JP2009068572A - Magnetic viscous fluid shock absorber - Google Patents

Magnetic viscous fluid shock absorber Download PDF

Info

Publication number
JP2009068572A
JP2009068572A JP2007236381A JP2007236381A JP2009068572A JP 2009068572 A JP2009068572 A JP 2009068572A JP 2007236381 A JP2007236381 A JP 2007236381A JP 2007236381 A JP2007236381 A JP 2007236381A JP 2009068572 A JP2009068572 A JP 2009068572A
Authority
JP
Japan
Prior art keywords
rotor
magnetorheological fluid
shaft member
shock absorber
ball screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007236381A
Other languages
Japanese (ja)
Other versions
JP5086011B2 (en
Inventor
Keiji Saito
啓司 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP2007236381A priority Critical patent/JP5086011B2/en
Publication of JP2009068572A publication Critical patent/JP2009068572A/en
Application granted granted Critical
Publication of JP5086011B2 publication Critical patent/JP5086011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)
  • Fluid-Damping Devices (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic viscous fluid shock absorber for reducing the quantity of magnetic viscous fluid used. <P>SOLUTION: This invention is the magnetic viscous fluid shock absorber having a second shaft member 20 freely supported in the axial direction by a first shaft member 10, a conversion means 30 converting displacement in the axial direction of the second shaft member into rotational displacement, a rotor 41 connected to the conversion means and rotating by the rotational displacement, a cell 49 rotatably arranging the rotor inside and sealing the magnetic viscous fluid 1, and a coil 42 arranged on the outer peripheral side of the rotor and making a magnetic field act on the magnetic viscous fluid 1. The rotor is provided with an annular groove part on an outer peripheral surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁界の作用によって粘性が変化する磁気粘性流体を利用した磁気粘性流体緩衝器の改良に関するものである。   The present invention relates to an improvement in a magnetorheological fluid shock absorber using a magnetorheological fluid whose viscosity changes due to the action of a magnetic field.

自動車等の車両に搭載される緩衝器として、磁界の作用によって粘度が変化する磁気粘性流体を用い、ピストン部に減衰力調整弁の代りに、コイルを配置し、そのコイルに電流を印加し、制御部を流れる磁気粘性流体の粘性を変化させることにより、減衰力を調整するようにした減衰力調整式緩衝器が種々提案されている(例えば、特許文献1参照)。   As a shock absorber mounted on a vehicle such as an automobile, a magnetorheological fluid whose viscosity is changed by the action of a magnetic field is used. Instead of a damping force adjusting valve, a coil is arranged in the piston portion, and an electric current is applied to the coil. Various damping force adjustment type shock absorbers that adjust the damping force by changing the viscosity of the magnetorheological fluid flowing through the control unit have been proposed (see, for example, Patent Document 1).

特許文献1の緩衝器では、コイルへの制御電流を小さくすると、磁気粘性流体の通路に作用する磁界が弱くなり、磁気粘性流体の粘度が低くなって減衰力が小さくなり、制御電流を大きくすると、通路に作用する磁界が強くなり、磁気粘性流体の粘度が高くなって、減衰力が大きくなる。
米国特許第6260675号明細書
In the shock absorber of Patent Document 1, when the control current to the coil is reduced, the magnetic field acting on the path of the magnetorheological fluid is weakened, the viscosity of the magnetorheological fluid is lowered and the damping force is reduced, and the control current is increased. The magnetic field acting on the passage becomes stronger, the viscosity of the magnetorheological fluid becomes higher, and the damping force becomes larger.
US Pat. No. 6,260,675

しかしながら、特許文献1の緩衝器では、緩衝器のシリンダ内に磁気粘性流体を充填するため、高価な磁気粘性流体を大量に必要とするとともに、緩衝器の重量が重くなるという課題がある。   However, the shock absorber disclosed in Patent Document 1 has a problem that a large amount of expensive magnetorheological fluid is required and the weight of the shock absorber increases because the magnetorheological fluid is filled in the shock absorber cylinder.

本発明は上記の問題点に鑑みてなされたものであり、減衰力特性を維持したまま、磁気粘性流体の量を低減して重量の軽量化及び低コスト化を図る磁気粘性流体緩衝器を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a magnetorheological fluid shock absorber that reduces the amount of magnetorheological fluid while reducing the damping force characteristic, thereby reducing the weight and cost. The purpose is to do.

本発明は、第1の軸部材と、前記第1の軸部材に対して軸方向に自由に支持される第2の軸部材と、前記第2の軸部材の軸方向変位を回転変位に変換する変換手段と、前記変換手段に接続し、前記回転変位により回転するロータと、内部に前記ロータを回転可能に配置するとともに磁気粘性流体を密封した隔室と、前記ロータの外周側に配置され、前記磁気粘性流体に対して磁界を作用させるコイルと、を備え、前記ロータは、外周面に環状の溝部を設け、前記コイルに印加する電流に応じて、前記ロータの回転抵抗となる磁気粘性流体の粘性を変化させて減衰力を変化させることを特徴とする磁気粘性流体緩衝器である。   The present invention converts a first shaft member, a second shaft member freely supported in the axial direction with respect to the first shaft member, and an axial displacement of the second shaft member into a rotational displacement. Conversion means, a rotor connected to the conversion means and rotated by the rotational displacement, a compartment in which the rotor is rotatably arranged and a magnetorheological fluid is sealed, and an outer peripheral side of the rotor. A coil for applying a magnetic field to the magnetorheological fluid, and the rotor is provided with an annular groove portion on an outer peripheral surface thereof, and the magnetorheological viscosity serving as a rotational resistance of the rotor according to an electric current applied to the coil. A magnetoviscous fluid shock absorber characterized in that the damping force is changed by changing the viscosity of the fluid.

本発明によれば、第1の軸部材と第2の軸部材との間の相対変位に伴って回転するロータの回りに磁気粘性流体を密封する隔室を備えることで、磁気粘性流体の量を著しく減少させることができる。これにより、緩衝器の重量の軽量化と低コスト化を図ることができる。また、ロータ外周面に溝部を設けたので、ロータと磁気粘性流体との接触面積が増大し、抵抗が大きくなり、結果として減衰力を高めることができる。   According to the present invention, the amount of the magnetorheological fluid is provided by providing the compartment for sealing the magnetorheological fluid around the rotor rotating with the relative displacement between the first shaft member and the second shaft member. Can be significantly reduced. As a result, the weight of the shock absorber can be reduced and the cost can be reduced. Further, since the groove portion is provided on the outer peripheral surface of the rotor, the contact area between the rotor and the magnetorheological fluid is increased, the resistance is increased, and as a result, the damping force can be increased.

図1を参照して本発明の実施の形態である磁気粘性流体緩衝器100について説明する。   A magnetorheological fluid shock absorber 100 according to an embodiment of the present invention will be described with reference to FIG.

本発明の磁気粘性流体緩衝器100は、車軸を懸架する懸架装置に接続する外筒(第1の軸部材)10と、車体に接続するロッド部材22を備えたロッド(第2の軸部材)20と、外筒10とロッド20との間での上下(軸)方向の直線変位をロッド20の中心線回りの回転変位に変換する変換手段30と、磁界の作用により磁気粘性流体1の粘性特性が変化して減衰力を生じる減衰力発生部40とを備える。   The magnetorheological fluid shock absorber 100 of the present invention includes a rod (second shaft member) including an outer cylinder (first shaft member) 10 connected to a suspension device for suspending an axle and a rod member 22 connected to the vehicle body. 20, a conversion means 30 that converts a linear displacement in the vertical (axial) direction between the outer cylinder 10 and the rod 20 into a rotational displacement around the center line of the rod 20, and the viscosity of the magnetorheological fluid 1 by the action of a magnetic field. And a damping force generator 40 that generates a damping force by changing characteristics.

外筒10は、円筒状の円筒部材11と、その底部開口端を閉止する蓋材19と、円筒部材11の中心線に直交するように中心線が配置されて蓋材19に固定される環状のブラケット12と、このブラケット12に圧入されるゴムブッシュ13と、第1円筒部材11の開口端部近傍に設置され、ロッド20を軸方向に摺動可能に支持する軸受14とから構成される。   The outer cylinder 10 has an annular cylindrical member 11, a lid member 19 that closes the bottom opening end thereof, and an annular shape that is fixed to the lid member 19 with a center line disposed perpendicular to the center line of the cylindrical member 11. Bracket 12, a rubber bush 13 that is press-fitted into the bracket 12, and a bearing 14 that is installed near the opening end of the first cylindrical member 11 and supports the rod 20 slidably in the axial direction. .

ロッド20は、下側に開口端を配置した蓋付き円筒状の第2円筒部材21と、第2円筒部材21の蓋部に固定され、車体に接続される棒状のロッド部材22とを第1円筒部材11の中心線上に配置して構成される。   The rod 20 includes a lid-shaped cylindrical second cylindrical member 21 having an open end on the lower side, and a rod-shaped rod member 22 fixed to the lid portion of the second cylindrical member 21 and connected to the vehicle body. It is arranged on the center line of the cylindrical member 11.

変換手段30は、いわゆるボールネジ機構30aからなり、ボールネジナット31がロッド20の第2円筒部材21の開口端部近傍の内周面に嵌合、固定される。また、ボールネジナット31と螺合するボールネジ軸32は、軸方向に配置されて一端が第2円筒部材21内に伸出する。ボールネジ軸32の先端部には不図示の雄ねじが形成され、この雄ねじ部にボールネジナット31の伸び側の移動量を規制するためのストッパナット33が螺合する。このストッパナット33は、ストッパナット33とボールネジナット31とが接触する時の衝撃を軽減するための緩衝材34を備える。緩衝材34は、例えばウレタン材やゴム材から構成される。一方、ボールネジ軸32の他端は、第1円筒部材11の底面16(図2参照)に配置された軸受15により中心線回りに回転自在に支持される。   The conversion means 30 includes a so-called ball screw mechanism 30a, and a ball screw nut 31 is fitted and fixed to the inner peripheral surface of the rod 20 near the opening end of the second cylindrical member 21. The ball screw shaft 32 that is screwed with the ball screw nut 31 is disposed in the axial direction, and one end extends into the second cylindrical member 21. A male screw (not shown) is formed at the tip of the ball screw shaft 32, and a stopper nut 33 for restricting the amount of movement of the ball screw nut 31 on the extending side is screwed into the male screw portion. The stopper nut 33 includes a cushioning material 34 for reducing an impact when the stopper nut 33 and the ball screw nut 31 are in contact with each other. The buffer material 34 is made of, for example, a urethane material or a rubber material. On the other hand, the other end of the ball screw shaft 32 is rotatably supported around the center line by a bearing 15 disposed on the bottom surface 16 (see FIG. 2) of the first cylindrical member 11.

このような構成により、車体に対して車軸が上下方向に相対変位するのに伴い、外筒10がロッド20に対して軸方向変位すると、ボールネジ機構30aの作用により軸方向変位が中心線回りの回転変位に変換され、ボールネジナット31に螺合するボールネジ軸32が中心線回りに回転する。   With such a configuration, when the outer cylinder 10 is axially displaced with respect to the rod 20 as the axle is relatively displaced in the vertical direction with respect to the vehicle body, the axial displacement is about the center line due to the action of the ball screw mechanism 30a. The ball screw shaft 32, which is converted into rotational displacement and screwed into the ball screw nut 31, rotates about the center line.

図2は、減衰力発生部40の詳細構成を示す図である。第1円筒部材11内には、底面16から軸方向に所定距離離れて区画部材43が設置され、区画部材43により第1円筒部材11内に隔室49を区画して形成し、この隔室49の内部に磁気粘性流体1を充満させる。またこの隔室49内に、ボールネジ軸32と一体に回転するロータ41を配置して磁気粘性流体1の粘性がロータ41の回転の抵抗力となり、この抵抗力が緩衝器の減衰力となる。更に、この減衰力を運転状態によって変化させるために、磁気粘性流体1に磁界を作用させ、その粘性を変えられるようにしている。このため、ロータ41の外周部に所定の間隙をもって配置され、配線48を通じて外部電源から電流が印加される環状のコイル42を備える。   FIG. 2 is a diagram illustrating a detailed configuration of the damping force generation unit 40. A partition member 43 is installed in the first cylindrical member 11 at a predetermined distance in the axial direction from the bottom surface 16, and a partition 49 is partitioned and formed in the first cylindrical member 11 by the partition member 43. 49 is filled with the magnetorheological fluid 1. In addition, a rotor 41 that rotates integrally with the ball screw shaft 32 is disposed in the compartment 49, and the viscosity of the magnetorheological fluid 1 becomes a resistance force of the rotation of the rotor 41, and this resistance force becomes a damping force of the shock absorber. Further, in order to change the damping force depending on the operating state, a magnetic field is applied to the magnetorheological fluid 1 so that the viscosity can be changed. For this purpose, an annular coil 42 is provided on the outer periphery of the rotor 41 with a predetermined gap and to which a current is applied from an external power source through the wiring 48.

また、磁気粘性流体1が外部へ漏洩するのを防止するため、区画部材43と蓋材19の内周面との間から磁気粘性流体1が漏洩するのを防止するOリング46と、ボールネジ軸32の外周面とロータ41との間に、この間隙から磁気粘性流体1が漏洩することを防止するOリング47と、区画部材43に設けられて前記ロータ41との間での磁気粘性流体1の漏洩を防止するシール45を設ける。   Further, in order to prevent the magnetorheological fluid 1 from leaking to the outside, an O-ring 46 that prevents the magnetorheological fluid 1 from leaking from between the partition member 43 and the inner peripheral surface of the lid member 19, and a ball screw shaft The magnetorheological fluid 1 between the O-ring 47 that prevents leakage of the magnetorheological fluid 1 from the gap between the outer peripheral surface of the rotor 32 and the rotor 41 and the rotor 41 provided on the partition member 43. A seal 45 is provided to prevent leakage.

ロータ41は、ボールネジ軸32の端部外周面に、その内周面が嵌合する円筒状の本体部51と、この本体部51から外径方向へ延出する円板状の複数の鍔部52とからなり、この鍔部52の外周側に所定距離をもって取り囲むようにコイル42が配置される。   The rotor 41 includes a cylindrical main body 51 fitted on the outer peripheral surface of the end of the ball screw shaft 32 and an inner peripheral surface of the ball screw shaft 32, and a plurality of disc-shaped flanges extending from the main body 51 in the outer diameter direction. The coil 42 is arranged on the outer peripheral side of the flange portion 52 so as to surround the flange portion 52 with a predetermined distance.

ここで、ロータ41と区画部材43と及び蓋材19は、コイル42への電流印加時の回転抵抗をより大きくするために磁性材料で構成されることが望ましい。   Here, the rotor 41, the partition member 43, and the lid member 19 are preferably made of a magnetic material in order to increase the rotational resistance when a current is applied to the coil.

鍔部52は、軸方向に所定間隔を持って配置されており、隣接する鍔部52間に環状の溝部53が複数形成され、鍔部52と溝部53のロータ41の外周面の断面形状が櫛型となるように構成される。なお、ロータ41は、製造方法を容易にするため、外径の異なる2種類の薄肉円板を軸方向に交互に積層して形成するようにしてもよい。   The flange portions 52 are arranged at predetermined intervals in the axial direction, and a plurality of annular groove portions 53 are formed between the adjacent flange portions 52, and the cross-sectional shape of the outer peripheral surface of the rotor 41 of the flange portions 52 and the groove portions 53 is the same. It is configured to be a comb shape. In order to facilitate the manufacturing method, the rotor 41 may be formed by alternately laminating two types of thin disks having different outer diameters in the axial direction.

コイル42は、第1円筒部材11の内周側底面16に接して配置され、このコイル42上面に区画部材43が軸方向から挿入されて磁気粘性流体1が充満される隔室49が区画される。そしてこの隔室49内にロータ41が回転可能に配置される。   The coil 42 is disposed in contact with the inner peripheral bottom surface 16 of the first cylindrical member 11, and a compartment 49 in which the partition member 43 is inserted from the axial direction and the magnetorheological fluid 1 is filled is defined on the top surface of the coil 42. The The rotor 41 is rotatably disposed in the compartment 49.

このように構成された減衰力発生部40では、ボールネジ軸32とともに回転するロータ41の鍔部52の周囲に磁気粘性流体1を満たす隔室49が第1円筒部材11内に区画されて、減衰力を生じる磁気粘性流体1の必要量を著しく低減し、重量の低減及び低コスト化を図ることができる。また、ロータ41の外周面に溝部53を設けたので、ロータ41と磁気粘性流体1との接触面積が増大し、抵抗が大きくなり、結果として減衰力を高めることができる。   In the damping force generator 40 configured in this way, a compartment 49 that fills the magnetorheological fluid 1 around the flange portion 52 of the rotor 41 that rotates together with the ball screw shaft 32 is partitioned in the first cylindrical member 11 to be attenuated. The required amount of the magnetorheological fluid 1 that generates force can be significantly reduced, and the weight can be reduced and the cost can be reduced. Moreover, since the groove part 53 was provided in the outer peripheral surface of the rotor 41, the contact area of the rotor 41 and the magnetic viscous fluid 1 increases, resistance becomes large, and as a result, damping force can be raised.

さらに緩衝器100が長期間に渡って放置されたような場合に、磁気粘性流体1の量が多い場合には、分散している磁気粘性流体1内の鉄粉等の強磁性粒子が沈殿するため、十分撹拌されるまでの間、所期の減衰特性を発揮できないが、本発明のように使用する磁気粘性流体1の量が少ない場合には、撹拌時間が短縮され、早期に所期の減衰特性を得ることができる。   Further, when the shock absorber 100 is left for a long period of time and the amount of the magnetorheological fluid 1 is large, ferromagnetic particles such as iron powder in the magnetorheological fluid 1 that is dispersed are precipitated. For this reason, the desired damping characteristic cannot be exhibited until it is sufficiently agitated. However, when the amount of the magnetorheological fluid 1 to be used is small as in the present invention, the agitation time is shortened, and the initial Attenuation characteristics can be obtained.

そしてコイル42に電流が印加されると、図3に示すように磁界が軸方向に、言い換えると鍔部52間の磁気粘性流体1に対して直角方向に発生する。図3に電流供給時の磁場の状態を示す。発生した磁界により磁気粘性流体1の粘性が変化し、電流値が大きいほど磁力が強まり磁気粘性流体1の粘性が高まる。緩衝器100の伸縮に伴って、すなわち第1円筒部材11に対してロッド20が伸縮動作すると、ロータ41が磁気粘性流体1内を回転し、このとき磁気粘性流体1の粘性がロータ41の回転を抑制する抵抗力として作用することになり、この抵抗力が本発明の緩衝器100の伸縮動作に対する減衰力となる。ここで、磁気粘性流体1は、コイル42に印加される電流に応じて瞬時に粘性が変化し、電流が大きいほど粘性が高まり、高減衰力を生じ、したがって、電流値を制御することで、発生する減衰力を可変制御することができる。   When a current is applied to the coil 42, a magnetic field is generated in the axial direction as shown in FIG. 3, in other words, in a direction perpendicular to the magnetorheological fluid 1 between the flanges 52. FIG. 3 shows the state of the magnetic field during current supply. The viscosity of the magnetorheological fluid 1 changes due to the generated magnetic field, and as the current value increases, the magnetic force increases and the viscosity of the magnetorheological fluid 1 increases. As the shock absorber 100 expands and contracts, that is, when the rod 20 expands and contracts with respect to the first cylindrical member 11, the rotor 41 rotates in the magnetorheological fluid 1. At this time, the viscosity of the magnetorheological fluid 1 is rotated by the rotor 41. This resistance acts as a damping force for the expansion / contraction operation of the shock absorber 100 of the present invention. Here, the viscosity of the magnetorheological fluid 1 changes instantaneously according to the current applied to the coil 42, the viscosity increases as the current increases, and a high damping force is generated. Therefore, by controlling the current value, The generated damping force can be variably controlled.

本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

本発明は、車両に搭載する磁気粘性流体緩衝器に適用することができる。   The present invention can be applied to a magnetorheological fluid shock absorber mounted on a vehicle.

本発明を適用する磁気粘性流体緩衝器100を示す断面図である。It is sectional drawing which shows the magnetorheological fluid shock absorber 100 to which this invention is applied. 減衰力発生部の詳細断面図である。It is a detailed sectional view of a damping force generation part. 減衰力発生部の磁界の状態を説明する図である。It is a figure explaining the state of the magnetic field of a damping force generation part.

符号の説明Explanation of symbols

1 磁気粘性流体
10 外筒
11 第1円筒部材
20 ロッド
21 第2円筒部材
22 ロッド部材
30 変換手段
31 ボールネジナット
32 ボールネジ軸
34 緩衝材
40 減衰力発生部
41 ロータ
42 コイル
43 区画部材
45 シール
49 隔室
51 本体部
52 鍔部
53 溝部
100 磁気粘性流体緩衝器
DESCRIPTION OF SYMBOLS 1 Magneto-viscous fluid 10 Outer cylinder 11 1st cylindrical member 20 Rod 21 2nd cylindrical member 22 Rod member 30 Conversion means 31 Ball screw nut 32 Ball screw shaft 34 Buffer material 40 Damping force generating part 41 Rotor 42 Coil 43 Partition member 45 Seal 49 Separation Chamber 51 Body portion 52 Gutter portion 53 Groove portion 100 Magnetorheological fluid shock absorber

Claims (5)

第1の軸部材と、
前記第1の軸部材に対して軸方向に自由に支持される第2の軸部材と、
前記第2の軸部材の軸方向変位を回転変位に変換する変換手段と、
前記変換手段に接続し、前記回転変位により回転するロータと、
内部に前記ロータを回転可能に配置するとともに磁気粘性流体を密封した隔室と、
前記ロータの外周側に配置され、前記磁気粘性流体に対して磁界を作用させるコイルと、を備え、
前記ロータは、外周面に環状の溝部を設け、
前記コイルに印加する電流に応じて、前記ロータの回転抵抗となる磁気粘性流体の粘性を変化させて減衰力を変化させることを特徴とする磁気粘性流体緩衝器。
A first shaft member;
A second shaft member that is freely supported in the axial direction with respect to the first shaft member;
Conversion means for converting axial displacement of the second shaft member into rotational displacement;
A rotor connected to the conversion means and rotated by the rotational displacement;
A compartment in which the rotor is rotatably arranged and the magnetorheological fluid is sealed;
A coil that is disposed on the outer peripheral side of the rotor and that acts a magnetic field on the magnetorheological fluid,
The rotor is provided with an annular groove on the outer peripheral surface,
A magnetorheological fluid shock absorber characterized in that the damping force is changed by changing the viscosity of the magnetorheological fluid serving as the rotational resistance of the rotor in accordance with the current applied to the coil.
前記変換手段は、ボールネジ機構からなることを特徴とする請求項1に記載の磁気粘性流体緩衝器。   The magnetorheological fluid shock absorber according to claim 1, wherein the conversion unit includes a ball screw mechanism. 前記第2の軸部材は、前記第1の軸部材に摺動自由に支持される筒部を備え、
前記ボールネジ機構は、前記筒部の内周面に嵌合するボールネジナットと、このボールネジナットに螺合して一端が前記筒部内に伸出するとともに、他端が前記第1の軸部材の底面に前記第2の軸部材の中心線回りに回転自在に支持されるボールネジ軸とを備え、
前記ロータは、前記ボールネジ軸に固定されることを特徴とする請求項2に記載の磁気粘性流体緩衝器。
The second shaft member includes a cylindrical portion that is slidably supported by the first shaft member,
The ball screw mechanism includes a ball screw nut fitted to the inner peripheral surface of the cylindrical portion, a screw screw engaging with the ball screw nut, one end extending into the cylindrical portion, and the other end extending to the bottom surface of the first shaft member. And a ball screw shaft supported rotatably around a center line of the second shaft member,
The magnetorheological fluid shock absorber according to claim 2, wherein the rotor is fixed to the ball screw shaft.
前記第1の軸部材内の一部を画成部材で軸方向に区画して前記隔室を画成し、
前記ロータは、前記隔室内に設置されることを特徴とする請求項3に記載の磁気粘性流体緩衝器。
A portion of the first shaft member is partitioned in an axial direction by an defining member to define the compartment;
The magnetorheological fluid shock absorber according to claim 3, wherein the rotor is installed in the compartment.
前記ロータは、外径の異なる2種類の円板を軸方向に交互に積層してそれらの間に前記溝部を形成することを特徴とする請求項1に記載の磁気粘性流体緩衝器。   2. The magnetorheological fluid shock absorber according to claim 1, wherein the rotor is formed by alternately laminating two kinds of discs having different outer diameters in an axial direction to form the groove portion therebetween.
JP2007236381A 2007-09-12 2007-09-12 Magnetorheological fluid shock absorber Expired - Fee Related JP5086011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007236381A JP5086011B2 (en) 2007-09-12 2007-09-12 Magnetorheological fluid shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236381A JP5086011B2 (en) 2007-09-12 2007-09-12 Magnetorheological fluid shock absorber

Publications (2)

Publication Number Publication Date
JP2009068572A true JP2009068572A (en) 2009-04-02
JP5086011B2 JP5086011B2 (en) 2012-11-28

Family

ID=40605058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007236381A Expired - Fee Related JP5086011B2 (en) 2007-09-12 2007-09-12 Magnetorheological fluid shock absorber

Country Status (1)

Country Link
JP (1) JP5086011B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152149A (en) * 2011-01-27 2012-08-16 Hitachi High-Technologies Corp Stage mechanism and dna sequencer using stage mechanism
JP2014173697A (en) * 2013-03-12 2014-09-22 Kurimoto Ltd Linear actuator
CN105317899A (en) * 2015-12-11 2016-02-10 北京邮电大学 Linear electromagnetic damper with thread structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS482956Y1 (en) * 1969-08-16 1973-01-25
JPH09264492A (en) * 1996-03-28 1997-10-07 Sanwa Tekki Corp Vibration control device for electrical viscous fluid
US20050121269A1 (en) * 2003-12-08 2005-06-09 Namuduri Chandra S. Fluid damper having continuously variable damping response
US20070045068A1 (en) * 2005-08-24 2007-03-01 Namuduri Chandra S Damping device having controllable resistive force

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS482956Y1 (en) * 1969-08-16 1973-01-25
JPH09264492A (en) * 1996-03-28 1997-10-07 Sanwa Tekki Corp Vibration control device for electrical viscous fluid
US20050121269A1 (en) * 2003-12-08 2005-06-09 Namuduri Chandra S. Fluid damper having continuously variable damping response
US20070045068A1 (en) * 2005-08-24 2007-03-01 Namuduri Chandra S Damping device having controllable resistive force

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152149A (en) * 2011-01-27 2012-08-16 Hitachi High-Technologies Corp Stage mechanism and dna sequencer using stage mechanism
JP2014173697A (en) * 2013-03-12 2014-09-22 Kurimoto Ltd Linear actuator
CN105317899A (en) * 2015-12-11 2016-02-10 北京邮电大学 Linear electromagnetic damper with thread structure

Also Published As

Publication number Publication date
JP5086011B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
EP2200848B1 (en) Electromagnetic shock absorber for vehicle
US7686143B2 (en) Magnetorheological device and system and method for using the same
JP4959483B2 (en) Magnetorheological fluid shock absorber
JP5120629B2 (en) Damping force adjustable shock absorber and suspension control device using the same
CN109630596B (en) Rotary type damping-adjustable silicone oil-magnetorheological torsional vibration damper
JP7040801B2 (en) Chassis parts with rotating damper
US20050121269A1 (en) Fluid damper having continuously variable damping response
CN112283281B (en) Damping adjusting valve and method for vibration absorber
JP4945379B2 (en) Magnetorheological fluid shock absorber
JP6924513B2 (en) Rotating damper
JP5086011B2 (en) Magnetorheological fluid shock absorber
CN206617488U (en) A kind of piston type particle damped vibration attenuation device
JPWO2017038577A1 (en) Cylinder device
JP2002257189A (en) Electromagnetic suspension unit
JP5818201B2 (en) Shock absorber
CN106917840A (en) A kind of obstructive piston type granule damper
JP2008215588A (en) Electromagnetic shock absorber
JPS62251220A (en) Buffer
CN107923471B (en) Hydraulic shock absorber
JP2016023721A (en) Damper device
JP2008303963A (en) Electromagnetic shock absorber
JP6892378B2 (en) Cylinder device
KR101272753B1 (en) Damping force variable apparatus
JP2008256179A (en) Vehicular electromagnetic absorber
JP2008249030A (en) Variable damping force damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R151 Written notification of patent or utility model registration

Ref document number: 5086011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees