JP2009070235A - Quality prediction device, quality prediction method, and manufacturing method - Google Patents

Quality prediction device, quality prediction method, and manufacturing method Download PDF

Info

Publication number
JP2009070235A
JP2009070235A JP2007239350A JP2007239350A JP2009070235A JP 2009070235 A JP2009070235 A JP 2009070235A JP 2007239350 A JP2007239350 A JP 2007239350A JP 2007239350 A JP2007239350 A JP 2007239350A JP 2009070235 A JP2009070235 A JP 2009070235A
Authority
JP
Japan
Prior art keywords
quality
product
predicted
quality prediction
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007239350A
Other languages
Japanese (ja)
Other versions
JP5169098B2 (en
Inventor
Keiji Iijima
慶次 飯島
Kazuya Asano
一哉 浅野
Hiroshi Mizuno
浩 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007239350A priority Critical patent/JP5169098B2/en
Publication of JP2009070235A publication Critical patent/JP2009070235A/en
Application granted granted Critical
Publication of JP5169098B2 publication Critical patent/JP5169098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quality prediction device and a quality prediction method for predicting the quality of a product with a high degree of accuracy and a method for manufacturing the product using them. <P>SOLUTION: This quality prediction device is provided with: a result database (1a) in which the quality data of a product manufactured in the past and operation data when manufacturing the product are stored so as to be associated with each other; and a quality prediction value calculation means (2) for calculating the similarity of operation data in manufacturing a product whose quality should be predicted and each operation data stored in the result database (1a), and for calculating the quality prediction value of the product from the similarity and the quality data in the result database (1a). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄鋼プロセス等の製造ラインにおいて品質データと操業データから製品の品質を予測する品質予測装置、品質予測方法及びそれらを利用した製品の製造方法に関する。   The present invention relates to a quality prediction apparatus, a quality prediction method, and a product manufacturing method using the same, which predict the quality of a product from quality data and operation data in a production line such as a steel process.

従来、この種の品質予測方法には次のような方法が提案されている。
(a)例えば、プロセス操業データと品質データとの相関について解析する、製造プロセスにおける解析装置において、プロセス操業データの各パラメータが取り得る値を分割し、各分割領域における品質データの確率分布を算出して品質を予測する(例えば特許文献1参照)。
(b)また、鉄鋼プロセスの連続鋳造において欠陥の発生しやすい流動状態からその時の温度パターンを推定することにより、欠陥の発生しやすい温度パターンを求め、実際の温度パターンから欠陥の発生を予測する(例えば特許文献2参照)。
(c)また、製品の製造にかかる各種の条件を示す条件データをN種類からN>PであるP変数に変換した上で、品質データとの関係を線形の方程式で定式化して品質を予測する(例えば特許文献3参照)。
Conventionally, the following methods have been proposed for this type of quality prediction method.
(A) For example, in an analysis apparatus in a manufacturing process that analyzes the correlation between process operation data and quality data, the values that each parameter of process operation data can take are divided, and the probability distribution of the quality data in each divided region is calculated Thus, the quality is predicted (see, for example, Patent Document 1).
(B) Further, by estimating the temperature pattern at that time from the flow state in which defects are likely to occur in continuous casting of the steel process, the temperature pattern at which defects are likely to be found is obtained, and the occurrence of defects is predicted from the actual temperature pattern. (For example, refer to Patent Document 2).
(C) In addition, after converting the condition data indicating various conditions relating to the manufacture of the product from N types to P variables satisfying N> P, the relationship with the quality data is formulated by a linear equation to predict the quality. (See, for example, Patent Document 3).

特開2003−150234号公報JP 2003-150234 A 特開2005−181609号公報JP 2005-181609 A 特開2005−242818号公報JP 2005-242818 A

しかし、上記の従来の品質予測方法には次のような課題がある。
(a)特許文献1においては、入力とする操業データの各パラメータが取り得る範囲に領域を分割し、データ数が多い領域は欠陥が少ない、データ数が少ない領域は多いとしているが、欠陥が発生する確率はデータ数とは無関係であり、実際の欠陥発生状況を反映させる必要がある。また、領域の決め方が不明瞭である。
(b)特許文献2においては、欠陥の発生原因を詳細に解析したうえで、発生しやすい温度パターンを抽出しているが、実際の欠陥はさまざまな要因の組合せとなっており、その他の原因による欠陥の判定が難しい。また、モールド鋳型内の溶鋼に、電磁力による流動を生じさせる技術はさまざま方法が提案されており、流動状態に対応した欠陥の発生しやすい温度パターンを用意するのには煩雑な作業を要する。
(c)特許文献3においては、操業データと品質データが線形の方程式で表現されているが、操業データ、品質データにはばらつきがあり、ある製造条件のもとでの製品の品質は、確率的事象である。また、線形方程式で予測すると誤差が大きい。品質予測においては、操業データと品質データを関連付けるモデル化が従来から課題となっており、この課題に対して有効な手段とはいえない。
However, the above-described conventional quality prediction method has the following problems.
(A) In Patent Document 1, an area is divided into ranges that can be taken by each parameter of operation data to be input, and an area with a large number of data has few defects and an area with a small number of data has many defects. The probability of occurrence is independent of the number of data, and it is necessary to reflect the actual defect occurrence state. Also, how to determine the area is unclear.
(B) In Patent Document 2, the cause of the defect is analyzed in detail, and a temperature pattern that is likely to occur is extracted. However, the actual defect is a combination of various factors, and other causes. Defects are difficult to determine. Moreover, various methods have been proposed for generating a flow by electromagnetic force in the molten steel in the mold, and a complicated operation is required to prepare a temperature pattern that easily causes a defect corresponding to the flow state.
(C) In Patent Document 3, the operation data and the quality data are expressed by linear equations, but the operation data and the quality data vary, and the quality of the product under a certain manufacturing condition is a probability. Event. In addition, the error is large when predicted by a linear equation. In quality prediction, modeling that associates operation data and quality data has been a problem in the past, and is not an effective means for this problem.

本発明は、上記の課題を解決するためになされたものであり、製品の品質を高精度で予測することを可能にした品質予測装置及び品質予測方法、並びにそれらを利用した製品の製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a quality prediction apparatus and a quality prediction method capable of predicting the quality of a product with high accuracy, and a method of manufacturing a product using them. The purpose is to provide.

本発明に係る品質予測装置は、過去に製造された製品の品質データとその製品の製造時の操業データとが対応付けられて記憶された実績データベースと、
品質を予測すべき製品の製造時の操業データと、前記実績データベースに記憶された各操業データとの類似度を算出し、該類似度と前記実績データベース内の品質データとから、製品の品質予測値を算出する品質予測値算出手段と
を有するものである。
The quality prediction apparatus according to the present invention is a performance database in which quality data of products manufactured in the past and operation data at the time of manufacture of the products are stored in association with each other,
The degree of similarity between the operation data at the time of manufacturing the product whose quality is to be predicted and each operation data stored in the result database is calculated, and the quality prediction of the product is performed from the similarity and the quality data in the result database. A quality predicted value calculating means for calculating a value.

本発明に係る品質予測装置は、前記品質予測値算出手段において、前記類似度を、品質を予測すべき製品の製造時の操業データと前記実績データベースに記憶された各操業データとのユークリッド距離とし、前記ユークリッド距離が最も近い前記実績データベースに記憶された操業データに対応する品質データを品質予測値とする。   In the quality prediction apparatus according to the present invention, in the quality prediction value calculation means, the similarity is a Euclidean distance between operation data at the time of manufacturing a product whose quality is to be predicted and each operation data stored in the performance database. The quality data corresponding to the operation data stored in the performance database with the shortest Euclidean distance is used as a quality prediction value.

本発明に係る品質予測装置は、前記品質予測値算出手段において、前記類似度を、品質を予測すべき製品の製造時の操業データと前記実績データベースに記憶された各操業データとのユークリッド距離とし、前記ユークリッド距離が所定範囲内となる前記実績データベースに記憶された操業データに対応する品質データの平均値を算出し、該平均値を品質予測値とする。   In the quality prediction apparatus according to the present invention, in the quality prediction value calculation means, the similarity is a Euclidean distance between operation data at the time of manufacturing a product whose quality is to be predicted and each operation data stored in the performance database. Then, an average value of the quality data corresponding to the operation data stored in the performance database in which the Euclidean distance is within a predetermined range is calculated, and the average value is used as a quality prediction value.

本発明に係る品質予測装置は、前記品質予測値算出手段において、前記類似度を、品質を予測すべき製品の製造時の操業データと前記実績データベースに記憶された各操業データとのユークリッド距離とし、前記実績データベースに記憶された操業データに対応する品質データの値に、前記ユークリッド距離に応じて定めた重み係数を乗じた重み付け平均値を算出し、該重み付け平均値を品質予測値とする。   In the quality prediction apparatus according to the present invention, in the quality prediction value calculation means, the similarity is a Euclidean distance between operation data at the time of manufacturing a product whose quality is to be predicted and each operation data stored in the performance database. The weighted average value obtained by multiplying the value of the quality data corresponding to the operation data stored in the performance database by the weighting coefficient determined according to the Euclidean distance is calculated, and the weighted average value is used as the quality predicted value.

本発明に係る品質予測方法は、製品の品質データとその製品の製造時の操業データとが対応づけられて記憶された実績データベースから、品質を予測すべき製品の製造時の操業データと類似度を算出し、該類似度と前記品質データとに基づいて、品質予測値を算出するものである。   The quality prediction method according to the present invention is based on a performance database in which product quality data and operation data at the time of manufacturing the product are stored in association with each other. And a quality prediction value is calculated based on the similarity and the quality data.

本発明に係る製品の製造方法は、上記の品質予測装置(又は品質予測方法)で予測された製品の品質予測値に基づいて、当該製品を製造するための製造工程の操業条件を変更する操業条件変更工程を有するものである。
本発明に係る製品の製造方法は、上記の品質予測装置(又は品質予測方法)で予測された製品の品質予測値に基づいて、製造工程の操業異常を判定する操業異常検出工程を有するものである。
The method for manufacturing a product according to the present invention is an operation for changing the operating conditions of the manufacturing process for manufacturing the product based on the quality prediction value of the product predicted by the quality prediction apparatus (or quality prediction method). It has a condition change process.
The method for manufacturing a product according to the present invention includes an operation abnormality detection step for determining an operation abnormality of a manufacturing process based on a quality prediction value of a product predicted by the quality prediction apparatus (or quality prediction method). is there.

本発明に係る製品の製造方法は、上記の品質予測装置(又は品質予測方法)で予測された製品の品質予測値に基づいて、製造された当該製品が所望の品質になるように不良部を修正する修正工程を有するものである。
本発明に係る製品の製造方法は、上記の品質予測装置(又は品質予測方法)で予測された製品の品質予測値に基づいて、当該製品の品質を決定し、以降の工程における処理条件を決定する処理条件決定工程を有するものである。
本発明に係る製品の製造方法は、前記製品を、連続鋳造工程で製造される鋳片とし、前記品質予測値を、連続鋳造工程において鋳片を製造する際のモールド温度や鋳造速度を含む操業データから予測した、モールドで巻き込んだ不純物による鋳片の欠陥データとするものである。
The product manufacturing method according to the present invention is based on the product quality prediction value predicted by the quality prediction device (or quality prediction method) described above, and the defective portion is formed so that the manufactured product has a desired quality. It has a correction process to correct.
The product manufacturing method according to the present invention determines the quality of the product based on the quality predicted value of the product predicted by the quality prediction device (or quality prediction method), and determines the processing conditions in the subsequent steps. And a processing condition determining step.
The method for producing a product according to the present invention is an operation including the product as a slab produced in a continuous casting process, and the quality prediction value including a mold temperature and a casting speed when producing the slab in the continuous casting process. It is assumed to be defect data of a slab due to impurities caught by a mold, predicted from data.

本発明によれば、製品の品質を高精度で予測することが可能となり、品質のよい製品を製造する操業条件を見出すことが可能となる。品質が悪くなった場合には、操業条件を変更することも可能となる。また、製品の品質の悪化により操業異常を検出することもできる。さらに、製造された製品に品質情報を付加することにより、製品の用途や向け先の決定、製品品質の修正等が可能となる。   According to the present invention, it is possible to predict the quality of a product with high accuracy, and it is possible to find an operation condition for manufacturing a product with good quality. If the quality deteriorates, the operating conditions can be changed. In addition, an operational abnormality can be detected due to the deterioration of the product quality. Furthermore, by adding quality information to the manufactured product, it is possible to determine the use and destination of the product, correct the product quality, and the like.

図1は本発明の一実施形態に係る製品の製造方法を示した概念図である。製品原料、製品材料を製造工程に投入して製品を製造し、その後、その製品についての品質検査が行われる。そして、本実施形態においては、製造工程の操業データを蓄積するデータ保存手段1と、保存されたデータを利用して製品の品質予測をする品質予測値算出手段2とを備えている。以下、データ保存手段1、品質予測値算出手段2及び品質予測値の利用法の順に説明する。   FIG. 1 is a conceptual diagram showing a method for manufacturing a product according to an embodiment of the present invention. Product raw materials and product materials are input into the manufacturing process to produce products, and then quality inspections are performed on the products. And in this embodiment, the data preservation | save means 1 which accumulate | stores the operation data of a manufacturing process and the quality predicted value calculation means 2 which estimates the quality of a product using the preserve | saved data are provided. Hereinafter, the data storage unit 1, the quality prediction value calculation unit 2, and the usage method of the quality prediction value will be described in this order.

1.データ保存手段1(データ蓄積ステップ)
データ保存手段1は、実績データベース(記憶装置)1aを内蔵した演算装置(コンピュータ)から構成されており、以下に説明するデータ蓄積ステップの処理を行う。
1. Data storage means 1 (data accumulation step)
The data storage means 1 is composed of an arithmetic device (computer) having a built-in performance database (storage device) 1a, and performs processing of a data accumulation step described below.

図2は、データ保存手段1によるデータ蓄積ステップの処理を示すフローチャートである。製品ごとにデータ保存手段1に製造ラインを管理しているプロセスコンピュータから入力される操業データを蓄えていき、製品完成後の検査工程において検査されたその製品の品質データとの突き合わせを行う(関係付け)。操業データとは、例えば、製造する際の製品の温度、製品の搬送速度、寸法等の計測機器(センサ)の測定値や製造装置への設定値を指す。また品質データは、検査工程で確定された欠陥数、欠陥率、強度特性値などを指す。操業データを式(1)及び式(2)に、品質データを式(3)及び(4)に示す。   FIG. 2 is a flowchart showing the data storage step processing by the data storage unit 1. For each product, the operation data input from the process computer managing the production line is stored in the data storage means 1 and matched with the quality data of the product inspected in the inspection process after the product is completed (Relationship) Append) The operation data refers to, for example, measured values of measuring equipment (sensors) such as the temperature of the product at the time of manufacture, the conveyance speed of the product, and the dimensions, and the set values for the manufacturing apparatus. The quality data indicates the number of defects, the defect rate, the strength characteristic value, and the like determined in the inspection process. The operation data is shown in equations (1) and (2), and the quality data is shown in equations (3) and (4).

Figure 2009070235
Figure 2009070235

このX(j)とY(j)との組合せ、Z(j)=[X(j),Y(j)]をデータ保存手段1の実績データベース1aに保存する。このようにして保存することにより、或る操業条件X(j)のときの品質Y(j)を特定することができる。品質予測する場合には、品質予測する操業データから、このデータ保存手段1の実績データベース1aに保存された上記のデータを利用する。   The combination of X (j) and Y (j), Z (j) = [X (j), Y (j)], is stored in the result database 1a of the data storage means 1. By storing in this way, the quality Y (j) at a certain operating condition X (j) can be specified. In the case of quality prediction, the above-mentioned data stored in the result database 1a of the data storage unit 1 is used from the operation data to be quality predicted.

図3は、データ保存手段1の実績データベース1aに保存される操業データと品質のデータの関係(データイメージ)を示した説明図である。操業実績に基づいて、各操業データ(操業条件の設定値、センサの実測値)と品質データ(例えば、検査工程で検査した品質結果:欠陥の個数など)とを対応付けて保存する。このとき、操業データは製造工程、品質データは検査データであり、得られるタイミングが異なるので、各データは、操業時刻(一定時間間隔など)や製品の位置(鋼材の位置など)でデータをサンプリングし、上記の対応付けを行う。   FIG. 3 is an explanatory diagram showing the relationship (data image) between the operation data stored in the result database 1a of the data storage means 1 and the quality data. Based on the operation results, each operation data (set values of operation conditions, measured values of sensors) and quality data (for example, quality results inspected in the inspection process: number of defects, etc.) are stored in association with each other. At this time, the operation data is the manufacturing process, the quality data is the inspection data, and the obtained timing is different, so each data is sampled at the operation time (such as a certain time interval) and product position (such as the position of the steel material). Then, the above association is performed.

図4は、データ構造例である。このように操業時刻(一定時間間隔など)と製品の位置(鋼材の位置など)の操業データ(データ1、…データ20)と品質データとが関係付けられる。   FIG. 4 shows an example of the data structure. In this way, the operation data (data 1,..., Data 20) of the operation time (such as a certain time interval), the product position (such as the position of the steel material), and the quality data are related.

2.品質予測値算出手段2(品質予測値算出ステップ)
品質予測値算出手段2は、記憶装置を内蔵した演算手段(コンピュータ)から構成されており、データ保存手段1の実績データベース1aに保存されたデータ(図4参照)を利用し、品質予測値算出ステップの処理を行う。
図5は、その概要をフローチャートである。以下にその手順を述べる。品質を予測するべき製品の製造時の操業データを取得し、データ保存手段1の実績データベース1aに保存されたデータと比較することにより、品質予測値を算出する。
2. Quality prediction value calculation means 2 (quality prediction value calculation step)
The quality prediction value calculation means 2 is composed of calculation means (computer) with a built-in storage device, and uses the data (see FIG. 4) stored in the result database 1a of the data storage means 1 to calculate the quality prediction value. Perform step processing.
FIG. 5 is a flowchart showing the outline. The procedure is described below. By obtaining operation data at the time of manufacture of a product whose quality is to be predicted and comparing it with data stored in the result database 1a of the data storage unit 1, a quality prediction value is calculated.

(2.1)計測するべき製品の操業データと過去実績の操業データ間のユークリッド距離が最も近い過去実績の品質値を品質予測値とする。以下の方法でユークリッド距離を算出する。 (2.1) The quality value of the past performance with the closest Euclidean distance between the operation data of the product to be measured and the operation data of the past performance is set as the quality prediction value. The Euclidean distance is calculated by the following method.

Figure 2009070235
Figure 2009070235

実績データベース1aの全てのデータから距離djが最も近いjminを求める。この場合の品質データYjminを品質予測値とする。なお、上式においてMは操業データの個数(種類数)である。xi *は予測対象の製品の操業データ、xijはデータ保存手段1の実績データベース1aに保存された過去実績の操業データである。 Find j min having the closest distance d j from all data in the record database 1a. The quality data Y jmin in this case is used as the quality prediction value. In the above equation, M is the number (number of types) of operation data. x i * is the operation data of the prediction target product, and x ij is the past operation data stored in the result database 1 a of the data storage means 1.

(2.2)距離が所定範囲となる品質値の平均値を品質予測値とする。以下の方法でユークリッド距離を算出する。 (2.2) The average value of the quality values in which the distance falls within a predetermined range is set as the quality prediction value. The Euclidean distance is calculated by the following method.

Figure 2009070235
Figure 2009070235

距離djが所定の値d0よりも小さい場合の操業データの集合Zs(集合データの数をN’とする)を求める。
Zs=[X,Y]
Yの平均値Ymeanを次式により算出し、Ymeanを品質予測値とする。
An operation data set Zs (the number of set data is N ′) when the distance d j is smaller than a predetermined value d 0 is obtained.
Zs = [X, Y]
An average value Y mean of Y is calculated by the following formula, and Y mean is set as a quality prediction value.

Figure 2009070235
Figure 2009070235

(2.3)距離に依存した重み付けした平均値を利用する方法(1)
保存されているデータの全てまたは、いくつかを選択(例えばユークリッド距離が所定の範囲のデータを選択する)し、以下の値を算出する。
(2.3) Method of using weighted average value depending on distance (1)
All or some of the stored data are selected (for example, data whose Euclidean distance is in a predetermined range) are selected, and the following values are calculated.

Figure 2009070235
Figure 2009070235

P:品質予測値、dj:保存又は選択された操業データjと品質を予測するべき製品の操業データとの距離、N:保存又はされたデータ数(サンプル数)、M:操業データの数(種類)、xi *:品質を予測するべき製品の操業データ、xij:保存された操業データ、Yj:保存された品質データ。 P: Quality prediction value, d j : Distance between operation data j stored or selected and the operation data of the product whose quality is to be predicted, N: Number of data stored (number of samples), M: Number of operation data (Type), x i * : Operation data of the product whose quality is to be predicted, x ij : Stored operation data, Y j : Stored quality data.

(2.4)距離に依存した重み付けした平均値を利用する方法(2)。保存されているデータの全てまたは、いくつかを選択し、以下の値を算出する。 (2.4) Method (2) using a weighted average value depending on distance. Select all or some of the stored data and calculate the following values:

Figure 2009070235
Figure 2009070235

P:品質予測値、dj:保存又は選択された操業データjと品質を予測するべき製品の操業データとの距離、N:保存又はされたデータ数(サンプル数)、M:操業データの数(種類)、xi *:品質を予測するべき製品の操業データ、xij:保存された操業データ、Yj:保存された品質データ。 P: Quality prediction value, d j : Distance between operation data j stored or selected and the operation data of the product whose quality is to be predicted, N: Number of data stored (number of samples), M: Number of operation data (Type), x i * : Operation data of the product whose quality is to be predicted, x ij : Stored operation data, Y j : Stored quality data.

3.品質予測値の利用方法
品質予測値は以下の利用方法がある。その概要を図6、図7、図8及び図9に示す。
図6は、予測された品質予測値により、操業条件を変更することを示したフローチャートである。製品の品質を検査する工程は、製造工程の後に位置することがほとんどであり、製造後いくつかの工程を経た後で製品の品質を検査するような製造工程もある。このため、製品の品質を検査したあと、操業条件を変更するのに時間がかかるため、その間、品質の悪い製品を製造しつづけることになる。このため、本実施形態に係る品質予測方法を適用して製造中に製品の品質を予測し、品質を左右する操業条件を品質予測値により変更を行う。これにより、低い品質の製品を大量に生産することを避けることができる。
3. How to use the quality prediction value The quality prediction value has the following usage methods. The outline is shown in FIG. 6, FIG. 7, FIG. 8 and FIG.
FIG. 6 is a flowchart showing that the operation condition is changed according to the predicted quality prediction value. The process for inspecting the quality of the product is often located after the manufacturing process, and there is also a manufacturing process in which the quality of the product is inspected after several processes after the manufacturing. For this reason, since it takes time to change the operating conditions after the quality of the product is inspected, products with poor quality continue to be manufactured. For this reason, the quality prediction method according to the present embodiment is applied to predict the quality of the product during manufacturing, and the operating conditions that influence the quality are changed by the quality prediction value. This avoids mass production of low quality products.

図7は、予測された品質予測値により操業異常を検出することを示したフローチャートである。低い品質の場合は、なんらかの操業異常も考えられるが、これも早期に発見できる可能性がある。   FIG. 7 is a flowchart showing that an operation abnormality is detected based on the predicted quality prediction value. If the quality is low, there may be some abnormal operation, which may be detected early.

図8は、予測された品質予測値により製品の品質を修正することを示したフローチャートである。品質の悪い製品ができた場合には、修正工程で例えば欠陥部分を削除したり、補正したりして修正することができる。これにより、品質の悪い製品を次工程に流すことを防ぐことができる。   FIG. 8 is a flowchart showing that the quality of the product is corrected by the predicted quality prediction value. If a product with poor quality is produced, it can be corrected by, for example, deleting or correcting defective portions in the correction process. Thereby, it is possible to prevent a product with poor quality from flowing to the next process.

図9は、予測された品質予測値を製品に付加することを示したフローチャートである。予測された品質予測値を製品に付加することにより、製品の格付をおこなったり、用途を変更することができる。これも、検査結果を経てから判断するより、早めに判断をおこなうことができる。   FIG. 9 is a flowchart showing adding a predicted quality prediction value to a product. By adding the predicted quality prediction value to the product, the product can be rated or the application can be changed. This can also be judged earlier than judging after passing through the inspection result.

以下に、本発明を代表的な鉄鋼プロセスのひとつである連続鋳造で製造されるスラブの品質予測に適用した場合の実施例を説明する。
図10は、鉄鋼製造プロセスにおける連続鋳造プロセスを模式的に表した図である。図10において、タンディッシュ20に満たされた溶鋼21は、タンディッシュ底部に設置されたスライディングノズル22の位置で定まる開度に応じて、浸漬ノズル23を経てモールド24内へ注入される。また、モールド24内へ注入された溶鋼21は、側壁から冷却されて表面から凝固しつつ、ピンチロール25によって引き抜き方向へ引き抜かれる。さらに、モールド24内に注入される溶鋼量は、前述のように、スライディングノズル22の開度に応じて定まるが、このスライディングノズル22は、アクチュエータによって駆動される。モールド24内では、浸漬ノズル23から注入された溶鋼により、溶鋼の流れが発生する。連続鋳造時のスラブの欠陥発生には、さまざまな原因が考えられているが、代表的なものは以下のものである。
Below, the Example at the time of applying this invention to the quality prediction of the slab manufactured by the continuous casting which is one of the typical steel processes is described.
FIG. 10 is a diagram schematically showing a continuous casting process in the steel manufacturing process. In FIG. 10, the molten steel 21 filled in the tundish 20 is injected into the mold 24 through the immersion nozzle 23 according to the opening determined by the position of the sliding nozzle 22 installed at the bottom of the tundish. Further, the molten steel 21 injected into the mold 24 is drawn out by the pinch roll 25 in the drawing direction while being cooled from the side wall and solidified from the surface. Furthermore, the amount of molten steel injected into the mold 24 is determined according to the opening degree of the sliding nozzle 22 as described above, and the sliding nozzle 22 is driven by an actuator. In the mold 24, a molten steel flow is generated by the molten steel injected from the immersion nozzle 23. Various causes are considered for the occurrence of slab defects during continuous casting, but the typical ones are as follows.

(1)タンディッシュ20にあった不純物がそのままモールドに入り込み、鋳片としてかたまってしまう。
(2)溶鋼の流れにより、パウダーの下部が溶鋼中に引き込まれる。
(3)ノズル詰まりを防止するためにノズルに流すArガスが気泡となり溶鋼中に引き込まれる。
これらは、モールド24内の流れが原因となり起こることが分かっている。このため、最近では、モールド24の周りに電磁石を設置して磁界を発生させ、強磁性体である溶鋼の流動を励起する装置が使用されている。一方、モールド24内の溶鋼流動状態を直接図る方法はないが、流速変化を温度変化として計測できることを利用し、モールド周辺に図11に示されるように温度計30を設置し、溶鋼の流動状態を推定することも行われている。ここでは、モールド24の温度状態と欠陥の発生が密接に関係していることに着目し、モールド24の温度状態から、欠陥発生を予測する。
(1) Impurities in the tundish 20 enter the mold as they are, and they are clumped as slabs.
(2) The lower part of the powder is drawn into the molten steel by the flow of the molten steel.
(3) Ar gas flowing to the nozzle to prevent nozzle clogging becomes bubbles and is drawn into the molten steel.
These have been found to be caused by the flow in the mold 24. For this reason, recently, an apparatus has been used in which an electromagnet is installed around the mold 24 to generate a magnetic field and excite the flow of molten steel as a ferromagnetic material. On the other hand, although there is no method for directly measuring the molten steel flow state in the mold 24, utilizing the fact that the flow velocity change can be measured as a temperature change, a thermometer 30 is installed around the mold as shown in FIG. It is also performed to estimate. Here, paying attention to the fact that the temperature state of the mold 24 and the occurrence of defects are closely related, the occurrence of defects is predicted from the temperature state of the mold 24.

操業データとしては、モールド温度を使用する。欠陥情報としては、鋼板から検出した欠陥情報を利用する。あらかじめ、温度と欠陥の対比できるデータを用意する。欠陥の予測を行う際には、得られた温度情報から実施例に書かれたような方法で欠陥の予測値を算出する。実際にスラブに対して欠陥の予測を行った結果を図12に示す。スラブの欠陥が高精度で検出していることが示されている。
また、モールド内の溶鋼の流れは鋳込み速度や、鋳造されるスラブの厚みや幅、Ar流量は圧力、溶鋼の温度によっても異なる。これらの条件を加味することによりさらに精度をあげることができる。
As the operation data, the mold temperature is used. As the defect information, defect information detected from the steel sheet is used. Prepare data that can compare temperature and defects in advance. When the defect is predicted, the predicted value of the defect is calculated from the obtained temperature information by the method described in the embodiment. FIG. 12 shows the result of actual defect prediction for the slab. It is shown that slab defects are detected with high accuracy.
Moreover, the flow of the molten steel in the mold differs depending on the casting speed, the thickness and width of the cast slab, and the Ar flow rate depending on the pressure and the temperature of the molten steel. The accuracy can be further increased by taking these conditions into consideration.

連続鋳造での欠陥予測値の利用方法としては、以下のものが考えられる。
(1)欠陥が多いと予測された場合に鋳造速度等の製造方法を変更する。
(2)欠陥が多いと予測された場合、鋳造されたスラブの表面の手入れを行う。
(3)欠陥が多いと予測されたスラブは、汎用材として利用し、欠陥が少ないと予測されたものを高級素材として利用する。
The following can be considered as a method of using the predicted defect value in continuous casting.
(1) When it is predicted that there are many defects, the manufacturing method such as casting speed is changed.
(2) When it is predicted that there are many defects, the surface of the cast slab is cleaned.
(3) A slab predicted to have many defects is used as a general-purpose material, and a slab predicted to have few defects is used as a high-grade material.

このように本実施例の手法を用いると、製品の品質を高精度で予測することが可能となり、品質のよい製品を製造する操業条件を見出すことが可能となる。品質が悪くなった場合に、操業条件を変更することも可能となる。また、製品の品質の悪化により、操業異常を検出することもできる。さらに、製造された製品に品質情報を付加することにより、製品の用途や向け先の決定、製品品質の修正等が可能となる。   As described above, when the method of this embodiment is used, it is possible to predict the quality of the product with high accuracy, and it is possible to find an operation condition for manufacturing a product with good quality. It is also possible to change the operating conditions when the quality deteriorates. In addition, abnormal operation can be detected due to deterioration of product quality. Furthermore, by adding quality information to the manufactured product, it is possible to determine the use and destination of the product, correct the product quality, and the like.

本発明の一実施形態に係る製品の製造方法を示した概念図である。It is the conceptual diagram which showed the manufacturing method of the product which concerns on one Embodiment of this invention. 実績データベース作成のフローチャートである。It is a flowchart of achievement database creation. 操業データと操業結果のデータの関係(データイメージ)を示した説明図である。It is explanatory drawing which showed the relationship (data image) of operation data and operation result data. データ構造例である。It is an example of a data structure. 品質予測値算出ステップの処理の概要を示したフローチャートである。It is the flowchart which showed the outline | summary of the process of a quality predicted value calculation step. 予測された品質予測値により、操業条件を変更することを示したフローチャートである。It is the flowchart which showed changing operation conditions by the predicted quality predicted value. 予測された品質予測値により操業異常を検出することを示したフローチャートである。It is the flowchart which showed detecting operation abnormality with the predicted quality predicted value. 予測された品質予測値により製品の品質を修正することを示したフローチャートである。It is the flowchart which showed correcting the quality of a product with the predicted quality prediction value. 予測された品質予測値を製品に付加することを示したフローチャートである。It is the flowchart which showed adding the predicted quality prediction value to a product. 連続鋳造設備の概要図である。It is a schematic diagram of a continuous casting facility. 鋳型とそれに取り付けられた温度計との関係を示した図である。It is the figure which showed the relationship between a casting_mold | template and the thermometer attached to it. 欠陥実績と欠陥予測値との関係を示した図である。It is the figure which showed the relationship between a defect track record and a defect prediction value.

符号の説明Explanation of symbols

1 データ保存手段、 2 品質予測値算出手段、 20 タンディッシュ、21 溶鋼、22 スライディングノズル、23 浸漬ノズル、24 モールド、25 ピンチロール、30 温度計。   1 data storage means, 2 quality prediction value calculation means, 20 tundish, 21 molten steel, 22 sliding nozzle, 23 immersion nozzle, 24 mold, 25 pinch roll, 30 thermometer.

Claims (10)

過去に製造された製品の品質データとその製品の製造時の操業データとが対応付けられて記憶された実績データベースと、
品質を予測すべき製品の製造時の操業データと、前記実績データベースに記憶された各操業データとの類似度を算出し、該類似度と前記実績データベース内の品質データとから、製品の品質予測値を算出する品質予測値算出手段と
を有することを特徴とする品質予測装置。
A performance database in which quality data of products manufactured in the past and operation data at the time of manufacture of the products are stored in association with each other;
The degree of similarity between the operation data at the time of manufacturing the product whose quality is to be predicted and each operation data stored in the result database is calculated, and the quality prediction of the product is performed from the similarity and the quality data in the result database. And a quality prediction value calculation means for calculating a value.
前記品質予測値算出手段において、前記類似度を、品質を予測すべき製品の製造時の操業データと前記実績データベースに記憶された各操業データとのユークリッド距離とし、前記ユークリッド距離が最も近い前記実績データベースに記憶された操業データに対応する品質データを品質予測値とすることを特徴とする請求項1に記載の品質予測装置。   In the quality predicted value calculation means, the similarity is the Euclidean distance between the operation data at the time of manufacture of the product whose quality is to be predicted and each operation data stored in the result database, and the result with the closest Euclidean distance The quality prediction apparatus according to claim 1, wherein the quality data corresponding to the operation data stored in the database is used as a quality prediction value. 前記品質予測値算出手段において、前記類似度を、品質を予測すべき製品の製造時の操業データと前記実績データベースに記憶された各操業データとのユークリッド距離とし、前記ユークリッド距離が所定範囲内となる前記実績データベースに記憶された操業データに対応する品質データの平均値を算出し、該平均値を品質予測値とすることを特徴とする請求項1に記載の品質予測装置。   In the quality prediction value calculation means, the similarity is a Euclidean distance between operation data at the time of manufacture of a product whose quality is to be predicted and each operation data stored in the results database, and the Euclidean distance is within a predetermined range. The quality prediction apparatus according to claim 1, wherein an average value of quality data corresponding to operation data stored in the performance database is calculated, and the average value is used as a quality prediction value. 前記品質予測値算出手段において、前記類似度を、品質を予測すべき製品の製造時の操業データと前記実績データベースに記憶された各操業データとのユークリッド距離とし、前記実績データベースに記憶された操業データに対応する品質データの値に、前記ユークリッド距離に応じて定めた重み係数を乗じた重み付け平均値を算出し、該重み付け平均値を品質予測値とすることを特徴とする請求項1に記載の品質予測装置。   In the quality predicted value calculation means, the similarity is the Euclidean distance between the operation data at the time of manufacturing the product whose quality is to be predicted and each operation data stored in the result database, and the operation stored in the result database. The weighted average value obtained by multiplying the value of the quality data corresponding to the data by a weighting coefficient determined according to the Euclidean distance is calculated, and the weighted average value is used as a quality prediction value. Quality prediction equipment. 製品の品質データとその製品の製造時の操業データとが対応づけられて記憶された実績データベースから、品質を予測すべき製品の製造時の操業データと類似度を算出し、該類似度と前記品質データとに基づいて、品質予測値を算出することを特徴とする品質予測方法。   From the performance database in which the quality data of the product and the operation data at the time of manufacture of the product are associated and stored, the operation data and the similarity at the time of manufacture of the product whose quality is to be predicted are calculated, and the similarity and the aforementioned A quality prediction method characterized by calculating a quality prediction value based on quality data. 請求項1〜4の何れかに記載の品質予測装置で予測された製品の品質予測値に基づいて、当該製品を製造するための製造工程の操業条件を変更する操業条件変更工程を有することを特徴とする製品の製造方法。   It has an operation condition change process which changes the operation condition of the manufacturing process for manufacturing the said product based on the quality predicted value of the product predicted with the quality prediction device in any one of Claims 1-4. A method of manufacturing a featured product. 請求項1〜4の何れかに記載の品質予測装置で予測された製品の品質予測値に基づいて、製造工程の操業異常を判定する操業異常検出工程を有することを特徴とする製品の製造方法。   A product manufacturing method comprising an operation abnormality detection step of determining an operation abnormality of a manufacturing process based on a quality prediction value of a product predicted by the quality prediction apparatus according to claim 1. . 請求項1〜4の何れかに記載の品質予測装置で予測された製品の品質予測値に基づいて、製造された当該製品が所望の品質になるように不良部を修正する修正工程を有することを特徴とする製品の製造方法。   It has a correction process which corrects a defective part so that the manufactured product concerned may become desired quality based on the quality prediction value of the product predicted by the quality prediction device according to any one of claims 1 to 4. A method for producing a product characterized by the above. 請求項1〜4の何れかに記載の品質予測装置で予測された品質予測値に基づいて、当該製品の品質を決定し、以降の工程における処理条件を決定する処理条件決定工程を有することを特徴とする製品の製造方法。   It has a processing condition determination step of determining the quality of the product based on the quality prediction value predicted by the quality prediction device according to any one of claims 1 to 4 and determining processing conditions in subsequent steps. A method of manufacturing a featured product. 前記製品を、連続鋳造工程で製造される鋳片とし、
前記品質予測値を、連続鋳造工程において鋳片を製造する際のモールド温度や鋳造速度を含む操業データから予測した、モールドで巻き込んだ不純物による鋳片の欠陥データとすることを特徴とする請求項6〜9の何れかに記載の製品の製造方法。
The product is a slab manufactured by a continuous casting process,
The quality prediction value is assumed to be defect data of a slab caused by impurities caught in a mold, which is predicted from operation data including a mold temperature and a casting speed when a slab is manufactured in a continuous casting process. The manufacturing method of the product in any one of 6-9.
JP2007239350A 2007-09-14 2007-09-14 Quality prediction apparatus, quality prediction method and manufacturing method Active JP5169098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007239350A JP5169098B2 (en) 2007-09-14 2007-09-14 Quality prediction apparatus, quality prediction method and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007239350A JP5169098B2 (en) 2007-09-14 2007-09-14 Quality prediction apparatus, quality prediction method and manufacturing method

Publications (2)

Publication Number Publication Date
JP2009070235A true JP2009070235A (en) 2009-04-02
JP5169098B2 JP5169098B2 (en) 2013-03-27

Family

ID=40606398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007239350A Active JP5169098B2 (en) 2007-09-14 2007-09-14 Quality prediction apparatus, quality prediction method and manufacturing method

Country Status (1)

Country Link
JP (1) JP5169098B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287227A (en) * 2009-06-10 2010-12-24 Fisher Rosemount Syst Inc Method and apparatus to predict process quality in process control system
JP2011215873A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Method, apparatus and system for preparing manufacturing lot
JP2011221645A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Quality prediction device, quality prediction method, computer program, and computer readable recording medium
JP2011258113A (en) * 2010-06-11 2011-12-22 Kobe Steel Ltd Manufacturing condition determination system for metal band material
JP2013114362A (en) * 2011-11-28 2013-06-10 Nippon Steel & Sumitomo Metal Operation quality prediction device, method for predicting operation quality, computer program, and computer-readable recording medium
US9323234B2 (en) 2009-06-10 2016-04-26 Fisher-Rosemount Systems, Inc. Predicted fault analysis
JP2017161991A (en) * 2016-03-07 2017-09-14 三菱重工業株式会社 Quality evaluation system, quality evaluation method and program
JP2020004391A (en) * 2018-04-24 2020-01-09 エクスロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングYxlon International Gmbh Method for obtaining at least one significant feature in a series of components of the same type and method for the classification of a component of such a series
JP2022170100A (en) * 2021-04-28 2022-11-10 Jfeスチール株式会社 Rolling load prediction method, rolling control method and rolling load prediction device
JP2022170101A (en) * 2021-04-28 2022-11-10 Jfeスチール株式会社 Rolling load prediction method, rolling control method and rolling load prediction device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150234A (en) * 2001-11-16 2003-05-23 Nippon Steel Corp Operation analyzing device and method for manufacturing process and computer readable storage medium
JP2003162563A (en) * 2001-11-27 2003-06-06 Nippon Steel Corp Operation result forecasting system and method therefor
JP2003268428A (en) * 2002-03-08 2003-09-25 Jfe Steel Kk Apparatus for controlling quality of steel product
JP2004306085A (en) * 2003-04-07 2004-11-04 Jfe Steel Kk Quality monitoring device and quality monitoring method for continuous cast cast slab
JP2005242818A (en) * 2004-02-27 2005-09-08 Sumitomo Metal Ind Ltd Quality effect factor analyzing method, quality forecasting method, quality control method, quality effect factor analyzing device, quality forecasting device, quality control device, quality effect factor analyzing system, quality forecasting system, quality control system, and computer program
JP2006293433A (en) * 2005-04-05 2006-10-26 Toshiba Corp Quality control system, quality control method, and wafer processing method in lot unit
JP2007140965A (en) * 2005-11-18 2007-06-07 Jfe Steel Kk Method and system for predicting operation result

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150234A (en) * 2001-11-16 2003-05-23 Nippon Steel Corp Operation analyzing device and method for manufacturing process and computer readable storage medium
JP2003162563A (en) * 2001-11-27 2003-06-06 Nippon Steel Corp Operation result forecasting system and method therefor
JP2003268428A (en) * 2002-03-08 2003-09-25 Jfe Steel Kk Apparatus for controlling quality of steel product
JP2004306085A (en) * 2003-04-07 2004-11-04 Jfe Steel Kk Quality monitoring device and quality monitoring method for continuous cast cast slab
JP2005242818A (en) * 2004-02-27 2005-09-08 Sumitomo Metal Ind Ltd Quality effect factor analyzing method, quality forecasting method, quality control method, quality effect factor analyzing device, quality forecasting device, quality control device, quality effect factor analyzing system, quality forecasting system, quality control system, and computer program
JP2006293433A (en) * 2005-04-05 2006-10-26 Toshiba Corp Quality control system, quality control method, and wafer processing method in lot unit
JP2007140965A (en) * 2005-11-18 2007-06-07 Jfe Steel Kk Method and system for predicting operation result

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287227A (en) * 2009-06-10 2010-12-24 Fisher Rosemount Syst Inc Method and apparatus to predict process quality in process control system
US9323234B2 (en) 2009-06-10 2016-04-26 Fisher-Rosemount Systems, Inc. Predicted fault analysis
JP2011215873A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Method, apparatus and system for preparing manufacturing lot
JP2011221645A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Quality prediction device, quality prediction method, computer program, and computer readable recording medium
JP2011258113A (en) * 2010-06-11 2011-12-22 Kobe Steel Ltd Manufacturing condition determination system for metal band material
JP2013114362A (en) * 2011-11-28 2013-06-10 Nippon Steel & Sumitomo Metal Operation quality prediction device, method for predicting operation quality, computer program, and computer-readable recording medium
JP2017161991A (en) * 2016-03-07 2017-09-14 三菱重工業株式会社 Quality evaluation system, quality evaluation method and program
JP2020004391A (en) * 2018-04-24 2020-01-09 エクスロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツングYxlon International Gmbh Method for obtaining at least one significant feature in a series of components of the same type and method for the classification of a component of such a series
US11651482B2 (en) 2018-04-24 2023-05-16 Yxlon International Gmbh Method for obtaining at least one significant feature in a series of components of the same type and method for the classification of a component of such a series
JP7369541B2 (en) 2018-04-24 2023-10-26 エクスロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of obtaining at least one important feature in a set of components of the same type and method of classifying such a set of components
JP2022170100A (en) * 2021-04-28 2022-11-10 Jfeスチール株式会社 Rolling load prediction method, rolling control method and rolling load prediction device
JP2022170101A (en) * 2021-04-28 2022-11-10 Jfeスチール株式会社 Rolling load prediction method, rolling control method and rolling load prediction device

Also Published As

Publication number Publication date
JP5169098B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5169098B2 (en) Quality prediction apparatus, quality prediction method and manufacturing method
JP5169096B2 (en) Quality prediction apparatus, quality prediction method, and product manufacturing method
EP3100802B1 (en) Method, device and program for determining casting state in continuous casting
JP5962290B2 (en) Steel heat transfer coefficient prediction apparatus and cooling control method
JP2020011255A (en) Casting state determination device, casting state determination method, and program
JP4105839B2 (en) In-mold casting abnormality detection method in continuous casting
JP5716333B2 (en) Slab surface quality prediction method and slab surface quality prediction apparatus
JP4112783B2 (en) Breakout detection method in continuous casting equipment
JP2000317595A (en) Method for predicting surface flaw of continuously cast slab
JP4882769B2 (en) Center segregation prediction method for continuous cast slab and method for producing continuous cast slab
JP3537625B2 (en) Method and apparatus for measuring solidified shell thickness in continuous casting
JP2009241097A (en) Material quality assurance system of steel plate
KR100711405B1 (en) Apparatus of plate rolling and method of setting rolling condition of the same
JP5131287B2 (en) Method for estimating maximum segregation particle size of slab and quality evaluation method for wire
JP2003010950A (en) Detecting method for surface flaw in continuous casting, and continuous casting method
JP6119807B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method
JP5347727B2 (en) Continuous casting machine and slab surface vertical crack occurrence prediction method
JP2004291060A (en) Method for detecting transverse distribution of molten steel flow rate in continuous casting mold
JP6330740B2 (en) Apparatus and method for determining accuracy of measured temperature value
JP7014203B2 (en) Estimating method of crater end position of cast slab in continuous casting and its equipment
WO2021256063A1 (en) Breakout prediction method, method for operating continuous casting apparatus, and breakout prediction device
JP6299652B2 (en) Slab quality estimation apparatus and slab quality estimation method
JP4464583B2 (en) Evaluation method for billet and wire segregation
JP2005205462A (en) Method for preventing longitudinal crack on continuously cast piece
Hartner et al. Data-driven approach to optimize the relative density in additive manufacturing processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250