu, Ag, and Zn are elements that easily move in the conductor film 12 and the insulator film 13 when they become cations. Te is an element that can make the resistance value of the conductor film 12 smaller than the resistance value of the insulator film 13 when the variable resistance element 10 is turned on. Therefore, in the conductor film 12, when Te is used as the chalcogen element, the portion where the resistance value greatly changes can be limited to the insulator film 13, and the stability of the memory operation can be improved. Further, when Cu is used as the cation element in the conductor film 12 and Te is used as the chalcogen element, the resistance value of the conductor film 12 is set to the insulator film when the variable resistance element 10 is turned on. Since it can be made sufficiently smaller than the resistance value of 13, the stability of the memory operation can be further improved.

また、Siは、導体膜12を非晶質化し、導体膜12の結晶化温度を上昇させることの可能な元素である。そのため、導体膜12にSiを適当量含有させた場合には、プロセス時に受ける熱などによる結晶化等の状態変化が抑制され、メモリ動作の安定性を向上させることができる。   Si is an element capable of making the conductor film 12 amorphous and increasing the crystallization temperature of the conductor film 12. Therefore, when an appropriate amount of Si is contained in the conductor film 12, a change in state such as crystallization due to heat received during the process is suppressed, and the stability of the memory operation can be improved.

本実施の形態の記憶装置(メモリセル1)の動作について説明する。   The operation of the memory device (memory cell 1) of this embodiment will be described.

(書き込み)
電極14に負電位(−電位)を印加すると共に、電極11に正電位(+電位)またはゼロ電位を印加して、導体膜12から絶縁体膜13に向かって電流を流すと、導体膜12から、Cu、AgおよびZnのうち少なくとも一種類の金属元素がイオン化して絶縁体膜13内を拡散していき、電極14側で電子と結合して析出したり、あるいは、絶縁体膜13の内部に拡散した状態で留まる。その結果、絶縁体膜13の内部に、Cu、AgおよびZnのうち少なくとも一種類の金属元素を多量に含む電流パスが形成されたり、もしくは、絶縁体膜13の内部に、Cu、AgおよびZnのうち少なくとも一種類の金属元素による欠陥が多数形成され、絶縁体膜13の抵抗値が低くなる。このとき、導体膜12の抵抗値は、絶縁体膜13の記録前の抵抗値に比べて元々低いので、絶縁体膜13の抵抗値が低くなることにより、可変抵抗素子10全体の抵抗値も低くなる(つまり、可変抵抗素子10がオンする)。なお、このときの可変抵抗素子10全体の抵抗が書込抵抗となる。
(writing)
When a negative potential (−potential) is applied to the electrode 14 and a positive potential (+ potential) or a zero potential is applied to the electrode 11, and a current flows from the conductor film 12 toward the insulator film 13, the conductor film 12. Then, at least one metal element of Cu, Ag, and Zn is ionized and diffuses in the insulator film 13 and is combined with electrons on the electrode 14 side and deposited, or the insulator film 13 It stays diffused inside. As a result, a current path containing a large amount of at least one metal element of Cu, Ag, and Zn is formed in the insulator film 13, or Cu, Ag, and Zn are formed in the insulator film 13. Among them, a large number of defects due to at least one metal element are formed, and the resistance value of the insulator film 13 is lowered. At this time, since the resistance value of the conductor film 12 is originally lower than the resistance value of the insulator film 13 before recording, the resistance value of the variable resistance element 10 as a whole is also reduced by reducing the resistance value of the insulator film 13. (Ie, the variable resistance element 10 is turned on). Note that the resistance of the entire variable resistance element 10 at this time is the writing resistance.

その後、電極11,14に印加されている電圧をゼロにして、可変抵抗素子10にかかる電圧をゼロにすると、可変抵抗素子10の抵抗値が低くなった状態で保持される。このようにして、情報の記録(書き込み)が行われる。   Thereafter, when the voltage applied to the electrodes 11 and 14 is set to zero and the voltage applied to the variable resistance element 10 is set to zero, the resistance value of the variable resistance element 10 is held in a low state. In this way, information is recorded (written).

(消去)
次に、電極14に正電位(+電位)を印加すると共に、電極11に負電位(−電位)またはゼロ電位を印加して、絶縁体膜13から導体膜12に向かって電流を流すと、絶縁体膜13内に形成されていた電流パス、あるいは不純物準位を構成する、Cu、AgおよびZnのうち少なくとも一種類の金属元素がイオン化して、絶縁体膜13内を移動して導体膜12側に戻る。その結果、絶縁体膜13内から、電流パス、もしくは、欠陥が消滅して、絶縁体膜13の抵抗値が高くなる。このとき、導体膜12の抵抗値は元々低いので、絶縁体膜13の抵抗値が高くなることにより、可変抵抗素子10全体の抵抗値も高くなる(つまり、可変抵抗素子10がオフする)。なお、このときの可変抵抗素子10全体の抵抗が消去抵抗となる。
(Erase)
Next, when a positive potential (+ potential) is applied to the electrode 14 and a negative potential (−potential) or zero potential is applied to the electrode 11, and a current flows from the insulator film 13 toward the conductor film 12, At least one kind of metal element of Cu, Ag and Zn constituting the current path or impurity level formed in the insulator film 13 is ionized and moves in the insulator film 13 to be a conductor film. Return to the 12th side. As a result, the current path or the defect disappears from the insulator film 13 and the resistance value of the insulator film 13 is increased. At this time, since the resistance value of the conductive film 12 is originally low, the resistance value of the entire variable resistance element 10 is also increased by increasing the resistance value of the insulator film 13 (that is, the variable resistance element 10 is turned off). Note that the resistance of the entire variable resistance element 10 at this time is an erasing resistor.

その後、電極11,14に印加されている電圧をゼロにして、可変抵抗素子10にかかる電圧をゼロにすると、可変抵抗素子10の抵抗値が高くなった状態で保持される。このようにして、記録された情報の消去が行われる。   Thereafter, when the voltage applied to the electrodes 11 and 14 is set to zero and the voltage applied to the variable resistance element 10 is set to zero, the resistance value of the variable resistance element 10 is held in a high state. In this way, the recorded information is erased.

そして、このような過程を繰返し行うことにより、可変抵抗素子10に情報の記録(書き込み)と、記録された情報の消去を繰り返し行うことができる。   By repeating such a process, information can be recorded (written) on the variable resistance element 10 and recorded information can be erased repeatedly.

このとき、例えば、可変抵抗素子10全体の抵抗が書込抵抗となっている状態(抵抗値の低い状態)を「1」の情報に、可変抵抗素子10全体の抵抗が消去抵抗となっている状態(抵抗値の高い状態)を「0」の情報に、それぞれ対応させると、電極14に負電位(−電位)を印加することによって、可変抵抗素子10の情報を「0」から「1」に変え、電極14に正電位(+電位)を印加することによって、可変抵抗素子10の情報を「1」から「0」に変えることができる。   At this time, for example, the state in which the resistance of the entire variable resistance element 10 is a write resistance (state of low resistance value) is set to information “1”, and the resistance of the entire variable resistance element 10 is an erasure resistance When the state (high resistance value) corresponds to information “0”, the information of the variable resistance element 10 is changed from “0” to “1” by applying a negative potential (−potential) to the electrode 14. Instead, by applying a positive potential (+ potential) to the electrode 14, the information of the variable resistance element 10 can be changed from “1” to “0”.

このように、本実施の形態では、電極11、導体膜12、絶縁体膜13および電極14をこの順に積層しただけの簡易な構造からなる可変抵抗素子10を用いて、情報の記録および消去を行うようにしたので、可変抵抗素子10を微細化していった場合であっても、情報の記録および消去を容易に行うことができる。また、電力の供給がなくても、絶縁体膜13の抵抗値を保持することができるので、情報を長期に渡って保存することができる。また、読み出しによって絶縁体膜13の抵抗値が変化することはなく、フレッシュ動作を行う必要がないので、その分だけ消費電力を低減することができる。   As described above, in this embodiment, recording and erasing of information is performed using the variable resistance element 10 having a simple structure in which the electrode 11, the conductor film 12, the insulator film 13, and the electrode 14 are simply laminated in this order. Thus, even if the variable resistance element 10 is miniaturized, information can be recorded and erased easily. In addition, since the resistance value of the insulator film 13 can be maintained even without power supply, information can be stored for a long time. Further, since the resistance value of the insulator film 13 does not change by reading and it is not necessary to perform a fresh operation, the power consumption can be reduced by that amount.

ところで、本実施の形態では、2つの電極(電極11,14)の近接対向部分(図2では2つの電極の対向面全体)は、真円形および正方形とは異なる形状となっており、例えば、長方形状(図2参照)や、楕円形状(図3参照)、U字形状(図4参照)、環形状(図5、図6参照)、渦巻形状(図7参照)、または蛇行形状(図8参照)となっている。なお、各図において、短軸側の長さをL、長軸側の長さをLとして示した。さらに、2つの電極(電極11,14)の近接対向部分は、2つの電極(電極11,14)の近接対向領域内に生じる電場(導体膜12に印加される電場)の面内強度分布の上限値と下限値との差が、2つの電極(電極11,14)の近接対向部分を2つの電極(電極11,14)の近接対向部分の面積と等しい面積を有する真円形または正方形に変形したときに、その変形した2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差よりも小さくなるような形状および大きさとなっている。 By the way, in the present embodiment, the proximity facing portions of the two electrodes (electrodes 11 and 14) (the entire facing surfaces of the two electrodes in FIG. 2) have a shape different from a perfect circle and a square. Rectangular shape (see FIG. 2), oval shape (see FIG. 3), U-shape (see FIG. 4), ring shape (see FIGS. 5 and 6), spiral shape (see FIG. 7), or serpentine shape (see FIG. 8). In each figure, the length on the short axis side is shown as L 1 , and the length on the long axis side is shown as L 2 . Furthermore, the proximity facing portion of the two electrodes (electrodes 11 and 14) has an in-plane intensity distribution of an electric field (electric field applied to the conductor film 12) generated in the proximity facing region of the two electrodes (electrodes 11 and 14). The difference between the upper limit value and the lower limit value transforms the proximity facing portion of the two electrodes (electrodes 11 and 14) into a true circle or square having an area equal to the area of the proximity facing portion of the two electrodes (electrodes 11 and 14). In this case, the shape and size are smaller than the difference between the upper limit value and the lower limit value of the in-plane intensity distribution of the electric field generated in the proximity facing region of the two deformed electrodes.

例えば、図2に示したように、電極11,14の近接対向部分が、短軸側の長さがL、長軸側の長さがLの長方形状となっている場合には、図9に示したように、電極11,14の近接対向領域内に生じる電場の面内強度分布の上限値Eと下限値Eとの差(E−E)が、電極11,14の近接対向部分を電極11,14の近接対向部分の面積と等しい面積を有する真円形状に変形したときに、その変形した2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値E(>E)と下限値E(<E)との差(E−E)よりも小さくなっている。 For example, as shown in FIG. 2, when the adjacently facing portions of the electrodes 11 and 14 have a rectangular shape with a length L 1 on the short axis side and a length L 2 on the long axis side, As shown in FIG. 9, the difference (E 2 −E 1 ) between the upper limit value E 2 and the lower limit value E 1 of the in-plane intensity distribution of the electric field generated in the adjacent facing region of the electrodes 11, 14 is When the 14 adjacent facing portions are deformed into a perfect circle having an area equal to the area of the adjacent facing portions of the electrodes 11 and 14, the in-plane intensity distribution of the electric field generated in the adjacent facing regions of the two deformed electrodes It is smaller than the difference (E 3 −E 0 ) between the upper limit value E 3 (> E 2 ) and the lower limit value E 0 (<E 1 ).

ここで、図9の二点鎖線は、電極11,14の近接対向部分を電極11,14の近接対向部分の面積と等しい面積を有する直径cの真円形状に変形したときの、その変形した2つの電極の近接対向領域内に生じる電場の面内強度分布の一例を表している。また、図9の一点鎖線は、電極11,14の近接対向領域の短軸側の長さLがb(<c)となっているときの、電極11,14の近接対向領域内に生じる電場の面内強度分布の一例を表している。また、図9の実線は、電極11,14の近接対向領域の短軸側の長さLがa(<b,c)となっているときの、電極11,14の近接対向領域内に生じる電場の面内強度分布の一例を表している。 Here, the alternate long and two short dashes line in FIG. 9 is obtained when the proximity facing portion of the electrodes 11 and 14 is deformed into a perfect circle having a diameter c having an area equal to the area of the proximity facing portion of the electrodes 11 and 14. An example of an in-plane intensity distribution of an electric field generated in a close opposed region of two electrodes is shown. Further, one-dot chain line in FIG. 9, when the length L 1 of the short axis side of the proximity region facing electrodes 11 and 14 is in the b (<c), occurs near the opposite area of the electrodes 11 and 14 An example of the in-plane intensity distribution of the electric field is shown. The solid line in FIG. 9, the length L 1 of the short axis side of the proximity region facing electrodes 11 and 14 is a (<b, c) when that is the proximity opposing area of the electrodes 11 and 14 in An example of the in-plane intensity distribution of the generated electric field is shown.

図9から、2つの電極の近接対向部分の端縁(セルの境界部分)には電界が集中し易く、長さLをbよりも大きくすると、端縁への電界集中が顕著となり、端縁以外の部分では電界強度が端縁の電界強度よりも極端に小さくなることがわかる。一方、長さLをbよりも小さくすると、端縁への電界集中が緩和し、長さLをbよりも大きくしたときに端縁に生じる電界強度Eとあまり変わらない強度(E,E)の電界が2つの電極の近接対向部分の全体に渡って生じていることがわかる。 9, easy electric field is concentrated on the edges of adjacent facing portions of the two electrodes (the boundary portion of the cell), and the length L 1 larger than b, becomes remarkable electric field concentration on the edge, the edge It can be seen that the electric field strength is extremely smaller than the electric field strength at the edge at portions other than the edge. On the other hand, when the length L 1 is smaller than b, the electric field concentration on the edge is relaxed, and the electric field strength E 3 generated at the edge when the length L 1 is larger than b (E 3) It can be seen that the electric field of 1 , E 2 ) is generated over the entire area of the two adjacent electrodes.

これにより、例えば、図10に示したように、セル面積を一定(例えばαm)とした上で、電極11,14の近接対向部分の形状および大きさを、電極11,14の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差が、電極11,14の近接対向部分を電極11,14の近接対向部分の面積と等しい面積を有する真円形に変形したときに、その変形した2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差よりも小さくなるような長方形状および寸法とすることにより、消去速度(時間)を大幅に短縮することができることがわかる。なお、この場合には、セル面積を一定(例えばαm)としたので、書換え繰返し回数は特に変化しない。 Thus, for example, as shown in FIG. 10, the shape and size of the proximity facing portion of the electrodes 11, 14 can be changed to the proximity facing region of the electrodes 11, 14 while the cell area is constant (for example, αm 2 ). When the difference between the upper limit value and the lower limit value of the in-plane intensity distribution of the electric field generated inside the electrode 11, 14 is deformed into a perfect circle having an area equal to the area of the electrodes 11, 14. In addition, the erasing speed (time) is set to a rectangular shape and a dimension that are smaller than the difference between the upper limit value and the lower limit value of the in-plane intensity distribution of the electric field generated in the adjacent opposing region of the two deformed electrodes. It can be seen that can be greatly shortened. In this case, since the cell area is fixed (for example, αm 2 ), the number of rewrite cycles is not particularly changed.

また、例えば、図10に示したように、書換え繰返し回数を大きくするために、セル面積をβm(<αm)からαmに大きくした場合には、電極11,14の近接対向部分の形状および大きさを、電極11,14の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差が、電極11,14の近接対向部分を電極11,14の近接対向部分の面積と等しい面積を有する真円形に変形したときに、その変形した2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差よりも小さくなるような長方形状および寸法とすることにより、消去時間の極端な増大を低減することができる。つまり、面積を大きくして書換え繰返し回数を増大させた場合であっても、消去時間の増大量を少なくすることができる。 Further, for example, as shown in FIG. 10, in order to increase the rewrite number of repetitions, in the case of increasing the cell area from βm 2 (<αm 2) to .alpha.m 2, the proximity portion opposed electrodes 11 and 14 The difference in shape and size between the upper limit value and the lower limit value of the in-plane intensity distribution of the electric field generated in the proximity facing region of the electrodes 11 and 14 indicates that the proximity facing portion of the electrodes 11 and 14 is close to the electrodes 11 and 14. When deformed into a perfect circle having an area equal to the area of the part, the difference between the upper limit value and the lower limit value of the in-plane intensity distribution of the electric field generated in the adjacent opposing region of the two deformed electrodes is smaller By making the shape and the size of the rectangle, an extreme increase in the erasing time can be reduced. That is, even when the area is increased and the number of rewrite cycles is increased, the increase in the erase time can be reduced.

なお、上記の効果は、電極11,14の近接対向部分を、電極11,14の近接対向部分の面積と等しい面積を有する真円形に変形したときだけでなく、電極11,14の近接対向部分の面積と等しい面積を有する正方形に変形したときにも得ることができる。   The above-described effect is not only when the proximity facing portion of the electrodes 11 and 14 is transformed into a true circle having an area equal to the area of the proximity facing portion of the electrodes 11 and 14, but also the proximity facing portion of the electrodes 11 and 14. It can also be obtained when it is transformed into a square having an area equal to the area.

以上、実施の形態を挙げて本発明の可変抵抗素子および記憶装置について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の可変抵抗素子および記憶装置の構成は、上記実施の形態と同様の効果を得ることが可能な限りにおいて自由に変形可能である。   The variable resistance element and the memory device of the present invention have been described with reference to the embodiment, but the present invention is not limited to the above embodiment, and the configuration of the variable resistance element and the memory device of the present invention is as follows. As long as it is possible to obtain the same effect as that of the above-described embodiment, it can be freely modified.

本発明の一実施の形態に係る記憶装置の回路構成図である。1 is a circuit configuration diagram of a storage device according to an embodiment of the present invention. 図1の可変抵抗素子の斜視図である。It is a perspective view of the variable resistance element of FIG. 図1の電極の一の形状を表す概略図である。It is the schematic showing the one shape of the electrode of FIG. 図1の電極の他の形状を表す概略図である。It is the schematic showing the other shape of the electrode of FIG. 図1の電極のその他の形状を表す概略図である。It is the schematic showing the other shape of the electrode of FIG. 図1の電極のその他の形状を表す概略図である。It is the schematic showing the other shape of the electrode of FIG. 図1の電極のその他の形状を表す概略図である。It is the schematic showing the other shape of the electrode of FIG. 図1の電極のその他の形状を表す概略図である。It is the schematic showing the other shape of the electrode of FIG. 図1の可変抵抗素子内の電界強度分布について説明するための概念図である。It is a conceptual diagram for demonstrating electric field strength distribution in the variable resistance element of FIG. 図1の可変抵抗素子の消去特性について説明するための特性図である。FIG. 2 is a characteristic diagram for explaining an erasing characteristic of the variable resistance element of FIG. 1. 従来の記憶装置の回路構成図である。It is a circuit block diagram of the conventional memory | storage device. 図11の可変抵抗素子の断面構成図である。It is a cross-sectional block diagram of the variable resistance element of FIG. 書き換え回数について説明するための特性図である。It is a characteristic view for demonstrating the rewrite frequency. 書き換え可能回数について説明するための特性図である。It is a characteristic view for demonstrating the rewritable frequency | count.

符号の説明Explanation of symbols

1…メモリセル、10…可変抵抗素子、11,14…電極、12…導体膜、13…絶縁体膜、20…トランジスタ。   DESCRIPTION OF SYMBOLS 1 ... Memory cell, 10 ... Variable resistance element, 11, 14 ... Electrode, 12 ... Conductor film | membrane, 13 ... Insulator film | membrane, 20 ... Transistor.

Claims (3)

少なくとも一部が互いに近接して対向する2つの電極と、
少なくとも前記2つの電極の近接対向領域内に形成され、かつ前記2つの電極に電圧を印加することにより前記2つの電極の間に生じる電場の向きに応じて抵抗値が変化する可変抵抗層と
を備え、
前記2つの電極の近接対向部分は、真円形および正方形とは異なる形状となっており、かつ、前記2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差が、前記2つの電極の近接対向部分を前記2つの電極の近接対向部分の面積と等しい面積を有する真円形または正方形に変形したときに、その変形した2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差よりも小さくなるような形状および大きさとなっている
ことを特徴とする可変抵抗素子。
Two electrodes at least partially facing each other close to each other;
A variable resistance layer which is formed in at least the adjacent region of the two electrodes and has a resistance value that changes according to the direction of an electric field generated between the two electrodes by applying a voltage to the two electrodes. Prepared,
The proximity facing portion of the two electrodes has a shape different from a perfect circle and a square, and an upper limit value and a lower limit value of the in-plane intensity distribution of the electric field generated in the proximity facing region of the two electrodes. A difference is generated in the near-facing region of the deformed two electrodes when the close-facing portion of the two electrodes is transformed into a true circle or a square having an area equal to the area of the near-facing portion of the two electrodes. A variable resistance element characterized by having a shape and size smaller than a difference between an upper limit value and a lower limit value of an in-plane intensity distribution of an electric field.
前記2つの電極の近接対向部分は、楕円形状、長方形状、U字形状、蛇行形状、環形状または渦巻形状となっている
ことを特徴とする請求項1に記載の可変抵抗素子。
2. The variable resistance element according to claim 1, wherein the adjacently facing portions of the two electrodes have an elliptical shape, a rectangular shape, a U shape, a meandering shape, a ring shape, or a spiral shape.
少なくとも一部が互いに近接して対向する2つの電極と、少なくとも前記2つの電極の近接対向領域内に形成され、かつ前記2つの電極に電圧を印加することにより前記2つの電極の間に生じる電場の向きに応じて抵抗値が変化する可変抵抗層とを有する可変抵抗素子と、
前記可変抵抗素子の一方の電極に電気的に接続された第1配線と、
前記可変抵抗素子の他方の電極に電気的に接続された第2配線と、
前記第1配線に直列挿入され、かつ前記2つの電極の間に印加する電圧を制御するスイッチング素子と
を備え、
前記2つの電極の近接対向部分は、真円形および正方形とは異なる形状となっており、かつ、前記2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差が、前記2つの電極の近接対向部分を前記2つの電極の近接対向部分の面積と等しい面積を有する真円形または正方形に変形したときに、その変形した2つの電極の近接対向領域内に生じる電場の面内強度分布の上限値と下限値との差よりも小さくなるような形状および大きさとなっている
ことを特徴とする記憶装置。
At least a portion of two electrodes facing each other in close proximity to each other, and an electric field formed between the two electrodes by applying a voltage to the two electrodes formed in at least a proximity facing region of the two electrodes A variable resistance element having a variable resistance layer whose resistance value changes according to the orientation of
A first wiring electrically connected to one electrode of the variable resistance element;
A second wiring electrically connected to the other electrode of the variable resistance element;
A switching element that is inserted in series with the first wiring and that controls a voltage applied between the two electrodes,
The proximity facing portion of the two electrodes has a shape different from a perfect circle and a square, and an upper limit value and a lower limit value of the in-plane intensity distribution of the electric field generated in the proximity facing region of the two electrodes. A difference is generated in the near-facing region of the deformed two electrodes when the near-facing portion of the two electrodes is deformed into a perfect circle or a square having an area equal to the area of the near-facing portion of the two electrodes. A storage device having a shape and a size that are smaller than a difference between an upper limit value and a lower limit value of an in-plane intensity distribution of an electric field.
JP2007239011A 2007-09-14 2007-09-14 Variable resistance element and memory device Expired - Fee Related JP5194667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007239011A JP5194667B2 (en) 2007-09-14 2007-09-14 Variable resistance element and memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007239011A JP5194667B2 (en) 2007-09-14 2007-09-14 Variable resistance element and memory device

Publications (2)

Publication Number Publication Date
JP2009071105A true JP2009071105A (en) 2009-04-02
JP5194667B2 JP5194667B2 (en) 2013-05-08

Family

ID=40607039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007239011A Expired - Fee Related JP5194667B2 (en) 2007-09-14 2007-09-14 Variable resistance element and memory device

Country Status (1)

Country Link
JP (1) JP5194667B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114868A (en) * 2004-09-17 2006-04-27 Toshiba Corp Magnetic recording element and magnetic recording device using the same
JP2007027499A (en) * 2005-07-19 2007-02-01 Sony Corp Memory element and storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114868A (en) * 2004-09-17 2006-04-27 Toshiba Corp Magnetic recording element and magnetic recording device using the same
JP2007027499A (en) * 2005-07-19 2007-02-01 Sony Corp Memory element and storage device

Also Published As

Publication number Publication date
JP5194667B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP4396621B2 (en) Storage element and storage device
JP4529654B2 (en) Storage element and storage device
US7525832B2 (en) Memory device and semiconductor integrated circuit
JP5012312B2 (en) Driving method of storage device
KR100704329B1 (en) Using a phase change memory as a replacement for a buffered flash memory
US8213214B2 (en) Storage device and information rerecording method
US20090147558A1 (en) Variable resistance element, method for producing the same, and nonvolatile semiconductor storage device
JP5151439B2 (en) Storage device and information re-recording method
JP2009135206A (en) Memory cell
JP5598338B2 (en) Storage device and operation method thereof
CN1770319A (en) Storage apparatus and semiconductor apparatus
US8369128B2 (en) Storage device and information rerecording method
CN1136222A (en) Memory and manufacture thereof
JP2006107700A (en) Complementary output resistive memory cell
JP2006134954A (en) Memory element and its driving method
JP2012128892A (en) Memory device
JP2010079941A (en) Semiconductor nonvolatile storage device
JP2004355676A (en) Storage device
JP2015079869A (en) Memory device and access method
JP5194640B2 (en) Storage element and storage device
JP5194667B2 (en) Variable resistance element and memory device
JP2009104715A (en) Method and device for driving variable resistance element
JP5257573B2 (en) Storage element and storage device
JP5120967B2 (en) Variable resistance element
US7269050B2 (en) Method of programming a memory device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees